

 [image: cover]

Docker in Action, Second Edition

 Jeff Nickoloff and Stephen Kuenzli

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editor: Raphael Villela
Review editor: Aleksandar Dragosavljević
Project editor: Janet Vail
Copy editor: Sharon Wilkey
Proofreader: Keri Hales
Technical proofreader: Niek Palm
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617294761

 Printed in the United States of America

Dedication

 For Jarrod Nickoloff and William Kuenzli

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the first edition

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 Chapter 1. Welcome to Docker

 1. Process isolation and environment-independent computing

 Chapter 2. Running software in containers

 Chapter 3. Software installation simplified

 Chapter 4. Working with storage and volumes

 Chapter 5. Single-host networking

 Chapter 6. Limiting risk with resource controls

 2. Packaging software for distribution

 Chapter 7. Packaging software in images

 Chapter 8. Building images automatically with Dockerfiles

 Chapter 9. Public and private software distribution

 Chapter 10. Image pipelines

 3. Higher-level abstractions and orchestration

 Chapter 11. Services with Docker and Compose

 Chapter 12. First-class configuration abstractions

 Chapter 13. Orchestrating services on a cluster of Docker hosts with Swarm

 Docker running three containers on a Linux system

 Index

 List of Figures

 List of Tables

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the first edition

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 Chapter 1. Welcome to Docker

 1.1. What is Docker?

 1.1.1. “Hello, World”

