

 [image:]

 Core Kubernetes

 Jay Vyas and Chris Love

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Karen Miller

 	
 Technical development editor:

 	
 Christopher Haupt

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 John Guthrie

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297557

 dedication

 To Amim Knabben, Ricardo Katz, Matt Fenwick, Antonio Ojea, Rajas Kakodar, and Mikael Cluseau for the countless night and weekend K8s hacking sessions, including the innumerable yelling competitions. To Andrew Stoyocos for taking on the SIG Network policy group. To my wife and family for letting me write this book on Saturdays. To Gary, Rona, Nora, and Gingin for helping my mom.

 —Jay

 To Kate and all of my loved ones that have supported me on this journey. To the team at LionKube, especially Audrey for keeping me organized and Sharif for his help and support. Also, to my co-author, Jay, who asked me to write this book with him—I thank you for that! Without your hard work, we would not have this book.

 —Chris

brief contents

 1 Why Kubernetes exists

 2 Why the Pod?

 3 Let’s build a Pod

 4 Using cgroups for processes in our Pods

 5 CNIS and providing the Pod with a network

 6 Troubleshooting large-scale network errors

 7 Pod storage and the CSI

 8 Storage implementation and modeling

 9 Running Pods: How the kubelet works

 10 DNS in Kubernetes

 11 The core of the control plane

 12 etcd and the control plane

 13 Container and Pod security

 14 Nodes and Kubernetes security

 15 Installing applications

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 1 Why Kubernetes exists

 1.1 Reviewing a few key terms before we get started

 1.2 The infrastructure drift problem and Kubernetes

 1.3 Containers and images

 1.4 Core foundation of Kubernetes

 All infrastructure rules in Kubernetes are managed as plain YAML

 1.5 Kubernetes features

 1.6 Kubernetes components and architecture

 The Kubernetes API

 Example one: An online retailer

 Example two: An online giving solution

 1.7 When not to use Kubernetes

 2 Why the Pod?

 2.1 An example web application

 Infrastructure for our web application

 Operational requirements

 2.2 What is a Pod?

 A bunch of Linux namespaces

 Kubernetes, infrastructure, and the Pod

 The Node API object

 Our web application and the control plane

 2.3 Creating a web application with kubectl

 The Kubernetes API server: kube-apiserver

 The Kubernetes scheduler: kube-scheduler

 Infrastructure controllers

 2.4 Scaling, highly available applications, and the control plane

 Autoscaling

 Cost management

 3 Let’s build a Pod

 3.1 Looking at Kubernetes primitives with kind

 3.2 What is a Linux primitive?

 Linux primitives are resource management tools

 Everything is a file (or a file descriptor)

 Files are composable

 Setting up kind

 3.3 Using Linux primitives in Kubernetes

 The prerequisites for running a Pod

 Running a simple Pod

 Exploring the Pod’s Linux dependencies

 3.4 Building a Pod from scratch

 Creating an isolated process with chroot

 Using mount to give our process data to work with

 Securing our process with unshare

 Creating a network namespace

 Checking whether a process is healthy

 Adjusting CPU with cgroups

 Creating a resources stanza

 3.5 Using our Pod in the real world

 The networking problem

 Utilizing iptables to understand how kube-proxy implements Kubernetes services

 Using the kube-dns Pod

 Considering other issues

 4 Using cgroups for processes in our Pods

 4.1 Pods are idle until the prep work completes

 4.2 Processes and threads in Linux

 systemd and the init process

 cgroups for our process

 Implementing cgroups for a normal Pod

 4.3 Testing the cgroups

 4.4 How the kubelet manages cgroups

 4.5 Diving into how the kubelet manages resources

 Why can’t the OS use swap in Kubernetes?

 Hack: The poor man’s priority knob

 Hack: Editing HugePages with init containers

 QoS classes: Why they matter and how they work

 Creating QoS classes by setting resources

 4.6 Monitoring the Linux kernel with Prometheus, cAdvisor, and the API server

 Metrics are cheap to publish and extremely valuable

 Why do I need Prometheus?

 Creating a local Prometheus monitoring service

 Characterizing an outage in Prometheus

 5 CNIS and providing the Pod with a network

 5.1 Why we need software-defined networks in Kubernetes

 5.2 Implementing the service side of the Kubernetes SDN: The kube-proxy

 The kube-proxy’s data plane

 What about NodePorts?

 5.3 CNI providers

 5.4 Diving into two CNI networking plugins: Calico and Antrea

 The architecture of a CNI plugin

 Let’s play with some CNIs

 Installing the Calico CNI provider

 Kubernetes networking with OVS and Antrea

 A note on CNI providers and kube-proxy on different OSs

 6 Troubleshooting large-scale network errors

 6.1 Sonobuoy: A tool for confirming your cluster is functioning

 Tracing data paths for Pods in a real cluster

 Setting up a cluster with the Antrea CNI provider

 6.2 Inspecting CNI routing on different providers with the arp and ip commands

 What is an IP tunnel and why do CNI providers use them?

 How many packets are flowing through the network interfaces for our CNI?

 Routes

 CNI-specific tooling: Open vSwitch (OVS)

 Tracing the data path of active containers with tcpdump

 6.3 The kube-proxy and iptables

 iptables-save and the diff tool

 Looking at how network policies modify CNI rules

 How are these policies implemented?

