

 [image: cover]

 Seam in Action

 Dan Allen

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Development Editor: Cynthia Kane
Copyeditor: Liz Welch
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes
Proofreader: Katie Tennant

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

Dedication

 To my wife Sarah, without whom this book would not have been possible. Thanks for giving up everything. I love you forever.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Teeing off with Seam

 Chapter 1. Seam unifies Java EE

 Chapter 2. Putting seam-gen to work

 2. Seam fundamentals

 Chapter 3. The Seam life cycle

 Chapter 4. Components and contexts

 Chapter 5. The Seam component descriptor

 Chapter 6. Absolute inversion of control

 3. Seam’s state management

 Chapter 7. The conversation: Seam’s unit of work

 Chapter 8. Understanding Java persistence

 Chapter 9. Seam-managed persistence and transactions

 Chapter 10. Rapid Seam development

 4. Sinking the business requirements

 Chapter 11. Securing Seam applications

 Chapter 12. Ajax and JavaScript remoting

 Chapter 13. File, rich rendering, and email support

 Appendix A. Seam starter set

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Teeing off with Seam

 Chapter 1. Seam unifies Java EE

 1.1. Which framework should I use?

 1.2. Choosing Seam

 1.2.1. A complete application stack

 1.2.2. Why Seam was created

 1.2.3. Debunking the “vendor lock-in” myth

 1.2.4. Making the case for Seam

 1.3. Seam’s approach to unification

 1.3.1. Seam integrates JSF, JPA, and POJO components

 1.3.2. The contextual component model

 1.4. Your first swings with Seam

 1.4.1. Entity classes serving as backing beans

 1.4.2. An all-in-one component

 1.4.3. Binding components to the view

 1.4.4. Retrieving data on demand

 1.4.5. Clickable lists

 1.4.6. Integration tests designed for JSF

 1.5. Seam’s core competencies

 1.5.1. Turns JSF into a pro

 1.5.2. Gets you rich quick

 1.5.3. Fosters an agile environment

 1.6. Summary

 Chapter 2. Putting seam-gen to work

 2.1. The Open 18 prototype

 2.1.1. Consider yourself tasked

 2.1.2. Mapping entities to the database schema

 2.2. Letting seam-gen do the initial work

 2.2.1. seam-gen’s specialty

 2.2.2. Features that seam-gen provides

 2.3. Kick off your project with seam-gen

 2.3.1. A look at the seam-gen commands

 2.3.2. A Q&A session with seam-gen

 2.3.3. Creating a basic project structure

 2.3.4. Generating the CRUD

 2.4. Deploying the project to JBoss AS

 2.4.1. To deploy...

 2.4.2. ...or to explode

 2.4.3. Switching between environments

 2.4.4. Launching JBoss AS

 2.5. Show and tell, change, and repeat

 2.5.1. Walking the course

 2.5.2. Guiding the reverse-engineering process

 2.5.3. Exploring the structure of the generated project

 2.6. Rapidly developing a seam-gen project

 2.6.1. Incremental hot deployment

 2.6.2. Accelerating development by using an IDE

 2.7. Summary

 2. Seam fundamentals

 Chapter 3. The Seam life cycle

 3.1. Exploring how Seam participates in a request

 3.1.1. Flipping Seam’s switch

 3.1.2. The JSF servlet, the workhorse of Seam

 3.1.3. Serving collateral resources via the Seam resource servlet

 3.1.4. Seam’s chain of servlet filters

 3.1.5. The Seam phase listener

 3.2. The JSF life cycle sans Seam

 3.2.1. The JSF life-cycle phases

 3.2.2. The initial request

 3.2.3. The postback

 3.2.4. Shortcomings of the JSF life cycle

 3.3. Seam’s page-oriented life-cycle additives

 3.3.1. Advanced orchestration with pages.xml

 3.3.2. Intelligent navigation

 3.3.3. Seam UI command components

 3.3.4. Page parameters

 3.3.5. Page actions: execute me first!

 3.4. Combining page actions with navigation

 3.4.1. Sanity checking a request

 3.4.2. Built-in page actions

 3.4.3. Search engine–friendly URLs

 3.5. The JSF life cycle with Seam

 3.5.1. Phase listeners versus servlet filters

 3.5.2. Stepping through the augmented life cycle

 3.6. A try-catch block around the life cycle

 3.6.1. Failing gracefully or with intentional crudeness

 3.6.2. Registering an exception handler

 3.6.3. Handling the exception at the source

 3.7. Summary

 Chapter 4. Components and contexts

 4.1. Seam’s contextual naming container

 4.1.1. Seam’s context model

 4.1.2. Unifying the Java servlet contexts

 4.1.3. Seam’s new stateful contexts

 4.1.4. Seam’s enhanced servlet contexts

 4.2. Sorting out components

 4.2.1. Components vs. component instances

 4.2.2. Seam manages components

 4.3. Defining components using annotations

 4.3.1. Giving a component a @Name

 4.3.2. Putting a component in @Scope

 4.4. A comprehensive component example

 4.4.1. Creating the entity components

 4.4.2. Preparing an action bean component

 4.4.3. Integration testing components

 4.4.4. Hooking components into JSF

 4.5. A component’s life

 4.5.1. Loading component definitions

 4.5.2. When to @Install a component

 4.5.3. Giving a component multiple @Roles

 4.5.4. Instantiating components at @Startup

 4.5.5. Component life-cycle callbacks

 4.5.6. Wiring components together

 4.5.7. Where all components go to die

 4.6. Using EJB 3 session beans in Seam

 4.6.1. Whose component is it, anyway?

 4.6.2. The making of a Seam session bean component

 4.6.3. The mechanics of the interaction

 4.7. Accessing components

 4.7.1. Access modes

 4.7.2. Access strategies

 4.8. Summary

 Chapter 5. The Seam component descriptor

 5.1. Defining components using XML

 5.1.1. Choosing your descriptor strategy

 5.1.2. The structure of the component descriptor

 5.1.3. Fine-grained component descriptors

 5.2. XML namespaces in the component descriptor

 5.2.1. The purpose of XML namespace declarations

 5.2.2. Defining an XML @Namespace for components in a package

 5.2.3. How XML namespaces are interpreted

 5.2.4. Importing a context variable prefix

 5.3. Configuring component properties

 5.3.1. Component definitions as object prototypes

 5.3.2. Where component properties are defined

 5.3.3. Property value types

 5.3.4. Wiring components together

 5.4. Component definitions vs. component configuration

 5.4.1. Avoiding conflicts with an existing definition

 5.4.2. Dividing the configuration between annotations and XML

 5.5. Configuring and enabling built-in components

 5.5.1. Using the component descriptor to control Seam

 5.5.2. Configuring Seam’s internationalization support

 5.6. Summary

 Chapter 6. Absolute inversion of control

 6.1. Bijection: dependency injection evolved

 6.1.1. Introducing bijection

 6.1.2. Bijection on the golf course

 6.1.3. Activating bijection

 6.2. Dynamic dependency @In-jection

 6.2.1. Declaring an injection point

 6.2.2. The injection process

 6.2.3. Mixing scopes and serializability

 6.2.4. Injection variants

 6.3. @Out-jecting context variables

 6.3.1. The outjection process

 6.3.2. Outjection use cases

 6.3.3. Built-in @DataModel support

 6.4. Bypassing bijection

 6.4.1. Internal method calls

 6.4.2. The mystical method context

 6.4.3. Reentrant method calls

 6.4.4. Disabling bijection by disabling interceptors

 6.5. Component events

 6.5.1. Raising an event from a component

 6.5.2. Defining an event @Observer

 6.5.3. Raising events on page transitions

 6.5.4. Built-in events

 6.6. Custom method interceptors

 6.6.1. Two sides to the interceptor coin

 6.6.2. Defining a Seam interceptor

 6.7. Factory and manager components

 6.7.1. A context variable @Factory

 6.7.2. Components that @Unwrap

 6.8. Summary

 3. Seam’s state management

 Chapter 7. The conversation: Seam’s unit of work

 7.1. Learning to appreciate conversational state

 7.1.1. Redefining the unit of work

 7.1.2. The burden of managing state

 7.2. The conversation context

 7.2.1. Carving a workspace out of the HTTP session

 7.2.2. What you might store in a conversation

 7.3. Establishing conversation boundaries

 7.3.1. A conversation’s state

 7.3.2. Beginning a long-running conversation

 7.3.3. Keeping the conversation going

 7.3.4. Enlisting objects in a conversation

 7.3.5. Ending a long-running conversation

 7.4. Putting the conversation aside

 7.4.1. Abandoning a conversation

 7.4.2. Creating nested conversations

 7.5. Switching between conversations

 7.5.1. The conversation as a workspace

 7.5.2. Giving conversations a description

 7.5.3. Using the built-in conversation switchers

 7.6. Driving the conversation with a page flow

 7.6.1. Setting up a page flow

 7.6.2. Learning your way around a page flow

 7.6.3. Advancing the page flow

 7.6.4. Addressing the back button

 7.7. Ad hoc conversations

 7.7.1. Open for business

 7.7.2. Show me what you’ve got

 7.8. Summary

 Chapter 8. Understanding Java persistence

 8.1. Java persistence principles

 8.1.1. Establishing expectations

 8.1.2. The four pillars of Java persistence

 8.2. Entities and relationships

 8.2.1. Mapping metadata

 8.2.2. Transitive persistence

 8.2.3. Bringing annotations to the persistence layer

 8.3. The persistence unit

 8.3.1. Defining a JCA data source

 8.3.2. The persistence unit descriptor

 8.3.3. The persistence manager factory

 8.4. The persistence manager

 8.4.1. Obtaining a persistence manager

 8.4.2. The management functions of a persistence manager

 8.4.3. Persistence context scoping

 8.5. Transactions

 8.5.1. Sorting out the transaction APIs

 8.5.2. Atomic units of work

 8.5.3. ACID abridged

 8.6. Managing persistence in the enterprise

 8.6.1. Introducing the extended persistence context

 8.6.2. The benefits of an extended persistence context

 8.7. Choosing between JPA and Hibernate

 8.7.1. How Hibernate relates to JPA

 8.7.2. What sets Hibernate and JPA apart

 8.7.3. Seam’s hybrid approach

 8.8. Summary

 Chapter 9. Seam-managed persistence and transactions

 9.1. Getting persistence context management right

 9.1.1. Respecting the persistence manager

 9.1.2. Managing an extended persistence context

 9.2. Enhancing the capabilities of the persistence manager

 9.2.1. Seam’s standard enhancements

 9.2.2. Letting Hibernate shine through

 9.3. Setting up a persistence unit in Seam

 9.3.1. Seam’s persistence manager factories

 9.3.2. Seam-managed persistence contexts

 9.3.3. Sharing the persistence manager factory through JNDI

 9.3.4. Validating the persistence context at startup

 9.4. Seam’s transaction support

 9.4.1. Global transactions

 9.4.2. Seam’s transaction abstraction layer

 9.4.3. Controlling Seam-managed transactions

 9.4.4. Application transactions

 9.5. Summary

 Chapter 10. Rapid Seam development

 10.1. A framework within a framework

 10.1.1. Wrapping the persistence API

 10.1.2. The persistence controllers

 10.1.3. Two ways to play

 10.2. Stateful CRUD using the Home component

 10.2.1. Remedying the Anemic Domain Model

 10.2.2. Giving the domain object a Home

 10.2.3. Putting Home to work

 10.2.4. Venturing away from home

 10.2.5. CRUD a la XML

 10.3. Providing feedback

 10.3.1. Customizing the status messages

 10.3.2. Creating i18n-compliant messages

 10.3.3. Transaction success events

 10.4. Smarter queries with the Query component

 10.4.1. Creating a result set listing

 10.4.2. Paging the result set

 10.4.3. Deleting multiple records at once

 10.4.4. Putting the results in order-

 10.4.5. Placing restrictions on the result set

 10.5. Summary

 4. Sinking the business requirements

 Chapter 11. Securing Seam applications

 11.1. Authentication jump-start

 11.1.1. Giving the user an identity

 11.1.2. Implementing authentication in three steps

 11.1.3. A glimpse at Seam’s identity management

 11.1.4. Even more “Basic” authentication

 11.2. Securing pages

 11.2.1. The challenge with JSF security

 11.2.2. Requiring authentication

 11.2.3. Serving pages securely

 11.3. Role-based authorization

 11.3.1. Expressing restrictions

 11.3.2. Declaring role-based restrictions

 11.4. Rule-based authorization using Drools

 11.4.1. Rules vs. roles

 11.4.2. Setting up Drools

 11.4.3. Creating rules with Drools

 11.4.4. Automatic context detection

 11.5. Separating the computers from the humans

 11.5.1. An overview of CAPTCHA

 11.5.2. Adding a CAPTCHA challenge to forms

 11.6. Summary

 Chapter 12. Ajax and JavaScript remoting

 12.1. Using Ajax with JSF

 12.1.1. Embracing a server-centric application model

 12.1.2. Ajax4jsf and ICEfaces open a communication channel to JSF

 12.1.3. Seam’s role in Ajax-based JSF requests

 12.2. Partial form submits

 12.2.1. Live validation

 12.2.2. Business-savvy validations

 12.2.3. Working alongside the user to fill out a form

 12.3. Ajax Push with ICEfaces

 12.4. JavaScript remoting to Seam

 12.4.1. Transparent Ajax

 12.4.2. Giving the browser access to Seam components

 12.4.3. Making calls to a server-side component

 12.4.4. Local stubs

 12.5. Conversational remoting calls

 12.5.1. Joining the conversation in progress

 12.5.2. Striking up a conversation

 12.5.3. Storing up requests for a shipment

 12.6. Responding to GWT remoting calls

 12.6.1. A quick introduction to GWT integration

 12.6.2. Preparing the remoting service

 12.6.3. Making a GWT service call through Seam remoting

 12.7. Summary

 Chapter 13. File, rich rendering, and email support

 13.1. Uploading files and rendering dynamic images

 13.1.1. Accepting file uploads

 13.1.2. Rendering images from raw data

 13.2. PDF generation with iText

 13.2.1. Laying out a PDF with UI components

 13.2.2. Working with tables and cells

 13.2.3. Adding a splash of color

 13.2.4. Graceful failures and friendly file extensions

 13.2.5. Serving dynamic documents

 13.3. Quick and easy charting with JFreeChart

 13.3.1. Chart basics

 13.3.2. Bar charts

 13.3.3. Line charts

 13.3.4. Pie charts

 13.4. Composing email the Seam way

 13.4.1. Sending your first message

 13.4.2. Adding an entourage to the message

 13.4.3. Setting up JavaMail in Seam

 13.4.4. Publishing newsfeeds

 13.5. Customizing the UI with resource bundles

 13.5.1. Getting Seam to speak the right language

 13.5.2. Themes

 13.6. Summary

 Appendix A. Seam starter set

 A.1. Stepping through the prerequisites

 A.1.1. Java 5 compliance

 A.1.2. Java EE 5 application servers

 A.1.3. Absent (JavaServer) Faces

 A.2. Downloading the Seam distribution

 A.2.1. Seam’s modules

 A.2.2. A wealth of documentation and examples

 A.2.3. Finding seam-gen amid the noise

 A.3. seam-gen and the Open 18 example application

 A.3.1. The source code

 A.3.2. H2 database

 A.3.3. Apache Ant, turning the wheels of seam-gen

 A.3.4. RichFaces or ICEfaces—take your pick

