

 [image: cover]

Event Streams in Action: Real-time event systems with Kafka and Kinesis

 Alexander Dean
 Valentin Crettaz

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editors: Mike Stephens and Frank Pohlmann
Development editors: Jennifer Stout and Cynthia Kane
Technical development editor: Kostas Passadis
Review editor: Aleks Dragosacljević
Production editor: Anthony Calcara
Copy editor: Sharon Wilkey
Proofreader: Melody Dolab
Technical proofreader: Michiel Trimpe
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617292347

 Printed in the United States of America

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Event streams and unified logs

 Chapter 1. Introducing event streams

 Chapter 2. The unified log

 Chapter 3. Event stream processing with Apache Kafka

 Chapter 4. Event stream processing with Amazon Kinesis

 Chapter 5. Stateful stream processing

 2. Data engineering with streams

 Chapter 6. Schemas

 Chapter 7. Archiving events

 Chapter 8. Railway-oriented processing

 Chapter 9. Commands

 3. Event analytics

 Chapter 10. Analytics-on-read

 Chapter 11. Analytics-on-write

 Appendix. AWS primer

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Event streams and unified logs

 Chapter 1. Introducing event streams

 1.1. Defining our terms

 1.1.1. Events

 1.1.2. Continuous event streams

 1.2. Exploring familiar event streams

 1.2.1. Application-level logging

 1.2.2. Web analytics

 1.2.3. Publish/subscribe messaging

 1.3. Unifying continuous event streams

 1.3.1. The classic era

 1.3.2. The hybrid era

 1.3.3. The unified era

 1.4. Introducing use cases for the unified log

 1.4.1. Customer feedback loops

 1.4.2. Holistic systems monitoring

 1.4.3. Hot-swapping data application versions

 Summary

 Chapter 2. The unified log

 2.1. Understanding the anatomy of a unified log

 2.1.1. Unified

 2.1.2. Append-only

 2.1.3. Distributed

 2.1.4. Ordered

 2.2. Introducing our application

 2.2.1. Identifying our key events

 2.2.2. Unified log, e-commerce style

 2.2.3. Modeling our first event

 2.3. Setting up our unified log

 2.3.1. Downloading and installing Apache Kafka

 2.3.2. Creating our stream

 2.3.3. Sending and receiving events

 Summary

 Chapter 3. Event stream processing with Apache Kafka

 3.1. Event stream processing 101

 3.1.1. Why process event streams?

 3.1.2. Single-event processing

 3.1.3. Multiple-event processing

 3.2. Designing our first stream-processing app

 3.2.1. Using Kafka as our company’s glue

 3.2.2. Locking down our requirements

 3.3. Writing a simple Kafka worker

 3.3.1. Setting up our development environment

 3.3.2. Configuring our application

 3.3.3. Reading from Kafka

 3.3.4. Writing to Kafka

 3.3.5. Stitching it all together

 3.3.6. Testing

 3.4. Writing a single-event processor

 3.4.1. Writing our event processor

 3.4.2. Updating our main function

 3.4.3. Testing, redux

 Summary

 Chapter 4. Event stream processing with Amazon Kinesis

 4.1. Writing events to Kinesis

 4.1.1. Systems monitoring and the unified log

 4.1.2. Terminology differences from Kafka

 4.1.3. Setting up our stream

 4.1.4. Modeling our events

 4.1.5. Writing our agent

 4.2. Reading from Kinesis

 4.2.1. Kinesis frameworks and SDKs

 4.2.2. Reading events with the AWS CLI

 4.2.3. Monitoring our stream with boto

 Summary

 Chapter 5. Stateful stream processing

 5.1. Detecting abandoned shopping carts

 5.1.1. What management wants

 5.1.2. Defining our algorithm

 5.1.3. Introducing our derived events stream

 5.2. Modeling our new events

 5.2.1. Shopper adds item to cart

 5.2.2. Shopper places order

 5.2.3. Shopper abandons cart

 5.3. Stateful stream processing

 5.3.1. Introducing state management

 5.3.2. Stream windowing

 5.3.3. Stream processing frameworks and their capabilities

 5.3.4. Stream processing frameworks

 5.3.5. Choosing a stream processing framework for Nile

 5.4. Detecting abandoned carts

 5.4.1. Designing our Samza job

 5.4.2. Preparing our project

 5.4.3. Configuring our job

 5.4.4. Writing our job’s Java task

 5.5. Running our Samza job

 5.5.1. Introducing YARN

 5.5.2. Submitting our job

 5.5.3. Testing our job

 5.5.4. Improving our job

 Summary

 2. Data engineering with streams

 Chapter 6. Schemas

 6.1. An introduction to schemas

 6.1.1. Introducing Plum

 6.1.2. Event schemas as contracts

 6.1.3. Capabilities of schema technologies

 6.1.4. Some schema technologies

 6.1.5. Choosing a schema technology for Plum

 6.2. Modeling our event in Avro

