

 inside front cover

 [image: IFC_F01_Buontempo]

 This book uses std::cin, std::cout, std::vector, and std::string in many places. These should be old, familiar C++ features. By counting other features from the standard namespace in the code with this book, we can form a word cloud. The larger the word, the more often we use it. See if you recognize any, and look back when you have finished the book to remind yourself what you have learned.

 [image:]

 Learn C++ by Example

 Covers versions 11 to 23

 Frances Buontempo

 Foreword by Matt Godbolt

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Review editor:

 	
 Adriana Sabo/Dunja Nikitović

 	
 Technical editor:

 	
 Timothy Jaap van Deurzen

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Lana Todorovic-Arndt

 	
 Proofreader:

 	
 Melody Dolab

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781633438330

 dedication

 To my husband, Steve Love, for supporting me and chatting about possible examples and approaches used in this book when he wasn’t busy writing his own.

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Hello again, C++!

 1.1 Why does C++ matter?

 1.2 When should you use C++?

 1.3 Why read this book?

 1.4 How does this book teach C++?

 Who this book is for

 Hello, again, C++!

 What you’ll learn from reading this book

 1.5 Some pro tips

 2 Containers, iterators, and ranges

 2.1 Creating and displaying a vector

 2.2 Creating and displaying Pascal’s triangle

 A reminder of Pascal’s triangle

 Coding Pascal’s triangle

 Move semantics and perfect forwarding

 Using ranges to display the vector

 Using format to display output

 2.3 Properties of the triangle

 Checking the first and last elements of each row

 Checking the number of elements in each row

 Checking the sum of the elements in a row

 How many rows can we generate correctly?

 Checking whether each row is symmetric

 Highlighting odd numbers in a row

 3 Input of strings and numbers

 3.1 Guessing a predetermined number

 Accepting user input the hard way

 Accepting optional numeric input

 Validation and feedback using std::function and lambdas

 3.2 Guessing a random number

 Setting up a random number generator

 Using the random number generator

 3.3 Guessing a prime number

 Checking whether the number is prime

 Checking properties with static_assert

 Generating a random prime number

 Deciding which digits are correct

 Providing different clues using std::function

 4 Time points, duration, and literals

 4.1 How long until the last day of the year?

 4.2 Understanding durations in detail

 Ratios

 Durations

 Literal suffixes and operator / for readable code

 Requirements and concepts

 How many days until the last day of the year?

 Using last to find how long to payday

 Writing testable code

 4.3 Input, output, and formatting

 Parsing a date

 Formatting time points and durations

 4.4 Time zones

 5 Creating and using objects and arrays

 5.1 Creating a deck of playing cards

 Defining a card type using a scoped enum for the suit

 Defining a card type using a strong type for the face value

 Constructors and default values

 Displaying playing cards

 Using an array to make a deck of cards

 Using generate to fill the array

 Comparison operators and defaults

 5.2 Higher-or-lower card game

 Shuffling the deck

 Building the game

 Using std::variant to support cards or jokers

 Building the game with an extended deck of cards

 6 Smart pointers and polymorphism

 6.1 A class hierarchy

 An abstract base class

 A concrete class

 Warming up for a race

 Using type traits to check for special member functions

 6.2 Writing and using derived classes in a vector

 A blob moving randomly

 Smart pointers

 Race!

 Some design considerations

 7 Associative containers and files

 7.1 Hardcoded answer smash

 Creating and using an std::map

 Pairs, tuples, and structured bindings

 A simple answer smash game

 7.2 Associative containers

 The map type in more detail

 Using lower and upper bound to find a key more efficiently

 Multimaps

 7.3 File-based answer smash

 Loading data from a file

 Picking a word randomly using std::sample

 Answer smash

 8 Unordered maps and coroutines

 8.1 Randomly generated matching pennies

 8.2 Matching pennies using an unordered_map

 Unordered containers and std::hash

 Using an unordered_ map to make a prediction

 The mind reader game

 8.3 Coroutines

 How to make a coroutine

 A coroutine function

 The coroutine’s return object

 RAII and the rule of zero

 Filling in the promise_type

 Filling in the Task type

 A coroutine mind reader

 9 Parameter packs and std::visit

 9.1 The triangle numbers

 Testing our triangle numbers with algorithms

 Execution policies for algorithms

 Mutable lambdas

 More properties of the triangle numbers

 9.2 A simple slot machine

 Revision of constexpr and std::format

 Using std::rotate to spin the reels

 The simple slot machine

 9.3 A better slot machine

 Parameter packs and fold expressions

 Using a parameter pack to find frequencies

 A fairer payout

 Allowing holds, nudges, or spins

 Spinning reels with std::visit and std::views::zip

 appendix Further resources

 index

Front matter

foreword

 C++ is an ever-improving language used in almost every corner of computing, from embedded systems, operating systems, browsers, games, and trading systems to the ebook reader you may be using to read this book. A new C++ standard comes out every three years, and compiler vendors are quick to pick up on the latest features. I’ve been writing C++ professionally for over 20 years in the seemingly disparate games and finance industries. I have mostly worried about the performance of my code, which led to me creating Compiler Explorer, and not about every little change to the language.

