

 [image: cover]

HTML5 in Action

 Rob Crowther, Joe Lennon, Ash Blue and Greg Wanish

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Renae Gregoire
Copyeditor: Tiffany Taylor
Proofreader: Elizabeth Martin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617290497

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction

 Chapter 1. HTML5: from documents to applications

 2. Browser-based apps

 Chapter 2. Form creation: input widgets, data binding, and data validation

 Chapter 3. File editing and management: rich formatting, file storage, drag and drop

 Chapter 4. Messaging: communicating to and from scripts in HTML5

 Chapter 5. Mobile applications: client storage and offline execution

 3. Interactive graphics, media, and gaming

 Chapter 6. 2D Canvas: low-level, 2D graphics rendering

 Chapter 7. SVG: responsive in-browser graphics

 Chapter 8. Video and audio: playing media in the browser

 Chapter 9. WebGL: 3D application development

 Appendix A. HTML5 and related specifications

 Appendix B. HTML5 API reference

 Appendix C. Installing PHP and MySQL

 Appendix D. Computer networking primer

 Appendix E. Setting up Node.js

 Appendix F. Channel messaging

 Appendix G. Tools and libraries

 Appendix H. Encoding with FFmpeg

 Appendix I. HTML next

 Appendix J. Links and references

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction

 Chapter 1. HTML5: from documents to applications

 1.1. Exploring the markup: a whirlwind tour of HTML5

 1.1.1. Creating the basic structure of an HTML5 document

 1.1.2. Using the new semantic elements

 1.1.3. Enhancing accessibility using ARIA roles

 1.1.4. Enabling support in Internet Explorer versions 6 to 8

 1.1.5. Introducing HTML5’s new form features

 1.1.6. Progress bars, meters, and collapsible content

 1.2. Beyond the markup: additional web standards

 1.2.1. Microdata

 1.2.2. CSS3

 1.2.3. JavaScript and the DOM

 1.3. The HTML5 DOM APIs

 1.3.1. Canvas

 1.3.2. Audio and video

 1.3.3. Drag and drop

 1.3.4. Cross-document messaging, server-sent events, and WebSockets

 1.3.5. Document editing

 1.3.6. Web storage

 1.3.7. Offline web applications

 1.4. Additional APIs and specifications

 1.4.1. Geolocation API

 1.4.2. Indexed database (IndexedDB API)

 1.4.3. File, File Reader, File Writer, and File System APIs

 1.4.4. Scalable Vector Graphics

 1.4.5. Web Graphics Library

 1.5. Summary

 2. Browser-based apps

 Chapter 2. Form creation: input widgets, data binding, and data validation

 2.1. Previewing the form and gathering prerequisites

 2.1.1. Gathering the application prerequisites

 2.2. Building a form’s user interface

 2.2.1. Defining a form’s basic HTML document structure

 2.2.2. Using the form input types email and tel and the input attributes autofocus, required, and placeholder

 2.2.3. Using the form input attribute required

 2.2.4. Building a calculator-style form using the input type number, the input attributes min/max and data-*, and the element
 <output>

 2.2.5. Using the form input type month and input attribute pattern

 2.2.6. Allowing users to choose whether to save or submit a form: using the input attributes formnovalidate and formaction

 2.3. Calculating totals and displaying form output

 2.3.1. Building calculation functions

 2.3.2. Accessing values from HTML5 data-* attributes

 2.4. Checking form input data with the Constraint Validation API

 2.4.1. Creating custom validation tests and error messages with the setCustomValidity method and the validationMessage property

 2.4.2. Detecting a failed form validation with the invalid event

 2.4.3. Styling invalid elements using CSS3 pseudo-classes

 2.5. Providing fallbacks for unsupported browsers

 2.5.1. Detecting features and loading resources with Modernizr: an overview

 2.5.2. Using polyfills and Modernizr to plug the gaps

 2.5.3. Performing validation without the Constraint Validation API

 2.6. Summary

 Chapter 3. File editing and management: rich formatting, file storage, drag and drop

 3.1. The Super HTML5 Editor: application overview, prerequisites, and first steps

 3.1.1. Defining the HTML document structure

 3.1.2. Implementing navigation and state management in JavaScript

 3.2. Rich-text editing and geolocation

 3.2.1. Using designMode to make an HTML document editable

 3.2.2. Providing rich-text editing controls with execCommand

 3.2.3. Mapping a user’s current location with the Geolocation API

 3.3. Managing files locally: the File System, Quota Management, File, and File Writer APIs

 3.3.1. Creating an application filesystem

 3.3.2. Getting a list of files from the filesystem

 3.3.3. Loading, viewing, editing, and deleting files

 3.3.4. Creating new files

 3.3.5. Saving files using the File Writer API

 3.4. Adding drag-and-drop interactivity

 3.4.1. Dragging files into an application for import

 3.4.2. Dragging files out of an application for export

 3.5. Summary

 Chapter 4. Messaging: communicating to and from scripts in HTML5

 4.1. Server-sent events (SSE)

 4.1.1. A simple SSE chat application

 4.1.2. When to use SSE

 4.2. Using WebSockets to build a real-time messaging web app

 4.2.1. Application overview and prerequisites

 4.2.2. Creating a WebSocket with Node.js

 4.2.3. Building the planner application

 4.3. Messaging on the client side

 4.3.1. Communicating across domains with postMessage

 4.3.2. Joining the applications with cross-document messaging

 4.4. Summary

 Chapter 5. Mobile applications: client storage and offline execution

 5.1. My Tasks: application overview, prerequisites, and first steps

 5.1.1. Defining the HTML document structure

 5.1.2. Controlling visibility of views using CSS

 5.1.3. Implementing navigation with JavaScript

 5.2. Managing data with the Web Storage API

 5.2.1. Reading data from localStorage

 5.2.2. Saving data to localStorage

 5.2.3. Deleting data from localStorage

 5.3. Managing data using IndexedDB

 5.3.1. Detecting database support on a browser

 5.3.2. Creating or connecting to an IndexedDB database, creating an object store and index

 5.3.3. Developing a dynamic list with HTML and JavaScript

 5.3.4. Searching an IndexedDB database

 5.3.5. Adding data to a database using IndexedDB or Web SQL

 5.3.6. Updating and deleting data from an IndexedDB database

 5.3.7. Dropping a database using IndexedDB

 5.4. Creating a web application that works offline: using the application cache manifest

 5.4.1. Configuring a web server for an application cache manifest’s MIME type

 5.4.2. Creating a cache manifest file

 5.4.3. Automating application updates

 5.5. Summary

 3. Interactive graphics, media, and gaming

 Chapter 6. 2D Canvas: low-level, 2D graphics rendering

 6.1. Canvas basics

 6.1.1. Setting the Canvas context

 6.1.2. Generating a Canvas context

 6.2. Creating a Canvas game

 6.2.1. Creating the main engine components

 6.2.2. Creating dynamic rectangles

 6.2.3. Creating arcs and circles

 6.2.4. Using paths to create complex shapes

 6.3. Breathing life into Canvas elements

 6.3.1. Animating game elements

 6.3.2. Detecting overlap

 6.3.3. Creating keyboard, mouse, and touch controls

 6.3.4. Control input considerations

 6.4. Polishing Canvas games

 6.4.1. Tracking score and levels

 6.4.2. Adding opening and closing screens

 6.4.3. Getting help from code libraries

 6.5. Summary

 Chapter 7. SVG: responsive in-browser graphics

 7.1. How bitmap and vector graphics compare

 Wilson, the resizable smiley

 7.2. Starting SVG Aliens with XML

 7.2.1. Setting up SVG inside HTML

 7.2.2. Programming simple shapes and text

 7.2.3. Using XLink and advanced shapes

 7.3. Adding JavaScript for interactivity

 7.3.1. Game engine essentials and using screens

 7.3.2. Design patterns, dynamic object creation, and input

 7.3.3. Creating and organizing complex shapes

 7.3.4. Maintaining a complex SVG group

 7.3.5. SVG vs. Canvas

 7.4. Summary

 Chapter 8. Video and audio: playing media in the browser

 8.1. Playing video with HTML5

 8.1.1. Application preview and prerequisites

 8.1.2. Building the basic jukebox framework

 8.1.3. Using the video element to add videos to web pages

 8.2. Controlling videos with the HTMLMediaElement interface

 Step 1: Load a list of videos

 Step 2: Start a video when selected

 Step 3: Change between videos

 Step 4: Use event handlers to handle the changing of video in greater detail

 Determining the state of media resources with .networkState and .readyState

 playing video on the canplaythrough event

 Try it out

 Progress check!