 1.1.2. Containers

 1.1.3. Containers are not virtualization

 1.1.4. Running software in containers for isolation

 1.1.5. Shipping containers

 1.2. What problems does Docker solve?

 1.2.1. Getting organized

 1.2.2. Improving portability

 1.2.3. Protecting your computer

 1.3. Why is Docker important?

 1.4. Where and when to use Docker

 1.5. Docker in the larger ecosystem

 1.6. Getting help with the Docker command line

 Summary

 1. Process isolation and environment-independent computing

 Chapter 2. Running software in containers

 2.1. Controlling containers: Building a website monitor

 2.1.1. Creating and starting a new container

 2.1.2. Running interactive containers

 2.1.3. Listing, stopping, restarting, and viewing output of containers

 2.2. Solved problems and the PID namespace

 2.3. Eliminating metaconflicts: Building a website farm

 2.3.1. Flexible container identification

 2.3.2. Container state and dependencies

 2.4. Building environment-agnostic systems

 2.4.1. Read-only filesystems

 2.4.2. Environment variable injection

 2.5. Building durable containers

 2.5.1. Automatically restarting containers

 2.5.2. Using PID 1 and init systems

 2.6. Cleaning up

 Summary

 Chapter 3. Software installation simplified

 3.1. Identifying software

 3.1.1. What is a named repository?

 3.1.2. Using tags

 3.2. Finding and installing software

 3.2.1. Working with Docker registries from the command line

 3.2.2. Using alternative registries

 3.2.3. Working with images as files

 3.2.4. Installing from a Dockerfile

 3.2.5. Using Docker Hub from the website

 3.3. Installation files and isolation

 3.3.1. Image layers in action

 3.3.2. Layer relationships

 3.3.3. Container filesystem abstraction and isolation

 3.3.4. Benefits of this toolset and filesystem structure

 3.3.5. Weaknesses of union filesystems

 Summary

 Chapter 4. Working with storage and volumes

 4.1. File trees and mount points

 4.2. Bind mounts

 4.3. In-memory storage

 4.4. Docker volumes

 4.4.1. Volumes provide container-independent data management

 4.4.2. Using volumes with a NoSQL database

 4.5. Shared mount points and sharing files

 4.5.1. Anonymous volumes and the volumes-from flag

 4.6. Cleaning up volumes

 4.7. Advanced storage with volume plugins

 Summary

 Chapter 5. Single-host networking

 5.1. Networking background (for beginners)

 5.1.1. Basics: Protocols, interfaces, and ports

 5.1.2. Bigger picture: Networks, NAT, and port forwarding

 5.2. Docker container networking

 5.2.1. Creating a user-defined bridge network

 5.2.2. Exploring a bridge network

 5.2.3. Beyond bridge networks

 5.3. Special container networks: host and none

 5.4. Handling inbound traffic with NodePort publishing

 5.5. Container networking caveats and customizations

 5.5.1. No firewalls or network policies

 5.5.2. Custom DNS configuration

 5.5.3. Externalizing network management

 Summary

 Chapter 6. Limiting risk with resource controls

 6.1. Setting resource allowances

 6.1.1. Memory limits

 6.1.2. CPU

 6.1.3. Access to devices

 6.2. Sharing memory

 6.2.1. Sharing IPC primitives between containers

 6.3. Understanding users

 6.3.1. Working with the run-as user

 6.3.2. Users and volumes

 6.3.3. Introduction to the Linux user namespace and UID remapping

 6.4. Adjusting OS feature access with capabilities

 6.5. Running a container with full privileges

 6.6. Strengthening containers with enhanced tools

 6.6.1. Specifying additional security options

 6.7. Building use-case-appropriate containers

 6.7.1. Applications

 6.7.2. High-level system services

 6.7.3. Low-level system services

 Summary

 2. Packaging software for distribution

 Chapter 7. Packaging software in images

 7.1. Building Docker images from a container

 7.1.1. Packaging “Hello, World”

 7.1.2. Preparing packaging for Git

 7.1.3. Reviewing filesystem changes

 7.1.4. Committing a new image

 7.1.5. Configuring image attributes

 7.2. Going deep on Docker images and layers

 7.2.1. Exploring union filesystems

 7.2.2. Reintroducing images, layers, repositories, and tags

 7.2.3. Managing image size and layer limits

 7.3. Exporting and importing flat filesystems

 7.4. Versioning best practices

 Summary

 Chapter 8. Building images automatically with Dockerfiles

 8.1. Packaging Git with a Dockerfile

 8.2. A Dockerfile primer

 8.2.1. Metadata instructions

 8.2.2. Filesystem instructions

 8.3. Injecting downstream build-time behavior

 8.4. Creating maintainable Dockerfiles

 8.5. Using startup scripts and multiprocess containers

 8.5.1. Environmental preconditions validation

 8.5.2. Initialization processes

 8.5.3. The purpose and use of health checks

 8.6. Building hardened application images

 8.6.1. Content-addressable image identifiers

 8.6.2. User permissions

 8.6.3. SUID and SGID permissions

 Summary

 Chapter 9. Public and private software distribution

 9.1. Choosing a distribution method

 9.1.1. A distribution spectrum

 9.1.2. Selection criteria

 9.2. Publishing with hosted registries

 9.2.1. Publishing with public repositories: “Hello World!” via Docker Hub

 9.2.2. Private hosted repositories

 9.3. Introducing private registries

 9.3.1. Using the registry image

 9.3.2. Consuming images from your registry

 9.4. Manual image publishing and distribution

 9.4.1. A sample distribution infrastructure using FTP

 9.5. Image source-distribution workflows

 9.5.1. Distributing a project with Dockerfile on GitHub

 Summary

 Chapter 10. Image pipelines

 10.1. Goals of an image build pipeline

 10.2. Patterns for building images

 10.2.1. All-in-one images

 10.2.2. Separate build and runtime images

 10.2.3. Variations of runtime image via multi-stage builds

 10.3. Record metadata at image build time

 10.3.1. Orchestrating the build with make

 10.4. Testing images in a build pipeline

 10.5. Patterns for tagging images

 10.5.1. Background

 10.5.2. Continuous delivery with unique tags

 10.5.3. Configuration image per deployment stage

 10.5.4. Semantic versioning

 Summary

 3. Higher-level abstractions and orchestration

 Chapter 11. Services with Docker and Compose

 11.1. A service “Hello World!”

 11.1.1. Automated resurrection and replication

 11.1.2. Automated rollout

 11.1.3. Service health and rollback

 11.2. Declarative service environments with Compose V3

 11.2.1. A YAML primer

 11.2.2. Collections of services with Compose V3

 11.3. Stateful services and preserving data

 11.4. Load balancing, service discovery, and networks with Compose

 Summary

 Chapter 12. First-class configuration abstractions

 12.1. Configuration distribution and management

 12.2. Separating application and configuration

 12.2.1. Working with the config resource

 12.2.2. Deploying the application

 12.2.3. Managing config resources directly

 12.3. Secrets—A special kind of configuration

 12.3.1. Using Docker secrets

 Summary

 Chapter 13. Orchestrating services on a cluster of Docker hosts with Swarm

 13.1. Clustering with Docker Swarm

 13.1.1. Introducing Docker Swarm mode

 13.1.2. Deploying a Swarm cluster

 13.2. Deploying an application to a Swarm cluster

 13.2.1. Introducing Docker Swarm cluster resource types

 13.2.2. Defining an application and its dependencies by using Docker services

 13.2.3. Deploying the application

 13.3. Communicating with services running on a Swarm cluster

 13.3.1. Routing client requests to services by using the Swarm routing mesh

 13.3.2. Working with overlay networks

 13.3.3. Discovering services on an overlay network

 13.3.4. Isolating service-to-service communication with overlay networks

 13.3.5. Load balancing

 13.4. Placing service tasks on the cluster

 13.4.1. Replicating services

 13.4.2. Constraining where tasks run

 13.4.3. Using global services for one task per node

 13.4.4. Deploying real applications onto real clusters

 Summary

 Docker running three containers on a Linux system

 Index

 List of Figures

 List of Tables

Praise for the first edition

 “All there is to know about Docker. Clear, complete, and precise.”

 Jean-Pol Landrain, Agile Partner Luxembourg

 “A compelling narrative for real-world Docker solutions. A must-read!”

 John Guthrie, Pivotal, Inc.

 “An indispensable guide to understanding Docker and how it fits into your infrastructure.”

 Jeremy Gailor, Gracenote

 “Will help you transition quickly to effective Docker use in complex real-world situations.”

 Peter Sellars, Fraedom

 “. . . a superlative introduction to, and reference for, the Docker ecosystem.”

 Amazon reader

Foreword

 Welcome to the container revolution. By reading this book, you’re opening your eyes to a new world of tools that are forever
 changing the way we build, deploy, and run software. Once I discovered Docker in 2014 (the year after it was open-sourced)
 I did something I had never done in my 20+ year career: I decided to focus exclusively on this single technology. That’s how
 much I believed in what Docker was doing to make our ever-increasing IT world easier to manage.

 Fast forward to today, and what’s still unique about Docker’s way of creating and deploying containers is that it has both
 developers and operators in mind. You can see this in the user-experience of its command-line tools, and with hundreds of
 tools in the container ecosystem, I keep coming back to Docker as the easiest and smoothest way to get things done.

 Jeff and Stephen know this too about Docker’s streamlined approach to containers, which is why this book focuses on the details
 of the core tools. Docker Engine, Docker Compose, and Docker Swarm are key tools we should all know. They often solve your
 problems without the need for more complex solutions. This same methodology is how I teach my students and how I guide my
 clients.

 Containers couldn’t have come at a better time, taking features of the Linux kernel (and now Windows, ARM, and more) and automating
 them into accessible one-line commands. Sure, we had container-like features for years in Solaris, FreeBSD, and then Linux,
 but it was only the bravest sysadmins who got those features to work before Docker.