 All the while, at the back of my mind, I was concerned I was missing something. When I heard Fran was writing this book, I was excited to have the opportunity to catch up on the newer parts of the language I’d been ignoring for so long.

 I first met Fran at the C++ on Sea conference. She was running the lightning talks—each speaker gets 5 minutes to present, one after another in rapid succession. As the compère of the talks, Fran had to cover while one person got up on stage and the previous left, and in doing so, she invited the audience to play various guessing games, such the higher-or-lower card game or smash quiz, getting us to guess various conference speaker names mixed up with C++ keywords. Little did we know she was trying out some of the games she uses as examples in this book!

 In this book, Fran covers many of the latest C++ features, including smart pointers, ranges, optional types, variant types, improved string formatting, constexpr, concepts, and coroutines. If any of those sound unfamiliar to you, then you’re in for a treat. As I mentioned, I haven’t always kept up to date with the newer features, and reading this book was a fun way of picking them up. And I finally learned the difference between aggregate initializers and initializer lists!

 The continued evolution of the language means C++ today is not the bug-prone tangle of memory leaks you might remember from the 1990s and 2000s. Unfortunately, online resources are slow to catch up and often show the old, deprecated ways of doing things. This book clears up a lot of misconceptions and will set you up on the right track.

 The examples are playful and fun but show real-world nontrivial code. Each section shows the journey of development, iterating on the code as Fran introduces new concepts one by one. I encourage you to play along and compile and run the code as you read each section. At least for me, learning by doing works better than just reading alone, and by tinkering with the code, you can get a better sense of how easy it is to make changes.

 Along the way, there’s great general development advice on the tradeoffs we all have to make when writing code. There are tests that explore the edge cases and how to handle them, and even examples of how to write code that won’t compile if used incorrectly, with helpful error messages.

 Each section has relevant links to online resources such as blog posts, reference sites, and online tools (not just Compiler Explorer) that can help you understand the matter more deeply. The links complement the book perfectly, not distracting from the flow of the examples but giving you an opportunity to explore further if you’re so inclined.

 Learn C++ by Example is a fun and pragmatic way to learn the newest features of C++. If, like me, you’ve been worrying you’re missing out, or if you’re returning to C++ after an absence, then let Fran take you on a journey of what’s possible with modern C++ and learn how to code your way out of a paper bag too!

 —Matt Godbolt

preface

 I first encountered C++ when asked to write a C++ parser to emulate code for an embedded device on a PC back in the 1990s. I only knew C at the time, so this was a baptism by fire. The C++ was predominantly C with classes, like many early versions of C++ were. Over time, I learned more and fell in love with the language. As a long-standing member of ACCU (https://accu.org/), I volunteered to become editor of its Overload magazine, which means I have to write an editorial every other month, as well as encourage people to write and collate feedback from the review team. Overload has a mix of articles from newcomers and seasoned professionals, covering C++ in depth, as well as broader programming topics, so as the editor, I need to try to keep up to date with everything. This is a challenge, and I still have lots to learn.

 I have used C++ for personal projects, and you can find many of my talks on YouTube. I have also used C++ professionally, predominantly in investment banks and other financial institutions. I know other languages too, and often act as an intermediary between the quant teams writing C++ libraries and the frontend teams using them. I do understand a lot of the under-the-hood mathematics that rocket scientists use in their coding. To be honest, I’ve only worked with two rocket scientists, but you can do clever things with C++. The important part is understanding what you are doing and knowing how to test your code.

 C++ is an evolving language, so I will never be up to date with all the changes. However, being aware of what I don’t know means I can pick specific parts to practice. In this book, I share various small projects designed to help you learn a variety of newer C++ features. Over the years, I have met many people who used to know C++ but stepped away to use another language for a while, and they were overwhelmed by the number of new features and approaches when they considered picking up C++ again. It’s disheartening to spend time learning something and then find it difficult to reacquaint oneself. I want to encourage anyone in such a situation to focus on key elements to get back up to speed. I hope this book fills that need.