 Using Firefox or Opera?

 8.3. Specifying multiple formats with the <source> element

 Step 5: Provide multiple video formats to support all browsers

 Code check!

 8.3.1. Discovering which video is playing with .currentSrc

 8.3.2. Converting between media formats

 8.4. Combining user input with video to build a telestrator

 8.4.1. Playing video through the <canvas> element

 8.4.2. Creating custom video playback controls

 8.4.3. Manipulating video as it’s playing

 8.4.4. Building the telestrator features

 8.5. Summary

 Chapter 9. WebGL: 3D application development

 9.1. Building a WebGL engine

 Browser note: use Chrome or Firefox for this chapter’s sample application

 9.1.1. Setting up the engine’s layout

 9.1.2. Tools to create, alter, and delete objects

 9.2. Communicating with a graphics card

 9.2.1. Graphics cards: a quick primer

 9.2.2. Creating shaders for 3D data

 9.2.3. Creating buffers for shape, color, and dimension

 9.2.4. Displaying shape data on a screen

 9.3. Putting it all together: creating Geometry Destroyer

 9.3.1. Creating a game interface and control objects

 9.3.2. Creating 2D shapes in 3D

 9.3.3. Creating 3D shapes and particles

 9.4. Summary

 Appendix A. HTML5 and related specifications

 A.1. The origins of HTML5

 A.1.1. WHATWG vs. W3C

 A.1.2. So ... what is HTML5 anyway?

 A.2. Popular HTML5 specifications

 A.2.1. Semantic markup, forms

 A.2.2. Video and sound (multimedia)

 A.2.3. Canvas and SVG (interactive media)

 A.2.4. Storage

 A.2.5. Messaging

 A.2.6. The XML HTTP Request object

 A.3. Popular non-HTML5 technologies

 A.3.1. CSS3

 A.3.2. Geolocation

 A.3.3. Storage

 A.3.4. WebGL

 A.3.5. Node.js

 A.3.6. jQuery and other JavaScript libraries

 A.4. Keeping up with the specs

 Appendix B. HTML5 API reference

 B.1. HTML5 APIs

 B.1.1. Constraint Validation API

 B.1.2. API for offline web applications

 B.1.3. Editing API

 B.1.4. Drag and Drop API

 B.1.5. Microdata API

 B.1.6. APIs for Web Storage

 B.1.7. Media Element API

 B.2. Other APIs and specifications

 B.2.1. Geolocation API

 B.2.2. IndexedDB specification

 B.3. File System API

 B.3.1. Directory-based APIs within the File System API

 B.3.2. Blob data APIs

 Appendix C. Installing PHP and MySQL

 C.1. Installing PHP on Windows 7

 C.1.1. Configuring Windows 7 IIS

 C.1.2. Downloading PHP

 C.1.3. Installing PHP

 C.1.4. Confirm PHP is installed

 C.2. Installing MySQL on Windows 7

 C.2.1. Downloading MySQL

 C.2.2. Installing MySQL

 C.2.3. Creating a database and running scripts

 C.3. Installing PHP and MySQL on Mac OS X Mountain Lion

 C.3.1. Configuring Apache and PHP

 C.3.2. Installing MySQL on Mac OS X

 C.3.3. Getting MySQL and PHP to play nice together

 Appendix D. Computer networking primer

 D.1. The basics of computer networking

 D.2. The overhead of headers

 D.3. Network performance metrics: latency and throughput

 D.4. Polling vs. event-driven

 D.5. Server-side choices for event-driven web applications

 D.6. Understanding the WebSocket protocol

 D.6.1. WebSocket protocol vs. WebSocket API

 D.6.2. The WebSocket protocol

 D.6.3. WebSocket browser support

 Appendix E. Setting up Node.js

 E.1. Setting up Node.js to serve web content

 E.1.1. Create a Node Hello World application

 E.1.2. Serving static files with Node

 E.1.3. Serving mixed static and dynamic content with Node

 E.1.4. Routing: serving different files for different URLs

 E.2. Easy web apps with Node modules

 Appendix F. Channel messaging

 Step 1: Install a local development web server

 Step 2: Set up a cross-domain test environment

 Step 3: Create the example pages

 Step 4: Add JavaScript to the first page

 Step 5: Add the JavaScript to the second page

 Appendix G. Tools and libraries

 G.1. Tools for mobile web applications

 G.2. Tools for HTML5 applications

 G.2.1. Firebug, Chrome/Safari developer tools, Dragonfly, IE developer tools

 G.2.2. Browser development versions

 G.2.3. HTML5 Shiv

 G.2.4. Modernizr

 G.2.5. HTML5 Boilerplate

 G.2.6. jsFiddle

 G.2.7. Feature support websites

 Appendix H. Encoding with FFmpeg

 H.1. How to get FFmpeg

 H.2. Finding out what codecs were used on source video

 H.3. Determining container formats and supported codecs

 H.4. Encoding to MP4/h264 with AAC

 H.5. Encoding to MP4/h264 with MP3

 H.6. Encoding to WebM/VP8

 H.7. Encoding to Ogg/Theora

 Appendix I. HTML next

 I.1. Accessing and sharing media devices

 I.1.1. Grab input with getUserMedia()

 I.1.2. Peer-to-peer media connections with WebRTC

 I.2. Media text tracks: providing media subtitles and captioning

 I.2.1. Adding a text track to the videoText

 I.2.2. Adding multiple text tracks

 I.2.3. The Text Track API

 I.2.4. Using TextTrack events

 I.2.5. Styling text tracks

 I.3. APIs for gaming and mobile

 I.3.1. Preparing a test bed—the return of Wilson

 I.3.2. The Mouse Event Capture API: continuing movement beyond the bounds of an element

 I.3.3. The Full-Screen API: expanding any element to full screen

 I.3.4. The Device Orientation API: controlling on-screen movement by tilting a device

 I.3.5. The Vibration API: accessing a mobile device’s vibration function

 I.3.6. Battery API: adjusting application processing based on battery life

 I.3.7. The Pointer Lock API: tracking mouse motion instead of pointer position

 I.4. Summary

 Appendix J. Links and references

 Chapter 1: Introduction

 Chapter 2: Forms and validation

 Chapter 3: Working with files on the client side

 Chapter 4: Messaging

 Chapter 5: Web storage and working offline

 Chapter 6: 2D Canvas

 Chapter 7: SVG

 Chapter 8: Video and audio

 Chapter 9: WebGL

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Explaining what HTML5 is can be a very daunting task. I’ve been doing this since its inception, and I’m still amazed by how
 many myths abound and how much confusion there is on the topic. With HTML5, we rebooted web development. The world of HTML4
 and the nonstarter XHTML stranded those who wanted to use the web as a platform for applications. HTML4 was meant for linked
 documents, and XHTML was far too strict for its own good and lacked real support in browsers.

 HTML5 started with a clean slate. We analyzed what was used on the web and added a lot of features we didn’t have before,
 like Canvas for creating visuals on the fly or accessing images and videos on a pixel level, native audio and video without
 the need for plug-ins, and forms that validate in the browser without our having to write extra JavaScript. We also started
 muddying the waters by merging HTML and JavaScript functionality—a lot of HTML5 won’t do anything without accessing the elements
 via a JavaScript API. This confuses many people. We moved on from a document-based web, and in that process we needed more
 technical expertise. And this meant we needed to rethink a few of our “best practices,” which can annoy people so that they
 spread nasty rumors about the viability of HTML5 as a choice for professional development.