 6.4 Ingress controllers

 Setting up Contour and kind to explore ingress controllers

 Setting up a simple web server Pod

 7 Pod storage and the CSI

 7.1 A quick detour: The virtual filesystem (VFS) in Linux

 7.2 Three types of storage requirements for Kubernetes

 7.3 Let’s create a PVC in our kind cluster

 7.4 The container storage interface (CSI)

 The in-tree provider problem

 CSI as a specification that works inside of Kubernetes

 CSI: How a storage driver works

 Bind mounting

 7.5 A quick look at a few running CSI drivers

 The controller

 The node interface

 CSI on non-Linux OSs

 8 Storage implementation and modeling

 8.1 A microcosm of the broader Kubernetes ecosystem: Dynamic storage

 Managing storage on the fly: Dynamic provisioning

 Local storage compared with emptyDir

 PersistentVolumes

 CSI (container storage interface)

 8.2 Dynamic provisioning benefits from CSI but is orthogonal

 Storage classes

 Back to the data center stuff

 8.3 Kubernetes use cases for storage

 Secrets: Sharing files ephemerally

 8.4 What does a dynamic storage provider typically look like?

 8.5 hostPath for system control and/or data access

 hostPaths, CSI, and CNI: A canonical use case

 Cassandra: An example of real-world Kubernetes application storage

 Advanced storage functionality and the Kubernetes storage model

 8.6 Further reading

 9 Running Pods: How the kubelet works

 9.1 The kubelet and the node

 9.2 The core kubelet

 Container runtimes: Standards and conventions

 The kubelet configurations and its API

 9.3 Creating a Pod and seeing it in action

 Starting the kubelet binary

 After startup: Node life cycle

 Leasing and locking in etcd and the evolution of the node lease

 The kubelet’s management of the Pod life cycle

 CRI, containers, and images: How they are related

 The kubelet doesn’t run containers: That’s the CRI’s job

 Pause container: An “aha” moment

 9.4 The Container Runtime Interface (CRI)

 Telling Kubernetes where our container runtime lives

 The CRI routines

 The kubelet’s abstraction around CRI: The GenericRuntimeManager

 How is the CRI invoked?

 9.5 The kubelet’s interfaces

 The Runtime internal interface

 How the kubelet pulls images: The ImageService interface

 Giving ImagePullSecrets to the kubelet

 9.6 Further reading

 10 DNS in Kubernetes

 10.1 A brief intro to DNS (and CoreDNS)

 NXDOMAINs, A records, and CNAME records

 Pods need internal DNS

 10.2 Why StatefulSets instead of Deployments?

 DNS with headless services

 Persistent DNS records in StatefulSets

 Using a polyglot deployment to explore Pod DNS properties

 10.3 The resolv.conf file

 A quick note about routing

 CoreDNS: The upstream resolver for the ClusterFirst Pod DNS

 Hacking the CoreDNS plugin configuration

 11 The core of the control plane

 11.1 Investigating the control plane

 11.2 API server details

 API objects and custom API objects

 Custom resource definitions (CRDs)

 Scheduler details

 Recap of scheduling

 11.3 The controller manager

 Storage

 Service accounts and tokens

 11.4 Kubernetes cloud controller managers (CCMs)

 11.5 Further reading

 12 etcd and the control plane

 12.1 Notes for the impatient

 Visualizing etcd performance with Prometheus

 Knowing when to tune etcd

 Example: A quick health check of etcd

 etcd v3 vs. v2

 12.2 etcd as a data store

 The watch: Can you run Kubernetes on other databases?

 Strict consistency

 fsync operations make etcd consistent

 12.3 Looking at the interface for Kubernetes to etcd

 12.4 etcd’s job is to keep the facts straight

 The etcd write-ahead log

 Effect on Kubernetes

 12.5 The CAP theorem

 12.6 Load balancing at the client level and etcd

 Size limitations: What (not) to worry about

 12.7 etcd encryption at rest

 12.8 Performance and fault tolerance of etcd at a global scale

 12.9 Heartbeat times for a highly distributed etcd

 12.10 Setting an etcd client up on a kind cluster

 Running etcd in non-Linux environments

 13 Container and Pod security

 13.1 Blast radius

 Vulnerabilities

 Intrusion

 13.2 Container security

 Plan to update containers and custom software

 Container screening

 Container users—do not run as root

 Use the smallest container

 Container provenance

 Linters for containers

 13.3 Pod security

 Security context

 Escalated permissions and capabilities

 Pod Security Policies (PSPs)

 Do not automount the service account token

 Root-like Pods

 The security outskirts

 14 Nodes and Kubernetes security

 14.1 Node security

 TLS certificates

 Immutable OSs vs. patching nodes

 Isolated container runtimes

 Resource attacks

 CPU units

 Memory units

 Storage units

 Host networks vs. Pod networks

 Pod example

 14.2 API server security

 Role-based access control (RBAC)

 RBAC API definition

 Resources and subresources

 Subjects and RBAC

 Debugging RBAC

 14.3 Authn, Authz, and Secrets

 IAM service accounts: Securing your cloud APIs

 Access to cloud resources

 Private API servers

 14.4 Network security

 Network policies

 Load balancers

 Open Policy Agent (OPA)

 Multi-tenancy

 14.5 Kubernetes tips

 15 Installing applications

 15.1 Thinking about apps in Kubernetes

 Application scope influences what tools you should use

 15.2 Microservice apps typically require thousands of lines of configuration code

 15.3 Rethinking our Guestbook app installation for the real world

 15.4 Installing the Carvel toolkit

 Part 1: Modularizing our resources into separate files

 Part 2: Patching our application files with ytt

 Part 3: Managing and deploying Guestbook as a single application

 Part 4: Constructing a kapp Operator to package and manage our application

 15.5 Revisiting the Kubernetes Operator

 15.6 Tanzu Community Edition: An end-to-end example of the Carvel toolkit

 index

 front matter

preface

 We wrote this book to empower those wanting to take their K8s (Kubernetes) knowledge to the next level by immediately digging into the murky details of various topics related to storage, networking, and tooling.

 Although we don’t attempt to provide a comprehensive guide to every feature in the K8s API (as that would be impossible), we really believe that, after reading this book, users will have a new-found intuition on how to reason about complex infrastructure-related problems in production clusters and how to think about the overall progression of the Kubernetes landscape in a broader context.