 A.4. Managing libraries in a seam-gen project

 A.5. Adding Seam as a Maven 2 dependency

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 The most challenging part of being a developer on the Seam project isn’t writing the code—it’s trying to explain Seam to new
 users. There’s a large gap that a Seam neophyte must cross to really “get” what Seam is about. The problem isn’t that Seam
 is overly complex, or that it requires an esoteric skill set. Seam puts together a number of ideas that are unfamiliar to
 mainstream Java developers. Many of those ideas challenge the common wisdom of enterprise Java development.

 To start with, Seam fills a gap not many Java developers realize exists. We are so accustomed to working with a half dozen
 disintegrated technologies that a truly integrated application framework seems foreign to us. This disintegration is most
 painfully clear at the persistence layer. Where ineffective caching and lazy instantiation issues plague most applications,
 Seam actually gets it right. When you consider that the creators of Seam were the brains behind Hibernate, that’s not hard
 to believe!

 Then you’ve got Seam’s dynamic bidirection injection (bijection), which is radically different from the static injection offered
 by the popular dependency injection frameworks. And we haven’t even mentioned the clever stateful components in a world where
 the prevailing technologies force all applications into a multilayered stateless architecture regardless of whether that architecture
 suits the application being developed.

 We’re just scratching the surface, and already we can see that Seam offers a vision that’s so different from the status quo
 that guiding a new Seam user becomes a huge challenge. As a result, few introductions to Seam go beyond the basics, presenting
 the ABCs of the technology without showing how to put the letters together to make words and sentences. Seam in Action is the first Seam book to capture the spirit of Seam and show you how to put those words and sentences together the way we
 on the Seam team intended the technology to be used.

 What impresses me most about the book you’re holding in your hands is that it doesn’t blindly toe the Seam party line. Dan
 Allen has painstakingly broken Seam down to its core concepts and reassembled them in a way that is fresh and unique. Seam in Action isn’t a simple-minded regurgitation of the Seam reference documentation. Instead, it’s a perfect companion to it, showing
 how to understand Seam and best apply it to your own applications.

 Seam can help you code better, more functional applications. It can help you work faster, and it can help you code your applications
 with a simpler, easier-to-manage architecture. But you’ll only reap those benefits if you take the time to learn how to best
 apply the technology. Seam in Action is the perfect guide to get you to the point where you can apply Seam to its full potential.

 If you’re up to the challenge, then, to shamelessly borrow the analogy of the book, I invite you to step up to the first tee—and
 take a swing.

 NORMAN RICHARDS

 Senior Engineer, Red Hat

Preface

 We can’t solve problems by using the same kind of thinking we used when we created them.

 Albert Einstein

 As I write this passage, I’m flying over the Atlantic Ocean on my way back from Europe to the United States for the second
 time in a month. This trip was to Tuscany for a meeting to discuss Seam’s future; the previous trip had been to Zurich, where
 I spoke about Seam at the Jazoon ‘08 conference. The first trip was especially significant to me because it marked the first
 time in the 30 years of my life that I’ve traveled outside of North America. I was beginning to think that day would never
 come, but it did, thanks to Seam. (And because my brother purchased the ticket to get me there. Thanks, Kevin!)

 You might think I’m ridiculous for attributing this milestone to Seam. After all, how can a framework motivate a person to
 embark on an unprecedented trip? Before you call me crazy, let me explain how I got involved in Seam and how it influenced
 me to expand my horizons.

 Around the time Seam was being developed, I was spending my days banging my head on a project built using Spring and JSF.
 For more than a year, I felt stuck in a rut trying to manage the application’s state, wrestling with irrelevant decisions
 such as whether to name a business object a Manager or a Service, and rationalizing how many layers to use and which layer should take ownership of a given task. All of these distractions
 held back the project and my growth. I kept looking for some way out.

 The spark that attracted me to Seam is the fine-grained control it provides over JSF requests through its page descriptor.
 The reason I stuck with Seam (and ultimately decided to write about it) goes well beyond the voids it filled for me at the
 time.

 Seam has clout because it follows a consistent approach without imposing arbitrary restrictions. It leverages annotations,
 interceptors, XHTML-based templates, and JSF components to give you the most bang for your keystroke. It provides access to
 objects when and where you need them and manages them so you don’t have to. It also helps establish continuity from one page
 request to the next. Above all, it gives you freedom to organize the application as it suits you and to choose the tools you
 want to use to build it: Java or Groovy, XML or annotations, JavaScript or rich widgets, built-in or custom components, and
 so on.

 But we have a tendency to get caught up in the word framework and forget the real reason we’re writing software: to serve the needs of our users or our clients’ users. That’s the angle
 you have to take going into learning one of these tools.

 Users don’t want to spend their days paging through endless result sets and could care less if you’re having a problem with
 lazy initialization exceptions in the view. They want mature software. They want advanced searches, reports in PDF or Excel,
 charts, emails, file uploads, dynamic graphics, wizards, workspaces, and so on. Basically, they want the stuff that’s really
 hard to develop, or at least harder than feeding the database through a CRUD generation tool. Seam gives you the CRUD generation
 tool, which gets you developing immediately, and it also provides the extra stuff.

 Seam is worth knowing because it touches on nearly every aspect of Java EE. Sure, you have a lot to learn, but Seam makes
 every facet of the platform remarkably accessible and gets you working on the advanced parts of your application early in
 the project. You no longer have to dread those wild and crazy requirements that the user dreams up. Instead, you feel empowered
 to write applications—and you’ll get to the feature wish lists.

 As an integration framework, Seam keeps a vast number of technologies close at hand and accessible. As a result, you find
 yourself trying out technologies you never thought you’d use, and you witness your application and skill set maturing quickly.
 You also start introducing new styles of interaction into your application, such as the event-observer model or something
 as revolutionary as Ajax Push. You get used to venturing into new territory, without having to abandon the familiar, and it
 affects your general attitude toward life.

 That brings me back to my original statement. Seam is the driver that finally launched me out of North America. It also kick-started
 my writing and consulting career, got me involved in a successful open source project, and allowed me to meet interesting
 and talented people. How will Seam change your career? How will it change your life?

 Somewhere over the Atlantic, July 2008

Acknowledgments

 While writing this book, I made many promises to myself and others about what I’d do when I finished. The most important of
 those promises was to acknowledge everyone who made this book possible. Of course, I’m grateful to have you as a reader. But
 you should appreciate those people who got this book out on the shelves and into your hands.

 The first and last person I want to thank is my wife, Sarah. If it weren’t for her help, you wouldn’t be holding this book.
 I have no idea where to even begin thanking her. She pushed me to believe in myself, kept me motivated when the end kept moving
 further away, tolerated being inundated with Seam and my relentless questioning about how to structure the book, edited drafts,
 assembled the index, provided therapy, made sure I ate, and took care of countless chores I let slip. What meant the most
 is that she put my project before her own, something I look forward to doing for her now. Please help me in thanking her.

 Writing a book puts a tremendous strain on relationships. I would like to thank all my friends and family for supporting me
 in this endeavor and having faith that I would eventually come out of my hole and once again answer phone calls, hang out,
 and talk about something other than writing a book. I am forever indebted to my parents, James and Mary Allen, for extending
 me every opportunity in my life to be successful. You only get one childhood and they made it both a rewarding and a memorable
 one. Mom and Dad, thanks for passing on to me your relentless perseverance and strong desire to learn and for always being
 there to support me in my endeavors.

 Rewinding to the origin of this book, I want to thank Andrew Glover for introducing me to Jennifer Aloi from IBM developerWorks,
 who in turn launched my technical writing career by sponsoring the Seamless JSF series. Much of the credit for that series’ success goes to Athen O’Shea for doing a superb job of editing and helping me
 find the right words. Little did I know that I would soon be buried deep in turning those ideas into a book.

 I want to thank Marjan Bace and Michael Stephens for taking a chance on me and trusting that I would finish as I blew past
 one deadline after the next. Something tells me they had the real schedule hidden in a drawer and had already anticipated
 the 15 months that would elapse over the course of this project. I’m also grateful to Andy Kapit and Andrew Van Etten of CodeRyte,
 Inc., for endorsing this book in its early stages.

 Moving along chronologically, I’d like to acknowledge Cynthia Kane for helping me see the big picture and for reminding me
 that I had a book to write when I started to daydream. I was fortunate to have an ambitious and talented set of reviewers
 who donated their time and insight to help make this the best Seam resource available: Peter Johnson, Doug Warren, Peter Pavlovich,
 Devon Hillard, Nikolaos Kaintantzis, Hung Tang, Michael Smolyak, Benjamin Muschko, Kevin Galligan, Judy Guglielmin, Valentin
 Crettaz, Carol McDonald, Ara Abrahamian, Horaci Macias, Norman Richards, Ted Goddard, Costantino Cerbo, Mark Eagle, Carlo
 Bottiglieri, and Jord Sonneveld. Thanks to Karen Tegtmeyer for seeking out the reviewers, conducting the reviews, and scaring
 the volunteers into actually sending back their comments. Special thanks to Benjamin Muschko, Pete Pavlovich, and Ray Van
 Eperen for thoroughly reading the book and giving me line-by-line edits and advice; thanks to Michael Youngstrom for reviewing
 chapter 15; thanks to Ted Goddard and Judy Guglielmin for their help with chapter 12 and the development of the source code for the ICEfaces example; and thanks to Valerie Griffin and Daniel Hinojosa for providing
 last-minute corrections and feedback. I also want to thank all my loyal MEAP readers and forum participants, especially those
 who were there from the very beginning, patiently waiting for this book to materialize into print.

 The heroes of this project are the production team, under the leadership of Mary Piergies, who coaxed me out of rewriting
 hell and worked in overdrive to get this book into print. The person who took on the biggest burden in this transition was
 Liz Welch, my copy editor. I want to extend enormous thanks to Liz for weeding out all the inconsistencies in the book and
 tolerating my pursuit of perfection. I also want to thank Norman Richards, my technical editor, for challenging me to get
 all my facts about Seam straight and steering me away from giving readers impractical advice. I’d like to recognize the tremendous
 work done by the remaining members of the production and postproduction team: Katie Tennant for proofreading the manuscript,
 squashing all of those “writing bugs”; Dottie Marsico and Gordan Salinovic for morphing the chapters from office document
 format into the professional layout that you see in front of you in record time; Leslie Haimes for making the book look eye-catching
 on the shelves and enticing readers, like yourself, to dive into it; Tiffany Taylor for maintaining the document templates;
 Gabriel Dobrescu for handling the book’s web presence on manning.com; and Steven Hong for continued support in publicizing the book and preparing marketing materials.

 Join me in thanking Gavin King for sharing his vision of Seam and its contextual component model with the world as an open
 source project and to all the Seam developers that matured his vision into the robust integration framework that it is today.

 I would like to thank Panera Bread in Laurel, MD, for serving as my retreat/second office when my house was trying to stifle
 my writing. I am grateful for the bottomless tea and free wireless internet. I wish more companies were as progressive as
 yours.

 I’m happy to say that each and every person mentioned in this passage, and sadly those I overlooked, helped me complete the
 most ambitious goal of my life. Thanks again to my wife for standing by me during this project.

About this Book

 If you’re ready to become an expert on Seam, I can guarantee you that this book will get you there. I don’t use terms that
 confuse you just to make myself feel smart. I don’t say “trust me on this; it will all work out.” I don’t distract you with
 an outline of the next chapter when you’re trying to focus on the current material. And especially, I don’t sprinkle @In and @Out annotations over a class and expect that you’ll know what they will do. Nope. I lay down the facts. I show you the steps.
 I reveal the logic. I diagram the flow. What I like most about programming is that each thing happens for a reason. The exciting
 challenge is learning what that reason is and then turning around and discovering how to make practical use of it. Some areas
 of Seam are hard to get, I’ll admit. But trust that with guidance, you will get it. Never settle for less than the facts,
 and don’t give up!