 HTML5 is built on the robustness principle, which means that a browser will make a lot of educated guesses as to what you
 might have meant when you make a syntax error instead of simply giving up and showing an error. This gives it backward compatibility,
 and we can show pages developed for a never-to-arrive XHTML world in browsers these days. A large part of the standard is
 just that: it tells you how to write a browser that renders HTML5 rather than using it as a web developer. Again, this angers
 some people, and they shout about the verbosity of the standard.

 HTML5 is also the new hotness. Much of the advertising talk, shiny demos, and promises of fidelity that matches native apps
 on phones makes us cynical, battle-hardened web developers think back on Java, Flash, and Silverlight and their promises,
 and sigh. There’s a lot of buzz about HTML5, and many things that aren’t part of the standard are simply declared part of
 it, because it makes a good punch line.

 When it comes to extending the language and bringing new features into it, we’re running wild right now. Every browser maker
 and web company comes up with great new concepts on almost a weekly level. That can be frustrating for developers who want
 only to get a job done. Can we rely on the functionality that’s currently developed, or will the standard be changed later
 on? We’re pushing browsers further into the OS and allowing them to access hardware directly, which comes with security and
 robustness issues that need to be fixed by trial and error. Can you take that risk with us when it comes to delivering your
 product?

 These are exciting times, and when you want to be part of the ride, you can help forge the future development environment
 for all of us. If you don’t have the time to follow the discussions on mailing lists, do a lot of browser testing in previews,
 and propose your own ideas, you can be left quite confused.

 And this is where a book like HTML5 in Action comes in. Instead of promising a cornucopia of functionality that will soon be available, you get examples that work right
 now, based on examples that worked in the past. Instead of getting experimental demos, you’ll learn how to build production
 code based on proven ideas, using the features in modern browsers that make it easier for developers and much more enjoyable
 for end users. All the examples come with a legend telling you which browsers support the features, and you’ll learn how not
 to give features to old browsers that will choke on them.

 You’ll learn how to use HTML5 now, using secure and intelligent solutions like Modernizr and HTML5 Boilerplate, and you’ll come out at the end understanding
 how to write things in HTML5 that currently work. This will make you a part of the movement to get HTML5 production-ready
 for all of us.

 Those who live on the bleeding edge of defining the next browser and language features need implementations in the wild—right
 now. We’re past the “show-and-tell” stage, and we need to get to “deliver and enhance.” And you can become an integral part
 of this process by following the advice and applying the examples you find here. Go forth and deliver.

 CHRISTIAN HEILMANN

 PRINCIPAL EVANGELIST HTML5, MOZILLA

Preface

 Writing a book about all things HTML5 is more difficult than it sounds. Primarily because of browser and specification changes,
 it seemed that no matter how much we wrote every six months, browsers would adjust an implementation enough to break a few
 chapters. This pushed progress back and forth, making chapter revisions a constant fear, especially after we had seen so many
 books released on HTML5 that were outdated months later. After fighting the tides of change, we eventually nailed down solid
 app techniques that were resistant to change. These apps should continue to work as HTML5 continues past this book’s release
 date.

 To add to our book’s track record of chaos, it originally started with just Robert Crowther (who was already writing another
 book) and Joe Lennon. Rob’s death-defying stunt while writing the book was that he somehow managed to write another book called
 Hello! HTML5 and CSS3 (Manning, 2012) at the same time. If that weren’t enough, he reviewed chapters from his coauthors and provided helpful feedback
 (still wondering when he finds time to sleep).

 Joe Lennon wrote about forms, about file storage, appendices, and an awesome general overview of the HTML5 specification.
 Greg Wanish (originally our editor) worked with Joe on his sections. The two tackled some of the most difficult and volatile
 specifications that are still being implemented in most browsers. Ash Blue came on board to tackle HTML5’s massive APIs for
 interactive visual data.

 Greg and Ash are from the United States, while Joe lives in Ireland and Rob in London. Our team’s geographical makeup made
 meeting as a group very difficult. At almost every meeting, somebody was missing. If you’ve ever worked on a group project,
 then you know how essential meetings for something like this book can be. Even with all four of us dedicating much of our
 free time to work on the book, it took much longer than expected. The delay was partially because we wanted to keep the book
 up to date with the latest techniques and specification changes. Another time-consuming task was integrating feedback from
 our MEAP readers, who gave us great information on how to improve the book.

 The true lesson we learned from writing HTML5 in Action is that you should never write on an experimental subject—just kidding! But in all honesty, HTML5’s volatile state did make
 things both difficult and rewarding. Our hope is that our long nights of handcrafting every letter of this book will make
 learning HTML5 much easier for you.

Acknowledgments

 We’d like to thank our editor at Manning, Renae Gregoire, for putting up with us in general. Without her reviewing our thousands
 and thousands of lines of text, sending weekly status reports, and organizing meetings, this book would never have happened.
 She was dropped into our book halfway through the writing process and made quite the effort to get up to speed as quickly
 as she could. Also big thanks to our first editor, Maria Townsley, for getting the ball rolling.

 Thanks to everyone at Manning for their extreme patience on this book’s timeline. They could have released a broken book that
 was half-baked, but they were really true to their readers and pushed to produce a great product. Without Troy Mott’s magical
 ability to find tech writers, we would never have finished. He staffed the book quickly and helped when he could with the
 feedback process.

 Thanks also to our MEAP readers and peer reviewers whose comments and corrections helped make this a much better book. We
 would like to acknowledge the following reviewers for reading our manuscript at various stages of its development: “Anil”
 Radhakrishna, Alexander Esser, Arun Noronha, Chris Zimmerman, Dave Pawson, Dmitry Skylut, Donald Matheson, Federico Tomassetti,
 James Hatheway, Jeff Kirkell, John Ryan III, Jonas Bandi, Joseph Morgan, Julio Guijarro, Leonel Waisblatt, Lester Lobo, Lloyd
 S. Derbyshire, Michael Caro, Osama A. Morad PhD, Robert Williams, Sebastian Rogers, Stan Bice, Timothy Hanna, and Tyson S.
 Maxwell.

 Finally, special thanks to Chris Heilmann at Mozilla for contributing the foreword to our book, and to Adam London for his
 careful technical proofread of the manuscript shortly before it went into production.

Rob Crowther

 This is the second set of acknowledgments I’ve written in less than a year, so take it as read that all the family, friends,
 and people who got me started in web development and whom I thanked in my first book are just as important to me now as they
 were then. For this book I’d like to thank my colleagues at work over the last two years for their (sometimes inadvertent)
 contributions to my sanity while I was trying to write two books at once: Ade, Adriana, Alexandru, Amy, Angelique, Annie,
 Anusha, Boris, Carlos, Chani, Dan, Danielle, Darren, Dave, David, Delia, Denis, Don, Dorin, Dragos, Eric, Gary, Gemma, Gifty,
 Hazel, Indrani, Ioan, Ionel, Jack, Jhumi, Jo, Katie, Liam, Liming, Lindsay, Lisa, Louise, Marc, Marinela, Mark K., Mark R.,
 Mark W., Martin H., Martin J., Mihai, Nancy, Natalie, Nia, Patricia, Paul, Paula, Phil, Razvan, Rhavy, Rob, Sally, Scott,
 Sean, Simon, Stella, Sudini, Tal, Tom H., and Tom W. (and if I forgot anyone, sorry, but you managed to avoid emailing me
 for two years!).