 This book does not cover everything that has changed from C++11 onward. As I wrote this book, C++23 was finalized, so I have included a few of the newest features at the time of writing. C++ will continue to change, but having a few small projects to play with means you can use them for practice as the language continues to evolve. For instance, this book uses various containers, from std::vector to std::unordered_ map, and more. The containers have been a fundamental part of C++ for a long time, but recent changes make them easier to use. This book uses a variety of new features, without trying to be a reference book for the whole language. The “About this book” section gives further details.

acknowledgments

 This book has been fun and challenging to write. I’ve learned loads as I’ve tried to explain various aspects of C++. I frequently asked others for help or ideas, while aiming to find simple but correct ways to describe the language. Thanks to everyone who argued with me to ensure I was correct.

 I would like to thank Matt Godbolt for writing a foreword for me. I’m delighted you enjoyed reading this book.

 At Manning, I’d like to thank my development editor Doug Rudder and my technical editor Tim van Deurzen for their feedback, help, and encouragement while writing this book. In addition, thanks to the entire staff who helped produce this book.

 I would also like to thank everyone who has taken the time to give me feedback, in particular Howard Hinnant, Andreas Fertig, Nina Ranns, Silas Brown, and Seb Rose, who all took time out of their busy schedules to comment in detail on various chapters, calling me out where I was unclear or incorrect. I’m also grateful to ACCU and those in the general email group who explained interesting edge cases I discovered as I wrote. Any remaining mistakes are my own.

 I thank everyone involved in C++, including Matt Godbolt for his Compiler Explorer, Andreas Fertig for C++ Insights, and all those who spend time and money on developing new standards or engaging in various discussion groups.

 Finally, thanks to all the reviewers: Amit Lamba, Arun Saha, Aryan Maurya, Balbir Singh, Clifford Thurber, David Racey, Frédéric Flayol, Jean-François Morin, Johannes Lochmann, John Donoghue, Jonathan R. Choate, Jonathan Reeves, Joseph Perenia, Juan José Durillo Barrionuevo, Keith Kim, Kent Spillner, Matteo Battista, Mattia Antonino Di Gangi, Maurizio Tomasi, Michael Kolesidis, Mitchell Fox, Partha Pratim Mukherjee, Patrick Regan, Raushan Jha, Rich Yonts, Samson Hailu, Satej Kumar Sahu, Srikar Vedantam, Sriram Macharla, Timothy Moore, Vimal Upadhyay, and William Walsh. Your suggestions helped make this a better book.

about this book

 C++ has changed a lot over the last decade or so. Some people who used to know the language well might now be put off by how many new things they will have to learn. It doesn’t have to be so hard. Getting up to speed now will make it easier to keep track as C++ continues to change and evolve. This book focuses on small projects using various parts of C++, rather than an exposition of the entire language. You will try out some ideas and learn language features on the journey, rather than plow through each part of the language’s syntax and standard libraries using one-line examples. The first chapter is an introduction, and from chapter 2 until the last chapter, you will create small projects and games to help you learn. You might even have fun!

Who should read this book

 If you have used C++ before but have failed to keep up with recent changes, this book is for you. If you used to be an expert, but your knowledge has gone hazy, and you want to get back up to speed, this book will help you. If you have never been an expert but have previously used some C++ and want to learn more, in particular newer approaches and features, this book will also be valuable.

How this book is organized: A road map

 This book has nine chapters. The first chapter provides an introduction, and the remaining chapters focus on a puzzle or game to code. In some cases, we make a simplified version first before improving the game. In all cases, we focus on one or more main features of C++ and learn a variety of other ideas and approaches on the way:

 	
 Chapter 1 provides background on C++, showing why it is relevant and useful and introducing some recent changes.

 	
 Chapter 2 uses an std::vector to create Pascal’s triangle. It also covers move semantics, using std::format, ranges, and lambdas.

 	
 Chapter 3 uses random numbers to make a number-guessing game. It also introduces std::optional, std::function, and handling user input.

 	
 Chapter 4 uses time points and duration from std::chrono to write a countdown. We also meet user literals and learn about std::ratio.

 	
 Chapter 5 covers writing classes to build a deck of cards and play the higher-or-lower card game. It also covers scoped enums, std::array, the three-way comparison operator, and std::variant.

 	
 Chapter 6 uses classes again to make some blobs race out of a paper bag, this time revising inheritance and detailing the new special member functions now available in C++. In addition, it covers the rule of zero, type traits, and smart pointers.

 	
 Chapter 7 uses std::map and std::multimap to build a game of answer smash. These containers are not new, but we see how to use std::pair and std::tuple with structured bindings, allowing us to query the maps neatly. Furthermore, we also read data from a file.