 Containers today are now more than the sum of their parts. The workflow speed and agility that a fully Dockerized software
 lifecycle gives a team cannot be understated. I’m glad Jeff and Stephen took their battle-hardened experience and updated
 this already great book with new details and examples, and I’m confident you’ll gain benefits by putting their recommendations
 into practice.

 —BRET FISHER, DOCKER CAPTAIN AND CONTAINER CONSULTANT
bretfisher.com
twitter.com/bretfisher

Preface

 Docker and the container community have come a long way since we started participating in 2013. And Docker has changed in
 some unexpected ways since 2016, when Jeff released the first edition of this book. Thankfully, most of the user-facing interfaces
 and core concepts were maintained in a backward-compatible manner. The first two-thirds of the book needed updates only for
 additional features or closed issues. As anticipated, part 3 of the previous edition needed a full rewrite. Since publication of the previous book, we’ve seen progress in orchestration,
 app connectivity, proprietary cloud container offerings, multicontainer app packaging, and function-as-a-service platforms.
 This edition focuses on the fundamental concepts and practices for using Docker containers and steers clear of rapidly changing
 technologies that complement Docker.

 The biggest change is the development and adoption of several container orchestrators. The primary purpose of a container
 orchestrator is to run applications modeled as services across a cluster of hosts. Kubernetes, the most famous of these orchestrators,
 has seen significant adoption and gained support from every major technology vendor. The Cloud Native Computing Foundation
 was formed around that project, and if you ask them, a “cloud native” app is one designed for deployment on Kubernetes. But
 it is important not to get too caught up in the marketing or the specific orchestration technology. This book does not cover
 Kubernetes for two reasons.

 While Kubernetes is included with Docker for Desktop, it is massive and in constant flux. It could never be covered at any
 depth in a handful of chapters or even in a book with fewer than 400 pages. A wealth of excellent resources are available
 online as well as wonderful published books on Kubernetes. We wanted to focus on the big idea—service orchestration—in this
 book without getting too lost in the nuances.

 Second, Docker ships with Swarm clustering and orchestration included. That system is more than adequate for smaller clusters,
 or clusters in edge computing environments. A huge number of organizations are happily using Swarm every day. Swarm is great
 for people getting started with orchestration and containers at the same time. Most of the tooling and ideas carry over from
 containers to services with ease. Application developers will likely benefit the most from this approach. System administrators
 or cluster operations personnel might be disappointed, or might find that Swarm meets their needs. But, we’re not sure they’ll
 ever find a long-form written resource that will satisfy their needs.

 The next biggest change is that Docker runs everywhere today. Docker for Desktop is well integrated for use on Apple and Microsoft
 operating systems. It hides the underlying virtual machine from users. For the most part, this is a success; on macOS, the
 experience is nearly seamless. On Windows, things seem to go well at least for a few moments. Windows users will deal with
 an intimidating number of configuration variations from corporate firewalls, aggressive antivirus configuration, shell preferences,
 and several layers of indirection. That variation makes delivering written content for Windows impossible. Any attempt to
 do so would age out before the material went to production. For that reason, we’ve again limited the included syntax and system-specific
 material to Linux and macOS. A reader just might find that all the examples actually run in their environment, but we can’t
 promise that they will or reasonably help guide troubleshooting efforts.

 Next, getting an internet-attached virtual machine with Docker installed has become trivial. Every major and minor cloud provider
 offers as much. For that reason, we’ve removed material pertaining to Docker Machine and installing Docker. We’re confident
 that our readers will be able to find installation instructions that are most appropriate for the platform of their choice.
 And today, they might even skip that step and adopt one of the many container-first cloud platforms like AWS ECS. This book
 won’t cover those platforms. They’re each unique enough to be difficult to discuss in aggregate. And all of them have put
 significant effort into their adoption stories and documentation.

 Finally, containers and networking have had a complicated history. In the last few years, that story became just a little
 bit more complicated with the emergence of service mesh platforms and other complementary technologies. A service mesh is
 a platform of application-aware smart pipes that provide microservice networking best practices out of the box. They use proxies
 to provide point-to-point encryption, authentication, authorization, circuit-breakers, and advanced request routing. The container
 networking fundamentals presented in this book should prove useful in understanding and evaluating service mesh technologies.

 This book is intended as a deep introduction to the fundamentals of working with Docker. A reader might not learn everything
 that they need in their daily application of this technology. But they will have the fundamental skillset required to learn
 advanced topics more quickly and further those pursuits. We wish you the best of luck in those containerized ventures.

Acknowledgments

 We would like to thank Manning Publications for the opportunity to write this book; the generous help from our editors, particularly
 Jennifer Stout; and feedback from all of our reviewers: Andy Wiesendanger, Borko Djurkovic, Carlos Curotto, Casey Burnett,
 Chris Phillips, Christian Kreutzer-Beck, Christopher Phillips, David Knepprath, Dennis Reil, Des Horsley, Ernesto Cárdenas
 Cangahuala, Ethan Rivett, Georgios Doumas, Gerd Klevesaat, Giuseppe Caruso, Kelly E. Hair, Paul Brown, Reka Horvath, Richard
 Lebel, Robert Koch, Tim Gallagher, Wendell Beckwith, and Yan Guo. You all helped make this a better book.

 Jeff Nickoloff: A second edition is a burden and an opportunity. It is the same burden any SaaS owner feels. People are consuming your work,
 and, ultimately, you’re in some small part responsible for their success or failure. I took on this work knowing that it needed
 to be done, but also that I would struggle without a coauthor. It is an opportunity to continue sharing what I know with the
 world, but more importantly an opportunity to introduce and share Stephen Kuenzli’s knowledge. He and I have had several opportunities
 to work together in Phoenix, including co-organizing DevOpsDays, running the Docker PHX meetup, and bouncing a constant stream
 of ideas off each other.