Joe Lennon

 I’d like to thank my wife, Jill, for her love and support—I’d be lost without her. I’d also like to thank my parents, Jim
 and Maria; my sisters, Laura and Kelly; the Mac Sweeney family; and all at Core International. Finally, special thanks to
 Prof. Ciaran Murphy and Patricia Lynch at University College Cork and to Troy Mott for bringing me on board this project in
 the first place.

Ash Blue

 I would like to thank my beautiful wife for contributing artwork and time to make this book happen, my family for their patience
 with my writing over the holidays, and also friends who let me lock myself in a room for over a year to write this thing.
 Despite how crazy as I got while trying to balance life and writing this book, I’m happy nobody carted me off to the funny
 farm.

Greg Wanish

 I would like to thank my parents for supporting my dreams and ambitions throughout the years. All the adventures and experiences
 that I had in pursuit of those goals have given me a wealth of wisdom beyond my grandest expectations.

About this Book

 HTML5 is one of the fastest-growing technologies in web development. The reason for such a quick adoption is the technology’s
 usability across desktops and mobile devices. In theory, you program an application once, and it magically works everywhere.
 It also gives powerful native functionality through simple API access.

 Because of HTML5’s dynamic nature, it’s usable for far more than just mobile and desktop browsers. It can be compiled into
 a native mobile app through platforms such as PhoneGap and appMobi, which can save developers and companies lots of money
 because they don’t have to maintain two completely separate code bases for apps on iOS and Android.

 Most HTML5 APIs are still quite young, so we’ll guide you around pitfalls developers experience while building their first
 HTML5 apps. In addition, you’ll learn about modern fallback techniques, application-oriented JavaScript, and what is/isn’t
 an HTML5 API.

Who should read this book?

 If you’re looking to build full-functioning, in-browser applications for the real world, then this book is for you. It covers
 everything from data storage, to messaging, and even interactive development such as video games.

 This book is for developers who have a decent understanding of JavaScript and HTML syntax. If the terms loop, array, and JSON are completely unfamiliar to you, you should brush up on those before proceeding.

Roadmap

Part 1 Introduction

 Chapter 1 covers a basic overview of HTML5’s markup syntax and all the APIs this book covers.

Part 2 Browser-based apps

 Chapter 2 focuses on building HTML5 forms for an ecommerce site from markup to completion. It goes in depth about calculations and
 input validation.

 Chapter 3 walks you through creating a filesystem and managing data. It also covers drag-and-drop functionality and the Geolocation
 API.

 Chapter 4 is one of the more complicated chapters, because it focuses on messaging with WebSockets and other technologies to build
 a chat system.

 Chapter 5 is an in-depth look at the various HTML5 APIs for storage, such as IndexedDB and local storage. It covers building a mobile
 task list.

Part 3 Interactive graphics, media, and gaming

 Chapter 6 covers building an HTML5 game called Canvas Ricochet with the Canvas API. The game features a simple leveling system.

 Chapter 7 shows you how to use Canvas’s counterpart, Scalable Vector Graphics (SVG), to create a 2D space shooter game.

 Chapter 8 takes a complex look at the audio and video API to show some powerful techniques you can use in your applications. It also
 covers format issues, inputs, and building a video player.

 Chapter 9 is one of the most complex chapters because it covers WebGL for 3D programming. By the end of this chapter, you’ll have created
 your own 3D space shooter with complex shapes rolled from scratch.

Appendixes

 There are nine appendixes in HTML5 in Action, further explaining ideas in the book, offering suggestions for setting up or installing programs, and listing important
 links and references:

 Appendix A: HTML5 and related specifications

 Appendix B: HTML5 API reference

 Appendix C: Installing PHP and MySQL

 Appendix D: Computer networking primer

 Appendix E: Setting up Node.js

 Appendix F: Channel messaging

 Appendix G: Tools and libraries

 Appendix H: Encoding with FFmpeg

 Appendix I: HTML Next

 Appendix J: Links and references

Chapter features

 Each chapter starts with an “At a Glance” table, letting you see which topics will be covered in the chapter, with the corresponding
 page numbers listed for each topic. Throughout the book, we include Core API icons in the margins

 [image:]

 that highlight the main topics and help you locate the section you need, quickly and easily.

Code conventions and downloads

 Code samples are presented in a monospaced font like this. It should be noted that although we attempted to keep code snippets as small as possible, they overflow on some of the pages.
 Lines of code that are too wide will overflow onto the next line, and code sections that take up more than a whole page will
 continue on the next. To help with understanding, code sample annotations have been included. These would normally be written
 with JavaScript comments such as // or /* */.

 Source code for all chapters in this book is available for download from the publisher’s site at www.manning.com/crowther2/ or at www.manning.com/HTML5inAction, and from the GitHub repository https://github.com/html5-ia/html5-ia.

Software requirements

 To complete this book’s applications, you’ll need the latest version of Chrome on a Mac or Windows operating system. If additional
 setup is required to run an app, it will be stated in the readme.txt file in the source files.

About the authors

 Rob Crowther is a web developer and blogger from London, UK, and the author of Manning’s Hello! HTML5 and CSS3. Joe Lennon is an enterprise mobile application developer from Ireland. Ash Blue is the developer for game dev studio Clever Crow Games. As an indie developer, he utilizes HTML5 to distribute games to several
 different platforms. In the past, he has developed robust front-end architecture and application solutions for companies such
 as Hasbro, Tastemaker, and Wikia. His blog is at blueashes.com. Greg Wanish is an independent developer of client-side web and e-commerce applications. He also designs and sells a line of graphic and
 message t-shirts.

Author Online

 Purchase of HTML5 in Action incudes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/HTML5inaction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contributions to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors challenging
 questions, lest their interest stray.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The figure on the cover of HTML5 in Action is captioned “Le touriste,” which means tourist or traveler. The illustration is taken from a 19th-century edition of Sylvain
 Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration is finely drawn and colored
 by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions
 were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the
 countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Introduction

 It’s important that you know about HTML5’s semantic markup basics and wide variety of APIs. For the introduction, we’ll cover
 these concepts briefly, but in heavy detail, to ramp you up.

 If you’re already building sites with HTML5’s new tag structure you could skip this section. However, you’ll miss advanced
 markup concepts such as ARIA and microdata (if you aren’t already familiar with them).

Chapter 1. HTML5: from documents to applications

 This chapter covers

 	The basics of using HTML5

 	New semantic markup and media features

 	New JavaScript APIs

 	Closely related web specifications

 HTML5 is one of the hottest topics in web development, and with good reason. Not only is it the latest version of the markup
 language for the web, but it also defines a whole new standard for developing web applications. Previous iterations of HTML
 (and its rigid XML-based sibling, XHTML) have been centered primarily on the concept of HTML as a markup language for documents.
 HTML5 is the first version to embrace the web as a platform for web application development.

 HTML5 defines a series of new elements that you can use to develop rich internet applications as well as a range of standard
 JavaScript APIs for browsers to implement natively. A good example of HTML5’s new elements is <video>, which provides a means of playing video content in the browser without requiring an additional plug-in. HTML5 also provides
 the Media Element Interface that allows you to control video playback with JavaScript. It lets you create games, build mobile
 applications, and much more.

 	

 In this chapter, you’ll learn

 	
About great new features introduced in HTML5 and how to immediately use them in your web applications.

 	How to provide fallbacks and workarounds for users with older or incompatible browsers.

 	How to use ARIA (Accessible Rich Internet Applications) roles and microdata to further enhance the semantics of your HTML
 pages.

 	The wide range of JavaScript APIs available in HTML5 itself, as well as a number of closely related API specifications you
 can use in your applications.

 	

 By the end of this chapter, you’ll have a broad sense of what HTML5 has to offer and be able to use it in your own web applications.

 	

 Documents (HTML4) versus applications (HTML5)

 Initially the web was all about documents. Forms were added by the Mosaic browser in 1993, but this was merely data entry;
 all application logic remained on the server. The introduction of JavaScript in 1995 made browser-based applications theoretically
 possible, but things didn’t really take off until after the arrival of the XMLHTTPRequest object in 1999. The last major version of the HTML specification, 4.01, only became a recommendation in 1999. So it’s not
 surprising that the 4.01 spec still concentrated almost entirely on the use of markup to describe documents, what we now normally
 refer to as semantic markup.