 	
 Chapter 8 uses the newer std::unordered_map and describes std::hash to build a mind-reading machine, or at least a program that guesses if you will pick heads or tails based on previous outcomes. It also shows how to turn the mind-reading machine into a coroutine.

 	
 Chapter 9 rounds things out by going into detail on parameter packs and std::visit, showing us how to make a slot machine game. The chapter encourages you to practice more with various algorithms, std::format, and lambdas.

 Start by reading the first chapter, and then get your chosen compiler ready. You can read the chapters in any order; however, they build on each other to some extent, even though each creates a self-contained project. When a feature is used again, the first mention is signposted, so you can skip back if you need to. Reading the chapters in order might be easier, though, as you gradually add new approaches to your repertoire. However you decide to read this book, do stop and try out some code. Then play the games you created, or play with the projects. Keep your brain in gear, ask questions, experiment, and above all, have fun!

About the code

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, the source code is formatted in a fixed-width font to separate it from ordinary text. Sometimes, code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 This book has code in all nine chapters. The code is all in the book but can be cloned from https://github.com/doctorlove/BootstrapCpp.git. The first chapter is a short main function used to discuss modern approaches in C++, while the fun and games start from chapter 2. You will need a compiler, and https://isocpp.org/get-started provides links to several good free ones. Some features, such as std::format, are not supported on all compilers, but the book calls this out, and the source code has comments showing what to do instead.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-c-plus-plus-by-example. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/learn-c-plus-plus-by-example.

liveBook discussion forum

 Purchase of Learn C++ by Example includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-c-plus-plus-by-example/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other resources

 Each chapter mentions further resources, and these are collated into an appendix at the end of this book, so you can easily look back without having to keep notes.

about the author

 Frances Buontempo has many years of C++ experience. She has worked as a programmer at various companies, mostly in London, with a focus on finance. She enjoys testing and deleting code and tries to keep on learning. She has given talks on C++ and more, which you can find on YouTube. She is the editor of ACCU’s Overload magazine and will happily consider articles from readers who want to share what they learned from this book.

about the cover illustration

 The figure on the cover of Learn C++ by Example is “Femme de l’Isle de Lemnos,” or “Woman of Lemnos Island,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Hello again, C++!

 This chapter covers

 	
Why C++ is relevant

 	
When C++ is useful

 	
What you need to know before reading this book

 	
How this book will bootstrap your knowledge of C++

 	
What you’ll learn in this book

 C++ is an old but evolving language. In programming, you can use it for almost anything and will find its application in many places. In fact, C++’s inventor, Bjarne Stroustrup, described it as the invisible foundation of everything. Sometimes, C++ might be present deep inside a library of another language because it can be used for performance-critical paths. Furthermore, it can run in small, embedded systems, or it can power video games. Even your browser might be using the language. C++ is almost everywhere.

 The language is compiled and targeted at specific architectures such as a PC, mainframe, embedded devices, bespoke hardware, or anything else you can think of. If you need your code to run on different types of machines, you need to recompile it. This has pros and cons. Different configurations give you more to maintain, but compiling to a specific architecture gets you down to the metal, allowing the speed advantage. Whatever platform you target, you will need a compiler. You will also need an editor or integrated development environment (IDE) to write code in C++.

 C++ stems from C, which has similar advantages but is a lower-level language. If you recognize ++ as the increment operator, you’ll realize that the language’s very name suggests it is a successor to C. You can avoid the depths of pointers and memory allocations with C++ by writing higher-level code. You can equally drop down to C or even assembly language in C++ code. Although C++ was never intended to take over the world or even replace C, it does provide many new ways to approach coding. For example, you can do a surprising number of things at compile time, using type-safe features rather than preprocessor macros often used in C.

 This language underpins diverse technologies, including compilers or interpreters for other languages, and even C++ compilers themselves. You can develop libraries for use in other languages, write games, price financial instruments, and do much more. If you ever typed make at a prompt, you were probably using C++ without knowing it. C++ may power your browser or e-reader if you are reading this book in digital form, or it may have been used to write device drivers for your machine.

 This book will give you a firm grounding in a handful of C++ language and library features. Each chapter walks through a small, self-contained project, focusing on one area. Along with each chapter’s main feature, other parts of the language will be covered. For example, if you fill a container, such as a vector or an array, you may also want a way to display and manipulate its contents. Thus, the next chapter focuses on vectors but also introduces ranges and lambdas, as well as using format to display output. By gradually building up your repertoire, you will gain confidence, which will allow you to rediscover the joy of C++. This book will focus on several fundamental parts, showing you various ways in which the language is easier now than it used to be. You will end up with a firm grounding, ready to use and learn more C++.