 Since 2013, I’ve watched and helped countless people and teams work through their container and cloud adoption stories. I
 learn something new from each encounter, and it is safe to say that I would not be where I am today if it were not for their
 willingness to include me.

 A huge portion of the engineers who shaped my insight into Docker have since moved on to different companies, projects, and
 passions. I’m thankful for their continued insight into that new and diverse spectrum of challenges and technology.

 Portia Dean has been an invaluable partner. Without her willingness to choose the challenging and rewarding paths, I wouldn’t
 have these books, our companies, or the same degree of personal fulfillment. We can accomplish anything together.

 Finally, I want to acknowledge my parents, Jeff and Kathy, for their early and ongoing support and encouragement.

 Stephen Kuenzli: Writing a book is a great challenge and responsibility. I learned a large portion of my practical professional skills from
 technical books like this one after graduating with an engineering degree. That knowledge and those skills have been central
 to my career, and I appreciate that gift of knowledge. When Jeff asked me to help him update Docker in Action, I was excited and frightened. Here was an opportunity to expand and improve on a successful work by sharing knowledge I’d
 gained over the past several years building systems with Docker. My main motivation was to help people along their own development
 paths. I knew this would be challenging and require tremendous discipline. Indeed, authoring the second edition surpassed
 my imagined effort, and I am proud of what we have produced.

 Every significant work requires assistance and support from people around the creators. I would like to thank the following
 people who made this book a success:

 	My coauthor, Jeff Nickoloff, for the opportunity to collaborate on this work and learn how to write.

 	My wife, Jen, for her patience and the quiet time required to actually write this book. Our son, William, for constantly reminding
 me of the joy in life and inspiring me to do my best.

 	Docker, for building a great tool and community.

 	Everyone who taught and gave me the opportunities needed to get to this point.

 And thanks to all of you reading this book. I hope you find this book useful and that it helps you grow your career.

About this book

 Docker in Action’s purpose is to introduce developers, system administrators, and other computer users of a mixed skillset to the Docker project
 and Linux container concepts. Both Docker and Linux are open source projects with a wealth of online documentation, but getting
 started with either can be a daunting task.

 Docker is one of the fastest-growing open source projects ever, and the ecosystem that has grown around it is evolving at
 a similar pace. For these reasons, this book focuses on the Docker toolset exclusively. This restriction of scope should both
 help the material age well and help readers understand how to apply Docker features to their specific use-cases. Readers will
 be prepared to tackle bigger problems and explore the ecosystem once they develop a solid grasp of the fundamentals covered
 in this book.

Roadmap

 This book is split into three parts.

 Part 1 introduces Docker and container features. Reading it will help you understand how to install and uninstall software distributed
 with Docker. You’ll learn how to run, manage, and link different kinds of software in different container configurations.
 Part 1 covers the basic skillset that every Docker user will need.

 Part 2 is focused on packaging and distributing software with Docker. It covers the underlying mechanics of Docker images, nuances
 in file sizes, and a survey of different packaging and distribution methods. This part wraps up with a deep dive into the
 Docker Distribution project.

 Part 3 explores multicontainer projects and multihost environments. This includes coverage of the Docker Compose and Swarm projects.
 These chapters walk you through building and deploying multiple real world examples that should closely resemble large-scale
 server software you’d find in the wild.

Code conventions and downloads

 This book is about a multipurpose tool, and so there is very little “code” included in the book. In its place are hundreds
 of shell commands and configuration files. These are typically provided in POSIX-compliant syntax. Notes for Windows users
 are provided where Docker exposes some Windows-specific features. Care was taken to break up commands into multiple lines
 in order to improve readability or clarify annotations. Referenced repositories are available on manning.com at https://www.manning.com/books/docker-in-action-second-edition and also on Docker Hub (https://hub.docker.com/u/dockerinaction/) with sources hosted on GitHub (https://github.com/dockerinaction). No prior knowledge of Docker Hub or GitHub is required to run the examples.

 This book uses several open source projects to both demonstrate various features of Docker and help the reader shift software-management
 paradigms. No single software “stack” or family is highlighted other than Docker itself. Working through the examples, the
 reader will use tools such as WordPress, Elasticsearch, Postgres, shell scripts, Netcat, Flask, JavaScript, NGINX, and Java.
 The sole commonality is a dependency on the Linux kernel.

liveBook discussion forum

 Purchase of Docker in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/docker-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 JEFF NICKOLOFF builds large-scale services, writes about technology, and helps people achieve their product goals. He has done these things
 at Amazon.com, Limelight Networks, and Arizona State University. After leaving Amazon in 2014, he founded a consulting company and focused
 on delivering tools, training, and best practices for Fortune 100 companies and startups alike. In 2019, he and Portia Dean
 founded Topple Inc., where they build productivity software as a service. Topple helps teams address the communication and
 coordination issues that slow them down, put their business at risk, and generally make work suck. If you’d like to chat or
 work together, you can find him at http://allingeek.com, or on Twitter as @allingeek.

 STEPHEN KUENZLI has designed, built, deployed, and operated highly available, scalable software systems in high-tech manufacturing, banking,
 and e-commerce systems for nearly 20 years. Stephen has a BS in systems engineering and has learned, used, and built many
 software and infrastructure tools to deliver better systems. He loves working through challenging design problems and building
 solutions that are safe and enjoyable for customers, users, and stakeholders. Stephen founded and leads QualiMente, which
 helps businesses migrate and grow on AWS securely. If you would like help adopting secure, modern application delivery processes
 using technologies such as containers and infrastructure as code, reach out to him at www.qualimente.com.