 6.2.1. Setting up a development harness

 6.2.2. Writing our health check event schema

 6.2.3. From Avro to Java, and back again

 6.2.4. Testing

 6.3. Associating events with their schemas

 6.3.1. Some modest proposals

 6.3.2. A self-describing event for Plum

 6.3.3. Plum’s schema registry

 Summary

 Chapter 7. Archiving events

 7.1. The archivist’s manifesto

 7.1.1. Resilience

 7.1.2. Reprocessing

 7.1.3. Refinement

 7.2. A design for archiving

 7.2.1. What to archive

 7.2.2. Where to archive

 7.2.3. How to archive

 7.3. Archiving Kafka with Secor

 7.3.1. Warming up Kafka

 7.3.2. Creating our event archive

 7.3.3. Setting up Secor

 7.4. Batch processing our archive

 7.4.1. Batch processing 101

 7.4.2. Designing our batch processing job

 7.4.3. Writing our job in Apache Spark

 7.4.4. Running our job on Elastic MapReduce

 Summary

 Chapter 8. Railway-oriented processing

 8.1. Leaving the happy path

 8.1.1. Failure and Unix programs

 8.1.2. Failure and Java

 8.1.3. Failure and the log-industrial complex

 8.2. Failure and the unified log

 8.2.1. A design for failure

 8.2.2. Modeling failures as events

 8.2.3. Composing our happy path across jobs

 8.3. Failure composition with Scalaz

 8.3.1. Planning for failure

 8.3.2. Setting up our Scala project

 8.3.3. From Java to Scala

 8.3.4. Better failure handling through Scalaz

 8.3.5. Composing failures

 8.4. Implementing railway-oriented processing

 8.4.1. Introducing railway-oriented processing

 8.4.2. Building the railway

 Summary

 Chapter 9. Commands

 9.1. Commands and the unified log

 9.1.1. Events and commands

 9.1.2. Implicit vs. explicit commands

 9.1.3. Working with commands in a unified log

 9.2. Making decisions

 9.2.1. Introducing commands at Plum

 9.2.2. Modeling commands

 9.2.3. Writing our alert schema

 9.2.4. Defining our alert schema

 9.3. Consuming our commands

 9.3.1. The right tool for the job

 9.3.2. Reading our commands

 9.3.3. Parsing our commands

 9.3.4. Stitching it all together

 9.3.5. Testing

 9.4. Executing our commands

 9.4.1. Signing up for Mailgun

 9.4.2. Completing our executor

 9.4.3. Final testing

 9.5. Scaling up commands

 9.5.1. One stream of commands, or many?

 9.5.2. Handling command-execution failures

 9.5.3. Command hierarchies

 Summary

 3. Event analytics

 Chapter 10. Analytics-on-read

 10.1. Analytics-on-read, analytics-on-write

 10.1.1. Analytics-on-read

 10.1.2. Analytics-on-write

 10.1.3. Choosing an approach

 10.2. The OOPS event stream

 10.2.1. Delivery truck events and entities

 10.2.2. Delivery driver events and entities

 10.2.3. The OOPS event model

 10.2.4. The OOPS events archive

 10.3. Getting started with Amazon Redshift

 10.3.1. Introducing Redshift

 10.3.2. Setting up Redshift

 10.3.3. Designing an event warehouse

 10.3.4. Creating our fat events table

 10.4. ETL, ELT

 10.4.1. Loading our events

 10.4.2. Dimension widening

 10.4.3. A detour on data volatility

 10.5. Finally, some analysis

 10.5.1. Analysis 1: Who does the most oil changes?

 10.5.2. Analysis 2: Who is our most unreliable customer?

 Summary

 Chapter 11. Analytics-on-write

 11.1. Back to OOPS

 11.1.1. Kinesis setup

 11.1.2. Requirements gathering

 11.1.3. Our analytics-on-write algorithm

 11.2. Building our Lambda function

 11.2.1. Setting up DynamoDB

 11.2.2. Introduction to AWS Lambda

 11.2.3. Lambda setup and event modeling

 11.2.4. Revisiting our analytics-on-write algorithm

 11.2.5. Conditional writes to DynamoDB

 11.2.6. Finalizing our Lambda

 11.3. Running our Lambda function

 11.3.1. Deploying our Lambda function

 11.3.2. Testing our Lambda function

 Summary

 Appendix. AWS primer

 A.1. Setting up the AWS account

 A.2. Creating a user

 A.3. Setting up the AWS CLI

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 A continuous stream of real-world and digital events already power the company where you work, even though you probably don’t
 think in those terms. Instead, you likely think about your daily work in terms of the people or things that you interact with,
 the software or hardware you use to get stuff done, or your own microcosm of a to-do list of tasks.

 Computers can’t think like this! Instead, computers see a company as an organization that generates a response to a continuous
 stream of events. We believe that reframing your business in terms of a continuous stream of events offers huge benefits.
 This is a young but hugely important field, and there is a lot still to discuss.