 The next version of HTML has been a long time coming, and the web has changed a lot in the meantime. As you’ll see in the
 following sections, HTML5 contains improvements in the area of semantic markup. The majority of the differences and improvements
 in HTML5 over HTML4, however, are in facilities for building browser-based applications with JavaScript. Because of that,
 and because this book is focused on the new features of HTML5, we spend a lot more time dealing with JavaScript than with
 markup. We do cover some markup, but, as you’ll see, JavaScript is the real big deal in HTML5.

 	

 To get started, we’ll show you how to get up and running by creating an HTML5 document.

1.1. Exploring the markup: a whirlwind tour of HTML5

 The best way to learn what’s new in HTML5 is to jump right in and explore. The goal of this section isn’t only to give you
 a high-level tour of the new features but also to give you enough knowledge to be able to update your existing applications
 to use HTML5 conventions, without upsetting users who don’t have the latest and greatest browsers.

 	

 In this section, you’ll learn

 	
How to create a basic HTML5 document structure.

 	How to use the new semantic elements to lay out a page.

 	How to deal with older versions of Internet Explorer that don’t recognize the new elements.

 	About the new form features you can implement immediately in HTML5.

 	How to use new UI elements, such as progress bars and collapsible sections.

 	

 Let’s get started by examining the basic structure of an HTML5 document. If you’re not interested in the basics, you can read
 quickly until you reach section 1.2, which goes beyond semantic markup and into the HTML5 ecosystem.

 1.1.1. Creating the basic structure of an HTML5 document

 HTML5 documents are structured in the same way as older versions of HTML: you put a <!DOCTYPE> declaration at the top of the document and open and close the HTML document with matching <html> and </html> tags. Between these tags, you have a <head> section, where you place <meta> information and other noncontent items such as stylesheets, and a <body> section, where your page content should go. If you’ve written HTML pages or applications before, none of this will be new
 to you, but you need to be aware of some subtle differences, which we’ll cover in this section:

 	The HTML5 DOCTYPE declaration syntax.

 	How to use the opening <html> element.

 	How to use the shorter versions of the various elements in the <head> section.

 Let’s look more closely at these differences by examining hello.html, the HTML5 equivalent of a “Hello, World!” application,
 shown in the following listing.

 Listing 1.1. hello.html—The basic structure of an HTML5 document

 [image:]

 That’s a basic page structure. Next, we’ll show you how to use the new semantic elements to construct a page—in this case,
 a sample blog post page.

 	

 HTML and XML

 Previous versions of what we think of as the HTML specification were either HTML or XHTML. HTML markup was designed to be
 fairly forgiving, whereas XHTML was built around XML and a strict parsing model. XHTML required all elements to have closing
 tags (
 instead of
, for example) and all tags and attributes to be lowercase. A single error would cause the whole page to fail. Because of
 this draconian error handling, most websites never properly implemented XHTML. They tended to use XHTML syntax forms but send
 pages with a content type of text/html, causing HTML parsing of the XML markup.

 HTML5 unifies everything in a single specification by allowing both HTML and XML serializations; that is, the specification
 provides a vocabulary that can be expressed in either HTML or XHTML. The XHTML serialization must be sent with an XML content
 type such as application/xml+xhtml. It also conforms to XML parsing rules rather than HTML ones, requiring an xmlns declaration, closing tags, and so on. In the code download there are two additional versions of listing 1.1 showing the same markup in valid and invalid XHTML markup: hello-invalid.xhtml, which uses HTML syntax in an XML document,
 and hello-valid.xhtml, which corrects the markup to valid XML.

 	

 1.1.2. Using the new semantic elements

 If you’ve read about HTML5 before you picked up this book, chances are you’ve heard plenty about the new semantic elements.
 They’re important, particularly if you want search engines and assistive technologies such as screen readers to understand
 your pages better, but they’re no more difficult to use than the elements you know and love from HTML4.

 Don’t get too excited about this new set of tags. If you’re expecting these new elements to do something magical in terms
 of how they look on your page, you’re in for some disappointment. Using these new elements on your page is functionally equivalent
 to using a series of <div> elements; they behave as block elements by default and can be styled as required using CSS. Their importance comes from the
 standard semantic meaning they have.

 Consider, for example, a typical blog post, in which the web page contains a series of sections. First, you’d have the site
 heading and navigation, maybe some sidebar navigation, a main content area, a footer area with further navigation links, and
 perhaps some copyright and legal links. The next listing demonstrates how such a blog post might have been marked up in HTML4
 or XHTML.

 Listing 1.2. html4-blog.html—HTML4 markup for a blog post

 <div class="header">
 <h1>My Site Name</h1>
 <h2>My Site Slogan</h2>
 <div class="nav">
 <!-- Main Site Nav here -->
 </div>
</div>

<div class="sidebar">
 <h3>Links Heading</h3>
 <!-- Sidebar links -->
</div>

<div class="main">
 <h4>Blog Post Title</h4>
 <div class="meta">
 Published by Joe on 01 May 2011 @ 12:30pm
 </div>
 <div class="post">
 <!-- Actual blog post -->
 </div>
</div>

<div class="footer">
 <!-- Footer links -->
 <!-- Copyright info -->
</div>

 The previous code isn’t wrong. It’s perfectly valid to use it in HTML5, and you can absolutely continue to use <div> elements with semantic class names if you wish. But from a semantic point of view, this approach poses a couple of problems:

 	By using the old standard, you wind up separating areas of the blog post using named classes. This is fine, but the class-naming
 convention is up to the author. Our “header” might be your “heading”; we call the main section “main,” but you might call
 it “body” or “article.”

 	Some people may prefer to use IDs instead of classes. They may use id=“header” whereas others might use class=“header.”

 In short, a search engine or other computer-controlled application has no way to reliably determine what each section represents.

 This is where the new semantic elements come into play. Rather than using classes and IDs for sections like headings, navigation,
 and footers, you now use several different HTML elements, shown in the following listing. Add this code between the <body> tags of the hello.html file.

 Listing 1.3. html5-blog.html—HTML5 markup for a blog post

 [image:]

 [image:]

Two other important HTML5 elements: <aside> and <mark>

 We don’t want to move on without telling you about two other important HTML5 elements that you’ll use a lot: <aside> and <mark>. You can use the <aside> element to define a section of a page that’s separate from the content area in which it’s defined. In a book or magazine, this might be represented as a sidebar that contains information on the same topic but doesn’t quite
 fit into the main article itself. For example, if you had a blog, you may have advertisements displaying alongside posts—these
 could be placed in an <aside> element. In a web application, you might use <aside> for a pop-up or a floating window that appears over the main part of the application itself.

 You can use the <mark> element to represent a part of text in your document that should be marked or highlighted. A common use for this would be
 to highlight search terms within a document.

 With the new semantic elements, not only is your page’s markup easier on the eye, but search engine spiders and assistive
 technologies will also more easily understand your pages. Speaking of assistive technologies brings us to our next important
 topic: ARIA roles.

 1.1.3. Enhancing accessibility using ARIA roles

 When building web applications, you must ensure that your application is accessible to all users, including those who require
 assistive technologies such as screen readers. Ensuring that your documents are accessible requires careful consideration
 when it comes to the semantic meaning of your markup. Using simple HTML markup makes this relatively straightforward, and
 HTML5’s new elements improve the semantics even further. But when you’re creating web applications, it becomes much more difficult
 to cater to assistive technology. The increasing amount of JavaScript code used to dynamically modify web pages in modern
 web applications makes it far more difficult to deliver accessibility through good markup alone. This is where the Web Accessibility
 Initiative (WAI) and ARIA standards come into play.