 Not only do I teach you how Seam works, I also teach you the how and the why so you can go off and teach Seam to others. I’ve traveled into each and every corner of Seam, and I want to share with you
 what I’ve experienced to motivate you to travel there yourself. I want to give you what Seam gave me: the ability to reach
 my true potential as a developer. This is the best resource to help you understand Seam without gaps.

Roadmap

 The goal of this book is to get you started with Seam quickly. It’s divided into four parts. The first part does a flyover
 of Seam and gets you ready to learn about it. The second part focuses in on the core concepts until you can see the blades
 of grass. The third part studies Seam’s state-management solution and Java persistence support. The last part teaches you
 to make your application secure and stand above the competition. Best of all, you get to have fun.

 Chapter 1 answers three questions: What is Seam? Why was Seam created? What does a Seam application look like? The chapter explains how Seam fits into the Java EE landscape and enumerates ways it extends the platform to make it more
 accessible and pertinent. You see a basic Seam application, which provides an overview of what is to come.

 Rather than diving directly into the fundamentals of Seam, Chapter 2 steps you through setting up a Seam project. Not only does this give you an environment for testing the Seam concepts covered
 in the remainder of the book, it leaves you with a complete CRUD application that supports incremental hot deployment of changes.

 Because JSF is the primary view framework in Seam, Chapter 3 provides a glimpse of it, identifies its weaknesses, and shows how Seam improves it. You study the page-oriented enhancements
 to JSF that Seam provides and get a high-level overview of how Seam involves itself in the JSF life cycle. By the chapter’s
 end, you should appreciate that the only reasonable way to develop using JSF is with Seam.

 Chapter 4 explores the heart of Seam: the contextual container. You learn what a Seam component is, how it differs from a component
 instance, the palette of scopes in which you can store instances and other context variables, and how Seam manages the component
 life cycle. You get a feel for using annotations to control the application. You also learn ways to access components and
 when they are instantiated.

 Seam’s central switchboard, the component descriptor, is introduced in Chapter 5. You learn about its two main functions: defining a component in XML as an alternative to annotations and assigning initial
 property values, either to control the behavior of a component or to build object prototypes. Although the metadata in this
 file is XML, Seam leverages namespaces to make the configuration type-safe. You even learn to develop your own namespace. Tucked away at the end of the chapter is an introduction to Seam’s simple,
 yet powerful, approach to managing message bundles.

 Chapter 6 is paramount because it presents Seam’s most compelling and progressive feature, bijection. The key benefit bijection provides
 is to allow component instances in different scopes to safely collaborate without risk of scope impedance or concurrency violations.
 The other theme in this chapter is how Seam initializes objects on demand.

 Chapter 7 covers Seam’s conversation, another vital feature. Java-based web applications have always lacked a scope that correlates with the user’s activity.
 You discover that the conversation fits this need, overcomes the shortcomings of the HTTP session, and provides a way for
 the user to manage parallel activities. The most important use of the conversation is to manage the persistence context.

 To appreciate how Seam improves Java persistence, you have to learn what it is. Chapter 8 gives you an introductory view of Java persistence and points you to valuable resources on the topic; explains how Java persistence
 is managed in a pure Java EE environment; and helps you distinguish between Hibernate and JPA.

 Chapter 9 presents Java persistence under the stewardship of Seam and demonstrates how Seam gets persistence right, where Java EE falls
 short. You learn that the conversation-scoped persistence context frees you from lazy initialization errors and dirty merge
 operations. You also learn that Seam blankets the request in a series of transactions, extending the guarantees they provide
 to all operations in a request. The chapter concludes by examining the most important feature of a multiuser web application:
 the application transaction, which makes persistence operations in a conversation atomic.

 Chapter 10 is round two of developing a CRUD application—only this time, you do everything yourself. Well, not everything. You learn
 how to leverage the classes in the Seam Application Framework to handle most of the boilerplate code, so all you have to do
 is design and customize the user interface. After reading Chapter 2 and Chapter 10, you should be able to do CRUD in your sleep.

 An application wouldn’t be much use without security. In three strokes, Chapter 11 gets you authenticating users and then proceeds to teach you how to implement basic role-based and contextual rule-based
 authorization to protect your application in powerful ways.

 One of the things Seam does well is make other technologies look good. In Chapter 12, you learn how to add Ajax to your application using RichFaces or ICEfaces components without touching a line of JavaScript.
 Seam manages state to ensure these Ajax interactions don’t bog down the server resources. You also learn to enhance the capabilities
 of JavaScript by giving it direct access to server-side components and learn to integrate Seam with a rich user interface
 technology such as GWT.

 Chapter 13 lets you escape the humdrum of HTML by teaching you to create a wide variety of content types, such as PDFs, emails, charts,
 graphics, and binary documents. You also learn to style your application and give the user control over the user interface.

 I had so much to talk about that the last two chapters wouldn’t fit in the book. On this book’s website (www.manning.com/SeaminAction), you can check out Seam’s business process management solution in Chapter 14 and Seam’s Spring integration in Chapter 15.

 Appendix A shows you how to set up Seam and the supporting environment and prepares you to follow along with the source code for this
 book.

Who should read this book?

 Seam in Action was described by one reviewer as “written by an expert for experts.” If you’ve picked up this book hoping it has the breadth
 of knowledge you seek, that quote should satisfy you. A second reviewer claimed that “experienced Seam developers are likely
 to get something out of reading the book.” Another stated that “even if you are already an expert in the underlying technologies,
 you will not be disappointed.” If you want to master Seam, it’s well worth having this book in your backpack.

 Where does that leave the rest of you, who are just getting started with Seam? You won’t be disappointed either. If you’re
 a Seam newbie or a manager, you’ll get plenty of value out of just the first two chapters. If you want to go further, you
 have to ask yourself if you’re committed to learning about this technology and if you’re willing to put some effort into it.
 Are you ready to become an expert? If not, it might be best for you to start with the Seam reference documentation or perhaps
 an introductory book. Chances are, you’ll be back when you’re ready to know all the details about how Seam works.

 If you’re still with me, be aware that you need some prior experience before you take on this book. I’ve been able to go into
 detail in the book because I’ve left out introductory material that’s readily available elsewhere. At the very least, I expect
 that you have experience developing with Java, using the Java Servlet API, and deploying to application servers or servlet
 containers. I move quickly through JSF and ORM technologies, assuming that you’ve at least read about them. You should also
 have some awareness of method interceptors and how they work, although this knowledge can be inferred from the text. Finally,
 if you’re interested in the parts of the book that cover the EJB 3 integration or Spring integration, you need some prior
 experience with these technologies. That sounds like a lot of prerequisites, but if you’re dedicated, you can pick up this
 information from the book and the resources I recommend as you read.

 If you’re worried about the requirement to understand JSF, the next section provides a brief introduction that should get
 you by. I also suggest a couple of additional resources if you feel you need more explanation. Honestly, though, basic JSF
 is straightforward, and Seam hides a lot of complexity beyond that point.

What you need to know about JSF to use Seam

 JSF is a component-oriented user interface (UI) framework as opposed to an action-based framework like Struts. Struts requires that you write a custom action handler that
 processes the request and then forwards control to a JSP page, which renders the HTML response. JSF, on the other hand, resolves
 a view template—typically a JSP page—automatically from a request and transfers control directly to it. The lack of a front
 controller may appear to be a step backward. The enhancement comes in the way the view template is processed.

 JSF reads the view template, which contains custom JSP or Facelets tags, and constructs a UI component tree, effectively deferring
 the rendering process. The UI component tree is a hierarchical graph of Java objects that represents the structure of the
 page. Rendering is only a secondary concern and occurs when the component tree is “encoded” to the client (that is, the browser).
 The renderer attached to each component produces the markup.

 The main concern of the UI component tree is to act as a server-side representation of the view and listen for events that
 occur in the UI. There is a one-to-one mapping between the elements in the component tree and the elements on the page (with
 the exception of literal HTML). For instance, if the page contains a form with inputs and buttons, a corresponding form and
 nested input and button components exist in the UI component tree. Because the processing of the view template is separate
 from the encoding of the UI component tree, you can build the component tree using an alternate view technology, such as Facelets
 or pure Java. The component tree can also produce markup other than HTML.

 The design of JSF goes beyond separating the view definition and view rendering with an intermediary object graph. JSF uses
 the component tree to capture events and allow programmatic, server-side manipulation of the view. In this regard, it’s similar
 to Swing, except that it operates in the context of the web environment. Any event performed by the user results in an HTTP
 request. During this request, or postback, the component tree is “restored” from its previous state. The events are processed, and the component tree is once again
 encoded to the client (the HTML response).

 A simple example of the event mechanism is when the user clicks a button—a UICommand component—in a JSF form. As a result, the method bound to the action of the button is executed. You don’t have to worry about
 how the request is handled or how this mapping is prepared. If the form has inputs—UIInput components—the values in those inputs are assigned to the JavaBean properties to which they’re bound. The properties are
 then available to the action method when it executes. The objects that are bound to UI components are called managed beans. As you learn later, JSF does the managing.

 How is a managed bean bound to a UI component? This binding is done using expression language (EL) notation, also found in JSP. There are both value- and method-binding expressions, although the latter are unique to JSF.
 JSF can use a value expression to capture a property value, in addition to outputting it, unlike in JSP. A method expression
 is used to bind a method to a UI component so that the method is invoked when the component is activated.

 In the button example, a method on a managed bean might be bound to the action of the button through the expression #{beanName.methodName}. This expression resolves to the methodName() method on an instance of a JSF managed bean named beanName. Managed beans are defined in the JSF descriptor, faces-config.xml, using the <managed-bean> element. JSF automatically creates instances of these managed beans as needed.

 Value expressions appear identical to method expressions, although they have a vastly different purpose. The value of an input
 component might be bound to a property on a managed bean using the expression #{beanName.propertyName}. JSF reads the value from the JavaBean getter method, getPropertyName(), when the page is rendered and writes the new value captured in the input to the setter method, setPropertyName(), after the button is clicked. Again, you don’t have to worry about reading request values from the HttpServletRequest object. The assignment happens automatically, and you can focus on implementing the business logic.

 The EL is an important part of JSF and Seam, and you should be sure to understand it. Two resources I recommend are the article
 “Unified Expression Language for JSP and JSF,” published on java.net,[1] and the FAQs about the EL on seamframework.org.[2]

 1http://today.java.net/pub/a/today/2006/03/07/unified-jsp-jsf-expression-language.html

 2http://seamframework.org/Documentation/WhatIsAnExpressionLanguageEL

 The example just presented appears simple enough, but what goes on during each JSF request, especially the postback, is quite
 a bit more sophisticated. Each request activates the JSF life cycle, which consists of six phases:

	Restore View

 	Apply Request Values

 	Process Validations (and conversions)

 	Update Model Values

 	Invoke Application

 	Render Response

If the request is a postback, the UI component tree is restored during the Restore View phase. If this is an initial request, meaning the URL was requested from the browser’s location bar or a regular link, the
 life cycle skips directly to the Render Response phase.

 A postback continues through the life cycle. In the three phases that follow Restore View, the form values are captured, converted, validated, and assigned to the JavaBean properties on the managed beans to which
 they are bound. Validations and conversions get assigned to an input component either as nested tags or correlated with the
 property’s type in the JSF descriptor.

 The Invoke Application phase is where the action methods are executed. There can be at most one primary action and any number of secondary action
 listeners. The difference between the two types is that only the primary action can trigger a navigation rule. The navigation
 rules, also defined in the JSF descriptor, dictate the next view to render and are consulted once the Invoke Application phase completes.

 Finally, in the Render Response phase, the UI component tree is built from the view template and subsequently encoded to HTML (or alternate output) and sent
 to the browser (or client).

 That’s all there is to JSF. If you’re a newcomer to the framework, this brief explanation may leave you wanting. In that case,
 I’ll point you to several excellent resources on JSF that should get you up to speed. If you read nothing else, check out
 the JSF for nonbelievers series[3] on IBM developerWorks. While you’re there, also check out the article titled “Facelets fits JSF like a glove”[4] to learn about Facelets, the alternate view technology used in Seam applications. If you’re willing to invest in your JSF
 knowledge, you should pick up a copy of either JavaServer Faces in Action (Manning, 2004) or Pro JSF and Ajax (Apress, 2006). When reading these resources, keep in mind that you’re studying JSF to learn how to use Seam, not necessarily
 to buy into JSF by itself. In Chapter 3, you learn about the many enhancements Seam brings to JSF, a combination that is sure to please.

 3http://www.ibm.com/developerworks/views/java/libraryview.jsp?sort_order=asc&sort_by=Date&search_by=nonbelievers%3A&search_flag=true

 4http://www-128.ibm.com/developerworks/java/library/j-facelets/

 Next, because this book makes numerous references to golf, I want to give you some background to help you understand it as
 well.

The game of golf

 The objective of golf is simple. You must get your ball into a hole in the ground using the fewest strokes possible, beginning
 from an area paired with that hole known as a tee box— or tee for short. A regulation golf course has 18 such holes. Each hole has a par, which is a guideline for how many strokes you should expect to take to get the ball into the hole; this number is significant
 in calculating your score.

 The term hole refers to both the hole in the ground and its pairing with a tee box. A hole has a fixed number of tee boxes, each identified
 by a color. The tee boxes are set various distances from the hole and represent different experience levels, to make the game
 more challenging for those who are better at it. You pick one color and start from the designated area for that color on each
 hole. Those starting points are known as your tee set. In a golf round, you play each hole in sequence for a given tee set.

 To advance the ball, you use a set of golf clubs. Each golf club consists of a shaft and a head. The angle of the head determines
 the loft of the ball when you hit it. The lower the loft, the further the ball is supposed to go (realizing this difference requires some skill). To hit the ball, you swing the club much like you would a baseball
 bat, but don’t tell the golf pro I said that! You use a special club called a putter to advance the ball on the green—the area that surrounds the hole. When using the putter, you tap the ball rather than swing
 at it. Each time you make contact with the ball, regardless of which club you use, it counts as one stroke.