 Event Streams in Action is all about events: how to define events, how to send streams of events into unified log technologies like Apache Kafka
 and Amazon Kinesis, and how to write applications that process those event streams. We’re going to cover a lot of ground in
 this book: Kafka and Kinesis, stream processing frameworks like Samza and Spark Streaming, event-friendly databases like Amazon
 Redshift, and more.

 This book will give you confidence to identify, model, and process event streams wherever you find them—and we guarantee that
 by the end of this book, you will be seeing event streams everywhere! Above all, we hope that this book acts as a springboard
 for a broader conversation about how we, as software engineers, should work with events.

Acknowledgments

 I would like to thank my wife Charis for her support through the long process of writing this book, as well as my parents
 for their lifelong encouragement. And many thanks to my cofounder at Snowplow Analytics, Yali Sassoon, for giving me the “air
 cover” to work on this book even while we were trying to get our tech startup off the ground.

 On the Manning side, I will always be appreciative to commissioning editor Frank Pohlmann for believing I had a book in me.
 Thanks too to Cynthia Kane, Jennifer Stout, and Rebecca Rinehart for their patience and support through the difficult and
 lengthy gestation. I am grateful to my coauthor, Valentin Crettaz, for his contributions and his laser focus on getting this
 book completed. Special thanks also to all the reviewers whose feedback and insight greatly helped to improve this book, including
 Alex Nelson, Alexander Myltsev, Azatar Solowiej, Bachir Chihani, Charles Chan, Chris Snow, Cosimo Attanasi, Earl Bingham,
 Ernesto Garcia, Gerd Klevesaat, Jeff Lim, Jerry Tan, Lourens Steyn, Miguel Eduardo Gil Biraud, Nat Luengnaruemitchai, Odysseas
 Pentakalos, Rodrigo Abreu, Roger Meli, Sanket Naik, Shobha Iyer, Sumit Pal, Thomas Lockney, Thorsten Weber, Tischliar Ronald,
 Tomasz Borek, and Vitaly Bragilevsky.

 Finally, I’d like to thank Jay Kreps, CEO of Confluent and creator of Apache Kafka, for his monograph “The Log,” published
 back in December 2013, which started me on the journey of writing this book in addition to informing so much of my work at
 Snowplow.

 —ALEXANDER DEAN

 First and foremost, I’d like to thank my family for having to deal daily with a father and husband who is so passionate about
 his work that he sometimes (read: often) forgets to give his keyboards and mice a break. I would never have been able to fulfill
 my dreams without your unconditional support and understanding.

 I’ve worked with Manning on many different book projects over a long period of time now. But this one was special—not only
 a nice technological adventure, but also a human one. I can’t emphasis the human part enough, as writing books is not only
 about content, grammar rules, typos, and phrasing, but also about collaborating and empathizing with human beings, understanding
 their context and their sensibilities, and sharing one chapter of your life with them. For all this, I’d like to thank Michael
 Stephens, Jennifer Stout, and Rebecca Rinehart for taking the time and effort to persuade me to take on this project. It wasn’t
 easy (it never is and never should be), but it was a great deal of fun and highly instructive.

 Finally, I’d like to thank Alex for being such a good writer and for always managing to mix an entertaining writing style
 with illustrative examples and figures to make complex subjects and concepts easy for the reader to grasp.

 —VALENTIN CRETTAZ

About this book

 Writing real-world applications in a data-rich environment can feel like being caught in the cross fire of a paintball battle.
 Any action may require you to combine event streams, batch archives, and live user or system requests in real time. Unified
 log processing is a coherent data processing architecture designed to encompass batch and near-real-time stream data, event
 logging and aggregation, and data processing on the resulting unified event stream. By efficiently creating a single log of
 events from multiple data sources, unified log processing makes it possible to design large-scale data-driven applications
 that are easier to design, deploy, and maintain.

Who should read this book

 This book is written for readers who have experience writing some Java code. Scala and Python experience may be helpful to
 understanding some concepts in the book but is not required.

How this book is organized: a roadmap

 This book has 11 chapters divided into three parts.

 Part 1 defines event streams and unified logs, providing a wide-ranging look:

 	
Chapter 1 provides a ground-level foundation by offering definitions and examples of events and continuous event streams, and takes
 a brief look at unifying event streams with a unified log.

 	
Chapter 2 dives deep into the key attributes of a unified log, and walks you through setting up, sending, and reading events in Apache
 Kafka.

 	
Chapter 3 introduces event stream processing, and how to write applications that process individual events while also validating and
 enriching events.

 	
Chapter 4 focuses on event stream processing with Amazon Kinesis, a fully managed unified log service.

 	
Chapter 5 looks at stateful stream processing, using the most popular stream processing frameworks to process multiple events from
 a stream-using state.

 Part 2 dives deep into the quality of events being fed into a unified log:

 	
Chapter 6 covers event schemas and schema technologies, focusing on using Apache Avro to represent self-describing events.

 	
Chapter 7 covers event archiving, providing a deep look into why archiving a unified log is so important and the best practices for
 doing so.

 	
Chapter 8 looks at how to handle failure in Unix programs, Java exceptions, and error logging, and how to design for failure inside
 and across stream processing applications.