 Books exist that allow a user to learn the basics of Kubernetes, but we wanted to make a book that teaches the core technologies that make up Kubernetes. Networking, the control plane, and other topics are covered in low-level detail, which will help you understand how the internals of Kubernetes function. Gaining an understanding of how the system works will make you a better DevOps or software engineer.

 We’re hoping to inspire new contributors to Kubernetes along the way as well. Please do reach out to us on Twitter (@jayunit100, @chrislovecnm) to get more engaged with the broader Kubernetes community or to help us add more examples where necessary to the GitHub repositories associated with this book.

acknowledgments

 We want to acknowledge the community and companies that maintain Kubernetes. Without them and their continual work, this software would not exist. We could mention many people by name, but we know we will miss some.

 We’d like to acknowledge our friends and mentors in the SIG Network (Mikael Cluseau, Khaled Hendiak, Tim Hockins, Antonio Ojea, Ricardo Katz, Matt Fenwick, Dan Winship, Dan Williams, Casey Calendero, Casey Davenport, Andrew Sy, and so many others); the tireless open source contributors to the SIG Network and SIG Windows communities (Mark Rosetti, James Sturevant, Claudio Belu, Amim Knabben); the original founders of Kubernetes (Joe Beda, Brendan Burns, Ville Aikas, and Craig McLuckie); and the Google engineers, including Brian Grant and Tim Hockin, who joined them shortly thereafter.

 This acknowledgment includes the community shepherds Tim St. Clair, Jordan Liggit, Bridget Kromhaut, and so many others. We’d also like to acknowledge Rajas Kakodar, Anusha Hedge, and Neha Lohia for forging an up-and-coming SIG Network India team, which has inspired so much of the content that we hope to add in the next edition (or potential sequel) of this book as we dive deeper into the network or server proxy, kube-proxy.

 Jay also would like to acknowledge Clint Kitson and Aarthi Ganesan for empowering him to work on this book as a VMware employee, and his team at VMware (Amim and Zac) for always innovating and being there for us. And, of course, Frances Buran, Karen Miller, and many others at Manning Publications who helped us review this book to get it over the line and into production.

 Finally, thank you to all the reviewers: Al Krinker, Alessandro Campeis, Alexandru Herciu, Amanda Debler, Andrea Cosentino, Andres Sacco, Anupam Sengupta, Ben Fenwick, Borko Djurkovic, Daria Vasilenko, Elias Rangel, Eric Hole, Eriks Zelenka, Eugen Cocalea, Gandhi Rajan, Iryna Romanenko, Jared Duncan, Jeff Lim, Jim Amrhein, Juan José Durillo Barrionuevo, Matt Fenwick, Matt Welke, Michał Rutka, Riccardo Marotti, Rob Pacheco, Rob Ruetsch, Roman Levchenko, Ryan Bartlett, Ubaldo Pescatore, and Wesley Rolnick. Your suggestions helped make this a better book.

about this book

Who should read this book

 People wanting to learn more about the internals of Kubernetes, how to reason about its failure modes, and how to extend it for custom behavior will get the most out of this book. If you don’t know what a Pod is, you may want to buy this book, but get another title that gives you that understanding first.

 Additionally, day-to-day operators that want to have a better understanding of the vernacular required for talking with IT departments, CTOs, and other organizational leaders about how to adopt Kubernetes, while retaining core infrastructure principles that existed before the birth of containers, will find that this book really helps to bridge the gap between new and old infrastructure design decisions. Or, at least, that’s what we hope!

How this book is organized: A road map

 This book contains 15 chapters:

 	
 Chapter 1: Here, we give newcomers a high-level overview of Kubernetes.

 	
 Chapter 2: We look at the concept of a Pod as an atomic building block for applications and introduce the rationale for the later chapters that will dive into low-level Linux details.

 	
 Chapter 3: This is where we dig into the details of how lower-level Linux primitives are used in Kubernetes to build up higher-level concepts, including Pod implementation.

 	
 Chapter 4: We’re now rolling full steam ahead into the internal details of Linux processes and isolation, which are some of the lesser-known details of the Kubernetes landscape.

 	
 Chapter 5: After covering Pod details (mostly), we dig into the networking of Pods and look at how they are wired together over different nodes.

 	
 Chapter 6: This is our second networking chapter, where we look at the broader aspects of Pod and network proxy (kube-proxy) networking, and how to troubleshoot them.

 	
 Chapter 7: This is our first chapter on storage, which gives a broad introduction to the theoretical basis for Kubernetes storage, the CSI (container storage interface), and how it interplays with the kubelet.

 	
 Chapter 8: In our second chapter on storage, we look at some of the more practical details around storage, including how things like emptyDir, Secrets, and PersistentVolumes/dynamic storage work.

 	
 Chapter 9: We now dig into the kubelet and look at some of the details of how it fires up Pods and manages them, including a look at concepts such as CRI, node life cycle, and ImagePullSecrets.

 	
 Chapter 10: DNS in Kubernetes is a complex topic used in almost all container-based applications to locally access internal Services. We look at CoreDNS, the DNS service implementation for Kubernetes, and how different Pods fulfill DNS requests.

 	
 Chapter 11: The control plane, which we mentioned in early chapters, is now discussed in detail with an overview of how the scheduler, controller manager, and API server work. These form the “brains” of Kubernetes and pull it all together when it comes to the flow of the lower-level concepts discussed in previous chapters.

 	
 Chapter 12: Because we’ve covered the control plane logic, we now dig into etcd, the rock-solid consensus mechanism for Kubernetes, and how it has evolved to meet the needs of the Kubernetes control plane.

 	
 Chapter 13: We provide an overview of NetworkPolicies, RBAC, and Pod and node-level security, which administrators should know about for production scenarios. This chapter also discusses the overall progression of the Pod security policy APIs.

 	
 Chapter 14: Here, we look at node-level security, cloud security, and other infrastructure-centric aspects of Kubernetes security.