 The WAI-ARIA specification aims to improve web applications by expanding on the accessibility information provided by the
 author of an HTML document. ARIA roles, relationships, states, and properties allow you to define exactly how your web application
 works in a way that an assistive technology such as a screen reader can understand. If, for example, you build a drop-down
 list out of a text input and an unordered list, you can apply the ARIA role combobox to the input element so that it can be rendered appropriately to the user’s device. The following listing shows an example
 of this style of markup taken directly from the WAI-ARIA 1.0 spec.

 Listing 1.4. ARIA combobox example from www.w3.org/TR/wai-aria/roles#combobox

 [image:]

 The HTML5 specification explicitly states that you may use the ARIA role and aria-* attributes on HTML elements as described in the ARIA specification; this wasn’t allowed in HTML4. HTML5 also defines a set
 of default ARIA roles that apply to certain HTML elements. For example, it’s implied that a checkbox <input> element has an ARIA role of checkbox, and you shouldn’t explicitly use role or aria-* attributes that differ from those implied in these cases.

 You’ll also find HTML elements where the native semantics can be modified so that they behave differently. For example, you
 might create an <a> element that behaves like a button and use it to submit a form after performing some validation. The HTML5 specification
 defines a list of valid semantics for these elements. When you use the <a> element to create a hyperlink, it assumes the link role by default, and if this is modified, its role can only be changed to one of the following: button, checkbox, menuitem, menuitemcheckbox, menuitemradio, tab, or treeitem.

 For a complete list of the default, implied ARIA semantics, and the restrictions on how you can modify the semantics of certain
 elements, see the WAI-ARIA section of the HTML5 specification at http://mng.bz/6hb2.

 1.1.4. Enabling support in Internet Explorer versions 6 to 8

 A subject you may wonder about as you consider HTML5 elements is compatibility with older browsers, and rightly so. Each new
 version of HTML brings with it new elements that you can use in your documents. HTML5 is no different. Most modern browsers
 are more than capable of rendering these elements, even versions that don’t specifically support them. The way that most browsers
 handle unrecognized elements is by rendering them like normal in-line elements. All that is required is to set them to display: block with CSS. Unfortunately, Internet Explorer (IE) is the one exception. In versions prior to IE9, the browser would render unrecognized
 elements but wouldn’t allow you to style them using Cascading Style Sheets (CSS). As you can imagine, this makes it difficult
 to start using the new HTML5 elements in a production application, because your users may still be using IE6, 7, or 8.

Rendering new elements properly in IE

 Fortunately, this problem has a simple remedy. If you want to use the element <header> on your page and need to apply CSS styles, include the following snippet in the <head> section of your page. This will force IE to apply the CSS rules to the tag, even if the version of IE used doesn’t support
 a particular element natively:

 <!--[if lte IE 8]>
<script>document.createElement("header");</script>
<![endif]-->

 You’ll need to execute an equivalent of this JavaScript statement for every HTML5-specific element you wish to use in your
 page. As you’re doing this, it will cause IE versions 6 to 8 to render the style correctly, with the problem persisting if
 you attempt to print the page.

Rendering new elements properly on pages printed from IE

 Fortunately, a solution known as IE Print Protector fixes the printing issue. But rather than reinvent the wheel, we recommend
 you use an HTML shiv script. The most popular HTML5 shiv was originally created by Remy Sharp and has since been improved
 by many others. For more information and to get the latest version of the script, see http://mng.bz/50dt.

 	

 Warning

 The HTML5 shiv solution requires JavaScript. If you want a JavaScript-free solution, you can use HTML5’s XML-based sibling,
 XHTML5, instead. See Eric Klingen’s post on the subject at http://mng.bz/QBIw.

 	

 What else can you do to boost the presence of your existing applications using HTML5? How about integrating easy features
 that jazz up your forms? Even though forms are ubiquitous, in HTML5 that doesn’t mean they have to be boring and plain.

 1.1.5. Introducing HTML5’s new form features

 It rarely receives acclaim, but the humble web form has played a major role in the emergence of the web as a platform for
 application development. HTML5’s focus on web applications led to many improvements in web forms, all of which you can use
 today, without breaking compatibility with older web browsers.

Improving the semantics of data input using new form input types

 The basic text field has been used far beyond its primitive capabilities. In the same way that the <div> element was used in HTML4 for all sorts of block content, the text input is used for all sorts of textual input. HTML5 aims
 to ease its burden by offering a number of new and backward-compatible types, each of which provides enhancements over the
 simple text field. Table 1.1 identifies the new input types in HTML5.

 Table 1.1. The new form input types introduced in HTML5

 	color
 	date
 	datetime
 	datetime-local
 	email

 	month
 	number
 	range
 	search
 	tel

 	time
 	url
 	week
 	
 	

 You can use these new input types in your web pages immediately because older browsers will fall back to a standard text input
 type when they find a type they don’t understand. Some of the new input types will also allow browsers to provide standard
 widget controls for given types of form fields. Figure 1.1 shows examples of these new widgets.

 Figure 1.1. Examples of some of the new form input widgets introduced in HTML5. Note that not all browsers provide support for widgets
 yet.

 [image:]

 In chapter 2, you’ll learn about Modernizr, an HTML5 feature-detection script. Using Modernizr, you’ll be able to detect if a browser
 supports a given input type, providing a fallback JavaScript-powered widget if required.

New attributes for altering the behavior of fields

 In addition to new form field types, HTML5 introduces ten common attributes, shown in table 1.2, that allow you to alter the behavior of a given field. The placeholder attribute is an example of one of these new attributes, and it allows you to define text that will appear in the field before
 it contains a value. This is illustrated in figure 1.2.

 Table 1.2. HTML5’s new input element attributes

 	autocomplete
 	autofocus
 	list
 	max
 	min

 	multiple
 	pattern
 placeholder

 	required
 	step
 	

 Figure 1.2. You can use the new placeholder attribute to provide a piece of text that should be displayed in a field when it’s empty. This text is typically gray and
 will be removed when you populate the field with a value.

 [image:]

 Table 1.2 provides a list of the new input attributes introduced in HTML5. You’ll look at which attributes apply to which input types
 in chapter 2.

New attributes for performing client-side validation

 Some of these attributes allow the browser to perform client-side validation without JavaScript. For example, the required attribute specifies that a field must be populated, or the browser will produce an error. The pattern attribute allows you to define a regular expression that the input value will be tested against. The max and min attributes allow you to restrict the maximum and minimum values on number and date field types.

 In addition, the browser will perform validation on some of the new input types to warn users when they have entered values
 in an incorrect format. If the user enters an invalid email address in an email input field, for example, the browser will flag an error and prevent the form from being submitted to the server.

 	

 Warning

 You should never rely solely on client-side validation, whether it’s the new native browser validation in HTML5 or JavaScript
 validation code. It’s easy to bypass client-side validation, so you should always check input on the server side. Client-side
 validation should be used to improve the user experience, not as application security.

 	

 You’ll learn much more about the new input types and attributes in chapter 2. First we’ll show you other new elements introduced in HTML5 that you can easily, and immediately, integrate into your applications.

 1.1.6. Progress bars, meters, and collapsible content

 HTML5 defines a series of new elements that you can use to convey information to the user. These include widgets that developers
 would previously have relied on third-party JavaScript libraries for, such as progress bars, meters, and collapsible sections.

Using progress bars to show percentage completion

 The <progress> element allows you to present the user with either a determinate or indeterminate progress bar. A determinate progress bar
 has a given value, and the bar will fill up to that value—this is useful for displaying the progress of a file upload, where
 you dynamically update the value of the progress bar as the file is uploaded. An indeterminate progress bar has no particular
 value, and the bar will be full but animated—this is useful for informing the user that the application is loading when you’re
 unsure of the exact progress of the operation. An example of both types of progress bar is shown in figure 1.3.