 	
Chapter 9 covers the role of commands in the unified log, using Apache Avro to define schemas and process commands.

 Part 3 takes an analysis-first look at the unified log, leading with the two main methodologies for unified log analytics, and then
 applying various database and stream processing technologies to analyze our event streams:

 	
Chapter 10 uses Amazon Redshift, a horizontally scalable columnar database, to cover analytics-on-read versus analytics-on-write and
 techniques for storing and widening events.

 	
Chapter 11 provides simple algorithms for analytics-on-write event streams, and will allow you to deploy and test an AWS Lambda function.

About the code

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
 of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/event-streams-in-action.

liveBook discussion forum

 Purchase of Event Streams in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/event-streams-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 ALEXANDER DEAN is cofounder and technical lead of Snowplow Analytics, an open source event processing and analytics platform.

 VALENTIN CRETTAZ is an independent IT consultant who’s been working for the past 25 years on many challenging projects across the globe. His
 expertise ranges from software engineering and architecture to data science and business intelligence. His daily job boils
 down to using the latest and most cutting-edge web, data, and streaming technologies to implement IT solutions that will help
 reduce the cultural gap between IT and business people.

About the cover illustration

 The figure on the cover of Event Streams in Action is captioned “Habit of a Lady of Tartary in 1667.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading
 map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of
 commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs
 of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and
 travel for pleasure were relatively new phenomena in the late eighteenth century, and collections such as this one were popular,
 introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically,
 we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual
 and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative
 of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back
 to life by Jefferys’ pictures.

Part 1. Event streams and unified logs

 In this first part, we’ll introduce the basics of event streaming and explain what a unified log is. We’ll also show how to
 use technologies such as Apache Kafka, Amazon Kinesis, and Apache Samza in order to process event streams.

Chapter 1. Introducing event streams

 This chapter covers

 	Defining events and continuous event streams

 	Exploring familiar event streams

 	Unifying event streams with a unified log

 	Introducing use cases for a unified log

 Believe it or not, a continuous stream of real-world and digital events already powers the company where you work. But it’s
 unlikely that many of your coworkers think in those terms. Instead, they probably think about their work in terms of the following:

 	The people or things that they interact with on a daily basis—for example, customers, the Marketing team, code commits, or
 new product releases

 	The software and hardware that they use to get stuff done

 	Their own daily inbox of tasks to accomplish

 People think and work in these terms because people are not computers. It is easy to get up in the morning and come to work
 because Sue in QA really needs those reports for her boss by lunchtime. If we stopped and started to think about our work
 as creating and responding to a continuous stream of events, we would probably go a little crazy—or at least call in to the
 office for a duvet day.

 Computers don’t have this problem. They would be comfortable with this definition of a business:

 A company is an organization that generates and responds to a continuous stream of events.

 This definition is not going to win any awards from economists, but we, the authors, believe that reframing your business
 in terms of a continuous stream of events offers huge benefits. Specifically, event streams enable the following:

 	
Fresher insights— A continuous stream of events represents the “pulse” of a business and makes a conventional batch-loaded data warehouse look
 stale in comparison.

 	
A single version of the truth— Ask several coworkers the same question and you may well get different answers, because they are working from different “pots”
 of data. Well-modeled event streams replace this confusion with a single version of the truth.

 	
Faster reactions— Automated near-real-time processing of continuous event streams allows a business to respond to those events within minutes
 or even seconds.

 	
Simpler architectures— Most businesses have built up a bird’s nest of bespoke point-to-point connections between their various transactional systems.
 Event streams can help to unravel these messy architectures.

 Some of these benefits may not seem obvious now, but don’t worry: in this chapter, we will go back to first principles, starting
 with what we mean by events. We will introduce some simple examples of events, and then explain what a continuous event stream really is. There’s a good chance you will find that you are pretty comfortable working with event streams already—you just
 haven’t thought of them in those terms.

 Once we have presented some familiar event streams, we will zoom out a level and explain how businesses’ handling of events
 has evolved over the past 20 years. You will see that successive waves of technology have made things much more complex than
 they should be, but that a new architectural pattern called the unified log promises to simplify things again.

 For these new approaches to reach the mainstream, they must be backed up with compelling use cases. We will make the benefits
 of continuous event streams and the unified log significantly more real with a set of tangible real-world use cases, across
 a variety of industries.

1.1. Defining our terms

 If you work in any kind of modern-day business, chances are that you have already worked with event streams in various forms
 but have not been introduced to them as such. This section presents a simple definition for an event and then explains how
 events combine into a continuous event stream.

 1.1.1. Events

 Before we can define a continuous event stream, we need to break out of Synonym City and concretely define a single event.
 Fortunately, the definition is simple: an event is anything that we can observe occurring at a particular point in time. That’s it, fin. Figure 1.1 sets out four example events from four different business sectors.

 Figure 1.1. The precision on the timestamps varies a little, but you can see that all four of these events are discrete, recordable occurrences
 that take place in the physical or digital worlds (or both).

