

 inside front cover

 [image:]

 The function design cycle with Copilot, augmented to include debugging

 [image:]

 Learn AI-Assisted Python Programming

 With GitHub Copilot and ChatGPT

 Leo Porter and Daniel Zingaro

 Foreword by Beth Simon, Ph.D.

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Rebecca Johnson

 	
 Technical editor:

 	
 Peter Morgan

 	
 Review editor:

 	
 Dunja Nikitović

 	
 Production editor:

 	
 Aleksandar Dragosavljević

 	
 Copy editor:

 	
 Katie Petito

 	
 Technical proofreader:

 	
 Mark Thomas

 	
 Typesetter:

 	
 Tamara Švelić Sabljić

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633437784

 dedication

 Dan thanks his wife, Doyali, for trading some of their time, again, to help this book exist.

 Leo thanks his wife, Lori, and his children Sam and Avery for their love and support.

 contents

 Front matter

 foreword

 acknowledgments

 introduction

 about the authors

 about the cover illustration

 1 Introducing AI-assisted programming with Copilot

 1.1 How we talk to computers

 Making it a little easier

 Making it a lot easier

 1.2 About the technology

 Copilot, your AI Assistant

 How Copilot works behind the scenes—in 30 seconds

 1.3 How Copilot changes how we learn to program

 1.4 What else can Copilot do for us?

 1.5 Risks and challenges when using Copilot

 1.6 The skills we need

 1.7 Societal concerns about AI code assistants like Copilot

 Summary

 2 Getting started with Copilot

 2.1 Time to set up your computer to start learning

 Overview of the software in your programming environment

 2.2 Getting your system set up

 2.3 Working with Copilot in Visual Studio Code

 Set up your working folder

 Check to see if your setup is working properly

 2.4 Addressing common Copilot challenges

 2.5 Our first programming problem

 Showcasing Copilot’s value in a data processing task

 Summary

 3 Designing functions

 3.1 Functions

 The components of a function

 Using a function

 3.2 Benefits of functions

 3.3 Roles of functions

 3.4 What’s a reasonable task for a function?

 Attributes of good functions

 Examples of good (and bad) leaf functions

 3.5 The cycle of design of functions with Copilot

 3.6 Examples of creating good functions with Copilot

 Dan’s stock pick

 Leo’s password

 Getting a strong password

 Scrabble scoring

 The best word

 Summary

 4 Reading Python code: Part 1

 4.1 Why we need to read code

 4.2 Asking Copilot to explain code

 4.3 Top 10 programming features you need to know: Part 1

 #1. Functions

 #2. Variables

 #3. Conditionals

 #4. Strings

 #5. Lists

 Conclusion

 Summary

 5 Reading Python code: Part 2

 5.1 Top 10 programming features you need to know: Part 2

 #6. Loops

 #7. Indentation

 #8. Dictionaries

 #9. Files

 #10. Modules

 Summary

 6 Testing and prompt engineering

 6.1 Why it is crucial to test code

 6.2 Closed-box and open-box testing

 Closed-box testing

 How do we know which test cases to use?

 Open-box testing

 6.3 How to test your code

 Testing using the Python prompt

 Testing in your Python file (we won’t be doing it this way)

 doctest

 6.4 Revisiting the cycle of designing functions with Copilot

 6.5 Full testing example

 Finding the most students we can add to a row

 Improving the prompt to find a better solution

 Testing the new solution

 6.6 Another full testing example—Testing with files

 What tests should we run?

 Creating the function

 Testing the function

 Common challenges with doctest

 Summary

 7 Problem decomposition

 7.1 Problem decomposition

 7.2 Small examples of top-down design

 7.3 Authorship identification

 7.4 Authorship identification using top-down design

 7.5 Breaking down the process subproblem

 Figuring out the signature for the mystery book

 7.6 Summary of our top-down design

 7.7 Implementing our functions

 clean_word

 average_word_length

 different_to_total

 exactly_once_to_total

 split_string

 get_sentences

 average_sentence_length

 get_phrases

 average_sentence_complexity

 make_signature

 get_all_signatures

 get_score

 lowest_score

 process_data

 make_guess

 7.8 Going further

 Summary

 8 Debugging and better understanding your code

 8.1 What causes errors (bugs)?

 8.2 How to find the bug

 Using print statements to learn about the code behavior

 Using VS Code’s debugger to learn about the code behavior

 8.3 How to fix a bug (once found)

 Asking Copilot to fix your bug via chat

 Giving Copilot a new prompt for the whole function

 Giving Copilot a targeted prompt for part of a function

 Modifying the code to fix the bug yourself

 8.4 Modifying our workflow in light of our new skills

 8.5 Applying our debugging skills to a new problem

 8.6 Using the debugger to better understand code

 8.7 A caution about debugging

 Summary

 9 Automating tedious tasks

 9.1 Why programmers make tools

 9.2 How to use Copilot to write tools

 9.3 Example 1: Cleaning up email text

 Conversing with Copilot

 Writing the tool to clean up email

 9.4 Example 2: Adding cover pages to PDF files

 Conversing with Copilot

 Writing the tool

 9.5 Example 3: Merging phone picture libraries

 Conversing with Copilot

 Top-down design

 Writing the tool

 Summary

 10 Making some games

 10.1 Game programs

 10.2 Adding randomness

 10.3 Example 1: Bulls and Cows

 How the game works

 Top-down design

 Parameters and return types

 Implementing our functions

 Adding a graphical interface for Bulls and Cows

 10.4 Example 2: Bogart

 How the game works

 Top-down design

 Implementing our functions

 Summary

 11 Future directions

 11.1 Prompt patterns

 Flipped interaction pattern

 Persona pattern

 11.2 Limitations and future directions

 Where Copilot (currently) struggles

 Is Copilot a new programming language?

 Summary

 references

 index

 front matter

 foreword

 It’s an awesome time to learn programming. Why? Let me use an analogy to explain.