 	
 Chapter 15: We conclude with a generic overview of application tooling, exemplified by the Carvel toolkit for managing YAML files, building Operator-like applications, and managing the life cycle of applications over the long haul.

About the code

 We have several examples for this book in the GitHub repository (https://github.com/jayunit100/k8sprototypes/), especially with regard to

 	
 Using kind to install realistic networking on local clusters with Calico, Antrea, or Cillium

 	
 Looking at Prometheus metrics in the real world

 	
 Building applications using the Carvel toolkit

 	
 Various RBAC-related experiments

 This book also provides many examples of code. These appear throughout the text and as separate code snippets. Code appears in a fixed-width font like this, so you’ll know when you see it.

 In many cases, the original source code has been reformatted; we've added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and code snippets include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/core-kubernetes, and from GitHub at https://github.com/jayunit100/k8sprototypes/.

liveBook discussion forum

 Purchase of Core Kubernetes includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/core-kubernetes/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 [image:]

 Jay Vyas, PhD, is currently a staff engineer at VMware and has worked on several commercial and open source Kubernetes distributions and platforms, including OpenShift, VMware Tanzu, Black Duck’s internal multipronged Kubernetes installation platforms, and bespoke Kubernetes installations for clients of his consulting company, Rocket Rudolf, LLC. For several years, he acted as a PMC (project management committee) member at the Apache Software Foundation, working across several projects in the BigData space. He’s been involved with Kubernetes in various capacities since its inception and currently spends most of his time in the SIG-Windows and SIG-network communities. He got his start in distributed systems while finishing his PhD around bioinformatics data marts (which federated databases into mining platforms for the human and viral proteomes). This led him into the world of BigData and scaling out data processing systems, and, eventually, to Kubernetes.

 You can contact Jay at @jayunit100 on Twitter if you’re interested in collaborating on . . . anything. His daily workout is a one-mile sprint and pull-ups until failure. He also owns several synthesizers including the Prophet-6, which sounds like a spaceship.

 [image:]

 Chris Love is a Google Cloud Certified Fellow and a co-founder of Lionkube. He has over 25 years of software and IT engineering experience with companies including Google, Oracle, VMware, Cisco, Johnson & Johnson, and others. As a thought leader within Kubernetes and the DevOps community, Chris Love has contributed to many open source projects, including Kubernetes, kops (former AWS SIG lead), Bazel (contributed to Kubernetes rules), and Terraform (an early contributor to the VMware plugin). His professional interests include IT culture transformation, containerization technologies, automated testing frameworks and practices, Kubernetes, Golang AKA Go, and other programming languages. Love also enjoys speaking around the world about DevOps, Kubernetes, and technology, as well as mentoring people in the IT and software industries.

 Outside of work, Love enjoys skiing, volleyball, yoga, and other outdoor activities that come with living in Colorado. He’s also been a practicing martial artist for over 20 years.

 If you’re interested in having virtual coffee or have questions for Chris, you can contact him at @chrislovecnm on Twitter or LinkedIn.

about the cover illustration

 The figure on the cover of Core Kubernetes is “Stern, sailor at the helm of a ship,” taken from an engraving of a painting by Alfredo Luxoro, published in L’Illustrazione Italiana, No. 19, May 9, 1880.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of today's computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from engravings such as this one.

1 Why Kubernetes exists

 This chapter covers

 	
Why Kubernetes exists

 	
Commonly used Kubernetes terms

 	
Specific use cases for Kubernetes

 	
High-level Kubernetes features

 	
When not to run Kubernetes

 Kubernetes is an open source platform for hosting containers and defining application-centric APIs for managing cloud semantics around how these containers are provisioned with storage, networking, security, and other resources. Kubernetes enables continuous reconciliation of the entire state space of your application deployments, including how they are accessed from the outside world.

 Why implement Kubernetes in your environment as opposed to manually provisioning these sorts of resources using a DevOps-related infrastructure tool? The answer lies in the way we define DevOps to be increasingly integrated into the overall application life cycle over time. DevOps has evolved increasingly to include processes, engineers, and tools that support a more automated administration of applications in a data center. One of the keys to doing this successfully is reproducibility of infrastructure: a change made to fix an incident on one component that’s not replicated perfectly across all other identical components means one or more components differ.

 In this book, we will take a deep dive into the best practices for using Kubernetes with DevOps, so components are replicated as needed and your system fails less often. We will also explore the under-the-hood processes to better understand Kubernetes and get the most efficient system possible.

1.1 Reviewing a few key terms before we get started

 In 2021, Kubernetes was one of the most commonly deployed cloud technologies. Because of this, we don’t always fully define new terms before referencing them. In case you’re new to Kubernetes or are unsure of a few terms, we provide some key definitions that you can refer back to throughout the first few chapters of this book as you ramp up on this new universe. We will redefine these concepts with more granularity and in greater context as we dig into them later in this book:

 	
 CNI and CSI—The container networking and storage interfaces, respectively, that allow for pluggable networking and storage for Pods (containers) that run in Kubernetes.

 	
 Container—A Docker or OCI image that typically runs an application.

 	
 Control plane—The brains of a Kubernetes cluster, where scheduling of containers and managing all Kubernetes objects takes place (sometimes referred to as Masters).

 	
 DaemonSet—Like a deployment, but it runs on every node of a cluster.

 	
 Deployment—A collection of Pods that is managed by Kubernetes.

 	
 kubectl—The command-line tool for talking to the Kubernetes control plane.

 	
 kubelet—The Kubernetes agent that runs on your cluster nodes. It does what the control plane needs it to do.

 	
 Node—A machine that runs a kubelet process.

 	
 OCI—The common image format for building executable, self-contained applications. Also referred to as Docker images.

 	
 Pod—The Kubernetes object that encapsulates a running container.