 [image:]

 It is easy to get carried away with the simplicity of this definition of an event, so before we go any further, let’s clarify
 what is not an event. This is by no means an exhaustive list, but these are some of the more common mistakes to avoid. An
 event is not any of the following:

 	
A description of the ongoing state of something— The day was warm; the car was black; the API client was broken. But “the API client broke at noon on Tuesday” is an event.

 	
A recurring occurrence— The NASDAQ opened at 09:30 every day in 2018. But each individual opening of the NASDAQ in 2018 is an event.

 	
A collection of individual events— The Franco-Prussian war involved the Battle of Spicheren, the Siege of Metz, and the Battle of Sedan. But “war was declared
 between France and Prussia on 19 July 1870” is an event.

 	
A happening that spans a time frame— The 2018 Black Friday sale ran from 00:00:00 to 23:59:59 on November 23, 2018. But the beginning of the sale and the end of
 the sale are events.

 Here’s a general rule of thumb: if the thing you are describing can be tied to a specific point in time, chances are that
 you are describing an event of some kind, even if it needs some verbal gymnastics to represent it.

 1.1.2. Continuous event streams

 Now that we have defined what an event is, what is a continuous event stream? Simply put, a continuous event stream is an unterminated succession of individual events, ordered by the point in time at which each event occurred. Figure 1.2 sketches out what a continuous event stream looks like at a high level: you can see a succession of individual events, stepping
 forward in time.

 Figure 1.2. Anatomy of a continuous event stream: time is progressing left to right, and individual events are ordered within this time
 frame. Note that the event stream is unterminated; it can extend in both directions beyond our ability to process it.

 [image:]

 We say that the succession of events is unterminated, because of these facts:

 	The start of the stream may predate our observing of the stream.

 	The end of the stream is at some unknown point in the future.

 To illustrate this, let’s consider guests checking into the Hoshi Ryokan hotel in Japan. Hoshi Ryokan is one of the oldest
 businesses in the world, having been founded in AD 718. Whatever stream of guest check-in events we could analyze for Hoshi
 Ryokan, we would know that the oldest guest check-ins are lost in the mists of time, and that future check-in events will
 continue to occur long after we have retired.

1.2. Exploring familiar event streams

 If you read the previous section and thought that events and continuous event streams seemed familiar, then chances are that
 you have already worked with event streams, although they were likely not labeled as such. A huge number of software systems
 are heavily influenced by the idea of generating and responding to a continuous stream of events, including these:

 	
Transactional systems— Many of these respond to external events, such as customers placing orders or suppliers delivering parts.

 	
Data warehouses— These collect the event histories of other systems for later analysis, storing them in fact tables.

 	
Systems monitoring— This continually checks system- and application-level events coming from software or hardware systems to detect issues.

 	
Web analytics packages— Through these, analysts can explore website visitors’ on-site event streams to generate insights.

 In this section, we will take a brief tour through three common areas of programming in which the event stream concept is
 close to the surface. Hopefully, this will make you think about part of your existing toolkit in a more event-centric way.
 But if all of these examples are unfamiliar to you, don’t worry: you’ll have plenty of opportunities to master event streams
 from first principles later.

 1.2.1. Application-level logging

 Let’s start with the event stream that almost all backend (and many frontend) developers will be familiar with: application-level
 logging. If you have worked with Java, chances are that you have worked with Apache Log4j at one time or another, but if not,
 don’t worry: its approach to logging is pretty similar to lots of other tools. Assuming that the Log4j.properties file is
 correctly configured and a static logger is initialized, logging with Log4j is simple. The following listing sets out examples
 of log messages that a Java developer might add to their application.

 Listing 1.1. Application logging with Log4j

 doSomethingInteresting();
log.info("Did something interesting");
doSomethingLessInteresting();
log.debug("Did something less interesting");

// Log output: 1
// INFO 2018-10-15 10:50:14,125 [Log4jExample_main]
 "org.alexanderdean.Log4jExample": Did something interesting
// INFO 2018-10-15 10:55:34,345 [Log4jExample_main]
 "org.alexanderdean.Log4jExample": Did something less interesting

 	1 The log output format assumes that we configured our Log4j.properties file like so: log4j.appender.stdout.layout.ConversionPattern=%-5p
 %d [%t] %c: %m%n.

 You can see that application-level logging is generally used to record specific events at a point in time. The log events
 expressed in the code are deliberately primitive, consisting of just a log level indicating the severity of the event, and
 a message string describing the event. But Log4j does add metadata behind the scenes; in this case, the time of the event
 and the reporting thread and class name.

 What happens to the log events after they are generated by your application? Best practice says that you write the log events
 to disk as log files, and then use a log collection technology, such as Flume, Fluentd, Logstash, or Filebeat, to collect
 the log files from the individual servers and ingest them into a tool for systems monitoring or log-file analysis. Figure 1.3 illustrates this event stream.