 When you start each hole, you’re permitted to elevate your ball using a golf tee. The first shot on a hole is the only time
 you’re allowed to use this aid. The tee is intended to accommodate the swing of a driver, the club in your bag with the lowest
 loft. Once you take your first stroke on a given hole, you advance the ball using a club until the ball lies at rest in the
 hole. You then pick up your ball and walk—or ride—to the next tee. At the end of the round, you add up all your strokes to
 calculate your raw score (I won’t get into the concept of a handicap, but just know that it is used to weight your score.) The lower that number, the better you played.

 I chose golf as the topic of the example application because, like programming, it’s challenging. In golf, you’re only as
 good as your next round. Sounds a lot like the programming world, doesn’t it? As soon as we master a technology, there’s one
 right behind it to learn. Fortunately, lots of books are available to help us keep on top of our game.

Code conventions

 The book provides copious examples, which include all the Seam application artifacts: Java code, XML-based descriptors, Facelets
 templates, and Java property files. Source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. If there is part of the example I want to draw your attention to, it will be emphasized
 using bolded code font. Additionally, Java method names, Java class names, Seam component names and context variable names,
 event names, request parameter names, Java keywords, object properties, EL expressions, Java 5 annotations and enum constants,
 XML elements and attributes, and commands in text are also presented using fixed-width font. When an annotation appears in the text, the @ symbol is treated as silent.

 Java, XHTML, and XML can all be verbose. In many cases, the original source code (available online) has been reformatted;
 I’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this
 was not enough, and the listings include line-continuation markers ([image:]).

 I apply several other space optimizations. Comments in the source code have been omitted from the listings, and the code is
 instead described in the text. Class imports in Java classes also tend to take up a lot of space, so I omit those in cases
 when the code editor can easily resolve them for you. The complete set of imports can be found in the source code. When an
 implementation of a method isn’t important or remains unchanged from a previous listing, you will see { ... }, which is a
 code fold. Often, I place Java 5 annotations inline with the properties or methods to which they apply to conserve space.
 Personally, I prefer to use a newline after each Java 5 annotation in my own code.

 Code annotations accompany some of the source code listings, highlighting important concepts. In some cases, numbered bullets
 link to explanations that follow the listing.

 The location of individual applications will be referred to throughout the book using a variable notion. For instance, the
 JBoss AS directory is tokenized as ${jboss.home}.

Source code downloads

 Seam is an open source project released under the Lesser GNU Public License (LGPL). Directions for downloading the Seam distribution, which includes both the source and binaries, are available from the Seam
 community site, http://seamframework.org/Download/SeamDownloads.

 The source code for the Open 18 examples in this book is available from http://code.google.com/p/seaminaction and released under the LGPL. Because Seam is constantly evolving, I decided to make the source code available as an open
 source project so that I can keep the code up to date for readers as needed. You can also download the code for the examples
 in the book from the publisher’s website, http://www.manning.com/SeaminAction. Details about how to use the source code can be found in the README.txt file at the root of the source code and also on
 the project wiki.

Organizing the software

 To help you keep the software in order so that you can follow along with the source code examples, I recommend a directory
 structure that I adhere to throughout the book. But it’s just a recommendation. Only you have a say in where your files are
 placed, and these conventions are by no means a prerequisite to using Seam.

The Directory you Call “Home”

 Your home directory is where your personal files live. The last path in the directory is typically the same as your username. The book uses the
 home directory of a fictional developer, whose username is twoputt, whenever an absolute path must be referenced. Table 1 shows the home directory for twoputt as it would appear on several
 different operating systems. Whenever you see twoputt’s home directory used in the book, replace it with your own home directory.

The home area on several operating systems

	
 Operating system

 	
 Home area

	Linux
 	/home/twoputt

	Mac OSX
 	/Users/twoputt

	Windows
 	C:\Documents and Settings\twoputt

The terminal output included in the listings has been generated on a Linux system, but you can look beyond this detail because
 it makes no difference which operating system you use for developing Seam applications.

Structuring Your Home

 Table 2 lists several folders, along with their purpose, that I like to set up when doing development. You’ll recognize these
 directories from the book’s source code.

Folders in the development area

	
 Folder

 	
 What it contains

	databases
 	File-based databases and database schemas

	lib
 	JAR files not included with Seam, such as the H2 driver

	opt
 	Java applications, such as JBoss AS and Seam

	projects
 	Development projects

Appendix A shows you how to install the software you need to use the examples in this book and Seam, with references to this structure.

About the author

 DAN ALLEN is an independent software consultant, author, and open source advocate. After graduating from Cornell University with a
 degree in materials science and engineering in 2000, Dan became captivated by the world of free and open source software,
 which is how he got his start in software development. He soon discovered the combination of Linux and the Java EE platform
 to be the ideal blend on which to build his professional career. In his search for a robust web framework, Dan discovered
 Seam, which was quickly granted this most coveted spot in his development toolbox. Excited about Seam, Dan decided to share
 his thoughts with the world. This project is a (rather extensive) continuation of his three-part series on Seam published
 by IBM developerWorks. Dan continues to write articles on Seam and related technologies. Dan is a member of the Seam project,
 an active participant in the Seam community, and a Java blogger. You can keep up with Dan’s development experiences by subscribing
 to his blog at http://mojavelinux.com.

Author Online

 Purchase of Seam in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to http://www.manning.com/SeaminAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 author, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray! Since authors are busy people, like most people in the technology field, there is a chance
 your question will not be answered as quickly as you would like. In that case, you are encouraged to try your question on
 the Seam community website, http://seamframework.org, where you will find a much larger pool of people reading and answering Seam-related posts.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Seam in Action is captioned “La Béarnaise,” or a woman from the former Béarne province, a mountainous region in southwest France. The illustration
 is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs. Each illustration is
 finely drawn and colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were
 just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or the countryside,
 they were easy to place—sometimes with an error of no more than a dozen miles—just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Teeing off with Seam

 Many excellent frameworks exist to support the development of web-based Java applications. Chapter 1 presents Seam and explains how it manages to stand above this crowd by incorporating all of your existing Java Enterprise
 experience into an innovative and modernized rendition of the Java EE platform. You learn how Seam uncovers the platform’s
 tremendous capabilities, buried underneath layers of complexity for more than a decade, through the use of annotations, interceptors,
 and configuration by exception. EJB 3 components, Groovy scripts, and anything in between can participate in this lightweight,
 POJO-based programming model. After this introduction, you are taken through a Seam example, emphasizing how Seam removes
 infrastructure code and allows components to focus on pure business logic. The chapter also highlights ways in which Seam
 improves the development process, getting you to your target sooner.

 In today’s fast-paced world, we often have to show results before completely understanding what we are doing. To help you
 get started, chapter 2 highlights Seam’s project generator tool and shows you how to use it to create a functional, database-oriented application
 without any coding involved. You are given a glimpse of a Seam project’s structure and get a chance to feel out the development
 cycle by making a few customizations. While you won’t have a lot of opportunity to write code in part 1, it will build up enough anticipation to prepare you to take on the commitment of learning a new framework. The best part
 is, you will have plenty of time to do so since your boss will be drooling over the application you create in the second chapter.
 That same application also serves as a working model for you as you explore Seam.

Chapter 1. Seam unifies Java EE

 This chapter covers

	
Lightweight Enterprise Java

 	Seam as an application stack

 	Simplified configuration using annotations

 	Tools that enable agile development

Is JSF worth a second look? Is EJB really fixed? Is it worth sticking with Java rather than jumping ship for Ruby on Rails?

 With the release of Seam 2.0, you can now confidently answer yes to all of these questions. Seam is a progressive application framework for the Java Platform, Enterprise Edition (Java EE)
 that makes writing web-based applications simple by finally delivering on the promise of a unified component architecture.
 Seam builds on the innovative changes in Java EE 5 brought about primarily by the Enterprise JavaBeans (EJB) 3 specification. These changes include favoring annotations over container interfaces and relying on configuration by exception
 rather than verbose and laborious XML descriptors. Seam tears down Java EE’s remaining heavyweight legacy by spreading EJB
 3’s pivotal changes across the platform. Seam also extends the platform as designed by weaving additional functionality into
 the JavaServer Faces (JSF) life cycle and taps into the unified Expression Language (EL) to allow a wide range of technologies to communicate. With Seam, the pain typically associated with using Java EE has vanished and JSF, in particular, appears completely revamped and worthy of attention.

 In this chapter, you discover why Seam is the most exciting technology in Java right now and the reasons why you should make
 Seam your framework of choice. I demonstrate how Seam solves your current problems with the Java EE platform by blending innovation
 with existing standards. In a world inundated with frameworks, Seam is the unframework. It does not prescribe a new programming model that you must adopt. Seam simply pulls together the standard Java EE APIs,
 most notably EJB 3, JSF, Java Persistence API (JPA)/Hibernate, and Java Authentication and Authorization Service (JAAS), and makes them more accessible, functional, and attractive. Seam finishes off these improvements with modern upgrades such
 as conversations, page flows, business processes, rule-based security, JavaScript (Ajax) remoting, PDF rendering, email composition,
 charting, file uploads, and Groovy integration. Like a classic car, Seam sports the muscle of Java EE under the hood, but
 on the surface it appears stunning and elegant.

 Putting Seam’s strengths aside, the fact remains that you can choose among many qualified frameworks. In the next section,
 I provide you with advice that can hopefully put an end to your search and move you toward developing your application. Despite
 the fact that no one can tell you what framework is right for you, you’re probably going to ask anyway, right? Don’t worry—I
 came prepared.

1.1. Which framework should I use?

 In a world full of framework options, how do you choose one? There are so many frameworks available for the Java platform,
 some proven, some promising, that the decision is downright agonizing! Does figure 1.1 speak to you?

 Figure 1.1. The great framework decision

 [image:]

 The choice is so bewildering that the framework inquiry is now the dominant greeting exchanged between developers at conferences.
 While the question “What do you do?” may have traditionally served in the role of sizing up a person’s abilities, these days
 you are judged based on the merit of what framework you use for software development (or the advice that you can give pertaining
 to that choice). Just when you’ve made a decision, a new framework arrives on the scene promising to bury its predecessors.

 These choices can be harmful, especially to productivity. Barry Schwartz argues in The Paradox of Choice (Ecco, 2003) that having a bewildering array of options floods our already exhausted brains. The result is that your ability to write a quality application stalls. You keep believing that
 the best framework is the one you haven’t tried yet. As a consequence, you spend more time researching frameworks than you
 do designing functional applications. The search consumes you. You develop a false sense of how busy you are.

 If any of these choices were truly satisfying, then you probably would not be reading this book. You would already have a
 set of tools that you know, beyond all doubt, allows you to be highly productive. But you don’t, do you? You’re still searching
 for a framework that is new, yet familiar. Lightweight, yet powerful. You are in need of a platform that integrates the vast
 landscape of Java technologies into a unified stack. Seam might be just the framework you are looking for.

1.2. Choosing Seam

 You might be tempted to think that Seam is just another web framework, competing in an already flooded market. In truth, to
 tag Seam as a web framework is quite unfitting. Seam is far broader than a traditional web framework, such as Struts, and
 is better described as an application stack.

 1.2.1. A complete application stack

 Let’s consider the distinction between an application stack and a web framework. Web frameworks are analogous to the guests who show up just in time for dinner and then leave immediately after eating.
 They entertain and soak up the limelight, but they are mostly unhelpful. They go out the same way they arrived: with lots
 of flair. An application stack, in contrast, is like the people who help to plan the dinner party, shop for the groceries,
 cook, set up, serve, make the coffee, and then ultimately clean up when it is all over. They are steadfast and resourceful.
 Sadly, their work goes mostly unrecognized.

 In a world where everyone wants to be a rock star (i.e., web framework), Seam is your practical sidekick, your sous-chef.
 The Seam application stack includes the framework, the libraries, the build script and project generator, the IDE integration,
 a base test class, the Embedded JBoss container, and integrations with many technologies. Seam is certainly a hard worker.
 Figure 1.2 gives a sample cross section of the technologies that Seam is capable of pulling together in a typical application.

 Figure 1.2. A cross section of the technologies incorporated in the Seam stack

 [image:]

 While this stack gives you an idea of the technologies used in a Seam application, it does not give you a clear picture of
 Seam’s purpose and why it exists. To understand why Seam was created, you have to recognize the challenge that it faced. Although the Java EE
 5 release took a gigantic step toward establishing an agile platform for enterprise Java development, it left behind a rather
 significant gap between the component-based web tier managed by JSF and the component-based business-tier managed by EJB 3.
 A bridge was needed.

 1.2.2. Why Seam was created

 The Java EE 5 specification incorporates two key component architectures (specifications for creating reusable objects) for
 creating web-based business applications: JavaServer Faces (JSF) 1.2 and Enterprise JavaBeans (EJB) 3. JSF is the standard presentation framework for the web tier that provides both a user interface (UI) component model and a server-side event model. EJB 3 is the standard programming model for creating secure and scalable
 business components that access transactional resources. EJB 3 also encompasses the Java Persistence API (JPA), which defines a standard persistence model for translating data between a relational database and Java entity classes.