About the cover illustration

 The figure on the cover of Docker in Action is captioned “The Angler.” The illustration is taken from a nineteenth-century collection of works by many artists, edited
 by Louis Curmer and published in Paris in 1841. The title of the collection is Les Français peints par eux-mêmes, which translates as The French People Painted by Themselves. Each illustration is finely drawn and colored by hand, and the rich variety of drawings in the collection reminds us vividly
 of how culturally apart the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Isolated from each
 other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by pictures from collections such as this one.

Chapter 1. Welcome to Docker

 This chapter covers

 	What Docker is

 	Example: “Hello, World”

 	An introduction to containers

 	How Docker addresses software problems that most people tolerate

 	When, where, and why you should use Docker

 A best practice is an optional investment in your product or system that should yield better outcomes in the future. Best practices enhance
 security, prevent conflicts, improve serviceability, or increase longevity. Best practices often need advocates because justifying
 the immediate cost can be difficult. This is especially so when the future of the system or product is uncertain. Docker is a tool that makes adopting software packaging, distribution, and utilization best practices cheap and sensible defaults.
 It does so by providing a complete vision for process containers and simple tooling for building and working with them.

 If you’re on a team that operates service software with dynamic scaling requirements, deploying software with Docker can help
 reduce customer impact. Containers come up more quickly and consume fewer resources than virtual machines.

 Teams that use continuous integration and continuous deployment techniques can build more expressive pipelines and create
 more robust functional testing environments if they use Docker. The containers being tested hold the same software that will
 go to production. The results are higher production change confidence, tighter production change control, and faster iteration.

 If your team uses Docker to model local development environments, you will decrease member onboarding time and eliminate the
 inconsistencies that slow you down. Those same environments can be version controlled with the software and updated as the
 software requirements change.

 Software authors usually know how to install and configure their software with sensible defaults and required dependencies.
 If you write software, distributing that software with Docker will make it easier for your users to install and run it. They
 will be able to leverage the default configuration and helper material that you include. If you use Docker, you can reduce
 your product “Installation Guide” to a single command and a single portable dependency.

 Whereas software authors understand dependencies, installation, and packaging, it is system administrators who understand
 the systems where the software will run. Docker provides an expressive language for running software in containers. That language
 lets system administrators inject environment-specific configuration and tightly control access to system resources. That
 same language, coupled with built-in package management, tooling, and distribution infrastructure, makes deployments declarative,
 repeatable, and trustworthy. It promotes disposable system paradigms, persistent state isolation, and other best practices
 that help system administrators focus on higher-value activities.

 Launched in March 2013, Docker works with your operating system to package, ship, and run software. You can think of Docker
 as a software logistics provider that will save you time and let you focus on core competencies. You can use Docker with network
 applications such as web servers, databases, and mail servers, and with terminal applications including text editors, compilers,
 network analysis tools, and scripts; in some cases, it’s even used to run GUI applications such as web browsers and productivity
 software.

 Docker runs Linux software on most systems. Docker for Mac and Docker for Windows integrate with common virtual machine (VM)
 technology to create portability with Windows and macOS. But Docker can run native Windows applications on modern Windows
 server machines.

 Docker isn’t a programming language, and it isn’t a framework for building software. Docker is a tool that helps solve common
 problems such as installing, removing, upgrading, distributing, trusting, and running software. It’s open source Linux software,
 which means that anyone can contribute to it and that it has benefited from a variety of perspectives. It’s common for companies
 to sponsor the development of open source projects. In this case, Docker Inc. is the primary sponsor. You can find out more
 about Docker Inc. at https://docker.com/company/.

1.1. What is Docker?

 If you’re picking up this book, you have probably already heard of Docker. Docker is an open source project for building, shipping, and running programs. It is a command-line program, a background process,
 and a set of remote services that take a logistical approach to solving common software problems and simplifying your experience
 installing, running, publishing, and removing software. It accomplishes this by using an operating system technology called
 containers.

 1.1.1. “Hello, World”

 This topic is easier to learn with a concrete example. In keeping with tradition, we’ll use “Hello, World.” Before you begin,
 download and install Docker for your system. Detailed instructions are kept up-to-date for every available system at https://docs.docker.com/install/. Once you have Docker installed and an active internet connection, head to your command prompt and type the following:

 docker run dockerinaction/hello_world

 After you do so, Docker will spring to life. It will start downloading various components and eventually print out "hello world". If you run it again, it will just print out "hello world". Several things are happening in this example, and the command itself has a few distinct parts.

 First, you use the docker run command. This tells Docker that you want to trigger the sequence (shown in figure 1.1) that installs and runs a program inside a container.

 Figure 1.1. What happens after running docker run

 [image:]

 The second part specifies the program that you want Docker to run in a container. In this example, that program is dockerinaction/hello_world. This is called the image (or repository) name. For now, you can think of the image name as the name of the program you want to install or run. The image itself is a collection
 of files and metadata. That metadata includes the specific program to execute and other relevant configuration details.

 	

 Note

 This repository and several others were created specifically to support the examples in this book. By the end of part 2, you should feel comfortable examining these open source examples.

 	

 The first time you run this command, Docker has to figure out whether the docker-inaction/hello_world image has already been downloaded. If it’s unable to locate it on your computer (because it’s the first thing you do with
 Docker), Docker makes a call to Docker Hub. Docker Hub is a public registry provided by Docker Inc. Docker Hub replies to Docker running on your computer to indicate where the
 image (docker-inaction/hello_world) can be found, and Docker starts the download.

 Once the image is installed, Docker creates a new container and runs a single command. In this case, the command is simple:

 echo "hello world"

 After the echo command prints "hello world" to the terminal, the program exits, and the container is marked as stopped. Understand that the running state of a container
 is directly tied to the state of a single running program inside the container. If a program is running, the container is
 running. If the program is stopped, the container is stopped. Restarting a container will run the program again.