 Figure 1.3. An application is running on two servers, with each application instance generating log messages. The log messages are written
 (rotated) to disk before being collected and forwarded to a systems-monitoring or log-file-analysis tool.

 [image:]

 So application-level logging is clearly a continuous event stream, albeit one that leans heavily on schemaless messages that
 are often only human-readable. As the Log4j example hints at, application-level logging is highly configurable, and not well
 standardized across languages and frameworks. When working on a polyglot project, standardizing with a common log format across
 all software can be painful.

 1.2.2. Web analytics

 Let’s move on to another example. If you are a frontend web developer, there’s a good chance that you have embedded JavaScript
 tags in a website or web app to provide some kind of web or event analytics. The most popular software in this category is
 Google Analytics, a software-as-a-service (SaaS) web analytics platform from Google; in 2012, Google released a new iteration
 of its analytics offering called Universal Analytics.

 Listing 1.2 shows example JavaScript code used to instrument Universal Analytics. This code would be either embedded directly in the
 source code of the website or invoked through a JavaScript tag manager. Either way, this code will run for each visitor to
 the website, generating a continuous stream of events representing each visitor’s set of interactions with the website. These
 events flow back to Google, where they are stored, processed, and displayed in a variety of reports. Figure 1.4 demonstrates the overall event flow.

 Listing 1.2. Web tracking with Universal Analytics

 <script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode
 .insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');1

 ga('create', 'UA-34290195-2', 'test.com'); 2
 ga('send', 'pageview'); 3
 ga('send', 'event', 'video', 'play', 'doge-video-01'); 4

</script>

 	1 Initialization code for the Universal Analytics tracking tag

 	2 Create an event tracker for the given account, for the test.com website.

 	
3 Track the website visitor viewing this web page.

 	4 Track the website visitor watching a video on this web page.

 Figure 1.4. A JavaScript tracking tag sends visitors’ interactions with a website to Universal Analytics. This event stream is made available
 for analysis from within the Google Analytics user interface.

 [image:]

 With Google Analytics deployed like this, a business analyst can log in to the Google Analytics web interface and start to
 make sense of the website’s event stream across all of its visitors. Figure 1.5 is a screenshot taken from Universal Analytics’ real-time dashboard, showing the previous 30 minutes’ worth of events occurring
 on the Snowplow Analytics website.

 Figure 1.5. Google Analytics is recording a real-time stream of events generated by website visitors. At the bottom right, you can see
 the counts of views of individual web pages in the last 30 minutes.

 [image:]

 1.2.3. Publish/subscribe messaging

 Let’s take a slightly lower-level example, but hopefully still one that many readers will be familiar with: application messaging,
 specifically in the publish/subscribe pattern. Publish/subscribe, sometimes shortened to pub/sub, is a simple way of communicating messages:

 	Message senders publish messages that can be associated with one or more topics.

 	Message receivers subscribe to specific topics, and then receive all messages associated with that topic.

 If you have worked with pub/sub messaging, there’s a good chance that the messages you were sending were events of some form or another.

 For a hands-on example, let’s try out NSQ, a popular distributed pub/sub messaging platform originally created by Bitly. Figure 1.6 illustrates NSQ brokering events between a single publishing app and two subscribing apps.

 Figure 1.6. NSQ pub/sub is facilitating communication between App 1, which is publishing messages into a single Topic 1, and Apps 2 and
 3, which are each subscribing to receive messages from Topic 1.

 [image:]

 The nice thing about NSQ for demonstration purposes is that it is super simple to install and set up. On macOS, we open up
 a new terminal, install NSQ by using Homebrew, and then start up the nsqlookupd daemon:

 $ brew install nsq
...
$ nsqlookupd
...

 And then in a second terminal window, we start the main NSQ daemon, nsqd:

 $ nsqd --lookupd-tcp-address=127.0.0.1:4160
...

 We leave those two daemons running and then open a third terminal. We use the nsqd daemon’s HTTP API to create a new topic:

 $ curl -X POST http://127.0.0.1:4151/topic/create\?topic\=Topic1

 Next we’re ready to create the two subscribers, Apps 2 and 3. In two further terminals, we start the nswq_tail app to simulate Apps 2 and 3 subscribing to Topic 1:

 $ nsq_tail --lookupd-http-address=127.0.0.1:4161 \
 --topic=Topic1 --channel=App2
2018/10/15 20:53:10 INF 1 [Topic1/App2]
 querying nsqlookupd http://127.0.0.1:4161/lookup?topic=Topic1
2018/10/15 20:53:10 INF 1 [Topic1/App2]
 (Alexanders-MacBook-Pro.local:4150) connecting to nsqd

 And our fifth and final terminal:

 $ nsq_tail --lookupd-http-address=127.0.0.1:4161 \
 --topic=Topic1 --channel=App3
2018/10/15 20:57:55 INF 1 [Topic1/App3]
 querying nsqlookupd http://127.0.0.1:4161/lookup?topic=Topic1
2018/10/15 20:57:55 INF 1 [Topic1/App3]
 (Alexanders-MacBook-Pro.local:4150) connecting to nsqd