1.1 Why does C++ matter?

 C++ is designed by a committee. Some languages are introduced and developed by a company or an individual. C++ is not. Originally invented by Bjarne Stroustrup, Working Group 21 (WG21) of the International Organization for Standardization (ISO) is now responsible for its new versions. You can find more details at https://isocpp.org/std. There’s been a new ratified standard every three years since 2011, each adding new features and sometimes simplifying ways of doing things. This means there is a lot to learn. Some documentation and descriptions sound as if they were written in legalese, which can be overwhelming. This book will use a few precise definitions to help you get the hang of parsing such explanations. Members of the committee make suggestions, write papers to explain their ideas, and demonstrate how to implement new features or small improvements, which leads to innovations that influence other programming languages too. For example, Java and C# would not have generics if C++ hadn’t introduced templates. Ideas do flow in both directions. C++ also takes on board ideas from other languages, including functional programming idioms, such as lambdas.

 These recent standards injected new life into C++, causing lots of excitement. Companies that have been using C++ for years may previously have relied on in-house libraries to support features that are now part of the core language. Upgrading to a newer standard can be hard work, but it means more people will be able to work on the code base without spending time getting up to speed with a niche implementation. In addition to changes in the technology stack in businesses, there are now several conferences devoted to C++, along with podcasts and blogs, as a new cohort gets involved. C++ has a reputation for being very hard-core, with geeks arguing about difficult stuff and being mean to newbies (and each other). This is partially unfair, but the IncludeCpp group (https://www.includecpp.org/) tries to be inclusive and welcoming. They have a discord group and tend to have a stall at C++ conferences, so if you go alone, you can head straight to them and say hi. Recent changes have made several parts of C++ easier to explain and use but have introduced more edge cases and complications. This book will tend to stick with commonly available features that make your life easier, but it’s worth knowing a bit about some new, less widely supported features.

 If you knew C++ before C++11, you might be intimidated by the changes. In fact, if you spent time catching up and blinked, you've still missed a lot. Fear not. Although C++ may resemble riding a bicycle (it hurts if you fall off), C++ doesn’t have to be painful. This book will stop you from falling down the rabbit hole. You can have fun and learn many approaches and paradigms, from object-oriented programming to functional approaches. A grounding in C++ will make other languages and approaches easier to understand too. Furthermore, C++ is so pervasive that it will never go away, so it’s useful to understand a little. You’ll never know all of it. Even Bjarne himself is reputed to have said he’d rate himself at seven out of ten on C++ knowledge, so fear not. To be a good programmer, you don’t have to know every detail of the language. Knowing enough as a basis to learn more is important. If you bootstrap your understanding now, you will also find it easier to keep up.

 C++ has grown over time. Initially, C++ was C with classes, introducing the keyword new (along with delete and class) and the idea of constructors and destructors. These are functions that run automatically when an object is created and when it goes out of scope or is deleted. Unlike garbage-collected languages, such as C# and Java, you have control over an object’s lifetime. Proponents of garbage-collected languages sometimes deride C++, claiming it’s all too easy to end up with memory leaks. Now, you don’t need to use new and delete, and C++ has smart pointers to help with memory management. The language evolved over time, adding various new features. It still remains relatively compact, although it has grown since it began. The language, like all others, is what you make of it. You can write terrible code in any language. You can also write beautiful code in any language, but you need to learn how. By trying out code as you read this book, you will end up with some small programs to play with. They will cover various aspects of the language, giving you a firm grounding. You will see how C++ can be awesome.

 There are many rivals to C++, yet C++ has staying power. It consistently remains at the top of the TIOBE index (https://www.tiobe.com/tiobe-index/#2022) and was ranked among the top three in 2022. You could use C instead, but you will see stars (pointers being represented with an * character). If you want a data structure beyond an array, you’ll have to roll your own. You could use High Performance Fortran for extremely fast computation. The UK Met Office uses Fortran for their weather modeling because they have a vast amount of data to crunch in a very short time. Fortran also loiters in many academic institutions, so you may have seen or used it if you are an academic or student. However, it is a little niche. You are more likely to come across some C++ code in the wider world.