 When you give the command a second time, Docker will check again to see whether docker-inaction/hello_world is installed. This time it will find the image on the local machine and can build another container and execute it right
 away. We want to emphasize an important detail. When you use docker run the second time, it creates a second container from the same repository (figure 1.2 illustrates this). This means that if you repeatedly use docker run and create a bunch of containers, you’ll need to get a list of the containers you’ve created and maybe at some point destroy
 them. Working with containers is as straightforward as creating them, and both topics are covered in chapter 2.

 Figure 1.2. Running docker run a second time. Because the image is already installed, Docker can start the new container right away.

 [image:]

 Congratulations! You’re now an official Docker user. Using Docker is just this easy. But it can test your understanding of
 the application you are running. Consider running a web application in a container. If you did not know that it was a long-running
 application that listened for inbound network communication on TCP port 80, you might not know exactly what Docker command
 should be used to start that container. These are the types of sticking points people encounter as they migrate to containers.

 Although this book cannot speak to the needs of your specific applications, it does identify the common use cases and help
 teach most relevant Docker use patterns. By the end of part 1, you should have a strong command of containers with Docker.

 1.1.2. Containers

 Historically, UNIX-style operating systems have used the term jail to describe a modified runtime environment that limits the scope of resources that a jailed program can access. Jail features
 go back to 1979 and have been in evolution ever since. In 2005, with the release of Sun’s Solaris 10 and Solaris Containers,
 container has become the preferred term for such a runtime environment. The goal has expanded from limiting filesystem scope to isolating
 a process from all resources except where explicitly allowed.

 Using containers has been a best practice for a long time. But manually building containers can be challenging and easy to
 do incorrectly. This challenge has put them out of reach for some. Others using misconfigured containers are lulled into a
 false sense of security. This was a problem begging to be solved, and Docker helps. Any software run with Docker is run inside
 a container. Docker uses existing container engines to provide consistent containers built according to best practices. This
 puts stronger security within reach for everyone.

 With Docker, users get containers at a much lower cost. Running the example in section 1.1.1 uses a container and does not require any special knowledge. As Docker and its container engines improve, you get the latest
 and greatest isolation features. Instead of keeping up with the rapidly evolving and highly technical world of building strong
 containers, you can let Docker handle the bulk of that for you.

 1.1.3. Containers are not virtualization

 In this cloud-native era, people tend to think about virtual machines as units of deployment, where deploying a single process
 means creating a whole network-attached virtual machine. Virtual machines provide virtual hardware (or hardware on which an
 operating system and other programs can be installed). They take a long time (often minutes) to create and require significant
 resource overhead because they run a whole operating system in addition to the software you want to use. Virtual machines
 can perform optimally once everything is up and running, but the startup delays make them a poor fit for just-in-time or reactive
 deployment scenarios.

 Unlike virtual machines, Docker containers don’t use any hardware virtualization. Programs running inside Docker containers
 interface directly with the host’s Linux kernel. Many programs can run in isolation without running redundant operating systems
 or suffering the delay of full boot sequences. This is an important distinction. Docker is not a hardware virtualization technology.
 Instead, it helps you use the container technology already built into your operating system kernel.

 Virtual machines provide hardware abstractions so you can run operating systems. Containers are an operating system feature.
 So you can always run Docker in a virtual machine if that machine is running a modern Linux kernel. Docker for Mac and Windows
 users, and almost all cloud computing users, will run Docker inside virtual machines. So these are really complementary technologies.

 1.1.4. Running software in containers for isolation

 Containers and isolation features have existed for decades. Docker uses Linux namespaces and cgroups, which have been part
 of Linux since 2007. Docker doesn’t provide the container technology, but it specifically makes it simpler to use. To understand
 what containers look like on a system, let’s first establish a baseline. Figure 1.3 shows a basic example running on a simplified computer system architecture.

 Figure 1.3. A basic computer stack running two programs that were started from the command lin

 [image:]

 Notice that the command-line interface, or CLI, runs in what is called user space memory, just like other programs that run on top of the operating system. Ideally, programs running in user space can’t modify kernel
 space memory. Broadly speaking, the operating system is the interface between all user programs and the hardware that the
 computer is running on.

 You can see in figure 1.4 that running Docker means running two programs in user space. The first is the Docker engine. If installed properly, this
 process should always be running. The second is the Docker CLI. This is the Docker program that users interact with. If you
 want to start, stop, or install software, you’ll issue a command by using the Docker program.

 Figure 1.4. Docker running three containers on a basic Linux computer system

 [image:]

 Figure 1.4 also shows three running containers. Each is running as a child process of the Docker engine, wrapped with a container, and
 the delegate process is running in its own memory subspace of the user space. Programs running inside a container can access
 only their own memory and resources as scoped by the container.

 Docker builds containers using 10 major system features. Part 1 of this book uses Docker commands to illustrate how these features can be modified to suit the needs of the contained software and to fit the environment where the container will run. The specific features are as follows:

 	
PID namespace— Process identifiers and capabilities

 	
UTS namespace— Host and domain name

 	
MNT namespace— Filesystem access and structure

 	
IPC namespace— Process communication over shared memory

 	
NET namespace— Network access and structure

 	
USR namespace— User names and identifiers

 	
chroot syscall—Controls the location of the filesystem root

 	
cgroups— Resource protection

 	
CAP drop— Operating system feature restrictions

 	
Security modules— Mandatory access controls

 Docker uses those to build containers at runtime, but it uses another set of technologies to package and ship containers.