 Figure 1.3. The left-hand progress bar is an example of a determinate progress bar. In this example, the value of the bar is set to 50
 percent, and the appearance of the bar reflects this because it’s half filled. The right-hand progress bar is an indeterminate
 bar and doesn’t have a value. It displays an animated full bar to indicate that something’s happening, but the percentage
 complete isn’t known.

 [image:]

 The code to create the progress bars in figure 1.3 is as follows:

 [image:]

Using meters to show users measures within known ranges

 Following along the same path as the <progress> element is the <meter> element. You’d use the <progress> element primarily to show the percentage of completion of a task and you’d use the <meter> element to give a representation of a scalar measurement within a known range. In addition to showing the value using a filled
 bar graphic, the <meter> element allows you to define low, high, and optimum ranges that you can use to give further meaning. When the value is in
 the low range, the meter will display in red; in the medium range, it’ll display in yellow; and in the high and optimum ranges,
 it’ll display in green. Figure 1.4 illustrates the appearances the <meter> element can have.

 Figure 1.4. A screenshot of the states in which you can represent a <meter> element: empty, low, medium, high, and full.

 [image:]

 The code for the <meter> element in figure 1.4 is as follows:

 [image:]

Using details and summary to create collapsible content without JavaScript

 In the past, the only way to create collapsible content sections was to use JavaScript to toggle the display CSS property
 of the section so it would show or hide. HTML5 introduces the <details> and <summary> elements to provide a script-free method for providing such functionality. Figure 1.5 illustrates these new elements in action.

 Figure 1.5. An example of the <details> and <summary> elements in action, first in the closed state, where only the code inside the <summary> element is visible, and second in the open state, where the entire contents of the <details> element are visible.

 [image:]

 The code to create the <details> and <summary> example is as follows:

 <details>
 <summary>Section Heading</summary>
 This is an example of using <details> and <summary>
 to create collapsible content without using JavaScript.
</details>

 Unfortunately, browser support for these new elements has been rather slow to date. Fortunately, it’s simple to provide a
 fallback for this using JavaScript, several of which are provided at http://mng.bz/cJhc.

 Using the techniques you learned in this section, you should now be able to update your existing applications to use HTML5
 conventions, without having a negative impact on users who lack the latest and greatest browser. In the next section, you’ll
 learn how you can take things further by going beyond HTML markup and using related concepts such as CSS3 and JavaScript to
 improve the style and interactivity of your documents.

1.2. Beyond the markup: additional web standards

 As we mentioned, the web is no longer all about documents; it’s a platform for application development. As a result, HTML5
 doesn’t include only markup for outlining document structure; it also encompasses many more features and associated specifications
 for ensuring that your applications look great and provide the best possible experience to the user. One example of this is
 microdata and the associated Microdata API, which enable you to provide additional semantics in your documents and then retrieve
 and modify them. Another example is CSS3; its evolved stylesheets allow you to apply the latest innovations in styling and
 effects—without relying on external images and JavaScript hacks.

 	

 In this section, you’ll learn

 	How to use microdata and microdata vocabularies to provide search engines with better information about your pages.

 	The microdata DOM API that lets you dynamically retrieve and modify microdata items using JavaScript.

 	Several of the new features in CSS3 that allow you to enhance the visual appeal of your applications while providing better
 user interactions and feedback.

 	How HTML5 treats JavaScript as a first-class citizen with detailed specifications and advanced APIs.

 	

 To begin, let’s look at microdata.

 1.2.1. Microdata

 Microdata in HTML5 allows you to add semantic information to a web page, which in turn could be used by applications such
 as search engines and web browsers to provide additional functionality to the user based on that data. An example of how Google
 uses microdata to provide smart search results is illustrated in figure 1.6.

 Figure 1.6. Google reads microdata from HTML documents to provide improved search results to users. By using microdata in your pages,
 you enable Google to provide similar search result listings for your website or application.

 [image:]

 To use microdata, you need a vocabulary, which defines the semantics you’ll use. You can define your own vocabularies, but
 more likely you’ll want to use a published vocabulary, such as those provided by Google at www.data-vocabulary.org/, including Event, Organization, Person, Product, Review, Review-aggregate, Breadcrumb, Offer, and AggregateOffer. By using
 a published vocabulary, you can be sure search engines and other applications will interpret your microdata consistently.

 Listing 1.5 illustrates microdata in action using an event item that adheres to Google’s Event microdata vocabulary at www.data-vocabulary.org/Event. This code creates a snippet of HTML code for an event, with defined microdata properties that will allow a search engine
 to unambiguously interpret the event information and use it to enhance search results, perhaps by showing the event date in
 a calendar or as a location on a map.

 Listing 1.5. html5-microdata.html—Microdata in action

 [image:]

 The HTML5 specification also defines a DOM API that you can use to dynamically retrieve and modify microdata items using JavaScript.
 Descriptions of the API are provided in table 1.3.

 Table 1.3. The microdata DOM API

 	
 Method/property

 	
 Description

 	document.getItems([types])
 	Gets all elements that are top-level microdata items (elements with an itemscope attribute). You can use the types argument
 to filter by one or more itemtype attribute values.

 	element.properties
 	Gets all item properties (those elements with an itemprop attribute) for a given microdata item (element).

 	element.itemValue [= value]
 	Gets or sets the value of an item property.

 Using microdata is an excellent way to improve how your application (or document) looks in search results. In the next section,
 you’ll learn how you can use CSS3 to make your application visually stunning with the new styles and effects it has to offer.

 1.2.2. CSS3

 If you’ve been developing on the web for a long time, you may remember when styling HTML documents was facilitated by the
 use of elements like and the clever use of <table> elements. Thankfully, the introduction of Cascading Style Sheets has meant that such approaches are no longer necessary.

 As the web has evolved, developers have come up with innovative ways to present content, using effects like drop shadows,
 rounded corners, and gradients to improve their application’s visual appeal. Even more impressive has been the use of transition
 and animation to provide better feedback to and interaction with the user. The main issue with all of these wonderful enhancements
 is that they’ve traditionally required a degree of trickery to implement using images and JavaScript (or at least required
 the use of a JavaScript library). CSS3 sets out to change that. Table 1.4 lists some of the new style features available in CSS3—all without JavaScript or the clever use of images.

 Table 1.4. A partial list of the new features in CSS3

 	New selectors
 	New pseudo-classes
 	Rounded borders
 	Border images

 	Gradients
 	Box shadow
 	Box sizing
 	Background sizing

 	Text shadow
 	Word wrapping
 	Multiple columns
 	Web fonts

 	Multiple backgrounds
 	Alpha color channels
 	Media queries
 	Speech style

 	Transitions
 	Animations
 	3D transforms
 	2D transforms

 As you work through the samples in this book, you’ll learn to build applications primarily using HTML and JavaScript. We do
 use CSS3 throughout for styling, but we won’t be covering it in the chapters themselves. You can download the CSS source for
 all the examples from the book’s web page. If you’re looking for detailed insight into CSS3, check out Hello! HTML5 and CSS3 (Manning, 2012). Rob Crowther, the author of that book, is one of this book’s coauthors.

 1.2.3. JavaScript and the DOM

 JavaScript and the Document Object Model (DOM) play a hugely important role in modern web applications. The ability to dynamically
 interact with elements on the page has enabled developers to provide rich functionality and interactivity previously found
 only in desktop applications. The advent of Asynchronous JavaScript and XML (AJAX) has removed the burden of page refreshes,
 allowing server-side actions to be updated inline, providing a much-improved user experience. JavaScript Object Notation (JSON)
 has become the de facto data interchange format for web applications, with most server-side languages and frameworks now supporting
 it natively. In addition, a range of powerful JavaScript frameworks and libraries has risen to provide an abstraction of JavaScript
 that allows developers to worry less about the cross-browser inconsistencies that plagued earlier web development, concentrating
 their efforts more on crafting highly functional applications.