 Various new languages have been invented, aiming to deal with C++ defects or annoyances. D feels similar to C++ because of the C-like syntax and high-level constructs, and it was invented to deal with the aspects of C++ the creators didn’t like. Meanwhile, C++ continues to evolve, but it always aims to remain backward compatible, so it is constrained by historical decisions. New languages don’t have a legacy and thus have more freedom. Go, Objective C, Swift, Rust, and recently Carbon also rival C++ in some areas. That’s fine, and learning several languages and thinking about what might make a programmer’s life easier is a good thing. Many times, new ideas introduced into the latest C++ standards are based on insights from other languages. As new languages have been introduced, C++ still remains prevalent and often takes on board any challenges they present. C++ isn’t going away anytime soon. You can get involved and submit bug reports or suggestions too if you like. The committee consists of volunteers, who work hard to improve the language. ISOCpp provides details on how to get involved (https://isocpp.org/std/meetings-and-participation).

 If you learn C++, you will have a solid foundation for other languages. The similarity to other languages can help you quickly pick up how to use them. You will get familiar with some data structures and algorithms, as well as various paradigms ranging from functional programming to object-oriented code. Even if you don’t end up on the standards committee or inventing your own programming language, you will be well placed to continue a journey of lifelong learning and understand what is happening under the hood.

1.2 When should you use C++?

 You can use C++ for anything, but some use cases are more sensible than others. To prototype some machine learning or run a statistics calculation, it might be quickest to start in Python and use existing libraries. Of course, those libraries may include some C++. If you feel confident enough to look at the source for a library to figure out why a bug happens, you have a head start on other programmers. If someone needs a program with a frontend, be that a website or local program with a graphical user interface (GUI), you could build the whole thing in C++, but it might be easier to split up the software. C++ doesn’t support GUIs in the core language, unlike, say, C#, so the frontend would require an external library, such as the cross-platform C++ library Qt (https://www.qt.io/). You could also write the frontend in something completely different and call the C++ code as a service or library. So, given that you might start in another language to try out an idea or build part of your application in another tool chain, when should you use C++?

 If you want a first-person shooter-style game, you could try to write it in JavaScript, but using a language that compiles to the hardware is more sensible. An interpreted language will be slower than a compiled language. C++ is therefore frequently used to write the game engine, render the graphics, work out the physics, detect collisions, and provide sound and artificial intelligence for bots. A scripting language might call into this engine, but the engine’s power and speed often come from C++, squeezing every inch of power out of a top-end graphics card or another component of an expensive gaming rig. This also makes C++ suitable for high-performance computing (HPC), financial applications, embedded devices, and robotics.

 Because C++ takes you close to the metal, you can break things. It’s possible to brick an embedded device if you are not careful, rendering the machine inoperable. You’re unlikely to manage that if you write a program to run on your laptop or computer. It might crash, proudly announcing a segmentation fault or similar on the way out. An embedded device without an operating system is different. If it’s only running one program without an operating system, and that goes wrong, bad things can happen. That’s okay too. Bjarne Stroustrup once said, “If you never fail, you aren't trying hard enough” (https://www.stroustrup.com/quotes.html). Although the language allows you to use raw pointers and potentially step over memory bounds or invoke undefined behavior, this book will steer you away from danger. Just remember, it has been said that with great power comes great responsibility. With enough of a solid foundation, you can program responsibly, learn lots, and have fun.

 Although C++ doesn’t support several things natively, such as unit testing, GUI coding, or even networking (that nearly made it into C++23 and might make it into a future standard), you can do these things using a suitable third-party library. What the core C++ language does provide is a large and thought-through standard library. If you were using C and wanted a normal distribution of random numbers, you’d need to dust off a mathematics book or read what Donald Knuth has to say on the matter. If you need a lookup table, you can use C++’s standard map. In C, you’d have to write your own. In fact, you get stacks, queues, heaps, and almost every data structure you can think of in C++ out of the box, along with a vast number of algorithms. This means learning C++ provides a solid foundation for understanding other languages.

 If you need to do a lot of number crunching quickly, C++ is a great choice. Modern language versions also support a variety of random number distributions, as you will see in this book, making it relatively easy to set up a variety of complicated simulations. Even without using the latest and greatest parts of the language, you can build some serious applications in C++. For example, the MRC Centre for Global Infectious Disease Analysis, affiliated with Imperial College in the United Kingdom, open sourced their COVID-19 simulation model (https://github.com/mrc-ide/covid-sim). These models were used to decide public policy in the United Kingdom during the pandemic. C++ does the heavy lifting, and some scripts, written in R, are provided to display the results.

 C++ is often described as a multi-paradigm language. It supports object-oriented programming, but you are allowed to write free functions too. You can write low-level procedural code if you want, but you can also use generics (i.e., templates) and functional-style programming. You can even do template meta-programming (TMP), making the compiler do calculations for you. This was an accidental discovery, presented by Erwin Unruh at a C++ committee meeting in 1994. He demonstrated a program that didn’t compile but rather printed out the prime numbers in the compiler error messages. Playing with TMP can be fun to explore and push to extremes, but simpler cases can give faster runtimes with type-safe, compiler-evaluated constants. If you learn how to use some C++, you will have a stable foundation for many other languages and know a great variety of different programming paradigms.