 1.1.5. Shipping containers

 You can think of a Docker container as a physical shipping container. It’s a box where you store and run an application and
 all of its dependencies (excluding the running operating system kernel). Just as cranes, trucks, trains, and ships can easily
 work with shipping containers, so can Docker run, copy, and distribute containers with ease. Docker completes the traditional
 container metaphor by including a way to package and distribute software. The component that fills the shipping container
 role is called an image.

 The example in section 1.1.1 used an image named dockerinaction/hello_world. That image contains single file: a small executable Linux program. More generally, a Docker image is a bundled snapshot of all the files that should be available to a program running inside a container. You
 can create as many containers from an image as you want. But when you do, containers that were started from the same image
 don’t share changes to their filesystem. When you distribute software with Docker, you distribute these images, and the receiving
 computers create containers from them. Images are the shippable units in the Docker ecosystem.

 Docker provides a set of infrastructure components that simplify distributing Docker images. These components are registries and indexes. You can use publicly available infrastructure provided by Docker Inc., other hosting companies, or your own registries and
 indexes.

1.2. What problems does Docker solve?

 Using software is complex. Before installation, you have to consider the operating system you’re using, the resources the
 software requires, what other software is already installed, and what other software it depends on. You need to decide where
 it should be installed. Then you need to know how to install it. It’s surprising how drastically installation processes vary
 today. The list of considerations is long and unforgiving. Installing software is at best inconsistent and overcomplicated.
 The problem is only worsened if you want to make sure that several machines use a consistent set of software over time.

 Package managers such as APT, Homebrew, YUM, and npm attempt to manage this, but few of those provide any degree of isolation.
 Most computers have more than one application installed and running. And most applications have dependencies on other software.
 What happens when applications you want to use don’t play well together? Disaster! Things are only made more complicated when
 applications share dependencies:

 	What happens if one application needs an upgraded dependency, but the other does not?

 	What happens when you remove an application? Is it really gone?

 	Can you remove old dependencies?

 	Can you remember all the changes you had to make to install the software you now want to remove?

 The truth is that the more software you use, the more difficult it is to manage. Even if you can spend the time and energy
 required to figure out installing and running applications, how confident can you be about your security? Open and closed
 source programs release security updates continually, and being aware of all the issues is often impossible. The more software
 you run, the greater the risk that it’s vulnerable to attack.

 Even enterprise-grade service software must be deployed with dependencies. It is common for those projects to be shipped with
 and deployed to machines with hundreds, if not thousands, of files and other programs. Each of those creates a new opportunity
 for conflict, vulnerability, or licensing liability.

 All of these issues can be solved with careful accounting, management of resources, and logistics, but those are mundane and
 unpleasant things to deal with. Your time would be better spent using the software that you’re trying to install, upgrade,
 or publish. The people who built Docker recognized that, and thanks to their hard work, you can breeze through the solutions
 with minimal effort in almost no time at all.

 It’s possible that most of these issues seem acceptable today. Maybe they feel trivial because you’re used to them. After
 reading how Docker makes these issues approachable, you may notice a shift in your opinion.

 1.2.1. Getting organized

 Without Docker, a computer can end up looking like a junk drawer. Applications have all sorts of dependencies. Some applications
 depend on specific system libraries for common things like sound, networking, graphics, and so on. Others depend on standard
 libraries for the language they’re written in. Some depend on other applications, such as the way a Java program depends on
 the Java Virtual Machine, or a web application might depend on a database. It’s common for a running program to require exclusive
 access to a scarce resource such as a network connection or a file.

 Today, without Docker, applications are spread all over the filesystem and end up creating a messy web of interactions. Figure 1.5 illustrates how example applications depend on example libraries without Docker.

 Figure 1.5. Dependency relationships of example programs

 [image:]

 In contrast, the example in section 1.1.1 installed the required software automatically, and that same software can be reliably removed with a single command. Docker
 keeps things organized by isolating everything with containers and images.

 Figure 1.6 illustrates these same applications and their dependencies running inside containers. With the links broken and each application
 neatly contained, understanding the system is an approachable task. At first it seems like this would introduce storage overhead
 by creating redundant copies of common dependencies such as gcc. Chapter 3 describes how the Docker packaging system typically reduces the storage overhead.

 Figure 1.6. Example programs running inside containers with copies of their dependencies

 [image:]

 1.2.2. Improving portability

 Another software problem is that an application’s dependencies typically include a specific operating system. Portability
 between operating systems is a major problem for software users. Although it’s possible to have compatibility between Linux
 software and macOS, using that same software on Windows can be more difficult. Doing so can require building whole ported
 versions of the software. Even that is possible only if suitable replacement dependencies exist for Windows. This represents
 a major effort for the maintainers of the application and is frequently skipped. Unfortunately for users, a whole wealth of
 powerful software is too difficult or impossible to use on their system.

 At present, Docker runs natively on Linux and comes with a single virtual machine for macOS and Windows environments. This
 convergence on Linux means that software running in Docker containers need be written only once against a consistent set of
 dependencies. You might have just thought to yourself, “Wait a minute. You just finished telling me that Docker is better
 than virtual machines.” That’s correct, but they are complementary technologies. Using a virtual machine to contain a single
 program is wasteful. This is especially so when you’re running several virtual machines on the same computer. On macOS and
 Windows, Docker uses a single, small virtual machine to run all the containers. By taking this approach, the overhead of running
 a virtual machine is fixed, while the number of containers can scale up.

 This new portability helps users in a few ways. First, it unlocks a whole world of software that was previously inaccessible.
 Second, it’s now feasible to run the same software—exactly the same software—on any system. That means your desktop, your
 development environment, your company’s server, and your company’s cloud can all run the same programs. Running consistent
 environments is important. Doing so helps minimize any learning curve associated with adopting new technologies. It helps
 software developers better understand the systems that will be running their programs. It means fewer surprises. Third, when
 software maintainers can focus on writing their programs for a single platform and one set of dependencies, it’s a huge time-saver
 for them and a great win for their customers.