1.2 The infrastructure drift problem and Kubernetes

 Managing infrastructure is a reproducible way of managing the “drift” of that infrastructure’s configuration as hardware, compliance, and other data-center requirements change over time. This applies to both the definition of applications as well as to the management of the hosts these apps run on. IT engineers are all too familiar with common toil such as

 	
 Updating the Java version on a fleet of servers

 	
 Making sure certain applications don’t run in specific places

 	
 Replacing or scaling old or broken hardware and migrating applications from it

 	
 Manually managing load-balancing routes

 	
 Forgetting to document new infrastructure changes when lacking a common enforced configuration language

 As we manage and update servers in a data center, or in the cloud, the odds that their original definitions “drift away” from the intended IT architecture increases. Applications might be running in the wrong places, with the wrong resource allotment, or with access to the wrong storage modules.

 Kubernetes gives us a way to centrally manage the entire state space of all applications with one handy tool: kubectl (https://kubernetes.io/docs/tasks/tools/), a command-line client that makes REST API calls to the Kubernetes API server. We can also use Kubernetes API clients to do these tasks programmatically. It’s quite easy to install kubectl and to test it on a kind cluster, which we’ll do early on in this book.

 Previous approaches to managing this complex application state space include technologies such as Puppet, Chef, Mesos, Ansible, and SaltStack. Kubernetes borrows from these different approaches by taking the state management capabilities of tools such as Puppet, while borrowing concepts from some of the application and scheduling primitives provided by software such as Mesos.

 Ansible, SaltStack, and Terraform typically have played a major role in infrastructure configuration (paving OS-specific requirements such as firewalls or binary installations). Kubernetes manages this concept as well, but it uses privileged containers on a Linux environment (these are known as HostProcess Pods on Windows v1.22). For example, a privileged container in a Linux system can manage iptables rules for routing traffic to applications, and in fact, this is exactly what the Kubernetes Service proxy (known as the kube-proxy) does.

 Google, Microsoft, Amazon, VMware, and many companies have adopted containerization as a core and enabling strategy for their customers to run fleets of hundreds or thousands of applications on different cloud and bare metal environments. Containers are, thus, a fundamental primitive for both running apps and managing application infrastructure (such as providing containers with IP addresses) that run the services these apps depend on (such as the provisioning of bespoke storage and firewall requirements), and, most importantly, run the applications themselves.

 Kubernetes is (at the time of this writing) essentially undisputed as the modern standard for orchestrating and running containers in any cloud, server, or data center environment.

1.3 Containers and images

 Apps have dependencies that must be fulfilled by the host on which they run. Developers in the pre-container era accomplished this task in an ad hoc manner (for example, a Java app would require a running JVM along with firewall rules to talk to a database).

 At its core, Docker can be thought of as a way to run containers, where a container is a running OCI image (https://github.com/opencontainers/image-spec). The OCI specification is a standard way to define an image that can be executed by a program such as Docker, and it ultimately is a tarball with various layers. Each of the tarballs inside an image contains such things as Linux binaries and application files. Thus, when you run a container, the container runtime (such as Docker, containerd, or CRI-O) takes the image, unpacks it, and starts a process on the host system that runs the image contents.

 Containers add a layer of isolation that obviates the need for managing libraries on a server or preloading infrastructure with other accidental application dependencies (figure 1.1). For instance, if you have two Ruby applications that require different versions of the same library, you can use two containers. Each Ruby application is isolated inside a running container and has the specific version of the library that it requires.

 [image:]

 Figure 1.1 Applications running in containers

 There is a phase that is well known: “Well, it runs on my machine.” When installing software, it can often run in one environment or machine but not in another. Using images simplifies running the same software on different servers. We’ll talk more about images and containers in chapter 3.

 Combine using images with Kubernetes, allowing for running immutable servers, and you have a level of simplicity that is world-class. As containers are quickly becoming an industry standard for the deployment of software applications, a few data points are worth mentioning:

 	
 Surveying over 88,000 developers, Docker and Kubernetes ranked third among the most loved development technologies of 2020. This just behind Linux and Docker (http://mng .bz/nY12).

 	
 Datadog recently found that Docker encompasses 50% or more of the average developer’s workflow. Likewise, company-wide adoption is over 25% of all businesses (https:// www.datadoghq.com/docker-adoption/).

 The bottom line is that we need automation for containers, and this is where Kubernetes fits in. Kubernetes dominates the space much like the Oracle database and the vSphere virtualization platform did during their heydays. Years later, Oracle databases and vSphere installations still exist; we predict the same longevity for Kubernetes.

 We’ll begin this book with a basic understanding of Kubernetes features. Its purpose is to take you beyond the basic principles to the lower-level core. Let’s dive in and look at an extremely over-simplified Kubernetes (also referred to as “K8s”) workflow that demonstrates some of the higher-order tenants of building and running microservices.

1.4 Core foundation of Kubernetes

 At its core, we define everything in Kubernetes as plain text files, defined via YAML or JSON, and it runs your OCI images for you in a declarative way. We can use this same approach (YAML or JSON text files) to configure networking rules, role-based authentication and authorization (RBAC), and so on. By learning one syntax and how it is structured, any Kubernetes system can be configured, managed, and optimized.

 Let’s look at a quick sample of how one might run Kubernetes for a simple app. Don’t worry; we’ll have plenty of real-world examples to walk you through the entire life cycle of an application later in the book. Consider this just a visual guide to our hand-waving we’ve done thus far. To start with a concrete example of a microservice, the following code snippet generates a Dockerfile that builds an image capable of running MySQL:

 FROM alpine:3.15.4
RUN apk add --no-cache mysql
ENTRYPOINT ["/usr/bin/mysqld"]

 One would typically build this image (using docker build) and push it (using something like docker push) to an OCI registry (a place where such an image can be stored and retrieved by a container at run time). You can find a common open source registry to host on your own at https://github.com/goharbor/harbor. Another such registry that is also commonly used for millions of applications worldwide resides at https://hub.docker.com/. For this example, let’s say we pushed this image, and now we are running it, somewhere. We might also want to build a container to talk to this service (maybe we have a custom Python app that serves as a MySQL client). We might define its Docker image like so:

 FROM python:3.7
WORKDIR /myapp
COPY src/requirements.txt ./
RUN pip install -r requirements.txt
COPY src /myapp
CMD ["python", "mysql-custom-client.py"]

 Now, if we wanted to run our client and the MySQL server as containers in a Kubernetes environment, we could easily do so by creating two Pods. Each one of these Pods might run one of the respective containers like so:

 apiVersion: v1
kind: Pod
metadata:
 name: core-k8s
 spec:
 containers:
 - name: my-mysql-server
 image: myregistry.com/mysql-server:v1.0

apiVersion: v1
kind: Pod
metadata:
 name: core-k8s-mysql
 spec:
 containers:
 - name: my-sqlclient
 image: myregistry.com/mysql-custom-client:v1.0
 command: ['tail','-f','/dev/null']

 We would, typically, store the previous YAML snippet in a text file (for example, my-app.yaml) and execute it using the Kubernetes client tool (for example, kubectl create -f my-app.yaml). This tool connects to the Kubernetes API server and transfers the YAML definition to be stored. Kubernetes then automatically takes the definitions of the two Pods that we have on the API server and makes sure they are up and running somewhere.

 This doesn’t happen instantly: it requires the nodes in the cluster to respond to events that are constantly occurring and updates that state in their Node objects via the kubelet communicating to the API server. It also requires that the OCI images are present and accessible to the nodes in our Kubernetes cluster. Things can go wrong at any time, so we refer to Kubernetes as an eventually consistent system, wherein reconciliation of the desired state over time is a key design philosophy. This consistency model (compared with a guaranteed consistency model) ensures that we can continually request changes to the overall state space of all applications in our cluster and lets the underlying Kubernetes platform figure out the logistics of how these apps are set in motion over time.

 This scales into real-world scenarios quite naturally. For example, if you tell Kubernetes, “I want five applications spread across three zones in a cloud,” this can be accomplished entirely by defining a few lines of YAML utilizing Kubernetes’ scheduling primitives. Of course, you need to make sure that those three zones actually exist and that your scheduler is aware of them, but even if you haven’t done this, Kubernetes will at least schedule some of the workloads on the zones that are available.

 In short, Kubernetes allows you to define the desired state of all the apps in your cluster, how they are networked, where they run, what storage they use, and so on, while delegating the underlying implementation of these details to Kubernetes itself. Thus, you’ll rarely find the need to do a one-off Ansible or a Puppet update in a production Kubernetes scenario (unless you are reinstalling Kubernetes itself, and even then, there are tools such as the Cluster API that allow you to use Kubernetes to manage Kubernetes (now we’re getting in way over our heads).

1.4.1 All infrastructure rules in Kubernetes are managed as plain YAML

 Kubernetes automates all of the aspects of the technology stack using the Kubernetes API, which can be entirely managed as YAML and JSON resources. This includes traditional IT infrastructure rules (which still apply in some manner or other to microservices) such as

 	
 Server configuration of ports or IP routes

 	
 Persistent storage availability for applications

 	
 Hosting of software on specific or arbitrary servers

 	
 Security provisioning, such as RBAC or networking rules for applications to access one another

 	
 DNS configuration on a per-application and global basis

 All of these components are defined within configuration files that are representations of objects within the Kubernetes API. Kubernetes uses these building blocks and containers by applying changes, monitoring those changes, and addressing momentary failures or disruptions until achieving the desired end state. When “things go bump in the night,” Kubernetes will handle a lot of scenarios automatically, and we do not have to fix the problems ourselves. Properly configuring more elaborate systems with automation permits the DevOps team to focus on solving complex problems, to plan for the future, and to find the best-in-class solutions for the business. Next, let’s review the features that Kubernetes provides and how they support the use of Pods.

1.5 Kubernetes features

 Container orchestration platforms allow developers to automate the process of running instances, provisioning hosts, linking containers to optimize orchestration procedures, and extending application life cycles. It’s time to dive into the core features within a container orchestration platform because, essentially, containers need Pods and Pods need Kubernetes to

 	
 Expose a cloud-neutral API for all functionality within the API server

 	
 Integrate with all major cloud and hypervisor platforms within the Kubernetes controller manager (also referred to as KCM)

 	
 Provide a fault-tolerant framework for storing and defining the state of all Services, applications, and data center configurations or other Kubernetes-supported infrastructures

 	
 Manage deployments while minimizing user-facing downtime, whether to an individual host, Service, or application

 	
 Automate scaling for hosts and hosted applications with rolling update awareness

 	
 Create internal and external integrations (known as ClusterIP, NodePort, or LoadBalancer Service types) with load balancing

 	
 Provide the ability to schedule applications to run on specific virtualized hardware, based on its metadata, via node labeling and the Kubernetes scheduler

 	
 Deliver a highly available platform via DaemonSets and other technology infrastructures that prioritizes containers that run on all nodes in the cluster

 	
 Allow for service discovery via a domain name service (DNS), implemented previously by KubeDNS and, most recently, by CoreDNS, which integrates with the API server

 	
 Run batch processes (known as Jobs) that use storage and containers in the same way persistent applications run

 	
 Include API extensions and construct native API-driven programs using custom resource definitions, without building any port mappings or plumbing

 	
 Enable inspection of failed cluster-wide processes including remote execution into any container at any time via kubectl exec and kubectl describe

 	
 Allow the mounting of local and/or remote storage to a container and manage declarative storage volumes for containers with the StorageClass API and PersistentVolumes

 Figure 1.2 is a simple diagram of a Kubernetes cluster. What Kubernetes does is by no means trivial. It standardizes the life cycle management of multiple applications running in or on the same cluster. The foundation of Kubernetes is a cluster, consisting of nodes. The complexity of Kubernetes is, admittedly, one of the complaints that engineers have about Kubernetes. The community is working on making it easier, but Kubernetes is solving a complex problem that is hard to solve to begin with.