1.3 Why read this book?

 As the language evolves, people are writing books for each new standard and more general-purpose style guides. The style guides won’t make any sense if you don’t know the new features, and the new features build on previous changes, so the full details can be overwhelming. Where do you start in the face of a moving target? Where you are. You need a way to bootstrap your learning. This book will take you through some central changes via small projects so you have something to experiment with. By using some of the new features, you’ll be better able to recognize what modern C++ code is doing and know where to keep an eye out for further changes and developments.

 Instead of reading a list of all the changes you may have missed, the ISOCpp website has a FAQ section (https://isocpp.org/wiki/faq) that provides an overview of some recent changes and big-picture questions. This website is run by the Standard C++ Foundation, a not-for-profit organization whose purpose is to support the C++ software developer community and promote the understanding and use of modern Standard C++. The site even has a section for people with a background in other languages who want to learn C++. It doesn’t have a section for “Learning C++ if you already knew C++ a while ago.” This book plugs that gap. You don’t need a long list of every feature that’s been introduced over the years. You need just enough to get your confidence back.

 You can keep an eye on the myriad and excellent resources online to stay aware of what has been and is changing in the language. ISOCpp will help you do this. However, you do need to stop and try things out to learn. Spending time experimenting will pay off, and this book will guide you through some useful experiments. Trying out features in bite-sized chunks will help you crystalize ideas and concepts. You will see alternative approaches from time to time. By seeing two ways to put items in a vector, you will learn a new feature (the emplace methods) and recall an old feature (push_back). This will help you read other people’s code and not be wrong-footed by unfamiliar approaches. You will learn how to think through alternatives, becoming aware of advice from different places, which sometimes conflicts. This book will take a pragmatic approach while encouraging you to think about alternatives.

1.4 How does this book teach C++?

 This book covers a subset of features introduced into C++, from C++11 onward. At the time of writing, C++23 is in feature-freeze, making it ready for a new standard. Each chapter focuses on one main feature, although it introduces and uses other modern features and idioms as well. Some people who used to know C++ well are put off by how many new things they will have to learn to start using it again, and beginners often get frightened off quickly. It doesn’t have to be so hard. Getting up to speed now will make it easier to keep track as C++ continues to change and evolve. If you haven’t used C++ for a long time and have seen other books going through an extensive list of all the new features and idioms, but you don’t know where to start or how to use them, this book will help you focus on some important parts, enabling you to dive into gnarly edge cases and thorough explanations elsewhere afterward.

 This book focuses on self-contained projects using various parts of C++. You will try out some ideas and learn language features on the ride, rather than plow through each part of the language’s syntax and standard libraries using one-line examples. If you have gone rusty, this book will give you a chance to practice and rediscover the joy of using C++. As you probably realize, writing a whole program gives you more practice than playing around with one or two lines. This book will therefore help you teach yourself.

1.4.1 Who this book is for

 This book is aimed at people who have used a little, or even a lot, of the language and lost track of recent changes. If you recognize the syntax and want to try to learn more, you will gain something from this book. If you know what int x = 5; int & y=x; do, have used an std::vector<int> before, and recognize std::cout << x, you will be able to follow. If you’ve seen int x{1}; before, you’re part way there. If not, don’t panic. The curly braces are a new way to initialize almost everything, which you’ll soon get the hang of. If you used to know all the gnarly edge cases and quote chapter and verse of a previous standard, this book will help you focus on a handful of new features to get you back in the driving seat. Once you’ve finished reading this book, you will know where to get an up-to-date compiler and how to keep an eye on upcoming changes, and you’ll be able to read and write modern C++. Let’s look at some code now to get a feel for a few new ways of writing the language.

1.4.2 Hello, again, C++!

 It’s conventional to start learning a language with a “Hello, World!” program, so let’s do just that. The following code prints a greeting onscreen.