 Without Docker or virtual machines, portability is commonly achieved at an individual program level by basing the software
 on a common tool. For example, Java lets programmers write a single program that will mostly work on several operating systems
 because the programs rely on a program called a Java Virtual Machine (JVM). Although this is an adequate approach while writing software, other people, at other companies, wrote most of the software
 we use. For example, if we want to use a popular web server that was not written in Java or another similarly portable language,
 we doubt that the authors would take time to rewrite it for us. In addition to this shortcoming, language interpreters and
 software libraries are the very things that create dependency problems. Docker improves the portability of every program regardless
 of the language it was written in, the operating system it was designed for, or the state of the environment where it’s running.

 1.2.3. Protecting your computer

 Most of what we’ve mentioned so far have been problems from the perspective of working with software and the benefits of doing
 so from outside a container. But containers also protect us from the software running inside a container. There are all sorts
 of ways that a program might misbehave or present a security risk:

 	A program might have been written specifically by an attacker.

 	Well-meaning developers could write a program with harmful bugs.

 	A program could accidentally do the bidding of an attacker through bugs in its input handling.

 Any way you cut it, running software puts the security of your computer at risk. Because running software is the whole point
 of having a computer, it’s prudent to apply the practical risk mitigations.

 Like physical jail cells, anything inside a container can access only things that are inside it as well. Exceptions to this
 rule exist, but only when explicitly created by the user. Containers limit the scope of impact that a program can have on
 other running programs, the data it can access, and system resources. Figure 1.7 illustrates the difference between running software outside and inside a container.

 Figure 1.7. Left: A malicious program with direct access to sensitive resources. Right: A malicious program inside a container.

 [image:]

 What this means for you or your business is that the scope of any security threat associated with running a particular application
 is limited to the scope of the application itself. Creating strong application containers is complicated and a critical component
 of any in-depth defense strategy. It is far too commonly skipped or implemented in a half-hearted manner.

1.3. Why is Docker important?

 Docker provides an abstraction. Abstractions allow you to work with complicated things in simplified terms. So, in the case of Docker, instead of focusing
 on all the complexities and specifics associated with installing an application, all we need to consider is what software
 we’d like to install.

 Like a crane loading a shipping container onto a ship, the process of installing any software with Docker is identical to
 any other. The shape or size of the thing inside the shipping container may vary, but the way that the crane picks up the
 container will always be the same. All the tooling is reusable for any shipping container.

 This is also the case for application removal. When you want to remove software, you simply tell Docker which software to
 remove. No lingering artifacts will remain because they were all contained and accounted for by Docker. Your computer will
 be as clean as it was before you installed the software.

 The container abstraction and the tools Docker provides for working with containers has changed the system administration
 and software development landscape. Docker is important because it makes containers available to everyone. Using it saves
 time, money, and energy.

 The second reason Docker is important is that there is significant push in the software community to adopt containers and
 Docker. This push is so strong that companies including Amazon, Microsoft, and Google have all worked together to contribute
 to its development and adopt it in their own cloud offerings. These companies, which are typically at odds, have come together to support an open source project instead of developing and releasing their own
 solutions.

 The third reason Docker is important is that it has accomplished for the computer what app stores did for mobile devices.
 It has made software installation, compartmentalization, and removal simple. Better yet, Docker does it in a cross-platform
 and open way. Imagine if all the major smartphones shared the same app store. That would be a pretty big deal. With this technology
 in place, it’s possible that the lines between operating systems may finally start to blur, and third-party offerings will
 be less of a factor in choosing an operating system.

 Fourth, we’re finally starting to see better adoption of some of the more advanced isolation features of operating systems.
 This may seem minor, but quite a few people are trying to make computers more secure through isolation at the operating system
 level. It’s been a shame that their hard work has taken so long to see mass adoption. Containers have existed for decades
 in one form or another. It’s great that Docker helps us take advantage of those features without all the complexity.

1.4. Where and when to use Docker

 Docker can be used on most computers at work and at home. Practically, how far should this be taken?

 Docker can run almost anywhere, but that doesn’t mean you’ll want to do so. For example, currently Docker can run only applications
 that can run on a Linux operating system, or Windows applications on Windows Server. If you want to run a macOS or Windows
 native application on your desktop, you can’t yet do so with Docker.

 By narrowing the conversation to software that typically runs on a Linux server or desktop, a solid case can be made for running
 almost any application inside a container. This includes server applications such as web servers, mail servers, databases,
 proxies, and the like. Desktop software such as web browsers, word processors, email clients, or other tools are also a great
 fit. Even trusted programs are as dangerous to run as a program you downloaded from the internet if they interact with user-provided
 data or network data. Running these in a container and as a user with reduced privileges will help protect your system from
 attack.

 Beyond the added in-depth benefit of defense, using Docker for day-to-day tasks helps keep your computer clean. Keeping a
 clean computer will prevent you from running into shared resource issues and ease software installation and removal. That
 same ease of installation, removal, and distribution simplifies management of computer fleets and could radically change the
 way companies think about maintenance.

 The most important thing to remember is that sometimes containers are inappropriate. Containers won’t help much with the security
 of programs that have to run with full access to the machine. At the time of this writing, doing so is possible but complicated.
 Containers are not a total solution for security issues, but they can be used to prevent many types of attacks. Remember,
 you shouldn’t use software from untrusted sources. This is especially true if that software requires administrative privileges. That means it’s a bad idea to blindly run customer-provided containers in a co-located environment.