 [image:]

 Figure 1.2 An example Kubernetes cluster

 If you don’t need high availability, scalability, and orchestration, then maybe you don’t need Kubernetes. Let’s now consider a typical failure scenario in a cluster:

 	
 A node stops responding to the control plane.

 	
 The control plane reschedules the Pods running on the unresponsive node to another node or nodes.

 	
 When a user makes an API call into the API server via kubectl, the API server responds with the correct information about the unresponsive node and the new location of the Pods.

 	
 All clients that communicate to the Pod’s Service are rerouted to its new location.

 	
 Storage volumes attached to Pods on the failing node are moved to the new Pod location so that its old data is still readable.

 The purpose of this book is to give you deeper insight into how this all really works under the hood and how the underlying Linux primitives complement the high-level Kubernetes components to accomplish these tasks. Kubernetes relies heavily on hundreds of technologies in the Linux stack, which are often hard to learn and lack deep documentation. It is our hope that by reading this book, you’ll understand a lot of the subtleties of Kubernetes, which are often overlooked in the tutorials first used by engineers to get up and running with containers.

 It is natural to run Kubernetes on top of immutable operating systems. You have a base OS that only updates when you update the entire OS (and thus is immutable), and you install your Nodes/Kubernetes using that OS. There are many advantages to running an immutable OS that we will not cover here. You can run Kubernetes in the cloud, on bare metal servers, or even on a Raspberry Pi. In fact, the U.S. Department of Defense is currently researching how to run Kubernetes on some of its fighter jets. IBM even supports running clusters on its next generation mainframes, PowerPCs.

 As the cloud native ecosystem around Kubernetes continues to mature, it will continue to permit organizations to identify best practices, proactively make changes to prevent issues, and maintain environment consistency to avoid drift, where some machines behave slightly differently from others because patches were missed, not applied, or improperly applied.

1.6 Kubernetes components and architecture

 Now, let’s take a moment to look at the Kubernetes architecture at a high level (fig-ure 1.3). In short, it consists of your hardware and the portion of your hardware that runs the Kubernetes control plane as well as the Kubernetes worker nodes:

 	
 Hardware infrastructure—Includes computers, network infrastructure, storage infrastructure, and a container registry.

 	
 Kubernetes worker nodes—The base unit of compute in a Kubernetes cluster.

 	
 Kubernetes control plane—The mothership of Kubernetes. This covers the API server, scheduler, controller manager, and other controllers.

 [image:]

 Figure 1.3 The control plane and worker nodes

1.6.1 The Kubernetes API

 If there’s one important thing to take away from this chapter that will enable you to go forth on a deep journey through this book, it’s that administering microservices and other containerized software applications on a Kubernetes platform is just a matter of declaring Kubernetes API objects. For the most part, everything else is done for you.

 This book will dive deeply into the API server and its datastore, etcd. Almost anything that you can ask kubectl to do results in reading, or writing, to a defined and versioned object in the API server. (The exceptions to this are things like using kubectl to grab logs for a running Pod, wherein this connection is proxied through to a node.) The kube-apiserver (Kubernetes API server) allows for CRUD (create, read, update, and delete) operations on all of the objects and provides a RESTful (REpresentational State Transfer) interface. Some kubectl commands like describe are a composite view of multiple objects. In general, all Kubernetes API objects have

 	
 A named API version (for instance, v1 or rbac.authorization.k8s.io/v1)

 	
 A kind (for example, kind: Deployment)

 	
 A metadata section

 We can thank Brian Grant, one of the original Kubernetes founders, for the API versioning scheme that has proven to be robust over time. It may seem complicated, and, frankly, a bit of a pain at times, but it allows us to do things such as upgrades and contracts defining API changes. API changes and migration are often nontrivial, and Kubernetes provides a well-defined contract for API changes. Take a look at the API versioning documents on the Kubernetes website (http://mng.bz/voP4), and you can read through the contracts for Alpha, Beta, and GA API versions.

 Throughout the chapters in this book, we will focus on Kubernetes but keep returning to the basic theme: virtually everything in Kubernetes exists to support the Pod. In this book, we’ll look at several API elements in detail including

 	
 Runtime Pods and deployments

 	
 API implementation details

 	
 Ingress Services and load balancing

 	
 PersistentVolumes and PersistentVolumeClaims storage

 	
 NetworkPolicies and network security

 There are around 70 different API types that you can play with, create, edit, and delete in a standard Kubernetes cluster. You can view these by running kubectl api-resources. The output should look something like this:

 $ kubectl api-resources | head
NAME SHORTNAMES NAMESPACED KIND
bindings true Binding
componentstatuses cs false ComponentStatus
configmaps cm true ConfigMap
endpoints ep true Endpoints
events ev true Event
limitranges limits true LimitRange
namespaces ns false Namespace
nodes no false Node
persistentvolumeclaims pvc true PersistentVolumeClaim

 We can see that each of the API resources for Kubernetes itself has

 	
 A short name

 	
 A full name

 	
 An indication of whether it is bounded to a namespace

 In Kubernetes, Namespaces allow certain objects to exist inside of a specific . . . well . . . Namespace. This gives developers a simple form of hierarchical grouping. For example, if you have an application that runs 10 different microservices, you commonly might create all of these Pods, Services, and PersistentVolumeClaims (also referred to as PVCs) inside the same Namespace. That way, when it’s time for you to delete the app, you can just delete the Namespace. In chapter 15, we’ll look at higher-level ways to analyze the life cycle of applications, which are more advanced than this simplistic approach. But for many cases, the namespace is the most obvious and intuitive solution for separating all the Kubernetes API objects associated with an app.

1.6.2 Example one: An online retailer

 Imagine a major online retailer that needs to be able to quickly scale with demand seasonally, such as around the holidays. Scaling and predicting how to scale has been one of their biggest challenges—maybe the biggest. Kubernetes solves a multitude of problems that come with running a highly available, scalable distributed system. Imagine the possibilities of having the ability to scale, distribute, and make highly available systems at your fingertips. Not only is it a better way to run a business, but it is also the most efficient and effective platform for managing systems. When combining Kubernetes and cloud providers, you can run on someone else’s servers when you need extra resources instead of buying and maintaining extra hardware just in case.

1.6.3 Example two: An online giving solution

 For a second real-world example of this transition that is worth mentioning, let’s consider an online donation website that enables contributions to a broad range of charities per a user’s choice. Let’s say this particular example started out as a WordPress site, but eventually, business transactions lead to a full-blown dependency on JVM frameworks (like Grails) with a customized UX, middle tier, and database layer. The requirements for this business tsunami included machine learning, ad serving, messaging, Python, Lua, NGINX, PHP, MySQL, Cassandra, Redis, Elastic, ActiveMQ, Spark, lions, tigers, and bears . . . and stop already.

 The initial infrastructure was a hand-built cloud virtual machine (VM), using Puppet to set everything up. As the company grew, they designed for scale, but this included more and more VMs that only hosted one or two applications. Then they decided to move to Kubernetes. The VM count was reduced from around 30 to 5 and scaled more easily. They completely eliminated Puppet and the server setup, and thus the need to manually manage machine infrastructure by hand, thanks to their transition to heavy use of Kubernetes.

 The transition to Kubernetes for this company resolved the entire class of VM administration problems, the burden of DNS for complex service publishing, and much more. Additionally, the recovery times in cases of catastrophic failures were much more predictable to manage from an infrastructure standpoint. When you experience the benefits of moving to a standardized API-driven methodology that works well and has the power to make massive changes quickly, you begin to appreciate the declarative nature of Kubernetes and its cloud-native approach to container orchestration.

1.7 When not to use Kubernetes

 Admittedly, there are always use cases where Kubernetes might not be a good fit. Some of these include

 	
 High-performance computing (HPC)—Using containers adds a layer of complexity and, with the new layer, a performance hit. The latency created by using a container is getting much smaller, but if your application is influenced by nano- or microseconds, using Kubernetes might not be the best option.

 	
 Legacy—Some applications have hardware, software, and latency requirements that make it difficult to simply containerize. For example, you may have applications that you purchased from a software company that does not officially support running in a container or running their application within a Kubernetes cluster.

 	
 Migration—Implementations of legacy systems may be so rigid that migrating them to Kubernetes offers little advantage other than “we are built on Kuber-netes.” But some of the most significant gains come after migrating, when monolithic applications are parsed up into logical components, which can then scale independently of each other.

 The important thing here is this: learn and master the basics. Kubernetes solves many of the problems presented in this chapter in a stable, cost-sensitive manner.

Summary

 	
 Kubernetes makes your life easier!

 	
 The Kubernetes platform can run on any type of infrastructure.

 	
 Kubernetes builds an ecosystem of components that work together. Combining the components empowers companies to prevent, recover, and scale in real time when urgent changes are required.

 	
 Everything you do in Kubernetes can be done with one simple tool: kubectl.

 	
 Kubernetes creates a cluster from one or more computers, and that cluster provides a platform to deploy and host containers. It offers container orchestration, storage management, and distributed networking.

 	
 Kubernetes was born from previous configuration-driven, container-driven approaches.

 	
 The Pod is the basic building block of Kubernetes. It supports the myriad of features that Kubernetes allows: scaling, failover, DNS lookup, and RBAC security rules.

 	
 Kubernetes applications are entirely managed by simply making API calls to the Kubernetes API server.

2 Why the Pod?

 This chapter covers

 	
What is a Pod?

 	
An example web app and why we need the Pod

 	
How Kubernetes is built for Pods

 	
The Kubernetes control plane

 In the previous chapter, we provided a high-level overview of Kubernetes and an introduction to its features, core components, and architecture. We also showcased a couple of business use cases and outlined some container definitions. The Kubernetes Pod abstraction for running thousands of containers in a flexible manner has been a fundamental part of the transition to containers in enterprises. In this chapter, we will cover the Pod and how Kubernetes was built to support it as a basic application building block.

 As briefly mentioned in chapter 1, a Pod is an object that is defined within the Kubernetes API, as are the majority of things in Kubernetes. The Pod is the smallest atomic unit that can be deployed to a Kubernetes cluster, and Kubernetes is built around the Pod definition. The Pod (figure 2.1) allows us to define an object that can include multiple containers, which allows Kubernetes to create one or more containers hosted on a node.

 [image:]

 Figure 2.1 A Pod

 Many other Kubernetes API objects either use Pods directly or are API objects that support Pods. A Deployment object, for example, uses Pods, as well as StatefulSets and DaemonSets. Several different higher-level Kubernetes controllers create and manage Pod life cycles. Controllers are software components that run on the control plane. Examples of built-in controllers include the controller manager, the cloud manager, and the scheduler. But first, let’s digress by laying out a web application and then loop that back to Kubernetes, the Pod, and the control plane.

 note You may notice that we use the control plane to define the group of nodes that run the controller, the controller manager, and the scheduler. They are also referred to as masters, but in this book, we will use control plane when talking about these components.

2.1 An example web application

 Let’s walk through an example web application to understand why we need a Pod and how Kubernetes is built to support Pods and containerized applications. In order to get a better understanding of why the Pod, we will use the following example throughout much of this chapter.

OEBPS/Images/CH01_F03_Love.png

OEBPS/Images/Manning_M_small.png

OEBPS/Images/FM_F02_Love.png

OEBPS/Images/CH01_F02_Love.png

OEBPS/Images/cover.jpeg

OEBPS/Images/FM_F02_Vyas.png

OEBPS/Images/Manning_copyright.png

OEBPS/Images/CH01_F01_Love.png

OEBPS/Images/CH02_F01_Love.png