 Listing 1.1 Hello, World

 #include <iostream> ❶

auto main() -> int { ❷
 std::cout << "Hello, world!\n"; ❸
}

 ❶ Includes a header

 ❷ Trailing return type

 ❸ Operators :: and <<

 If you save this to a file called hello_world.cpp, you can compile it. For example, using the GNU compiler collection (gcc; see https://gcc.gnu.org/), use g++ supporting C++11 with

 g++ hello_world.cpp -o ./hello.out

 This book assumes you recognize the include statement, the scope resolution operator::, and the stream insertion operator <<. The code inserts the greeting to standard (std) cout inside the main function, the usual entry point for executable code. You knew that, however, the trailing return type -> at the end of a function name may be unfamiliar, together with the keyword auto at the start of the line. You can write int main() here instead, as you always used to, but when C++11 introduced this feature, many people started using it everywhere for consistency. It becomes useful when you want to deduce the type a function returns. Our hello program doesn’t need the trailing return. Furthermore, main is special in that it returns 0 by default, so it does not need a return statement even though it returns an int. Without a trailing return type, some template functions can be very tricky to specify. Let’s consider an example that uses a template function.

 You can use the + operator easily enough to add numbers. For example, auto x = 1 + 1.23. There’s our friend auto again. We’re trying to sum an integer (1) and a double (1.23), so the result is a double due to integer promotion. If you want a general-purpose addition function, you could attempt to write overloads for every possible pair of parameters or, more sensibly, write a template function. Even better, you can use one that is already written for you. The functional header includes a definition of plus. In fact, this header contains two definitions, one of which sums two parameters of the same type, which we create by saying std::plus<int> to add two integers. Since C++14, a version that deduces the template argument types was introduced. Using std::plus<> picks the new specialization, which works out the types for us. If you try the first version, 1.23 gets converted to an int, so you get 1 + 1, which some compilers warn about, whereas the second version adds the int 1 and the double 1.23 to get 2.23. Try it out!

 Listing 1.2 Adding two numbers

 #include <iostream>
#include <functional>

auto main() -> int {
 std::cout << std::plus<int>{}(1, 1.23) << '\n'; ❶
 std::cout << std::plus<>{}(1, 1.23) << '\n'; ❷
}

 ❶ Enforces a sum of two ints, so returns 2

 ❷ Figures out the different types

 You are used to functions starting with the return type and then having a name and parameters, such as int main(). The return type is given first. To specify the return type, plus needs to express the addition operation of the two function arguments. This is much easier to do with parameter names, but those are not visible to the usual return type. The trailing return type makes using parameter names to specify the return type possible. You need to say auto at the start and indicate what type is returned after the trailing ->.

 Let’s look at a simplified version of the operator() for the plus<> specialization. Remember, we want to declare a function that takes two things and returns the sum of them. We’re going to use a template with two typenames, allowing two different types to be summed. The addition itself is the easy part and simply uses the + operator. The declaration has auto at the start and a type at the end.

 Listing 1.3 A function to add two different types

 template<typename T, typename U>
auto simple_plus(T lhs, U rhs) -> decltype(lhs + rhs)
{
 return lhs + rhs;
}

 The operator function is a template using two different types, T and U, for the left-hand side (lhs) and right-hand side (rhs) of the binary operation, respectively. The return type is declared using decltype specifier and the expression lhs + rhs. If you squint, you can see how that’s similar to the syntax for the main function we saw earlier. Put them side by side and have a look:

 auto main() -> int
auto simple_plus(T& lhs, U& rhs) -> decltype(lhs + rhs)

 You can see the auto followed by the function name and parameters, then the arrow and the trailing return type in both cases. When we add 1 and 1.23, the parameter types are deduced to be an integer and a double. The trailing return type uses the expression (1 + 1.23) to get the return type of a double.

 If you already recognize these new features, great. There are plenty more new things to learn. If you’ve never seen any of them before, concentrate on the main point here, which you saw when you tried out “Hello, World!”: the trailing return type. You’ve learned something already.

1.4.3 What you’ll learn from reading this book

 You’ll learn how to use some new elements of the language, from ranges to random numbers, and learn several other simpler ways of doing things on the journey. This book starts with a vector and builds up from there. Vectors are a good way to revise and then learn new features, including ranges, views, functors, and lambdas. Once you’re comfortable filling, displaying, querying, and manipulating a vector using ranges and algorithms, you’ll be ready to use other parts of the standard library, including time (chrono), random numbers, and, finally, coroutines.

 Range-based for loops introduced in C++11 made the language simpler. You can use them to walk over a container without needing to dive into iterators first. Over time, full-blown ranges have become standard too, providing convenience and avoiding the direct use of iterators, as well as offering more unified lookup and extra safety. Previously, it was possible to pass the start of one container and the end of another to an algorithm and not realize this until something horrible happened at runtime. Ranges avoid that problem. You’ll become familiar with using ranges to view and copy the contents of a container.

OEBPS/Images/Manning_M_small.png

OEBPS/Images/IFC_F01_Buontempo.png

OEBPS/Images/cover.jpeg

OEBPS/Images/Manning_copyright.png