 Returning to our third terminal (the only one not running a daemon), we send in some events, again using the HTTP API:

 $ curl -d 'checkout' 'http://127.0.0.1:4151/pub?topic=Topic1'
OK%
$ curl -d 'ad_click' 'http://127.0.0.1:4151/pub?topic=Topic1'
OK%
$ curl -d 'save_game' 'http://127.0.0.1:4151/pub?topic=Topic1'
OK%

 We check back in our tailing terminals to see the events arriving:

 2018/10/15 20:59:06 INF 1 [Topic1/App2] querying nsqlookupd
http://127.0.0.1:4161/lookup?topic=Topic1
checkout
ad_click
save_game

 And the same for App 3:

 2018/10/15 20:59:08 INF 1 [Topic1/App3] querying nsqlookupd
http://127.0.0.1:4161/lookup?topic=Topic1
checkout
ad_click
save_game

 So in this pub/sub architecture, we have events being published by one application and being subscribed to by two other applications.
 Add more events, and again you have a continuous event stream being processed.

 Hopefully, the examples in this section have shown you that the concept of the event stream is a familiar one, underpinning
 disparate systems and approaches including application logging, web analytics, and publish/subscribe messaging. The terminology
 may be different, but in all three examples, you can see the same building blocks: a structure or schema of events (even if
 extremely minimal); a way of generating these events; and a way of collecting and subsequently processing these events.

1.3. Unifying continuous event streams

 So far in this chapter, we have introduced the idea of event streams, defined our terms, and highlighted familiar technologies
 that use event streams in one form or another. This usage is a good start, but hopefully you can see that these technologies
 are highly fragmented: their evented nature is poorly understood, their event schemas are unstandardized, and their use cases are trapped in separate silos. This section introduces a much more radical—and powerful—approach
 to using continuous event streams for your business.

 Simply put, the argument of this book is that every digital business should be restructured around a process that does the
 following:

 	Collects events from disparate source systems

 	Stores them in a unified log

 	Enables data processing applications to operate on these event streams

 This is a bold statement—and one that sounds like a lot of work to implement! What evidence do we have that this is a practical
 and useful course of action for a business?

 This section maps out the historical and ongoing evolution of business data processing, extending up to continuous event streams
 and this unified log. We have split this evolution into two distinct eras that we have both lived through and experienced
 firsthand, plus a third era that is soon approaching:

 	
The classic era— The pre-big data, pre-SaaS era of operational systems and batch-loaded data warehouses

 	
The hybrid era— Today’s hodgepodge of different systems and approaches

 	
The unified era— An emerging architecture, enabled by processing continuous event streams in a unified log

 1.3.1. The classic era

 In the classic era, businesses primarily operated a disparate set of on-premises transactional systems, feeding into a data warehouse; figure 1.7 illustrates this architecture. Each transactional system would feature the following:

 	An internal local loop for near-real-time data processing

 	Its own data silo

 	Where necessary, point-to-point connections to peer systems (for example, via APIs or feed import/exports)

 Figure 1.7. This retailer has four transactional systems, each with its own data silo. These systems are connected to each other as necessary
 with point-to-point connections. A nightly batch ETL process extracts data out of the data silos, transforms it for reporting purposes, and then loads it into a data warehouse. Management reports are then based on the contents of the data warehouse.

 [image:]

 A data warehouse would be added to give the management team a much-needed view across these transactional systems. This data
 warehouse would typically be fed from the transactional systems overnight by a set of batch extract, transform, load (ETL)
 processes. This data warehouse provided the business with a single version of the truth, with full data history and wide data
 coverage. Internally, it was often constructed following the star schema style of fact and dimension tables, as popularized
 by Ralph Kimball.[1]

 1

See “Fact Tables and Dimension Tables” by Ralph Kimball (www.kimballgroup.com/2003/01/fact-tables-and-dimension-tables/) for more information about these dimensional modeling techniques.

 Although we call this the classic era, in truth many businesses still run on a close descendant of this approach, albeit with
 more SaaS platforms mixed in. This is a tried and tested architecture, although one with serious pain points:

 	
High latency for reporting— The time span between an event occurring and that event appearing in management reporting is counted in hours (potentially
 even days), not seconds

 	
Point-to-point spaghetti— Extra transactional systems mean even more point-to-point connections, as illustrated in figure 1.8. This point-to-point spaghetti is expensive to build and maintain and increases the overall fragility of the system.

 Figure 1.8. The maximum number of point-to-point connections possibly required between 2, 4, and 16 software systems is 2, 12, and 240
 connections, respectively. Adding systems grows the number of point-to-point connections quadratically.

 [image:]

 	
Schema woes— Classic data warehousing assumes that each business has an intrinsic data model that can be mined from the state stored in
 its transactional systems. This is a highly flawed assumption, as we explore in chapter 5.

 Faced with these issues, businesses have made the leap to a new model—particularly, businesses in fast-moving sectors such
 as retail, technology, and media. We’ll call this new model the hybrid era.