 	

 Warning

 Each and every chapter in this book shows you to how to build powerful applications using HTML5 and JavaScript. But this isn’t
 a book for JavaScript beginners. At the least, you should be familiar with JavaScript syntax and the basics like variable
 declarations, conditional statements, functions, closures, callbacks, and scopes as well as other concepts like AJAX, JSON,
 and interacting with the DOM. If you have experience using JavaScript libraries such as jQuery, you should be able to follow
 along. To learn more about JavaScript or if you’re feeling rusty, check out Ajax in Action (Manning, 2005) by David Crane and Eric Pascarello with Darren James and Secrets of the JavaScript Ninja (Manning, 2012) by John Resig and Bear Bibeault.

 	

 In previous versions of the HTML (and XHTML) specification, the only coverage of JavaScript was a minor section on use of
 the <script> element and some of the attributes that could be added to HTML elements to provide event-handling functionality. In HTML5,
 JavaScript is treated as a first-class citizen, with each section of the specification detailing what DOM API methods and
 properties are available for any given element. In addition, HTML5 defines advanced APIs that allow you to develop applications
 that use audio and video, work offline, store data locally on the client, and do much more. We’ll cover these APIs briefly
 later in this chapter and in greater detail throughout the book.

OEBPS/ch01ex03-1.jpg
<hisLinks Headinge/nis

Defines a chunk of content,such a a major wiki

SRR i anidesedionoranimportant form.Sections an
</navn Have thirown header, navigation, and oatrs.
i - Marks sl contined publishable component,
Wthe datetime | <areicios = ‘Which can b redistrbutedon s v uch 3
sbute s besn RSSentrics, blog posts, comments, forum posts,
et thenthe <heacer news enrics, and 50 on. Aicies o allow
conentof the e btog post nitte/n. | headers, avigation, nd oner clements.
<time> dement <01V classarmatars
an beany text
it Pubtaed by 206 on Parsing dates s i,
et Tuesday . Cime dter L nsr2013-05-01712:30400:00%, | becaus o themany v
ot he dateme o1 ay 2013 & 12 -30p8 theye presented. <time>
strbute s Jetnen . allows you to presen the
onitted, thenthe cime formataf your
Conenthas tabe </airs hoce tothe user along
e dat andlor </headars Vich 3 vale computerscan
e format (s Caection Sasy understand i the
Sopendix B for Aotuad blog pos Gatetime seribure.
aamples, </asctions
rmctions
This usally appesrs a he bottom of 3
<tooters page o secion, ol usedfor i
e refed posts o ks copyrght
<uloet- Footer Links --s oo s e, "

OEBPS/009fig01_alt.jpg
<input typ
aria-lab

options will
have this ID.

.

rolesrconbobox* @
aria-autocomplet

AT KR ARSI SR oL
declare what sort of widget

|| ARIA has a number of autocomplete types; i this
<1 case, a st will provide the combo values.

Liser
owmed_1istboxt

Listboxs

owned_listhox">
role-roptiont>zebrac/1is

roleroption=>zoome/1i>

The unordered list has the role
istbos, to complement the type
provided in the ARIA annotation.

OEBPS/005fig01_alt.jpg
heals o

e DUCTIFE dectaration in NTML is short and swest—ne ricicuionsly
Tong DIDs and URLS to remember. This DOCTYPE willforce standards

mode in all modern browsers, 5o you can start.
applications immediately, without negative consequence.

<html ang=tents < The xmins attribute from XHTML isn't valid in the HTML serialization of
HTMLS, so don't use it (see the sidebar “HTML and XML). You should
s always use the lang atribute to specify the language of your documents.
The <meta> element now supports a charset attribute,
<neta charset-tutf-gts allowing for a more memorable syntax than the older

<titlesHello, ETMLSI</tit

<link rel=*stylesheet® href=*style.css">

<script src=vapp.jsts</script> <

</head>

combination of http-equiv and content attributes for defining
the page’s character set (n this case we're using 8-bit
Unicode). Note that in the XML serialization of HTMLS this tag

(eg.
See the sidebar “HTHL and XML

All modern browsers will assume that
a stylesheet's <link> element will
have a type of text/css by default, so
You can safely omit that attribute in
Your HTMLS documents.

Browsers assume that <script> elements

<hl>Hello, HTMLSI</h1> have a type of text/javascript, 50 you don't

e

need to specify the attribute unless you'
using it for something other than JavaScript.

OEBPS/ch01ex03-0.jpg
Group's
numbered
headings
(<h> o

<hé>).

s i el gt el ador, el
detals (blog pos i, permalink, meta information).

T m—_—m
iy s e e S e

docsnt opeate a t did in HTMLA,

e Secton o lnks within the artide’s
Culsei-- Main Site Nav Here --s</uls page. Specifcation saysonly “major
</navs navigation blocks” should use the

Znav> dement,such 2 the main
</neaders nav or bl of contents,

OEBPS/common02.jpg

OEBPS/common03.jpg
Core AP

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common01.jpg

OEBPS/01fig01_alt.jpg
VIVETHETIONE B! TGN SR,
types allow you to select
a number value using a
spinbox widget or a range sider.

-

The search input is

styled diferently by
€] some browsers.

‘number
range = o———C———
search

T m

The time input
makes it easy to

enter time values in

hours and minutes.

The color input type allows
users o select colors from a
st of colors, or use a typical

system color picker utiity.

The data input type (and
the other related types)
allows you to selecta
date using a drop-down
calendar widget.

OEBPS/01fig03.jpg

OEBPS/01fig02_alt.jpg
Placeholder text:

After user input:

WIS booiel

OEBPS/cover.jpg
Rob Growther
Joe Lennon
Ash Blve
Greg Wanish

Foreworosy Christian Heilmann

| | FTYTHE

OEBPS/01fig04.jpg

OEBPS/014fig01_alt.jpg
Determinate progress bar must have a
<progress value="50" max=*100"></progress> value and optionally a max attribute.

<progresss</progress> < | Indterinat rogrss

Kok hae s iillice.

OEBPS/01fig05.jpg
Closed State:

Open State:

» Section Heading

v Section Heading
‘This is an example of using <details> and <summary> to
create collapsible content without using JavaScript.

OEBPS/014fig02_alt.jpg
S~
anges of a meter
using the min,
max,ow, high,
and optimum
.-

0 max=+10*
0% max-*10%
100
100
200

optimums*9n

ge
)
optimumasn
optimume9®

value="0></meter>
value=r1></meters
valuesravse/moters
valuear7se/motors
limar 108 fuaters

OEBPS/017fig01_alt.jpg
youllikely
use the most
‘when
working vith
microdata.

b oot SR o bt £ 52 A TR el

<a nrefathecp://oxample.con/ovent/1n itempropsrurlts
John's 40th Birthday Party</span-

“opun itemprop-tdsscriptiontsTo celebrate Jon turning 40,
we'xe throwing a 580 party in his honour this Friday evening
At close of business. Please cose and bring your riends and
fantly1c/opans

<opan itemprop-tiocation®
nscope
Scemtype-netp://data-vocabulary.org/Address>
500 Market Way

<span itemprop-regiont Corke/span

Dace and Tine.
<tine itempropstatartbat
Fri, May 6ch @ 6pm
</cines’
.1

d8cerine-"3011-05-06T18:00400:00">

The itemscope
atribute tells the
parser that this
clement and
everything.
conained nside
it describes the
entitybeing
reerenced. The
value of this
auribute s
Boolean andis
usually omiteed.
The itemeype.
atribute defines
the URL at which
the vocabulry for
theitem being
specied i found.

OEBPS/01fig06_alt.jpg
RIS SOXPY ST e

‘oxcort from tha page il show up hers. Th reason ws cant show txt from your
is bocauss te text dspends on the qury the usertypes.

The eventful page lsted here uses microdata
to tell the search engine detailed information
about upcoming events, These can then be
formatted and displayed alongside the searct
resut to allow the visior to find what they're
looking for faster.