 I like to make my own bread. I make it more frequently, and more reliably, when I use my stand mixer to knead the dough compared to kneading it by hand. Maybe you’d say that’s lazy. I’d say it makes me more productive and more likely to actually make the bread. Maybe you have something that makes your life easier by taking over a tedious task, leaving you free to focus on more important or interesting things. Do you have a car that supports you in parallel parking? I recall when Gmail added spell and grammar checks in languages other than English. My husband’s German relative were so excited that he was writing them longer emails—because the effort of remembering little-used German language specifics went away and allowed him to spend more time on the content!

 Sadly, until recently, when learning programming, you had no equivalent of a stand mixer or grammar check to support you. And there are lots of tedious things to learn and remember when you start programming.

 Good news! As of spring 2023, radically new and (we think) effective support is finally here. You are about to learn programming with one of the most exciting human task supporters so far this century: artificial intelligence. Specifically, this book seeks to support you in developing your ability to program in Python to solve computational problems more easily and faster by teaching you using a tool called GitHub Copilot. Copilot is a programming support tool that uses something called a LLM (large language model) to draw “help” from a huge number of previously written programs. Once you learn how to direct it (sadly, it’s more complicated than effectively using a stand mixer), Copilot can dramatically increase your productivity and success in writing programs to solve your problem.

 But should you use Copilot? Are you really learning to program if you use it? Preliminary evidence looks positive—showing that students who learned with Copilot, when assigned a programming task to be done without the help of Copilot, did better than students who learned without Copilot (and also did the task without Copilot) [1]. That said, compared to what we used to teach in an introductory programming class, there are different skills you will need to focus on when programming with Copilot, specifically problem decomposition and debugging (it’s OK if you don’t know what those are). Just know, practicing programmers need to know those skills as well, but we previously weren’t able to teach them explicitly or effectively in introductory courses, because students didn’t have the brain space left for learning these “high-level skills” while focusing on nit-picky things like spelling and grammar (programming languages have these, just like real world languages).

 Leo and Dan are expert computing educators and researchers; the decisions that they’ve made to guide your learning in this book are grounded in what we know about teaching and learning programming. I’m excited that, with this book, they’re taking steps toward what the next wave of teaching programming will look like.

 So, congratulations! Whether you have never done any programming or whether you started to learn before and got frustrated… we think you will find learning to program with Copilot transformative and will allow you to engage your brain in more meaningful and “expert-like” programming experiences!

 —Beth Simon, Ph.D.

 acknowledgments

 Writing a book about technology in flux was new for us. Each day of writing started with us reading the new articles, opinion pieces, and capabilities of LLMs. Early plans had to be scrapped or revised. New ideas presented themselves for later chapters only after we’d written earlier chapters and had access to the latest LLM features. We thank the entire Manning Publications team for their agility and help throughout the process.

 In particular, we thank our Development Editor Rebecca Johnson for her expertise, wisdom, and support.

 Rebecca provided insightful feedback, constructive criticism, and creative suggestions that have greatly improved the quality and clarity of our work. Rebecca was supportive and encouraging and helped us manage book timelines and our busy schedules. Thank you, Rebecca—you went above and beyond for us.

 We also thank our Technical Editor Peter Morgan and our Technical Proofreader Mark Thomas. Both offered valuable contributions to the quality of the book.

 To all the reviewers: Aishvarya Verma, Andrew Freed, Andy Wiesendanger, Beth Simon, Brent Honadel, Cairo Cananea, Frank Thomas-Hockey, Ganesh Falak, Ganesh Swaminathan, Georgerobert Freeman, Hariskumar Panakmal, Hendrica van Emde Boas, Ildar Akhmetov, Jean-Baptiste Bang Nteme, Kalai C. E. Nathan, Max Fowler, Maya Lea-Langton, Mikael Dautrey, Monica Popa, Natasha Chong, Ozren Harlovic, Pedro Antonio Ibarra Facio, Radhakrishna Anil, Snehal Bobade, Srihari Sridharan, Tan Wee, Tony Holdroyd, Wei Luo, Wondi Wolde, your suggestions helped make this a better book.

 We thank our colleagues for supporting our work and offering their ideas for what such a book should attempt to do. Many of their ideas have informed our thinking as we sought to redefine what an introductory programming course looks like. We particularly thank Brett Becker, Michelle Craig, Paul Denny, Bill Griswold, Philip Guo, and Gerald Soosai Raj.

 introduction

 Software is essential today. It’s hard to think of any industry where software isn’t changing practically everything about how work is done. Manufacturing needs software to monitor production and shipping, let alone the robots that increasingly perform the actual task. Advertising, politics, and fitness, among others, are awash in big data and they routinely use software to make sense of it. Video games and movies are created using software. We could go on and on, but you get the point.

 The result has been that more people than ever want to learn how to program. We’re not just talking about the computer science, computer engineering, and data science majors at universities who have been in a perpetual “enrollment crisis” for the past decade. We’re also talking about the scientist who needs to write software to evaluate their data, the office worker who wants to automate some of their tedious data processing tasks, and the hobbyist who wants to create a fun video game for their friends.

 Despite the desire to learn programming, there are decades of research in our field (computing education) that have identified many reasons for why learning to write software is hard. Even after you figure out how to solve the problem, you have to tell a machine how to accomplish it in a programming language whose rules are unforgiving. Granted, writing programs in a language like Python is substantially easier than in machine code using punch cards, but it’s still hard. We know it’s hard because we’ve seen the failure rates of introductory computer science courses. We’ve seen first-hand as we’ve watched motivated and intelligent students fail our courses, sometimes multiple times, before they succeed or, worse, give up.

 But what if we could talk to computers in a better way? A way that doesn’t require us to know all the detailed syntax rules that trip up most novices. That era has just begun thanks to AI assistants like Copilot that offer intelligent code suggestions in the same way ChatGPT can write reasonable text when prompted. This book is for everyone who wants to learn how to write software in the AI assistant era. We’re excited to be on your learning journey with you.

 AI assistants change how programming is done

 We’ll introduce you to your AI assistant, Copilot, in chapter 1, but we want to give you a brief overview now. If you read the news headlines or even opinion pieces by lauded software engineering professionals talking about Copilot or ChatGPT, you’ve seen that opinions run the gamut. Some people say that AI assistants mean the end of all programming jobs. Others say that AI assistants are so hopelessly flawed you are better without them. These views of the world are at such extremes that it’s easy to poke holes in either argument. AI assistants learn from existing code, so if some new tool/technology is developed, humans will need to write the bulk of the initial code. As a recent article well expressed, there isn’t a lot (or any) code out there for quantum computers since they are still in their infancy [1]. So human programmers aren’t going away, at least not any time soon. At the same time, in our time working with Copilot, we’ve seen how powerful it is. Both of us have written software for decades and Copilot can often give us correct code much faster than we could write it on our own. To ignore such a powerful tool seems analogous to a carpenter refusing to use power tools.

 As educators, the opportunity to help people learn to write software is instantly apparent. Why should students spend so much time fighting with syntax when writing code from scratch when the code suggested by an AI assistant is almost always syntactically correct? Why should students have to reach out to professors, instructional staff, friends, or internet forums for help explaining what a section of code is doing when AI assistants are really good at explaining code (particularly for questions asked by novices)? And if AI assistants often write correct code when solving common programming problems (by learning from huge volumes of code written in the past), why shouldn’t students be using it to help them program?

 Be warned that this doesn’t mean that writing software is now just easy and that we can entirely offload the skill of programming onto the AI. Instead, the skills to write good software are evolving. Skills like problem decomposition, code specification, code reading, and code testing have become even more important than they were in the past; skills like knowing library semantics and syntax become less important. We’ll say more about this in the next chapters, but this book will teach you the skills that matter going forward. These skills will be valuable whether you dabble in writing software from time to time or you are starting a career in software engineering.

 Audience

 We have two primary audiences for the book. The first is everyone who has thought about writing software (and even tried and failed before) to make their lives better in some way. This includes the accountant who gets frustrated that their software can’t do what they want so they are left solving problems by hand. Or scientists who want to analyze their data quickly, but existing tools aren’t capable of doing what they want. We also imagine the office manager who feels limited by what their spreadsheet software can do and wants a better way to gain insight from their data. Additionally, we imagine the exec at a small company who wants to be notified when something is said publicly on social media about their company but can’t afford to pay a software engineering team to write the tool for them. And we imagine the hobbyist of any age who just wants to write software for fun—whether it be for making their own small video games, storytelling with pictures, or creating fun family photo collages. These are just some of the people who want to write software to improve some element of their professional or personal lives.

 The second is the student who is considering a career in software engineering or programming and wants to learn how to write software. They want to learn the basics and start creating interesting software, without the trappings of a classic computer science class. Certainly, there will be more courses or books that will follow this first book on the road to becoming a professional software developer, but this will hopefully be a fun and rewarding first step.

 What we expect from you

 This book requires no background whatsoever in programming. If you learned some programming and forgotten or it didn’t go well the first time, we think this is a great place to resume your learning.

 This book does require basic computer literacy. This means you should be comfortable installing software, copying files between folders, and opening files on your computer. If you don’t have those skills, you could still start this book, but realize there may be moments when you need to look to outside resources (e.g., YouTube videos on how to copy a file from one folder to another).

 You’ll also need a computer where you have permission to install software so you can follow along and apply the ideas we’re learning. Any Windows, Mac, or Linux personal computer or laptop will work.

 What you will be able to do after reading this book

 In this book, we’re going to teach you how to use Copilot to write Python code. We’ll teach you how to identify whether that code does what you want, and what to do when it doesn’t. We’ll teach you enough about Python to be able to read it for a general understanding of what it does and whether it is doing something potentially meaningful.

 We won’t, however, teach you how to program in Python entirely from scratch. You’ll be in a good position to learn to do that with other resources following this book if you like—but for many tasks, as we will show you, it may not be necessary.

 We don’t know exactly what it will look like to be a professional programmer or software engineer in light of AI coding assistants. That role is already changing and will change further as the AI technology improves. For now, we will say that you need more than this book to be a professional programmer or software engineer. You’ll need to know a great deal more about Python and other computer science topics to get there.

 The good news is that learning how to program using Copilot will make you capable of writing basic software to address common needs. The software will be more complex than what we typically teach in an introductory course, and you’ll be able to write these useful programs without banging your head on syntax or spending months learning just Python. If you wish to continue learning about writing professional software, this will be your first step toward mastery.

 By the end of this book, you will be able to write basic software capable of data analysis, automating repetitive tasks, and creating simple games, among many others.

 The challenge in working with AI assistants

 We expect you’re ready to jump into a technology that is maturing and changing quickly. What you see from Copilot may not match what you see in the book. Copilot is advancing and changing daily, and we cannot possibly keep up to the minute with such a moving target. More than that, Copilot is nondeterministic, which means that if you ask it to solve the same task multiple times, it may not give you the same code each time. And sometimes you’ll get correct code for a task, but then if you ask again, you get code that is not correct. So even if you use the exact same prompts we do, you will likely see different code responses than we do. Much of this book is devoted to ensuring you learn how to determine whether the answer from Copilot is right or not and, if it isn’t, how to fix it. In short, we hope you’re ready for what it means to learn on the leading edge of technology.

 Why we wrote this book

 Both of us have been professors for over a decade and programmers for a decade longer than that. Our care for our students’ success led us to become researchers studying how students learn computing and how to improve their outcomes. Between the two of us, we’ve written nearly a hundred articles in our field exploring pedagogies, student beliefs, and assessments—all with the goal of improving the student experience.

 We’ve also had students in our office hours who struggled to learn how to program, even when we are employing best practices in teaching computing. These are intelligent students who want to learn, but who are tripped up on some part of the programming process. The programming process has many steps, from understanding a problem, to coming up with a solution, to imparting the process of solving the problem to a computer. So, when we began working with AI assistants, specifically Copilot, we instantly saw how it could be a game changer for students, particularly in improving that last step “imparting the process of solving the problem to a computer”. We want our students to succeed. We want you to succeed. And we believe AI assistants can help.

 Warning: beware of elitism

 One of the saddest things we see in our classes at our universities is students intimidating other students. We’ve heard students in our introductory Python programming courses try to show off how they already learned to program in such-and-such programming language and the affect that has on the other students in the course. Although we try to gently point these students to other, more appropriate courses, we’ve also seen that the students bragging in this way are often the students struggling to pass at the end of the term, having vastly over-estimated their proficiency at the start. And it doesn’t take a licensed psychologist to see that this kind of posturing comes from a place of low self-esteem.

 Beyond students in our introductory courses, we see how different kinds of programmers treat each other and their respective fields. For example, Human-Computer Interaction (HCI) professionals study how to improve the design of software to make it better for its human users. Sounds important, right? Unfortunately, that field was put down by computer scientists as merely “applied psychology” for years, and then major companies showed that maybe, just maybe, if you care about the users of your technology, those people might just appreciate it more and be inclined to buy it. It’s not surprising that HCI quickly became mainstream in computer science. This snobbery isn’t limited to specific fields. We even see it occurring between programmers of different languages. For example, we’ve seen C++ (one programming language) programmers say silly things like JavaScript (another programming language) programming isn’t real programming. (It definitely is real programming, whatever that might mean!)

 All of this, in our opinion, is unproductive and unfortunate posturing that pushes people away from the field. A comic we both enjoy called XKCD, captured the ludicrousness of this posturing well in “Real Programmers” [2]. In the comic, programmers argue about what the best text editor app is for programming. Programmers need to use a text editor to enter their code, which is exactly what you’ll start doing in chapter 2. There’s been a long-standing, and mostly unserious, debate over the best editors (“emacs” is one of many editors). The comic is making light of the meaninglessness of the debate in a truly clever way.

 The reason we’re talking about this unfortunate aspect of our field is we know what some people will say about learning to program with Copilot. They’ll say that to learn to write software, you have to learn how to write code entirely from scratch. And for future professional engineers, we actually agree that at some point in your career, you should learn to write code from scratch. But, for most people and even people starting their studies in software engineering, we wholeheartedly disagree that writing code entirely from scratch makes sense anymore as a starting place. So, if someone criticizes you for doing something to make yourself or your life or the world better, we encourage you to look to the immortal wisdom of Taylor Swift and just “Shake it off”.

 How this book is organized: a roadmap

 This book is divided into 11 chapters. We recommend that you read this book from beginning to end, rather than skipping around. That’s because most chapters introduce skills that will be assumed in later chapters:

 	
 Chapter 1 describes what AI code assistants are, how they work, and why they are irrevocably changing how programming is done. It also explores the concerns we need to keep in mind when using AI coding assistants.

 	
 Chapter 2 helps you set up your computer to be able to program with GitHub Copilot (that’s your AI coding assistant) and Python (that’s the programming language we’ll use). Once your computer is set up, we’ll use Copilot in our first programming example: doing some analysis on freely available sports data.

 	
 Chapter 3 teaches you all about functions, which help you organize your code and make it easier for Copilot to write code for you. It also uses many examples to demonstrate the general workflow we’ll use in order to be productive with Copilot.

 	
 Chapter 4 is the first of two chapters that teaches you how to read Python code. It’s true that Copilot will be writing code for you, but you need to be able to read that code to help you determine whether that code is going to do what you want. And don’t worry: Copilot can help you read code, too!

 	
 Chapter 5 is the second of two chapters that teaches you how to read Python code.

 	
 Chapter 6 is a primer on two critical skills that you need to hone when working with AI coding assistants: testing and prompt engineering. Testing involves checking that your code operates correctly; prompt engineering involves changing the words you use in order to communicate more effectively with your AI assistant.

 	
 Chapter 7 is all about breaking large problems down into smaller problems that are easier for Copilot to handle. The technique is called top-down design, and in this chapter, you’ll use it to design a complete program to identify the author of mystery books.

 	
 Chapter 8 is a deep dive into bugs (errors in your code!), how to find them, and how to fix them. You’ll learn how to step line by line through your code to pinpoint exactly what’s going wrong and even how to ask Copilot to help you fix bugs.

 	
 Chapter 9 puts Copilot to work to help you automate tedious tasks. You’ll see three examples—cleaning up emails that have been forwarded many times, adding cover pages to hundreds of PDF files, and removing duplicate images—and you’ll be able to apply the principles to your own specific tasks as well.

 	
 Chapter 10 shows you how to use Copilot to write computer games. You’ll use the skills you developed throughout the book to write two games: a logic game similar to Wordle, and a two-player, press-your-luck board game.

 	
 Chapter 11 delves into the fledgling field of prompt patterns, which are tools to help you get even more out of your AI assistant. It also summarizes the current limitations of AI coding assistants and looks at what may be on the horizon.

 Source code downloads

 For many books about programming, the reader types the code exactly as the author has written it in order to accomplish a task with code. Our book is different because, as described earlier, the code we get back from Copilot is nondeterministic; your code will not match our code. For that reason, we are not providing all of the code for download that you see in this book. We want you to focus on generating that code from Copilot, not typing it in yourself! That said, we do have some important files to share, and they are available from the publisher’s website at https://www.manning.com/books/learn-ai-assisted-python-programming.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Comments or code we’ve written as prompts to be interpreted by Copilot or ChatGPT are in bold to highlight what we wrote rather than what was given to us by the large language model.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Software/hardware requirements

 You’ll need access to any Windows, Mac, or Linux computer on which you have permission to install software. As we discuss in further detail in chapter 2, you’ll need to install the Python software, the Visual Studio Code (VS Code) software, as well as various extensions. You’ll also need to sign up for a GitHub Copilot account which, at the time of writing, has a free trial, is free for students and educators, but otherwise has a monthly charge.

 liveBook discussion forum

 Purchase of Learn AI-Assisted Python Programming with GitHub Copilot and ChatGPT includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-ai-assisted-python-programming/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the authors

 Dr. Leo Porter is a Teaching Professor in the Computer Science and Engineering Department at UC San Diego. He is best known for his research on the effect of peer instruction in computing courses, the use of clicker data to predict student outcomes, and the development of the Basic Data Structures Concept Inventory. He co-teaches the popular Coursera Specialization “Object-Oriented Java Programming: Data Structures and Beyond” with more than 300,000 enrolled learners and the first course in the edX MicroMasters in Data Science, “Python for Data Science”, with more than 200,000 enrolled learners. He has received six Best Paper Awards, SIGCSE’s 50th Year Anniversary Top Ten Symposium Papers of All Time Award, an Outstanding Teaching Award from Warren College, and the Academic Senate Distinguished Teaching Award at UC San Diego. He is a Distinguished Member of the ACM and previously served on the ACM SIGCSE Board.

 Dr. Daniel Zingaro is an Associate Teaching Professor at University of Toronto. He has taught introductory Python programming to thousands of students over the past 15 years and wrote the Python textbook that is currently being used for the course. He has also written dozens of research articles about how to teach and learn introductory CS. Dan has written two books with No Starch Press—the aforementioned one on Python and one on algorithms—that have been translated into multiple languages. Dan has received several prestigious teaching and research awards, including a 50-Year Test of Time award and multiple Best Paper awards.

 About the technical editor

 Peter Morgan is the founder of the AI consulting company Deep Learning Partnership based in London (www.deeplp.com). He has an advanced degree in physics along with an MBA. He has been working in AI for the past ten years and before that spent ten years as a Solutions Architect for companies such as Cisco Systems and IBM. Peter has written several reports, papers and book chapters on AI, physics, and quantum computing. He consults on LLMOps and quantum computing for startups and enterprises globally. You can follow Peter on Twitter (@PMZepto).

 about the cover illustration

 The figure on the cover of Learn AI-Assisted Python Programming with GitHub Copilot and ChatGPT is “Prussien de Silésie,” or “Prussian from Silesia,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 1 Introducing AI-assisted programming with Copilot

 This chapter covers

 	How AI assistants change how new programmers learn

 	Why programming is never going to be the same

 	How AI assistants like Copilot work

 	How Copilot solves introductory programming problems

 	Possible perils of AI-assisted programming

 In this chapter, we’ll talk about how humans communicate with computers. We’ll introduce you to your AI assistant, GitHub Copilot, an amazing tool that uses artificial intelligence (AI) to help people write software. More importantly, we’ll show you how Copilot can help you learn how to program. We’re not expecting that you’ve written any programs before. If you have, please don’t skip this chapter, even if you already know a little bit about programming. Everyone needs to know why writing programs is different now that we have AI assistants like ChatGPT and Copilot, and that the skills we need to be effective programmers change. As we’ll see, we also need to be vigilant, because sometimes tools like ChatGPT and Copilot lie.

 1.1 How we talk to computers

 Would you be happy if we started by asking you to read and understand the code below?1

 section .text
global _start
_start:
 mov ecx, 10
 mov eax, '0'
 l1:
 mov [num], eax
 mov eax, 4
 mov ebx, 1
 push ecx
 mov ecx, num
 mov edx, 1
 int 0x80
 mov eax, [num]
 inc eax
 pop ecx
 loop l1
 mov eax, 1
 int 0x80
section .bss
 num resb 1

 That monstrosity prints out the numbers from 0 to 9. It’s written using code in assembly language, a low-level programming language. Low-level programming languages, as you can see, are not languages that humans can easily read and write. They’re designed for computers, not humans.

 No one wants to write programs like that, but especially in the past, it was sometimes necessary. Programmers could use it to define exactly what they wanted the computer to do, down to individual instructions. This level of control was needed to squeeze every bit of performance out of underpowered computers. For example, the most speed-critical pieces of 1990s computer games, such as Doom and Quake, were written in assembly language like the previous code example. It simply wouldn’t have been possible to make those games otherwise.

 1.1.1 Making it a little easier

 Okay, no more of that. Let’s move on. Would you be happier reading this code below?

 for num in range(0, 9):
 print(num)

 This code is in the Python language, which is what many programmers use these days. Unlike assembly language, which is a low-level language, Python is considered a high-level language because it’s much closer to natural language. Even though you don’t know about Python code yet, you might be able to guess what this program is trying to do. The first line looks like it’s doing something with the range of numbers from 0 to 9. The second line is printing something. It’s not too hard to believe that this program, just like the assembly language monstrosity, is supposed to print the numbers from 0 to 9. Unfortunately, something is wrong with it, and it doesn’t actually print the numbers from 0 to 9 (instead, it prints 0 to 8).

 While this code is closer to English, it isn’t English. It’s a programming language that, like assembly language, has specific rules. As in the previous code, misunderstanding the details of those rules can result in a broken program.

 The holy grail of communicating with a computer is to do so in a natural language such as English. We’ve been talking to computers using various programming languages over the past 70 years, not because we want to but because we have to. Computers were simply not powerful enough for the vagaries and idiosyncrasies of a language like English. Our programming languages improved—from symbol-soup assembly language to Python, for example—but they are still computer languages, not natural languages. This is changing.

 1.1.2 Making it a lot easier

 Using an AI assistant, we can now ask for what we want in English and have the computer code written for us in response. To get a correct Python program that does actually print the numbers from 0 to 9, we can ask our AI assistant (Copilot) in normal English language like this:

 # Output the numbers from 0 to 9

 Copilot might respond to this prompt by generating something like this:

 for i in range(10):
 print(i)

 Unlike the example we showed you before, this piece of Python code actually works!

 AI coding assistants can be used to help people write code. In this book, we will learn how to use Copilot to write code for us. We will ask for what we want in English, and we will get the code back in Python.

 More than that, we’ll be able to use Copilot as a seamless part of our workflow. Without tools like Copilot, programmers routinely have two windows open: the one to write code and the other to ask Google how to write code. This second window has Google search results, Python documentation, or forums of programmers talking about how to write code to solve that particular problem. They’re often pasting code from these results into their code, then tweaking it slightly for their context, trying alternatives, and so on. This has become a way of life for programmers, but you can imagine the inefficiency here. By some estimates, up to 35% of programmers’ time is spent searching for code [1], and much of the code that is found is not readily usable. Copilot greatly improves this experience by helping us write our code.

 1.2 About the technology

 We’ll use two main technologies in this book: Python and GitHub Copilot.

 Python is a programming language. It’s a way to communicate with a computer. People use it to write all kinds of programs that do useful things, like games, interactive websites, visualizations, apps for file organization, automating routine tasks, and so on.

 There are other programming languages, like Java, C++, Rust, and many others. Copilot works with those, too, but at the time of this writing, it works really well with Python. Python code is a lot easier to write compared to many other languages (especially assembly code). Even more importantly, Python is easy to read. After all, we’re not going to be the ones writing the Python code. Our AI assistant is!

 Computers don’t actually know how to read and run Python code. The only thing computers can understand is something called machine code, which looks even more ridiculous than assembly code, because it is the binary representation of the assembly code (yep, just a bunch of 0s and 1s!). Behind the scenes, your computer takes any Python code that you provide and converts it into machine code before it runs, as shown in figure 1.1.

 [image:]

 Figure 1.1 Your Python program goes through several steps before you see the output on your screen.

 1.2.1 Copilot, your AI Assistant

 What is an AI assistant? An AI assistant is an artificial intelligence (AI) agent that helps you get work done. Maybe you have an Amazon Alexa device at home, or an iPhone with Siri—these are AI assistants. They help you order groceries, learn the weather, or determine that, yes, the woman who played Bellatrix in the Harry Potter movies really was in Fight Club. An AI assistant is just a computer program that responds to normal human inputs like speech and text with human-like answers.

 Copilot is an AI assistant with a specific job: it converts English into computer programs. (It can also do a whole lot more, as we will soon see.) There are other AI assistants like Copilot, including CodeWhisperer, Tabnine, and Ghostwriter. We chose Copilot for this book by a combination of the quality of code that we have been able to produce, stability (it has never crashed for us!), and our own personal preferences. We encourage you to also check out other tools when you feel comfortable doing so.

 1.2.2 How Copilot works behind the scenes—in 30 seconds

 You can think of Copilot as a layer between you and the computer program you’re writing. Instead of writing the Python directly, you simply describe the program you want in words—this is called a prompt—and Copilot generates the program for you.

 The brains behind Copilot is a fancy computer program called a large language model, or LLM. An LLM stores information about relationships between words, including which words make sense in certain contexts, and uses this to predict the best sequence of words to respond to a prompt.

 Imagine that we asked you what the next word should be in this sentence: “The person opened the ________.” There are many words that you could fill in here, like “door” or “box” or “conversation,” but there are also many words that would not fit here, like “the” or “it” or “open.” An LLM takes into account the current context of words to produce the next word, and it keeps doing this until it has completed the task.

 Notice that we didn’t say anything about Copilot having an understanding of what it is doing. It just uses the current context to keep writing code. Keep this in mind throughout your journey: only we know whether the code that’s generated does what we intended it to do. Very often it does, but you should always exercise healthy skepticism regardless. Figure 1.2 gives you an idea of how Copilot goes from prompt to program.

 [image:]

 Figure 1.2 Going from prompt to program with Copilot

 You might wonder why Copilot writes Python code for us and not machine code directly. Isn’t Python an expendable intermediate step now? Well, no, and the reason is that Copilot is going to make mistakes. And if it’s going to make mistakes that we need to fix, it’s a lot easier to do that with Python than with machine code.

 In fact, virtually no one checks if the machine code produced from Python is correct. This is partially because of the determinism of the Python language specification. One could imagine a future where Copilot conversations are so accurate that inspecting the Python is unnecessary, but we’re a long way from that.

 1.3 How Copilot changes how we learn to program

 To illustrate how learning to program changes in the presence of an AI assistant, we want to show you how powerful Copilot is at solving a programming task typically given to students in the middle of a programming course or in a book on how to program.

 When learning how to program in the past, learners often spent most of their time working with the syntax and basic structure of programs. Writing a program from scratch (line by line), like the one we’ll show you next, is seen as the culmination of all of their learning. Before we dive into the problem, we need to be clear: many new programmers cannot write the code to solve this problem despite the fact most programming instructors (and book authors) think that new programmers should be able to do so. Here are the instructions for one version of this problem [6]:

 “Write a program that will read the amount of rainfall for each day. A negative value of rainfall should be rejected since this is invalid and inadmissible. The program should print out the number of valid recorded days, the number of rainy days, the rainfall over the period, and the maximum amount of rain that fell on any one day. Use a sentinel value of 9999 to terminate the program.”

 If you have tried to learn to program before, this kind of problem statement may be familiar to you, and you may have struggled to solve such a problem. But now, if we give this exact prompt to Copilot, we get the following Python code as a result. (Remember from the introduction that Copilot is nondeterministic, so if we ask it again, we might get different code!)

 Listing 1.1 Copilot code that solves the classic rainfall problem

 rainfall = 0
total_rainfall = 0
num_rainy_days = 0
num_valid_days = 0
max_rainfall = 0
rainfall = int(input(
 "Enter the amount of rainfall for the day: "))
while rainfall != 9999:
 if rainfall < 0:
 print("Invalid rainfall amount. Please try again.")
 rainfall = int(input(
 "Enter the amount of rainfall for the day: "))
 else:
 num_valid_days += 1
 total_rainfall += rainfall
 if rainfall > 0:
 num_rainy_days += 1
 if rainfall > max_rainfall:
 max_rainfall = rainfall
 rainfall = int(input(
 "Enter the amount of rainfall for the day: "))
print("Number of valid days:", num_valid_days)
print("Number of rainy days:", num_rainy_days)
print("Total rainfall over the period:", total_rainfall)
print("Maximum amount of rain that fell on any one day:", max_rainfall)

 We’re not expecting you to have any intuition right now that this code is good. But it is. As computer science professors, we’d grade this code highly.

 People learning to program used to spend weeks or months to get to a point where they could write programs like this. Now Copilot can offer code immediately. As we’ll see in the rest of the book, we still need to verify that this code is correct, because Copilot can make mistakes. However, we don’t need to write it from scratch anymore. We believe this successful interaction with Copilot signals the end of the way that we have historically taught and learned programming.

 You, as someone interested in learning how to program, simply don’t need to struggle with syntax, control flow, and the host of other Python concepts needed to write code like this in the past. Sure, we are going to learn about those concepts in this book, but not so that you can demonstrate your understanding by writing code from scratch that Copilot can produce easily. No, we’ll learn those concepts only because they help us solve meaningful problems and interact productively with Copilot. Instead, you get to learn how to write larger, more meaningful software faster, because of how an AI assistant fundamentally changes the skills needed to learn programming.

 1.4 What else can Copilot do for us?

 As we’ve seen, we can use Copilot to write Python code for us starting from an English description of what we want. Programmers use the word syntax to refer to the symbols and words that are valid in a given language. So, we can say that Copilot takes a description in English syntax and gives us back code in Python syntax. That’s a big win, because learning programming syntax has historically been a major stumbling block for new programmers. What kind of bracket— [, (, or { —am I supposed to use here? Do I need indentation here? What’s the order in which we’re supposed to write these things: x and then y, or y and then x?

 Such questions abound, and let’s be honest: it’s uninteresting stuff. Who cares about this when all we want to do is write a program to make something happen? Copilot can help free us from the tedium of syntax. We see this as an important step to help more people successfully write programs, and we look forward to the day when this artificial barrier is completely removed. For now, we still need Python syntax, but at least Copilot helps us with it.

 But that’s not all Copilot can do. Here are some associated—and no less important—tasks Copilot can help us with:

 	
 Explaining code—When Copilot generates Python code for us, we’ll need to determine whether that code does what we want. Again, as we said previously, Copilot is going to make mistakes. Although we’re not interested in teaching you every nuance of how Python works (that’s the old model of programming), we are going to teach you how to read Python code to gain an overall understanding of what it does. We’re also going to use the feature of Copilot that explains code to you in English. When you finish with this book and our explanations, you’ll still have Copilot available to help you understand that next bit of gnarly code that it gives you.

 	
 Making code easier to understand—There are different ways to write code to accomplish the same task. Some may be easier to understand than others. Copilot has a tool that can reorganize your code to make it easier to work with. For example, code that’s easier to read is often easier to enhance or fix when needed.

 	
 Fixing bugs—A bug is a mistake made when writing a program that can result in the program doing the wrong thing. Sometimes, your Python code almost works, or works almost always but not in one specific circumstance. If you’ve listened to programmers talk, you may have heard the common story where a programmer would spend hours only to finally remove one = symbol that was making their program fail. Not a fun few hours! In these cases, you can try the Copilot feature that helps to automatically find and fix the bug in the program.

 1.5 Risks and challenges when using Copilot

 Now that we’re all pumped up about getting Copilot to write code for us, we need to talk about the dangers inherent in using AI assistants. See references [2] and [3] for elaboration on some of these points.

 	
 Copyright—Copilot learned how to program using human-written code. (You’ll hear people use the word “train” when talking about AI tools like Copilot. In this context, training is another word for learning.) More specifically, it was trained using millions of GitHub repositories containing open-source code. One worry is that Copilot will “steal” that code and give it to us. In our experience, Copilot doesn’t often suggest a large chunk of someone else’s code, but that possibility is there. Even if the code that Copilot gives us is a melding and transformation of various bits of other people’s code, there may still be licensing problems. For example, who owns the code produced by Copilot? There is currently no consensus on the answer. The Copilot team is adding features to help; for example, Copilot can tell you whether the code that it produced is similar to already-existing code and what the license is on that code [4]. Learning and experimenting on your own is great, and we encourage that—but take the necessary care if you do intend to use this code for purposes beyond your home. We’re a bit vague here, and that’s intentional: it may take some time for laws to catch up to this new technology. It’s best to play it safe while these debates are had within society.

 	
 Education—As instructors of introductory programming courses ourselves, we have seen first-hand how well Copilot does on the types of assignments we have historically given our students. In one study [5], Copilot was asked to solve 166 common introductory programming tasks. And how well did it do? On its first attempt, it solved almost 50% of these problems. Give Copilot a little more information, and that number goes up to 80%. You have already seen for yourself how Copilot solves a standard introductory programming problem. Education needs to change in light of tools like Copilot, and instructors are currently discussing how these changes may look. Will students be allowed to use Copilot and, if so, in what ways? How can Copilot help students learn? And what will programming assignments look like now?

 	
 Code quality—We need to be careful not to trust Copilot, especially with sensitive code or code that needs to be secure. Code written for medical devices, for example, or code that handles sensitive user data must always be thoroughly understood. It’s tempting to ask Copilot for code, marvel at the code that it produces, and accept that code without scrutiny. But that code might be plain wrong. In this book, we will work on code that will not be deployed at large, so while we will focus on getting correct code, we will not worry about the implications of using this code for broader purposes. We will start building the foundations you will need to independently determine whether code is correct.

 	
 Code security—As with code quality, code security is absolutely not assured when we get code from Copilot. For example, if we are working with user data, getting code from Copilot is not enough. We would need to perform security audits and have expertise to determine that the code is secure. Again, though, we will not be using code from Copilot in real-world scenarios. Therefore, we will not focus on security concerns.

 	
 Not an expert—One of the markers of being an expert is awareness of what one knows and, equally important, what one doesn’t. Experts are also often able to state how confident they are in their response; and, if they are not confident enough, they will learn further until they know that they know. Copilot and, more generally, LLMs do not do this. You ask them a question, and they answer, plain as that. They will confabulate if necessary: they will mix bits of truth with bits of garbage into a plausible-sounding but overall nonsensical response. For example, we have seen LLMs fabricate obituaries for people who are alive, which doesn’t make any sense, yet the “obituaries” do contain elements of truth about people’s lives. When asked why an abacus can perform math faster than a computer, we have seen LLMs come up with responses—including something about abacuses being mechanical and therefore necessarily the fastest. There is ongoing work in this area for LLMs to be able to say, “sorry, no, I don’t know this”, but we are not there yet. They don’t know what they don’t know, and that means they need supervision.

 	
 Bias—LLMs will reproduce the same biases present in the data on which they were trained. If you ask Copilot to generate a list of names, it will generate primarily English names. If you ask for a graph, it may produce a graph that doesn’t consider perceptual differences among humans. And if you ask for code, it may produce code in a style reminiscent of how dominant groups write code. (After all, the dominant groups wrote most of the code in the world, and Copilot is trained on that code.) Computer science and software engineering have long suffered from a lack of diversity. We cannot afford to stifle diversity further, and indeed we need to reverse the trend. We need to let more people in and allow them to express themselves in their own ways. How this will be handled with tools like Copilot is currently being worked out and is of crucial importance for the future of programming. However, we believe Copilot has the potential to improve diversity by lowering barriers for entry into the field.

 1.6 The skills we need

 If Copilot can write our code, explain it, and fix bugs in it, are we just done? Do we just tell Copilot what to do and celebrate our pure awesomeness?

 No. It’s true that some of the skills that programmers rely upon (writing correct syntax, for example) will decrease in importance. But other skills remain critical. For example, you cannot throw a huge task at Copilot like, “Make a video game. Oh, and make it fun.” Copilot will fail. Instead, we need to break down such a large problem into smaller tasks that Copilot can help us with. And how do we break a problem down like that? Not easily, it turns out. Humans need to develop this key skill when engaging in conversations with tools like Copilot, and we teach this skill throughout the book.

 Other skills, believe it or not, may take on even more importance with Copilot. Testing code has always been a critical task in writing code that works. We know a lot about testing code written by humans, because we know where to look for typical problems. We know that humans often make programming errors at the boundaries of values. For example, if we wrote a program to multiply two numbers, it’s likely that we’d get most values right but maybe not when one value is 0. What about code written by AI, where 20 lines of flawless code could hide one line so absurd that we likely wouldn’t expect it there? We don’t have experience with that. We need to test even more carefully than before.

 Finally, some required skills are entirely new. The main one here is called prompt engineering, which involves how to tell Copilot what to do. When we’re asking Copilot to write some code, we’re using a prompt to make the request. It’s true that we can use English to write that prompt and ask for what we want, but that isn’t enough. We need to be very precise if we want Copilot to have any chance of doing the right thing. And even when we are precise, Copilot may still do the wrong thing. In that case, we need to first identify that Copilot has indeed made a mistake and then tweak our description to hopefully nudge it in the right direction. In our experience, seemingly minor changes to the prompt can have outsized effects on what Copilot produces.

 In this book, we will teach you all these skills.

 1.7 Societal concerns about AI code assistants like Copilot

 There’s societal uncertainty right now about AI code assistants like Copilot. We thought we’d end the chapter with a few questions and our current answers. Perhaps you’ve been wondering about some of these questions yourself! Our answers may turn out to be hilariously incorrect, but they do capture our current thoughts as two professors and researchers who have dedicated their careers to teaching programming.

 Q: Are there going to be fewer tech and programming jobs now that we have Copilot?

 A: Probably not. What we do expect to change is the nature of these jobs. For example, we see Copilot as being able to help with many tasks typically associated with entry-level programming jobs. This doesn’t mean that entry-level programming jobs go away, only that they change as programmers are able to get more done given increasingly sophisticated tools.

 Q: Will Copilot stifle human creativity? Will it just keep swirling around and recycling the same code that humans have already written, limiting introduction of new ideas?

 A: We suspect not. Copilot helps us work at a higher level, further removed from the underlying machine code, assembly code, or Python code. Computer scientists use the term abstraction to refer to the extent that we can disconnect ourselves from low-level details of computers. Abstraction has been happening since the dawn of computer science, and we don’t seem to have suffered for it. On the contrary, it enables us to ignore problems that have already been solved and focus on solving broader and broader problems. Indeed, it’s been the advent of better programming languages that have facilitated better software—software that powers Google search, Amazon shopping carts, and macOS weren’t written (and likely could not have been written) when we only had assembly!

 Q: I keep hearing about ChatGPT. What is it? Is it the same as Copilot?

 A: It’s not the same as Copilot, but it’s built on the same technology. Rather than focus on code, though, ChatGPT focuses on knowledge in general. And as a result, it has insinuated itself into a wider variety of tasks than Copilot. For example, it can answer questions, write essays, and even do well on a Wharton MBA exam [7]. Education will need to change as a result: we cannot have people ChatGPT’ing their ways to MBAs! The worthwhile ways in which we spend our time may change. Will humans keep writing books and, if so, in what ways? Will people want to read books knowing they were partially or fully written by AI? There will be effects across industries, including finance, health care, and publishing [8]. At the same time, there is unfettered hype right now, so it can be difficult to separate truth from fiction. This problem is compounded by the simple truth that no one knows what’s going to happen here in the long term. In fact, there’s an old adage coined by Roy Amara (known as Amara’s Law) that says, “We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.” As such, we need to do our best to be tuned into the discussion so that we can adapt accordingly.

OEBPS/OEBPS/Images/01-02.png
You type a prompt like:

#Output the numbers from 0 o 9

for i in range (10):
print (i)

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/ifc.png
e m—

Allow Copilot to generate the code -

v

Examine the code, is it reasonable?

—> Have you added all the tests you planned to add?

‘Add another test Debug the code to try to find Revise the
to the docstring the error and fix the error prompt

Yes | No

v

Try problem decomposition to break the function
into multiple functions

OEBPS/OEBPS/Images/cover.jpeg
LEARN

Al-Assisted

Python Programming

With GitHub Copilot and ChatGPT

Leo Porter - Daniel Zingaro
Foreword by Beth Simon, Ph.D.

i
,g\\} | | T
o y

OEBPS/OEBPS/Images/01-01.png
Your Python program:
for i in range (10):
print (i)

Python bytecode

v

The Python Virtual Machine
Converts the bytecode into executable machine code

1110 1010 0010
1110 0100 0111
1110 1000 0000

0101
1011
0000

11100101 1110 ... 0001

CENOARWN O«

OEBPS/OEBPS/Images/Manning_copyright.png