 Aside from their residence in the Java EE 5 specification, the two architectures just mentioned share little resemblance,
 their backs facing each other like two sides of a coin. This communication barrier casts a shadow on the tremendous potential
 of each technology. While it’s true that developers are able to get these two Java EE tiers to work together, it requires
 a lot of “glue” code. Seam absorbs that responsibility and fits JSF and EJB 3 together, thus ironing out one of the roughest
 spots in the Java EE 5 specification and completing the missing link in the evolution of the Java EE platform. As such, Seam
 has positioned itself as the prototype for future Java EE specifications. So far, three Java Specification Requests (JSRs)
 have been accepted: JSR 299 (Web Beans), JSR 314 (JavaServer Faces 2.0), and JSR 303 (Bean Validation). Seam isn’t married
 to JSF or EJB 3, as figure 1.2 suggests. You can swap in alternative view technologies such as Wicket, Tapestry, GWT, and Flex in place of JSF, though understandably
 with less accord. In the business tier, Seam supports the use of JavaBeans as transactional components and also boasts integration
 with the Spring container, both of which are arguably better choices than EJB 3.

 With that said, becoming an important part of Java EE’s future and an integration point for many open source technologies
 is not what sparked Seam. That’s just what Seam has managed to accomplish. As with most software projects, Seam was started
 to scratch a single developer’s itch.

The Real Story

 As the story (really) goes, Gavin King was fed up with developers using Hibernate improperly by trapping it inside of the
 stateless design proliferated by the Spring Framework. Recognizing that the missing integration between JSF and EJB 3 would
 only lead to further abuse of Hibernate as a JPA provider, he decided to step up and build a foundation that would allow the
 persistence context (Hibernate Session or JPA EntityManager) to transcend layers and would permit stateful session beans to respond directly to JSF UI components. To support this vision, Seam encourages the adoption of a stateful, yet efficient,
 architecture. As a result, applications built on Seam have effortless continuity from one user interaction (or event) to the
 next, a feature that is labeled a web conversation. The keen focus on variable scoping is what makes Seam contextual.

 The name Seam was chosen for the project because it provides a foundation that brings JSF and EJB 3 together and teaches them to play nicely
 together in the same sandbox. In the process of solving the mismatch between JSF and EJB 3, the Seam architects broadened
 the solution to include any Plain Old Java Object (POJO) acting as a business component, not just the EJB 3 variety. Seam’s universal component model brings the implicit and declarative
 services provided by the EJB 3 programming model, such as transactions, interceptors, threading, and security, to non-EJB
 components such as JavaBeans and Spring beans. For non-EJB components, Seam takes on the role of processing the Java EE 5
 annotations—or synonyms of these annotations from the Seam API—and weaves in the managed services. What this means is that
 you do not have to rely on an EJB 3 container to leverage the benefits that EJB 3 provides. You may even want to reconsider the use
 of EJB 3 unless you have a specific need for it, choosing to go with JavaBeans instead. Regardless of your choice, you aren’t
 required to deploy a Seam application to the JBoss Application Server, despite what you may have heard.

 1.2.3. Debunking the “vendor lock-in” myth

 I don’t want to be shy about addressing the myth that Seam is a JBoss-focused technology or that by using Seam, you get locked
 into JBoss. The Seam development team isn’t hesitant about making recommendations against the JBoss party line. The Seam application
 stack is an aggregation of best-of-breed technologies known to work well together. Seam is no more a JBoss technology than
 Struts is an Apache technology or Spring is a SpringSource technology. An examination of the most successful complex projects
 in enterprise Java outside of JBoss, such as Spring, Hibernate, Eclipse, and the Java EE platform itself, reveals that these
 projects are supported by organizations with paid developers. Seam is open source and can be whatever you, the community,[1] drive it to be. Although the projects may be hosted in the JBoss Labs under the roof of JBoss/Red Hat, the source code is
 yours to copy, share, and modify. Specifically, JBoss Seam is licensed under the Lesser GNU Public License (LGPL), which is considered one of the more flexible options.

 1http://www.seamframework.org is the main community site for Seam.

 Seam was designed to be container agnostic and much effort has gone into ensuring that Seam is compatible with all major application
 servers, including BEA WebLogic, IBM WebSphere, Oracle Containers for Java EE (OC4J), Apache Tomcat, and GlassFish. But the
 compatibility runs deeper than deployment. The improvements that Seam has introduced into Java EE are being contributed back
 into the platform as standards using the Java Community Process (JCP) as a vehicle and captured in JSR 299: Web Beans, as mentioned earlier. The goal of this JSR is to unify the JSF managed bean component model with the EJB component model, resulting
 in a significantly simplified programming model for web-based application development. The effect of this JSR is that it will
 foster alternative implementations of Seam’s innovations.

 With an understanding of why Seam exists, and faith that you are not getting locked into JBoss by choosing this technology,
 you now need to consider whether Seam is the right framework for you based on technical merit. After all, Seam may have saved
 Java EE, but can it fit the bill as your development framework of choice?

 1.2.4. Making the case for Seam

 Is there really a need for another application framework? Wasn’t Spring supposed to be the one framework to rule them all?
 I’ll let the success of Ruby on Rails, and the wave of Java developers flocking to it, prove that the need for a suitable
 Java application framework—or, in some developers’ minds, an entire programming environment—remains. So, should you follow
 the crowd? My advice is to look before you leap.

 Promising that a framework will make the job of developing applications simpler is lip service. Just because you are able
 to create a throwaway blog application with a framework doesn’t make it viable. To earn the right to be called enterprise
 software, the framework has to stand up to the challenges of the real world, warts and all, and help the developer create
 well-designed, robust, and readable code. That is Seam’s goal. Seam eliminates complexity and makes proven libraries more
 accessible. Seam doesn’t turn its back on the pervasive Java EE platform, but rather serves as the glue that makes it truly
 integrated. Rather than encourage you to forget everything you know, Seam finds a way to allow you to use the Java EE services
 in a more agile way, while also providing enough new toys, in the form of extensions and third-party integrations, to make
 using it fun and interesting.

 Here is a small sampling of the many improvements that Seam brings to the Java EE platform, all of which succeed in making
 the platform simpler:

	Eliminates the shortcomings in JSF that have been the subject of countless rants

 	Mends the communication between JSF and transactional business components

 	Collapses unnecessary layers and cuts out passive middle-man components

 	Offers a solution for contextual state management, discouraging the use of the stateless architecture (i.e., procedural business
 logic)

 	Manages the persistence context (Hibernate Session or JPA EntityManager) to avoid lazy initialization exceptions in the view and subsequent requests

 	Provides a means for extending the persistence context for the duration of a use case

 	Connects views together with stateful page flows

 	Brings business processes to the web application world

 	
Plugs in a POJO-based authentication and authorization mechanism backed by JAAS that is enforced at the JSF view ID level,
 accessible via the EL, and can be extended using declarative rules and ACLs

 	Provides an embedded container for testing in non-Java EE environments

 	Delivers more than 30 reference examples with the distribution

As you can see, Seam isn’t shy about addressing problems in the platform, particularly those with JSF. For existing JSF developers,
 the first bullet point is enough to justify the need for this framework. They can attest to that fact that JSF can be quite
 painful at times. That is no longer true with Seam’s aid. The second point justifies Seam’s usefulness in standards-based
 environments, where Seam fits in quite naturally. But Seam doesn’t stop there. It encourages developers to collapse unnecessary
 layers to achieve simpler architectures and promotes the use of long-running contexts to relieve the burden of state management.
 Aside from improving the programming model, Seam provides a tool that prepares the scaffolding of a Seam-based project; generates
 a create, read, update, delete (CRUD) application from an existing database schema; makes integration testing easy; and serves up Ajax in a variety of ways.

1.3. Seam’s approach to unification

 Seam revitalizes the standard Java EE platform by putting an end to its divergence and unifying its components, filling in
 the voids for which it is often criticized, making it more accessible, extending its reach to third-party frameworks and libraries,
 and form-fitting them all together as a well-integrated and consistent stack. While the features of Seam are vast, Seam’s
 core mission is getting JSF, JPA, and POJO components to work together so that the developer’s focus can be placed on building
 the application, not on integrating unallied technologies.

 1.3.1. Seam integrates JSF, JPA, and POJO components

 Getting technologies to work with one another is more than just having them pass messages back and forth. It’s about creating
 an interaction that blurs the boundary between them, making them act as a single, unified technology. Seam achieves this integration
 by fitting EJB 3 up against the web tier, finding a place for JPA, and scrapping the ineffectual JSF managed bean container.
 After reviewing how Seam tackles these challenges, you get a chance to determine which Seam stack is right for you.

Helping Out a Web-Challenged EJB 3

 By design, EJB components cannot be bound directly to a JSF view. It’s great that EJB components are scalable, transactional,
 thread-safe, and secure, but it doesn’t do much good if they are completely isolated from the web tier, accessible only through
 a JSF backing bean acting as an intermediary. This isolation makes them of limited use in web applications because of the
 complexity involved to integrate them. They are not able to access data stored in any of the web-tier scopes (request, session,
 and application) or the JSF component tree, thus impairing their insight into essential parts of the application. (The goal here is really just to give EJB 3 components access to Seam’s stateful scopes.) Also, it’s easy to get into trouble
 with concurrency when using EJB components from the web tier. For instance, the Java EE container is not required to serialize
 access to the same stateful session bean, leaving it up to the developer to take care of this task or catch the exception
 that can result. Also, complexities arise when dealing with non-thread-safe resources such as the JPA EntityManager. The only way the developer can safely use EJB components in the web tier is by interfacing with an adapter layer.

 Seam gives EJB 3 components access to web-tier scopes, offers a way to manage the state of EJB 3 components so that they can
 be used safely in the web tier, and even serializes access to stateful components to make concurrency issues a responsibility
 of the infrastructure and not the developer. Also, there is never a question about accessing non-thread-safe resources since
 Seam handles the scoping properly.

 Turning the tables, JSF faces equivalent challenges accessing business-tier components.

Hooking JSF to a Better back End

 JSF has its own “managed” bean container that is configured using a verbose XML descriptor, as opposed to the annotation-based
 configuration in EJB 3, and has a limited dependency injection facility. While JSF managed beans can be stored in the web-tier
 contexts, they are barren objects, lacking scalability, transaction atomicity, and security (probably why they are termed
 beans and not components). They must reach out to an EJB 3 component to attain these business services. What you find is that
 you’re stuck creating this façade layer to bridge EJB 3 components to the UI that acts on them.

 To correct this mismatch, Seam enables JSF UI components to tap right into the EJB layer by allowing EJB 3 components to stand
 in as JSF “backing” beans and action listeners. There’s no longer a need for the managed bean façade layer and its verbose
 XML descriptor. By eliminating the complexity caused by the mismatch, it encourages developers to relax stringent mandates
 on overarchitected designs.

Which Seam are You?

 Seam is not just a collection of classes and artifacts that get dropped on your desk with the disclaimer “Some assembly required.”
 The key to Seam’s success is that it offers a handful of well-tested bundles that operate fluently. These bundles include
 compatible versions of many third-party libraries. You can liken the offering to the simplicity of buying a Mac when compared
 to buying a Dell. When you buy a Dell, you can customize the assembly down to the last stick of RAM. You get a product customized
 exactly to your needs, but getting there requires a lot of thought and effort on your part. Buying a Mac is much simpler in
 comparison. You choose between a laptop and a notebook, and then you select a screen size. Everything else is just details
 that Apple works out for you. Seam has a comparable set of options. You choose a state provider and a persistence provider
 (and, down the road, a web framework). Everything else is just details that the Seam developers work out for you. By removing
 the burden of too many choices, Seam can make life for the developer simpler.

 The two main technology choices in a Seam application, summarized in figure 1.3, are the state provider and the persistence provider. The state provider is the technology that handles the application logic
 and responds to events in the UI. The persistence provider transports data to and from persistence storage. Seam manages the
 persistence provider to allow for the persistence context to be extended across a series of pages and shared among multiple
 components.

 Figure 1.3. Seam’s stack matrix, with options for a state and persistence provider

 [image:]

 As mentioned earlier, Seam does not require you to use EJB 3. You have the option of using basic JavaBeans along with Hibernate
 without fear that you are losing out on functionality. The term JavaBean broadly encompasses all non-EJB components, so Spring beans apply here as well. Another popular choice is to partially adopt
 EJB 3 by combining JPA with JavaBeans, which is the bundle used by the example application in this book.

 Prior to Seam, getting these technologies to work together meant integrating the containers that manage them. EJB 3 has its
 container. JSF has one too. Spring is yet another. Once again, the task of writing this glue code fell on the shoulders of
 the developer. The need for a central integration point gave rise to Seam’s contextual component model.

 1.3.2. The contextual component model

 At the heart of Seam is the contextual component model. Before your eyes gloss over, give me three short sentences to make
 this term meaningful to you. (1) Seam is a factory that constructs objects according to component definitions. (2) After creation,
 each object is stored in the container under one of several contexts (i.e., variable scopes) with varying lifetimes, making
 the objects contextual and capable of holding state (i.e., stateful). (3) Seam promotes the interaction of these stateful
 objects across contexts, assembling them together according to metadata associated with their respective classes. Chapter 4 explores components and contexts in depth and gives you an opportunity to learn how they are used in an application.

 In this section, you learn how this model provides the basis for the unification of the technologies previously discussed.
 The unification is facilitated by a combination of the component registry, annotations, configuration by exception, method
 interceptors, and the unified Expression Language (EL).

A Central Component Registry

 Seam rakes in all of the Java EE components into a central registry, whether they are EJB session beans, JavaBeans, Spring
 beans, or JPA entities. Any technology incorporated into the Seam stack can look to the Seam container to retrieve instances
 of the components by name and collaborate with the container to exchange state. Technologies that have access to the container
 include Seam components, JSF view templates, Java Business Process Management (jBPM) process definitions, Java Process Definition
 Language (jPDL) page flow definitions, Drools rules, Spring beans, JavaScript, and more. Seam’s container also unifies the
 variable scopes of the Servlet API while introducing two of its own stateful scopes, conversation and business process, that
 are better suited to support user interactions.

 Of course, components aren’t just going to fall into this registry; they have to be recruited. Seam scours the classpath and
 enlists any class that contains a marker annotation, discussed next, that identifies it as a Seam component.

Annotations Over Xml

 One way that Seam cuts down on the configuration overhead of Java EE is by eliminating needless XML. Although once thought
 to be desirable because of is flexibility, XML is external configuration and quickly becomes out of sync (and out of touch)
 with the application logic. Seam brings configuration back in line with the code where it is easier to locate and can be refactored.

 When the temptation arises to define JSF managed beans in XML, Seam just says “No!,” a tenet that is captured in figure 1.4. Seam reduces the declaration of a component to a single annotation, @Name, placed above the class definition. Seam components can take the place of JSF managed beans.

 Figure 1.4. Seam cuts down on superfluous XML configuration that’s difficult to keep in sync with the source code.

 [image:]

 With enough dedication, you can avoid the use of XML in Seam altogether, which is quite surprising given the number of places
 it could be warranted. Seam only resorts to XML when annotations do not suffice or to isolate deployment overrides. If you are not
 a fan of annotations, don’t go running for the door just yet. Seam still allows you to define components using XML, which
 is the main topic of chapter 5. Annotations are just more concise and easier to maintain, in my opinion.

 Moving to annotations is more than just improving the efficiency of keystrokes. Annotations are the central piece of Seam’s
 configuration by exception strategy, conserving keystrokes until they are really necessary.

Configuration by Exception

 A good way to describe configuration by exception is by saying that the software is “opinionated.” The general idea is that
 the framework happily prefers to operate as designed. The more you embrace the defaults, the less work you have to do. You
 are only required to step in and play a part when the software needs to do something different than the typical behavior.

 In Seam, configuration by exception goes hand in hand with annotations. The annotations give Seam a hint to apply behavior
 and Seam tries to assume as much as possible about the declaration by relying on sensible defaults and standard naming conventions
 to keep your load light. In this way, Seam offers a nice balance between explicit declarations and assumed functionality.

 While annotations cut down on keystrokes, there’s more to annotations than just the elimination of XML. Annotations supply
 extra metadata to the class definition, where it is easier to find and refactor than metadata stored in external descriptors.

Decorating Components with Services

 Since components are requested through the Seam container, Seam has an opportunity to manage the instances throughout their
 life cycle. Seam wires the object with interceptors, wrapping it in a shell known as an object proxy, before handing down
 the newly created instance. This allows Seam to act as the object’s puppeteer, pulling on its strings during each method call
 to add behavior, as depicted in figure 1.5. Interceptors account for much of the implicit logic in Seam that makes it “just work.” Examples include beginning and committing
 transactions, enforcing security, and getting objects to socialize with one another. Annotations on the class definition give
 the interceptors a hint of how to apply the extra functionality, if for some reason it can’t be implied or needs to be different
 than the default behavior.

 Figure 1.5. Interceptors trap method calls and perform cross-cutting logic around a method invocation.

 [image:]

 The final piece to the unification puzzle is to give the application a way to access components in the container using a universal
 syntax. That’s the role of the unified EL.

Extending the Reach of the Unified EL

 The unified EL is an expressive syntax used to resolve variables and bind components to properties and methods on JavaBeans.
 It was first introduced to better integrate JSF with JavaServer Pages (JSP), to look up managed beans and other objects stored in web-tier scopes, and to serve as the basis for the JSF binding mechanism. Its impact, however, is far more widespread, thanks
 to its pluggable design.

 The EL is an open API that allows custom resolvers to be registered, thus turning the EL into a variable hub. Consequently,
 any layer of the code that wants to tap into the EL unified variable context can do so using the public API. Thus, the EL
 frees you from having to develop a custom bridge between the variable contexts used by the different technologies in your
 application. Although you’re used to seeing the EL only in the view, there isn’t anything web specific about it.

 Seam takes advantage of the EL in two ways. First, it registers a custom EL resolver that is aware of the Seam container.
 This allows Seam components to be accessed using EL notation from anywhere in the application where the EL is available (which
 is pretty much everywhere). Second, Seam makes heavy use of the EL under the covers, allowing EL notation to be used in annotations,
 configuration descriptors, log and message strings, Java Persistence Query Language (JPQL) queries, page flow definitions, and even business processes. With Seam, the EL truly is unified.

 Despite all that has been said about Seam, nothing speaks to a programmer like lines of code. To help demonstrate why Seam
 is a sound choice and how it saves you valuable development time, I am going to whet your appetite with a brief example. In
 chapter 2, you’ll get a chance to sink your teeth into Seam by building an entire application with just a couple of commands.

1.4. Your first swings with Seam

 To demonstrate some of the core principles of Seam, I’m going to step you through a basic application that manages a collection
 of golf tips. Don’t worry about trying to understand everything that you see here. Instead, focus on how Seam relies on annotations
 to define components, how the layers of the application are pulled together through the unified component model, and the high
 signal-to-noise ratio in the business logic thanks to configuration by exception. I demonstrate a densely packed set of features
 in this example, so don’t think that you have to use all of these techniques in order to use Seam.

 We all want to be better golfers (at least, those of us who torture ourselves with the sport). Focusing on a simple golf tip
 can help shave off a couple of strokes from your round. To keep track of the tips that you collect from the pros, buddies,
 and articles, you’re going to slap together a Seam application that reads and writes these tips to a database. Aside from
 the deployment artifacts, which aren’t considered in this example, there are only a handful of files that you need to produce
 a functional application.

 1.4.1. Entity classes serving as backing beans

 I’ll start by discussing the GolfTip JPA entity class, shown in listing 1.1. In a Seam application, entity classes serve two purposes. Their primary role is to carry data to and from the database.
 The object-relational mapping (ORM) mechanism, as this is called, is not part of Seam per se. That work is handled either by JPA (the standard Java persistence
 framework) or Hibernate, though you discover in chapter 8 how Seam can bootstrap the ORM runtime and regulate the lifetime of the ORM’s persistence manager.

 The second role of entity classes in a Seam application is to serve as form “backing” beans (akin to a Struts ActionForm) to capture input from the user, thus replacing the need for a shallow “backing” bean class. An entity class becomes a candidate
 for use in a JSF view if it has a @Name annotation on its class definition, a condition that is satisfied by the GolfTip class in listing 1.1. You then bind the form inputs directly to properties on the entity class and JSF handles the necessary conversions and validations.

 Listing 1.1. The JPA entity class that represents a golf tip

 @Entity [image:]
 @Name("tip") [image:]
 public class GolfTip implements Serializable {
 @Id @GeneratedValue [image:]
 protected Long id;
 protected String author;
 protected String category;
 protected String content;
 // getters/setters for author, category and content not shown
 }

 The keywords prefixed with the @ symbol are Java 5 annotations. The @Name annotation [image:], shown in bold, is a Seam annotation that registers the GolfTip class as a Seam component named tip. Whenever the context variable tip is requested from the Seam container, Seam creates a new instance of the GolfTip class, binds the instance to the tip context variable in the conversation context (the default scope for entity classes), and returns the instance to the requester.

 The remaining annotations in this class pertain to JPA. The @Entity annotation [image:] associates the GolfTip class with a database table by the same name. The @Id annotation [image:] indicates to JPA which property is to be used as the primary key. The @GeneratedValue annotation [image:] enables automatic surrogate key generation in the database. All of the other properties on the class (author, category, and content) are automatically mapped to columns with the same name as the respective property in the GolfTip table, following configuration by exception semantics.

 As you can see, using the @Name annotation gives you one less file to worry about (that of the JSF managed bean facility and its verbose XML dialect). Staying
 away from the managed bean configuration is one of the early benefits of moving to Seam components. Another compelling advantage
 of adopting Seam is being able to bind the action of the UI command component to a method on a transactional business object.

 1.4.2. An all-in-one component

 As with entity classes, there’s no need to create a dedicated managed bean to act as a mediator between the JSF page and the
 service object in Seam. Instead, the service object can respond directly to an action invoked in the UI. At first, that might sound like a bad idea because it appears
 to cause tight coupling between the UI and the application logic. Seam prevents this coupling by acting as the mediator. As
 a result, the action component does not have to contain a single reference to a JSF resource. In fact, in chapter 3 you discover that the return value of the method need not serve as a logical outcome for a navigation rule—a typical requirement
 of JSF managed beans—since Seam can evaluate an arbitrary EL value expression for this purpose. This example relaxes the separation
 from JSF to keep the number of classes to a minimum.

 In the golf tips application, the TipAction class, shown in listing 1.2, is declared as a Seam component using the @Name annotation and is thus capable of having its methods bound to UI controls. It handles the add and delete operations in the
 golf tips interface.

 Listing 1.2. The action listener for the JSF view

 [image:]

 Like the GolfTip entity class, the @Name annotation [image:] marks the TipAction class as a Seam component, this time scoped to the event context (the default scope for JavaBean components). What sets this
 component apart from the GolfTip entity class is that it is capable of having other components “wired” into it because the @In annotation is placed above certain fields of the class [image:], a mechanism known as bijection. In this example, the two dependent components are the JPA EntityManager and Seam’s built-in JSF messages manager. This component also prepares a collection of GolfTip objects for use in the JSF view [image:]; captures the GolfTip that the user selects from that collection, making it available to both the method handling the event and the subsequent
 view [image:]; and interpolates the active GolfTip in the JSF status messages [image:].

 The TipAction component packs a lot of functionality in a limited amount of space. What I want you to recognize is that, aside from the
 annotations, there’s practically no evidence of infrastructure code in this class. Apart from creating the status messages,
 the only code that you’re required to write is code that reads, persists, and removes tips from the database using the JPA
 EntityManager instance. It’s probably best to push this code into a data access object (DAO), which may also be a Seam component, but Seam doesn’t impose this architectural requirement on you. Seam’s focus is on frugality,
 as demonstrated in this example. Absent are any Servlet API calls that read request parameter values or set request or session
 attributes. Instead, the component consists solely of business logic.

 1.4.3. Binding components to the view

 Seam bridges the layers in the golf tips application by binding both the properties of the entity class and the methods of
 the action component to elements in the JSF view. Figure 1.6 shows the golf tips user interface. Behind this rendered page is a Facelets template, golftips.xhtml, which associates value- and method-binding expressions to elements on this page to output data,
 capture form input, and respond to user actions. Use this figure to follow along with the discussion of how the JSF view interacts
 with the Seam components in the server.

 Figure 1.6. The golf tips page, which renders the collection of tips at the top and a form for contributing a new tip at the bottom

 [image:]

	

Note

 The file extension .xhtml indicates that this file is a Facelets template. Facelets is an alternative view handler for JSF
 that was created to escape the mismatch between the JSF and JSP life cycles. Facelets is the preferred view technology for
 Seam applications and is used throughout the book.

	

Start by focusing your attention on the form that is used to submit a new tip at the bottom of the page. Each input element
 is bound to properties on the GolfTip entity class using EL notation (e.g., #{tip.author}). When used in the value attribute of an input element, the EL notation acts as a value-binding expression. It captures the form value and transfers
 it to an instance of the GolfTip entity class as part of the JSF life cycle. Here’s the (slightly trimmed-down) fragment of the JSF template that renders
 the form:

 <h:form>
 <h3>Do you have golf wisdom to add?</h3>
 <div class="field">
 <h:outputLabel for="author">Author:</h:outputLabel>
 <h:inputText value="#{tip.author}"/>
 </div>
 <div class="field">
 <h:outputLabel for="category">Category:</h:outputLabel>
 <h:selectOneMenu value="#{tip.category}">
 <f:selectItem itemValue="The Swing"/>
 <f:selectItem itemValue="Putting"/>
 <f:selectItem itemValue="Attitude"/>
 </h:selectOneMenu>
 </div>
 <div class="field">
 <h:outputLabel for="content">Advice:</h:outputLabel>
 <h:inputTextarea value="#{tip.content}"/>
 </div>
 <div class="actions">
 <h:commandButton action="#{tipAction.add(tip)}"
 value="Submit Tip"/>
 </div>
 </h:form>

 Seam makes the association between the value-binding expressions used by the input fields and the GolfTip entity class through the context variable tip. The @Name annotation on the GolfTip class binds the class to the tip context variable. When the tip context variable is referenced by a value expression in the JSF template (#{tip.*}), Seam instantiates the GolfTip class and stores the instance in the Seam container under the variable name tip. All the value expressions that reference the tip context variable are bound to that same instance of the GolfTip class. When the form is submitted, the input values are transferred to the properties of the unsaved entity instance.

 Let’s consider what happens when the form is submitted. With Seam working in conjunction with JSF, any interaction with the
 Servlet API is abstracted away. Instead, you work through declarative bindings. The method-binding expression specified in the action attribute of the submit button, #{tipAction.add(tip)}, indicates that the TipAction component serves as the action component for this form and that when the button is activated, the add() method is invoked. Notice that this method expression actually passes the GolfTip instance associated with the tip context variable directly into the action method as its sole argument, which effectively makes the form data available to
 the method. Seam provides parameterized method-binding expressions as an enhancement to JSF. When the method completes, the
 list of tips is refreshed and the page is once again rendered.

 1.4.4. Retrieving data on demand

 What makes Seam so powerful is that it includes a mechanism for initializing a variable on demand. The top half of the screen
 in figure 1.6 renders the collection of tips in the database using the following markup:

 <rich:dataGrid var="_tip" value="#{tips}" columns="1">
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="#{_tip.author} on #{_tip.category}"/>
 </f:facet>
 <h:outputText value="#{_tip.content}"/>
 <h:commandLink action="#{tipAction.delete}">
 <h:graphicImage value="/images/delete.png" style="border: 0;"/>
 </h:commandLink>
 </rich:panel>
 </rich:dataGrid>

 The focal point of this markup is the #{tips} value expression. Notice that tips is not the name of one of the Seam components in the golf tips application. However, it is referenced in the value attribute of the @Factory annotation above the retrieveAllTips() method of the TipAction class from listing 1.2. The purpose of this method is to initialize the value of the tips context variable when it’s requested. Subsequent requests for the same variable return the previously retrieved value rather
 than triggering the method to execute again.

 But hold on a minute! The retrieveAllTips() method doesn’t return a value. How is the value passed back to the view renderer? That’s where things get a little tricky.
 After executing this method, Seam exports properties of the component that are annotated with either @Out or @DataModel to the view. Seam notices that the @DataModel annotation is assigned to the tips property on the TipAction component. That tells Seam not only to export its value to the tips context variable, but also to wrap the value in a JSF DataModel instance. The view iterates over this wrapped collection to render the data grid. The reason the collection is wrapped in
 a DataModel is to enable clickable lists to support the delete functionality.

 1.4.5. Clickable lists

 The scope specified on the annotation is ScopeType.PAGE, which instructs Seam to store the collection of tips in the JSF component tree. Since the data model is being stored in the JSF component tree, it is made available to any JSF action that is invoked from that page (resulting in a “postback”).

 The #{tipAction.delete} method expression, bound to the delete link adjacent to each golf tip, benefits from the propagation of the tips data model through the JSF component tree. When the user clicks one of the delete buttons, the data model is restored along
 with the JSF component tree. When JSF processes the event, the internal pointer of the data model is positioned to the index
 of the activated row. This is where the complement to the @DataModel annotation, the @DataModelSelection annotation, is used. This annotation reads the current row data (the instance of GolfTip) from the data model and injects it into the property over which the annotation resides. All the action method has to do
 is pass the instance of the selected GolfTip to the JPA EntityManager to have it removed from the underlying database. Once again, the action component remains void of infrastructure code. Compare
 that to the JSF blueprints.[2]

 2https://bpcatalog.dev.java.net/nonav/webtier/index.html

 All that’s left is to write a quick end-to-end test to ensure that we can save a new tip and that it can be subsequently retrieved.

 1.4.6. Integration tests designed for JSF

 The area of development that has routinely slowed down Java EE developers most often is testing. Even if you’ve never written
 a test, you’re still testing. You test your code every time you redeploy your application or restart the application server
 to view the result of your latest modifications. It’s just slow and boring to do it that way. These days, testing is an integral
 part of any application development, and no framework is complete without an environment that allows you to test “outside
 of the container.” Seam once again demonstrates its simplicity by exposing a single test class that can handle all of the
 integration testing needs in a Seam-powered application.

 To make integration testing of JSF actions a breeze, Seam provides a base test class that sets up a stand-alone Java EE environment
 and executes the JSF life cycle within the test cases. The test infrastructure is driven by TestNG,[3] a modern unit-testing framework that can be configured using annotations. Although TestNG doesn’t require you to inherit
 from a base test class, Seam’s testing framework uses this approach to set up the fixture needed to bootstrap the embedded
 Java EE environment and the JSF context.

 3http://www.testng.org

 The test class GolfTipsTest in listing 1.3 simulates the initial request for the golf tips page and the subsequent form submission to add a new tip. The code in the
 test is invoked nearly identical to when it’s used in the deployed application.

 Listing 1.3. An end-to-end test of the golf tips application using the Seam test framework

 [image:]

 Listing 1.3 tests both the initial rendering of the JSF view and the subsequent JSF action triggered from the rendered page. The first
 request is an HTTP GET request, which simulates the user requesting the golf tips page in the browser. This part of the test
 verifies that when the tips are retrieved in the Render Response phase, Seam properly resolves a DataModel, but the collection underlying that model is empty. The second part of the test simulates the user submitting the form to
 create a new tip. The Update Model Values phase performs the work JSF does to bind the input values to the value expressions. The method expression that is bound to
 the submit button is then explicitly invoked. Because Seam automatically wraps the Invoke Application phase in a transaction, there is no need to worry about beginning and committing the transaction. Finally, in the Render Response phase, the test verifies that when the tips are retrieved this time, exactly one tip is found and that the author’s name
 has been interpolated properly in the message displayed to the user. This test is intentionally terse. There are, of course,
 many other scenarios that could be verified. Focus instead on how easy it is to exercise a Seam application using this simple
 test framework and how you can leverage EL notation to perform assertions.

 Hopefully the golf tips application has given you a general understanding of how Seam simplifies your application and saves
 you time by relying on a centralized container, annotations, configuration by exception, and the unified EL. That’s the essence
 of Seam. I now want to give you an idea of what else Seam offers before you begin your journey down the road to becoming a
 Seam master.

1.5. Seam’s core competencies

 Throughout this chapter, there has been a lot of discussion about how Seam resolves issues in Java EE. I want to leave you
 with an understanding of how Seam is going to help your development process. Given how much Seam has to offer, this was a
 challenging exercise, but I’ve been able to summarize its benefits into three core competencies. Seam offers a better JSF,
 allows you to get rich quick, and fosters an agile environment.

 1.5.1. Turns JSF into a pro

 Although JSF isn’t without flaws, it was selected as the main presentation framework in Seam because of its extensible request
 life cycle and strong UI component model. Realizing its potential, Seam taps into this design to strengthen JSF, making it
 a compelling and modern technology for creating web-based interfaces. While it’s true that Seam supports alternative view
 technologies, this book primarily focuses on using Seam with JSF. Much of this coverage comes in chapter 3, which covers Seam’s extension to the JSF life cycle.

Enhancing JSF

 Seam’s most recognizable improvement to JSF is eliminating the requirement to declare managed beans in the JSF descriptor.
 In addition, Seam adds a rich set of page-oriented functionality, covered in chapter 3, that makes the navigation rules in the JSF descriptor obsolete as well. These features include

	Prerender page actions

 	Managed request parameters (for a given page)

 	Intelligent stateless and stateful navigation

 	Transparent JSF data model and data model selection handling

 	Fine-grained exception handling

 	Page-level security (per view ID)

 	Annotation-based form validation

 	Bookmarkable command links (solving the “everything is a POST” problem)

 	Entity converter for pick lists

 	Conversation controls

 	Support for preventing lazy initialization exceptions and nontransactional data access in the view

Part of the cleaning-out process of JSF involves purging passive connector beans that do nothing more than adapt UI events
 to back-end business components.

Eliminating Connector Beans

 Any Seam component can be connected to a JSF view using EL bindings. Figure 1.7 shows the design of an interaction between a UI form and an EJB 3.0 session bean (or regular JavaBean) that completely eliminates
 the need for the legacy connector bean. The form inputs are bound directly to the entity class and the session bean is bound
 to the Save button to handle the action of persisting the data.

 Figure 1.7. Seam cuts out the middleman by eliminating the need for a JSF backing bean. Instead, the entity class and the EJB 3.0 session
 bean work together to capture data from the UI and handle the event to persist the data.

 [image:]

 By cutting out the middleman, not only does Seam allow you to eliminate a class that you have to write and maintain, but it
 allows you to cut back on the number of layers, thus allowing your applications to become more lightweight.

 Aside from providing universal access to components, the Seam container augments the coarsely grained scopes in the Java servlet
 specification—request, session, and application—to include scopes that make more sense from the perspective of the application
 user. Seam offers two “stateful” contexts that are used to support single and multiuser pages flows in an application.

Introducing Stateful Variable Scopes

 One of the main challenges with developing applications that are delivered over the web is learning how to efficiently propagate
 data from one page to the next—so-called state management. The two go-to options are hidden form fields or the HTTP session. The first is cumbersome for the developer, and the second
 eventually eats through precious server resources and hurts an application’s ability to scale.

 Seam addresses need for stateful variable scopes whose lifetime aligns with user interactions by adding the conversation context
 and business process context to the standard web scopes. The conversation scope, covered in chapter 7, maintains data for a single user across a well-defined series of pages while the business process scope, covered in chapter
 14 (online), is used to manage data that supports multiuser flows complete with wait states. The relationship between the
 lifetime of the scopes managed by the Seam container is illustrated in figure 1.8.

 Figure 1.8. The lifetimes of the six scopes in a Seam application. The standard scopes are represented by dashed lines. The scopes that
 Seam contributes appear as solid lines. The business process scope is persisted to a database and can thus outlive the application
 scope across server restarts.

 [image:]

 The conversation context is tremendously important in Seam not only because it is so unique and gives the user a better experience,
 but because it makes working with an ORM tool easy on the developer.

Extending the Persistence Context

 When you talk to the database using ORM, you use a persistence manager (i.e., JPA EntityManager or Hibernate Session). Each instance of a persistence manager maintains an internal persistence context, which is an in-memory cache of entity
 instances that have been unmarshaled from the database. Given that databases are among the most expensive and heavily used
 resources in your server room, you want to leverage this in-memory cache as much as possible to avoid redundant queries. Extending
 the persistence context across the entire request is a step in the right direction (the socalled Open Session in View Pattern),
 but having it extend across multiple page requests is even better. Prior to Seam, there was just no good place to stick it,
 and as a result, each request reset the persistence context to a blank slate.

 Seam takes control of the persistence manager and stores it in the conversation context. As a result, Seam is able to carry
 it, along with its persistence context, across the duration of an entire use case, potentially spanning more than one request,
 as shown in figure 1.9. Extending the persistence context across the three operations in this feature allows the entity instance to remain managed
 by the persistence context and monitored for changes that need to be written to the database. This ensures object identity and can guarantee atomicity
 of the operation.

 Figure 1.9. Using the extended persistence context to keep an object in scope for an entire use case, even across multiple page views.
 The extended persistence context avoids the need to merge detached entity instances.

 [image:]

 With Seam in control of the persistence manager, lazy initialization exceptions (LIEs) are also a thing of the past since
 the persistence manager remains open throughout the use case and can thus load additional records as needed. The conversation
 and persistence context fit together so naturally that the conversation has been dubbed Seam’s unit of work. You learn all
 about the interaction between the two in part 3.

 1.5.2. Gets you rich quick

 Seam gives you tools to build rich, Web 2.0 applications or to gently weave this richness into an existing page-oriented application.
 Lately, the term “rich” has become synonymous with a desktop-like experience in the web browser driven by Ajax. There are
 two approaches you can take to incorporate Ajax into a Seam application. You can use Ajax-enabled JSF components, such as
 RichFaces or ICEfaces, or you can invoke server-side components directly from the browser using JavaScript remoting. Seam
 extends the meaning of rich to incorporate media such as PDFs, charts, and graphics.

Tapping into the JSF Ecosystem

 Web user interfaces are getting more and more sophisticated, and it is unreasonable to think that you can code the XHTML and
 JavaScript from scratch and get the job done cheaply. You need to build on what others have done. That is one of the primary
 goals of JSF and why Seam went with JSF as the primary UI framework.

 JSF is all about putting widgets on the screen. It decouples the design of a UI component from its use. Similar to widgets
 in Swing, JSF components are general solutions to common controls. This time, the vendors really did come through. There are
 loads of component libraries for JSF that range from basic data tables, to tree structures, to drag-and-drop targets.

 Historically one of the most entangled parts of an enterprise application is the UI (let’s share hideous JSP files). By moving
 to JSF, the UI becomes a much simpler place. You don’t even need a WYSIWYG IDE because visualizing what these components render
 is quite reasonable. They are human-friendly, rather than tool-friendly. With JSF, the UI finally has an API too.

 While JSF has its place, if you are looking for a lighter way to communicate with the server, Seam’s JavaScript remoting library
 is a great alternative.

Javascript Remoting

 Invoking server-side components from JavaScript in Seam couldn’t be easier, as chapter 12 proves. You simply add the @WebRemote annotation to the Seam component method that you want to call from JavaScript, import the JavaScript remoting library into
 the web page, and then invoke the component method using a JavaScript client stub of the component. Seam handles the rest.
 The punchline of this feature is that it opens the door to creating single-page applications with Seam.

 Although Ajax gets most of the attention these days when web applications are discussed, there are other ways to make your
 application rich. These fall under the heading of rich media.

Creating Rich Media

 Seam is adept at generating a variety of rich media, which you learn to incorporate into your application in chapter 13. Seam uses the Facelets view library to support alternate output based on XHTML templates, including PDF documents, RTF documents,
 charts, and multipart emails with attachments that include the previous items. With the addition of two JSF component tags,
 Seam can accept file uploads without any custom, low-level coding and can render dynamic graphics. All of these tasks are
 typically passed off by web frameworks to third-party libraries. While it’s true that Seam leverages functionality provided
 by libraries such as iText and JFreeChart, the delegation is abstracted away. You are provided with a consistent approach,
 based on Facelets composition templates, that allows these features to be a native part of your Seam application.

 1.5.3. Fosters an agile environment

 In addition to being a framework, Seam provides a collection of tools that help you set up a project, generate code, and develop
 in an incremental manner.

Project Generator

 One of the main highlights of Seam is its project generator, seam-gen. This tool serves two main functions. It sets up the
 structure of a Seam-based project, complete with a build script, environment profiles, a compatible set of libraries, and
 the configurations required to start developing your application. It’s the best way to get started with Seam if you are new
 to the framework. The seam-gen tool can also create an application prototype by reverse-engineering a database schema and
 generating all of the necessary artifacts to create, read, update, and delete (CRUD) data in that database. In Chapter 2, you learn all about seam-gen and use it to create a complete golf course directory web application.

Hot Deployment

 Seam makes preparations to enable “instant change” in the development cycle, which you learn to take advantage of in Chapter 2. Seam’s strategy is to initialize a hot deploy classloader capable of detecting and dynamically reloading changed Java class
 files, just as if they were JSP pages.[4] The project build script compiles any source files that have changed and ships them off to a special path in the server’s
 hot deployment directory, where Seam picks them up and incorporates them into its runtime. Because the modified files remain
 isolated, they do not cause the application server to restart nor do they cause the application to reload. That means you
 can make a change to a Java file and have it take effect in the application immediately. This feature applies to Seam page
 descriptors and uncompiled Groovy scripts as well. You can finally match the change-view-change-view cycle that was previously
 only available with scripting languages such as PHP and Ruby!

 4 Java EE containers support dynamic reloading of JSP pages when they’re moved into the deployment directory for the application
 or web module.

Seam Debug Page

 While developing your application, bad stuff happens. As a result, you get exceptions. Rather than always having to race to
 the log file to find the cause, Seam gives you a head start. When you run Seam in debug mode, any exception that occurs will
 be caught and summarized on a special debug page, accessible at the servlet path /debug.seam. In addition to the exception,
 this page gives you a snapshot of the JSF component tree and any Seam component instances that are present at the time of
 the exception.

 You don’t have to wait for an exception to occur to use this page. When the debug page is accessed directly, it renders a
 list of all conversations and sessions that are currently active. From there, you can drill down on any of the active contexts
 to inspect the component instances that are stored in them.

Testing Without Deploying

 The primary reason developers grew wary of the standard Java EE platform was because of its inability to operate in isolation.
 Testing an application meant packaging it up and shipping it off to a Java EE–compliant application server, a costly process.

 To work around this problem, developers adopted the POJO programming model, which encourages you to design code in such a
 way that it can be tested in isolation from the container and its services. While POJOs are definitely a good thing and encourage
 proper unit testing, there is no replacement for integrating your components in a real environment to ensure that they work
 together. Previously, that meant deploying to the application server once again. Seam has a better solution.

 To support integration test environments (and also deployment to non-Java EE containers, such as Tomcat), Seam ships with
 the Embedded JBoss container. This portable container bootstraps a Java EE environment to support services such as JNDI, JTA,
 JCA, and JMS in a stand-alone environment. With these services up and running, you can test your application in place without
 having to deploy to a container. Seam supports this testing scenario by bootstrapping the Embedded JBoss container as part
 of its single class integration test framework, demonstrated back in section 1.4.6. This test infrastructure should prevent you from having to deploy over and over again to verify that your action components
 talk properly to your persistence layer and so on.

 Between the incremental hot deployment support and the in-place testing infrastructure, your valuable time should rarely be
 wasted when working on a Seam application. If it’s your business logic that is hanging you up, unfortunately there is not
 much Seam can do to help you there. That’s all you.

1.6. Summary

 The enthusiasm for Ruby on Rails was a real wake-up call for the Java EE platform. It enlightened developers to the fact that
 sacrifice is not a prerequisite for creating a successful application. Developers no longer wanted to tolerate the burden
 of “XML situps”[5] and overengineered flexibility. In response, the Seam developers assembled an agile platform, comprised of best-of-breed Java EE technologies, that takes a bold stance against the formalities of the Java
 EE specifications, cutting back the XML descriptor overgrowth, accentuating the platform’s recent adoption of annotations
 and configuration by exception, and embracing the expressive syntax embodied by the EL, Facelets, and Groovy. With Seam, creating
 applications in Java becomes exciting again, whether you are a front-end designer, back-end developer, or jack-of-all-trades.
 Best of all, you can be confident that applications built with Seam are scalable because the Java EE platform has proven itself
 in this regard, giving you productivity without sacrificing performance.

 5 A term coined by the Ruby on Rails camp that equates XML authoring to strenuous exercise

 First and foremost, Seam makes the task of defining and accessing stateful business-logic components simple, regardless of
 whether they are EJB or non-EJB components. A basic @Name annotation atop a class gains it admission into Seam’s contextual container. The container wraps these components in method
 interceptors, enabling enterprise services, such as transactions, security, and component assembly, to be declared with equivalent
 ease by applying an annotation at the class, method, or field level. Seam grants the technologies that it integrates access
 to the components in this container, primarily through the use of the unified EL. This arrangement facilitates the use of
 JPA entity classes as “backing” beans in a JSF form, EJB session beans or transactional JavaBeans as action listeners on a
 JSF UI component, and variables to be resolved on demand using Seam’s factory or manager mechanism.

 An important aspect of Seam’s container is its state management capabilities. It consolidates the variable scopes in JSF with
 two of its own business-oriented scopes. Seam understands variable scoping and helps components from different scopes to work
 with one another without violating thread safety. Of particular note, Seam can extend the lifetime of the persistence manager
 across multiple page requests to reduce load on the database and eliminate complexities of using ORM in web applications.

 If you picked up this book because you believe that there is a better framework choice out there for you (and you are not
 yet using Seam), my promise to you is that Seam is worth checking out and that the time you spend reading this book will be
 worthwhile. But merely knowing what framework someone recommends is not enough to decide to use it. You have to know why a person prefers a particular framework.[6] In this book, I share with you my extensive knowledge of Seam and explain to you why I find it to be a compelling technology
 choice. As you read along, I encourage you to develop your own reason for choosing Seam.

 6 Scott Davis’ talk, given during the No Fluff, Just Stuff 2007 tour, entitled “No, I Won’t Tell You Which Framework to Use:
 or The Truth (With Jokes)” inspired this perspective.

 The key to agile development with Seam begins with the project generator, seam-gen. In the next chapter, I show you how to
 use this tool to develop an entire application from scratch, how to get the application set up in your IDE, and how to take
 advantage of incremental hot deployment. While you must turn over some control when you opt to go with seam-gen, you’ll quickly
 find that you don’t miss the work.

Chapter 2. Putting seam-gen to work

 This chapter covers

	
Setting up a project with seam-gen

 	Reverse engineering a database schema

 	Hot-deploying incremental changes

 	Choosing an IDE for development

Learning a new framework can be challenging, risky, and time consuming. You must leave the comfort of your current tool set
 and venture into unknown territory. To justify your research, you seek out early victories in the form of trivial “Hello World”
 examples. After completing one, you celebrate your accomplishment. Sadly, few others will be so impressed.

 Thanks to seam-gen, Seam’s rapid development tool, you can skip the putt-putt course and come out swinging on your first day
 with Seam. seam-gen creates for you a functional, database-oriented application that is ready for show and tell without requiring
 you to write a single line of code. The seam-gen tool first gathers information about your application, such as the project
 name and database connection properties. It then uses that information to put in place the scaffolding of a Seam-based project.
 Finally, you point seam-gen at your database, which it reverse-engineers to create artifacts that serve dynamic web pages
 used to create, read, update, and delete (CRUD) records in the database tables. The result? An achievement that’s sure to impress even the toughest crowd. How’s that for
 in Action?

 In this chapter, I demonstrate how seam-gen can get you set up quickly to start developing with the Seam framework. By the
 end of this chapter, you’ll have a working golf course directory application that you can deploy to various JBoss Application
 Server environments. A cookie-cutter process is going to fall short in some areas, so I also show you ways to customize the
 application that seam-gen kicks out, a process that’s carried forth throughout the book. What you’re left with is an achievement
 that is far more functional and rewarding than what a typical “Hello World” has to offer. Don’t you know? For judging the
 merit of a web-oriented framework, CRUD is the new “Hello World.”

2.1. The Open 18 prototype

 In this book, you’ll be developing an application named Open 18, a community site oriented towards golf. Golf is a tremendously
 rich domain model and offers a nice opportunity to demonstrate Seam’s features. You’ll start by reverse engineering an existing
 database schema to create a prototype of the application. I chose this scenario because it demonstrates how you can use seam-gen
 to escape the dreaded unproductive phase when starting a new project. You may also find these techniques useful for producing
 applications that don’t aspire to be more than a CRUD front end for a database. The remainder of the book takes a primarily
 free-formed approach when incorporating additional functionality. Some of the enhancements you’ll see later in the book include
 a data entry wizard, side-by-side course comparison, score tracker, favorite courses, registration emails, and PDF scorecards.

 If you want to follow along with the development of the project as you read, you’ll need Seam and its prerequisites extracted
 on your hard drive. You can find instructions on how to set up your software in appendix A. I encourage you to scan this supplementary material before continuing so that you can take a hands-on approach to this tutorial.

 Let’s start by taking a look at the initial requirements for our prototype application and see how seam-gen can help us fulfill
 them.

 2.1.1. Consider yourself tasked

 It’s 1:30 PM on Wednesday, two days before your summer vacation. Your boss taps you on the shoulder just as you finish reserving
 tee times for your annual golf getaway in “Golf Heaven.” You can’t wait. You’ve practiced all summer at the driving range
 so you can top last year’s scores. Actually, let’s be honest. You seasoned your swing so that you can look like a pro in front
 of your fans (*cough* friends).

 You look up and realize that your boss is still standing there, waiting for you to break out of your daze and return to the
 real world. He looks serious. Obviously, this conversation is not going to be spent reminiscing about golf. With a sobering
 tone, he informs you that he just ducked out of a management meeting in which he was reminded of a web application that was
 supposed to have been completed months ago. The anxiety begins to build in you.

 The sales team is expecting to present an application that provides access to the company’s extensive database of golf courses
 at the biggest trade show of the year, which happens to be this coming weekend. Without this application, they won’t have
 anything new to demonstrate. Showing up empty-handed would hurt the company image and jeopardize its credibility. In truth,
 your manager should be sacked for letting the situation get to this point. The sad reality is that it won’t happen. Besides,
 turnover isn’t going to help you now. The deed has been done; the promise has been made. Someone is going to have to reach
 into the hat and yank the rabbit out by the scruff of its neck. That someone is you.

 If this were any other week, these antics would barely register on your annoyance meter. But this week is different. The mercury
 is rising. If things don’t go well, it may put your much anticipated vacation at risk. The thought of not standing on the
 first tee at the break of dawn, in complete Zen with the dew-laden landscape all around you, is just killing you. But you
 also get a kick out of being a hero, so you decide to crank out a prototype by the end of the week and save the company before
 seeking your leisure.

 The question is, do you have something in your toolbox that can get you out of this time crunch? A solution that you can live
 with when you return? You’ve read about how quickly you can create a functional Java EE 5–based application using seam-gen,
 so you decide to put it to the test. For that, you need requirements; they come from your boss in an email:

 You must build a web-based directory for the company’s extensive database of golf facilities and courses. The application’s
 users should be able to browse, paginate, sort, and filter all of the entities in the schema. By selecting one of the facilities,
 they should be presented with its details, as well as a list of its courses. From there, they should be able to drill down
 again to see the holes and tee sets for each course. An administrative user should be able to modify the database records.
 The marketing department also has some verbiage that you need to place on the home page.

 There you have it: the only task standing between you and 18 holes of serenity. The first step in building the prototype is
 getting your hands on the database. You and the database administrator (DBA) need to sit down and have a chat to settle the age-old debate between developers and DBAs for this application: Which comes first, the entity or the schema?

 2.1.2. Mapping entities to the database schema

 In this book, you’ll encounter two development scenarios used by the sample application: bottom-up and top-down. The difference is a matter of which one comes first: the database schema or the Java entity classes.

 If the database schema arrives into the world first, that is bottom-up development. The schema dictates, to a large degree,
 how the Java entity classes are formed. On the other hand, if the Java entity classes show up first, that is top-down development.
 The classes have free rein over how the database schema is designed. Object-relational mapping (ORM) tools, such as Hibernate, give you some wiggle room in how the Java entity classes are mapped to the database. For instance,
 it’s possible to change the name of a column mapped to a property of a Java entity class without having to alter the property’s name. However, there are
 limits to how much the schema and the entity classes can deviate. The one that shows up first is the master and the follower
 must adapt. As a developer, you have to be familiar with how to work in both cases.

	

Note

 Technically speaking, there is a third scenario, meet-in-the-middle, where you have existing Java entity classes and an existing database. In this case, you’re at the mercy of the mapping tool’s
 capabilities. If you have stretched it to its limit and still can’t cover the mismatch, you have to refactor the Java class
 or the database table, bringing you back to bottom-up or top-down semantics.

	

seam-gen has tasks that support both bottom-up and top-down development. In this chapter, we take the bottom-up approach by
 using seam-gen to reverse-engineer the database schema. In chapter 4, we reverse the process, taking the top-down approach to extend the schema to include golfer profiles.

Bottoms up!

 You’ll be performing bottom-up development to create the golf course directory outlined earlier. Using bottom-up development, as illustrated in figure 2.1, you will convert the five tables in the golf course directory schema (FACILITY, COURSE, HOLE, TEE_SET, and TEE) into the five Java entity classes (Facility, Course, Hole, TeeSet, and Tee)[1] that map to them. Mapping tables to Java classes sounds like it requires a lot of effort. Don’t worry; working with existing
 database tables is where seam-gen really shines. Before running seam-gen, though, you need to get your hands on the schema
 and put the database in place.

OEBPS/01fig03.jpg

OEBPS/01fig04.jpg

OEBPS/01fig01.jpg

OEBPS/01fig02.jpg

OEBPS/m.jpg

OEBPS/arrow.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/01fig05_alt.jpg

OEBPS/circle-1.jpg

OEBPS/circle-2.jpg

OEBPS/cover.jpg

OEBPS/016fig01.jpg

OEBPS/circle-3.jpg

OEBPS/circle-5.jpg

OEBPS/circle-4.jpg

OEBPS/020fig01_alt.jpg

OEBPS/01fig06_alt.jpg

OEBPS/01fig08.jpg

OEBPS/01fig07_alt.jpg

OEBPS/01fig09_alt.jpg