 1.3.2. The hybrid era

 The hybrid era is characterized by companies operating a hodgepodge of transactional and analytics systems—some on-premises packages, some
 from SaaS vendors, plus some homegrown systems. See figure 1.9 for an example of a hybrid-era architecture.

 Figure 1.9. Compared to the classic era, our retailer has now added external SaaS dependencies; Hadoop as a new high-latency, “log everything”
 platform; and new low-latency data pipelines for use cases such as systems monitoring and product recommendations.

 [image:]

 It is hard to generalize what these hybrid architectures look like. Again, they have strong local loops and data silos, but
 there are also attempts at “log everything” approaches with Hadoop and/or systems monitoring. There tends to be a mix of near-real-time
 processing for narrow analytics use cases such as product recommendations, plus separate batch-processing efforts into Hadoop
 as well as a classic data warehouse. Hybrid architectures also feature attempts to bulk-export data from external SaaS vendors
 for warehousing, and efforts to feed these external systems with proprietary data through these systems’ own APIs.

 Although it is obvious that this hybrid approach delivers capabilities sorely lacking from the classic approach, it brings
 its own problems:

 	
No single version of the truth— Data is now warehoused in multiple places, depending on the data volumes and the analytics latency required. There is no system
 that has 100% visibility.

 	
Decisioning has become fragmented— The number of local systems loops, each operating on siloed data, has grown since the classic era. These loops represent a
 highly fragmented approach to making near-real-time decisions from data.

 	
Point-to-point connections have proliferated— As the number of systems has grown, the number of point-to-point connections has exploded. Many of these connections are fragile
 or incomplete; getting sufficiently granular and timely data out of external SaaS systems is particularly challenging.

 	
Analytics can have low latency or wide data coverage, but not both— When stream processing is selected for low latency, it becomes effectively another local processing loop. The warehouses aim
 for much wider data coverage, but at the cost of duplication of data and high latency.

 1.3.3. The unified era

 These two eras bring us up to the present day, and the emerging unified era of data processing. The key innovation in business terms is putting a unified log at the heart of all of our data collection
 and processing. A unified log is an append-only log to which we write all events generated by our applications. Going further, the unified log has these
 characteristics:

 	Can be read from at low latency.

 	Is readable by multiple applications simultaneously, with different applications able to consume from the log at their own
 pace.

 	Holds only a rolling window of events—probably a week or a month’s worth. But we can archive the historic log data in the
 Hadoop Distributed File System (HDFS) or Amazon Simple Storage Service (S3).

 For now, don’t worry about the mechanics of the unified log. Chapter 2 covers this in much more detail. For now, it is more important to understand how the unified log can reshape the way that
 data flows through a business. Figure 1.10 updates our retailer’s architecture to the unified era. The new architecture is guided by two simple rules:

 	All software systems can and should write their individual continuous event streams to the unified log. Even third-party SaaS
 vendors can emit events via webhooks and streaming APIs.

 	Unless very low-latency or transactional guarantees are required, software systems should communicate with each other in an
 uncoupled way through the unified log, not via point-to-point connections.

 Figure 1.10. Our retailer has rearchitected around a unified log and a longer-term archive of events in Hadoop. The data architecture is
 now much simpler, with far fewer point-to-point connections, and all of our analytics and decision-making systems now working
 off a single version of the truth.

 [image:]

 A few advantages should be clear compared to one or both of the previous architectures:

 	
We have a single version of the truth. Together, the unified log plus Hadoop archive represent our single version of the truth. They contain exactly the same data—our
 event stream—but they have different time windows of data.

 	
The single version of the truth is upstream from the data warehouse. In the classic era, the data warehouse provided the single version of the truth, making all reports generated from it consistent.
 In the unified era, the log provides the single version of the truth; as a result, operational systems (for example, recommendation
 and ad-targeting systems) compute on the same truth as analysts producing management reports.

 	
Point-to-point connections have largely been unravelled. In their place, applications can append to the unified log, and other applications can read their writes. This is illustrated
 in figure 1.11.

 Figure 1.11. Our unified log acts as the glue between all of our software systems. In place of the proliferation of point-to-point connections
 seen prior, we now have systems reading and writing to the unified log. Conceptually, we now have a maximum of 32 unidirectional
 connections, compared to 240 for a point-to-point approach.

 [image:]

 	
Local loops have been unbundled. In place of local silos, applications can collaborate on near-real-time decision-making via the unified log.

1.4. Introducing use cases for the unified log

 You may have read through the preceding section and thought, “Continuous event streams and the unified log look all well and
 good, but they seem like an architectural optimization, not something that enables wholly new applications.” In fact, this
 is both a significant architectural improvement on previous approaches, and an enabler for powerful new use cases. This section
 will whet your appetite with three of these use cases.

 1.4.1. Customer feedback loops

 One of the most exciting use cases of continuous data processing is the ability to respond to an individual’s customer behavior
 while that customer is still engaged with your service. These real-time feedback loops will look a little different depending on the industry you are in. Here are just a few examples:

