

 [image: cover]

Play for Java

 Nicolas Leroux and Sietse de Kaper

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Karen Miller
Copyeditors: Benjamin Berg, Melinda Rankin
Proofreader: Andy Carroll
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617290909

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction and first steps

 Chapter 1. An introduction to Play

 Chapter 2. The parts of an application

 Chapter 3. A basic CRUD application

 2. Core functionality

 Chapter 4. An enterprise app, Play-style

 Chapter 5. Controllers—handling HTTP requests

 Chapter 6. Handling user input

 Chapter 7. Models and persistence

 Chapter 8. Producing output with view templates

 3. Advanced topics

 Chapter 9. Asynchronous data

 Chapter 10. Security

 Chapter 11. Modules and deployment

 Chapter 12. Testing your application

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction and first steps

 Chapter 1. An introduction to Play

 1.1. What Play is

 1.1.1. Key features

 1.1.2. Java and Scala

 1.1.3. Play is not Java EE

 1.2. High-productivity web development

 1.2.1. Working with HTTP

 1.2.2. Simplicity, productivity, and usability

 1.3. Reactive programming

 1.3.1. Event-driven

 1.3.2. Scalable

 1.3.3. Resilient

 1.3.4. Responsive

 1.4. Play 2 enterprise features

 1.4.1. Simplicity

 1.4.2. Traditional data access

 1.4.3. Flexibility

 1.4.4. Integration

 1.4.5. Large-team applications

 1.4.6. Security

 1.4.7. Modularity

 1.5. Hello Play!

 1.5.1. Installing Play

 1.5.2. Creating your first application

 1.5.3. Play application structure

 1.5.4. Running the application

 1.5.5. Accessing the running application

 1.5.6. Changing the controller class

 1.5.7. Add a compilation error

 1.5.8. Use an HTTP request parameter

 1.5.9. Add an HTML page template

 1.6. The console

 1.7. Summary

 Chapter 2. The parts of an application

 2.1. Introducing our application

 2.2. A rundown of a Play application

 2.3. Play’s configuration files

 2.4. Build configuration files

 2.5. Public assets

 2.6. Application code

 2.6.1. Compiled assets

 2.7. Setting up an IDE

 2.7.1. Eclipse

 2.7.2. NetBeans

 2.7.3. IntelliJ IDEA

 2.7.4. Using a debugger

 2.8. Summary

 Chapter 3. A basic CRUD application

 3.1. Adding a controller and actions

 3.2. Mapping URLs to action methods using routes

 3.3. Adding a model and implementing functionality

 3.3.1. Creating a model class

 3.4. Mocking some data

 3.5. Implementing the list method

 3.5.1. The list template

 3.6. Adding the product form

 3.6.1. Constructing the form object

 3.6.2. Rendering the HTML form

 3.6.3. Rendering input fields

 3.7. Handling the form submission

 3.8. Adding a delete button

 3.9. Summary

 2. Core functionality

 Chapter 4. An enterprise app, Play-style

 4.1. Recalling what an enterprise application is

 4.2. Determining today’s enterprise application challenges

 4.3. Understanding Play’s application in an enterprise context

 4.4. Defining our warehouse enterprise application

 4.5. Summary

 Chapter 5. Controllers—handling HTTP requests

 5.1. Controllers and action methods

 5.1.1. Action methods

 5.1.2. Examining our controller

 5.2. Returning results from action methods

 5.2.1. Results

 5.2.2. Redirect result

 5.2.3. Using results

 5.3. Using routing to wire URLs to action methods

 5.3.1. Translating HTTP to Java code

 5.3.2. The routes files explained

 5.3.3. Dynamic path parts

 5.3.4. Completing our routes file

 5.3.5. Reverse routing

 5.4. Interceptors

 5.4.1. The @With annotation

 5.4.2. Explaining our CatchAction

 5.4.3. Action composition

 5.5. About scopes

 5.5.1. A bit of history about the scopes

 5.5.2. Storing data with Play

 5.5.3. The context object

 5.5.4. The request scope

 5.5.5. The response scope

 5.5.6. The session scope

 5.5.7. The flash scope

 5.5.8. What about security?

 5.6. Summary

 Chapter 6. Handling user input

 6.1. Forms

 6.1.1. Displaying the new product form

 6.1.2. Displaying the edit product form

 6.1.3. Processing form input

 6.2. Data binding

 6.2.1. Binding single values

 6.2.2. Binding multiple values

 6.2.3. Custom data binders and formatters

 6.3. Body parsers

 6.3.1. The body-parser API

 6.4. Validation

 6.4.1. Using the built-in validators

 6.4.2. Partial validation

 6.4.3. Creating a custom validator

 6.4.4. Displaying the validation errors on the form

 6.5. File uploads

 6.6. Summary

 Chapter 7. Models and persistence

 7.1. Modeling the real world in code

 7.1.1. The reasons for getters and setters

 7.1.2. Let Play eliminate some noise for you

 7.1.3. Creating our classes

 7.2. Persistence and Object-Relational Mapping (ORM)

 7.2.1. About relational databases

 7.2.2. Bridging the relational world and the OO world

 7.2.3. Introducing Ebean

 7.3. Mapping basic entities

 7.3.1. Configuring Ebean and the database

 7.3.2. Inspecting the H2 database

 7.3.3. Saving our first entities

 7.4. Mapping relationships

 7.4.1. Mapping a one-to-many relationship

 7.4.2. Making the one-to-many relationship bidirectional

 7.4.3. Giving our warehouse an address

 7.4.4. Mapping the product–tag relationship

 7.5. Querying for objects

 7.5.1. Retrieving by ID

 7.5.2. Using the Finder API

 7.5.3. Loading initial data

 7.5.4. Creating more complex queries

 7.6. Using JPA instead of Ebean

 7.6.1. Configuring Play

 7.6.2. Adding Persistence.xml

 7.6.3. Built-in JPA helpers

 7.7. Summary

 Chapter 8. Producing output with view templates

 8.1. The benefits of compiled, type-safe templates

 8.2. Scala template syntax

 8.2.1. Template definition

 8.2.2. Template body

 8.2.3. Expression scope

 8.3. Your basic building blocks

 8.3.1. Iterating

 8.3.2. Making decisions

 8.4. Structuring pages with template composition

 8.4.1. Includes

 8.4.2. Layouts

 8.5. Using LESS and CoffeeScript: the asset pipeline

 8.5.1. LESS

 8.5.2. CoffeeScript

 8.5.3. The asset pipeline

 8.6. Internationalization

 8.6.1. Configuration and message files

 8.6.2. Using messages in your application

 8.7. Summary

 3. Advanced topics

 Chapter 9. Asynchronous data

 9.1. What do we mean by asynchronous data?

 9.2. Handling asynchronous data

 9.2.1. Handling asynchronous requests

 9.2.2. Returning the asynchronous result

 9.3. Scheduling asynchronous tasks

 9.4. Streaming HTTP responses

 9.4.1. Standard responses and Content-Length header

 9.4.2. Serving files

 9.4.3. Chunked responses

 9.5. Unidirectional communication with Comet

 9.6. Bidirectional communication with WebSockets

 9.6.1. WebSockets explained

 9.6.2. A more advanced application with WebSockets

 9.7. Summary

 Chapter 10. Security

 10.1. Play security concepts

 10.1.1. Play 2 session

 10.1.2. Cross-site scripting

 10.1.3. SQL injection

 10.1.4. Cross-site request forgery

 10.2. Adding basic authentication with filters

 10.3. Fine-grained authentication with action composition

 10.4. Summary

 Chapter 11. Modules and deployment

 11.1. Modules

 11.1.1. Using modules

 11.1.2. Creating modules

 11.2. Splitting your application into multiple sub-applications

 11.3. Deploying to production

 11.3.1. Packing up your application

 11.3.2. Working with multiple configurations

 11.3.3. Creating native packages for a package manager

 11.3.4. Setting up a front-end proxy

 11.3.5. Using SSL

 11.3.6. Deploying to a cloud provider

 11.3.7. Deploying to an application server

 11.4. Summary

 Chapter 12. Testing your application

 12.1. Testing Play applications

 12.1.1. Writing tests

 12.1.2. Running tests

 12.2. Functional testing

 12.2.1. Testing your controllers

 12.2.2. Template testing

 12.2.3. Testing the router

 12.3. Integration testing

 12.3.1. Testing your HTTP interface

 12.3.2. Browser testing

 12.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Before Struts existed I wrote an entire Java web application inside a single Servlet method because that is basically how
 I’d done things in Perl. Back then web apps were simple and the tools were immature. As the web evolved, dozens of Java web
 frameworks emerged which were all built on the same Servlet foundation. Being over 15 years old, the Servlet foundation is
 showing its age. The traditional Java web frameworks haven’t kept up with the modern needs for higher developer productivity
 and emerging web techniques like RESTful JSON services, WebSockets, asset compilers, and reactive architectures.

 Play Framework was created to revolutionize Java web application development. Play is built for modern web needs and puts
 developer productivity at the core of the framework. I love that with Play I just hit Refresh in my browser and I instantly
 see my changes, whether they’re Java, JavaScript, or CSS. There is no container to redeploy into or restart. If there are
 compile errors I see them in a helpful way in my browser. Things like testing tools, persistence libraries, JSON support,
 and other commonly needed pieces come out-of-the-box with Play. By being RESTful by default, supporting push channels, and
 utilizing non-blocking connections, Play provides a solid foundation for scalable reactive applications.

 When I made the transition from Perl to object-oriented Java web apps, I needed some help to get me over the hurdles of figuring
 out new ways to do things. Luckily books like Thinking in Java (Bruce Eckel) and Java Servlet Programming (Jason Hunter) helped me move into a new way of thinking which allowed me to quickly and easily make the transition to something
 new and better. I have no doubt that the book you’re reading now will do the same for you. Nicolas and Sietse have been using
 Play from its early days. They’re experts who haven’t just played with the framework, they’ve built numerous production applications
 using Play. They’ve experienced the challenge of adopting something new and know the pains you can avoid.

 Web programming has changed dramatically since the early Servlet days. Play has revolutionized the development experience
 for building modern Java web applications. This book will help you quickly make the transition to more productive ways to
 build modern web apps. I’m confident that down the road you will look back on this book like I look back on Eckel’s and Hunter’s
 books. I just wish this book had existed when I learned Play.

 JAMES WARD

 PRODUCT OWNER OF PLAY FRAMEWORK AT TYPESAFE

 @_JAMESWARD | WWW.JAMESWARD.COM

Preface

 Back in 2009, I discovered Play by chance while surfing the web. I was surprised at how easy it was to get started with the
 framework. At the time, I was doing most of my web development using the Seam web framework. Play was a game changer then,
 and I started to build all my applications using it. Soon enough, I joined Guillaume Bort, the founder of Play, and contributed
 to the framework.

 The framework started to gain more and more traction, though mostly in Europe. Time passed, and we released Play 1.1 and then
 Play 1.2. Then Guillaume started to envision a complete rewrite of Play using Scala as a core language, giving Play extra
 power. The goal was to empower Play’s users while keeping the main success ingredients: Play’s simplicity and rapidity. Guillaume
 soon joined forces with Sadek Drobi. Sadek put his functional programming knowledge into the mix and Play 2 was born! Though
 the Play 2 core uses advanced Scala features, Play 2 focuses on simplicity and has a fully supported Java API. Play 2 Java
 is probably the best option for building scalable web applications with simplicity in mind without sacrificing scalability
 and other features.

 While I contributed little to Play 2’s features codewise, my main contribution to Play 2 adoption is this book. I hope it
 will become an invaluable aid to professional Play developers. In truth, my coauthor Sietse and I could have added even more
 information to this book, but we hope that we’ve struck a good balance between useful content and weight. We also hope that
 you will enjoy the book and that it will help you unleash the full potential of Play while keeping its simplicity in mind.

 NICOLAS LEROUX

 Soon after Nicolas introduced Play at Lunatech, it became clear that this was going to be the framework we’d be using for
 all new projects. Play “gets it.” For “it,” in this case, a lot of things can be substituted. Play “gets” HTTP and the web
 in general, how developing web application works, what makes a nice and clean API, and more. This was clear from the early
 Play 1 beta versions, and that’s why we’ve used it on many projects since 1.0 came out. It didn’t disappoint.

 Now, with Play 2, Play continues to improve web development for the Java platform.

 It’s interesting that we have to say “Java platform,” rather than just Java. The Java platform is no longer synonymous with
 the Java language—there are a lot of different languages targeting the JVM, all trying to improve the developer experience
 in their own way. Play 2 embraces Scala, partly for its benefits as a reactive[1] language, but also for all the benefits that a strictly type-safe language provides. By supplying a first-class Java API
 to the framework, Play 2 provides the best of both worlds.

 1 Read the Reactive Manifesto at http://www.reactivemanifesto.org/ if you want to know what that means, exactly.

 We wrote this book in the hope that it will help you take advantage of all the benefits that web development using Play offers.
 But, perhaps more importantly, we also wanted to teach you all the core concepts behind Play. They’re just good principles
 when developing for the web, and Play makes it easy to apply them. We hope we succeeded in these goals, and that you’ll enjoy
 this book and developing Play applications.

 SIETSE DE KAPER

Acknowledgments

 We first want to thank Karen Miller, our development editor at Manning, who put up with our many missed deadlines and gave
 us great feedback during the writing process. We’d also like to thank our awesome copyeditors, Benjamin Berg, Melinda Rankin,
 and Andy Carroll, for catching an amazing number of grammatical errors in the early revisions of the book. The greater Manning
 team deserves kudos as well; they’ve made for a very pleasant writing experience over the past year and a half.

 We would like to think James Ward for writing such a great foreword to our book.

 Thanks to Wayne Ellis for being our technical proofreader, catching those bugs we missed, and helping improve the source code
 for the book.

 Big thanks to our team of reviewers, who provided invaluable feedback during various stages of the book’s development: Dr.
 Lochana C. Menikarachchi, Franco Lombardo, Jeroen Nouws, John Tyler, Koray Güçlü, Laurent DeCorps, Michael Schleichardt, Patria
 H. Lukman, Ricky Yim, Rob Williams, Ryan Cox, Santosh Shanbhag, and William E. Wheeler.

 Special thanks to the Play for Scala book team—our colleagues Peter Hilton, Erik Bakker, and Francisco Canedo—for cooperating with us on the book. We’d like to
 thank Lunatech for providing us with a great work environment that makes it possible to do cool stuff like work with and contribute
 to Play.

 In addition, we’d like to give a big warm thank you to the Play community. Without the community, the Play project wouldn’t
 be as successful as it is today. In addition to the Play community, we would like to especially thank all our readers who
 posted on the Manning Online Author forum after reviewing the Early Access (MEAP) chapters. Special thanks to Steve Chaloner,
 “Infra,” “Askar,” and all others for providing such great feedback.

 Of course, our biggest supporters are our families, who supported us even though they don’t have a clue what the book is about.

 NICOLAS would like to thank his wife Sylke for her support during the book project, and his girls Emilie and Isabelle for distracting
 him when in need of a break.

 SIETSE would like to thank his wife Joekie for her endless patience and loving support—not just during the writing of this book,
 but always.

About this Book

 This book will get you started developing web applications with Play 2, using the Java programming language. But, perhaps
 more importantly, it’ll also teach you the concepts behind web development with Play.

 There are many Java web frameworks, but most of them have a key flaw: they try to hide the web behind an abstraction layer,
 rather than embracing it. That is the most important difference between Play and most other Java web frameworks (Servlets,
 we’re looking at you!).

 Developing a web application with Play requires a certain mindset. Throughout the book, we try to teach you how to achieve
 that. If you’re a Java EE veteran, we’ll do our best to lessen the culture shock. But if you’re new to web development with
 Java, or web development in general, we’ve got your back, too. We do our best to explain everything about web development
 that you need to know.

 The only assumption we make is that you have some background in Java programming—you should be comfortable reading and writing Java code. We’ve used Java 7 syntax throughout
 this book, since that is the supported version of Java at the time of writing.

 You’ve probably already heard that Play 2 is written in Scala. That is absolutely true, and we feel that the language and
 the tools available for the platform are an excellent choice to write a web platform in. We also feel that there is no reason you should have to build a web application in Scala. Play developers apparently agree, because Play has a first-class Java API, which means you can write a full application
 using Play 2 without writing a single line of Scala.

 In this book, we avoid discussing Scala wherever possible. There is one subject where this wasn’t avoidable: view templates
 in Play 2 are based on the Scala language. But in the rest of the book we treat it as just another template language, showing
 you the basic constructs you need to create your templates. We promise you don’t need to learn any Scala to follow along with
 this book.

 As we write this, the current version of Play is 2.2. That means that all the code we demonstrate assumes a Play version of
 2.2.x, and we’ve tested every code sample under version 2.2.0.

Roadmap

 This book is organized in three parts. The first part introduces you to all the basic concepts of Play. The second part dives
 deeper into the core elements of a Play application, while the third part demonstrates more advanced things that you can do
 with Play. Here’s a quick overview of all the chapters.

 Chapter 1 introduces Play, and highlights some of its important features. It then shows you how to install Play and create a simple
 “Hello World” application.

 Chapter 2 takes a look at what makes up a Play application. It goes over all the directories and files, and explains what every component
 is for. We also show you how you can import a Play application into your IDE.

 Chapter 3 shows a simple web application, without going into too much detail. In this chapter, we’ll see every important part of Play
 in action: controllers, actions, templates, and forms. This is the start of an application that we’ll develop in the book.

 Chapter 4 takes a step back and looks at where Play fits in a more conventional enterprise architecture. It contrasts Play with conventional
 JEE development, and shows how Play can tackle major challenges in such an architecture.

 Chapter 5 is all about controllers. It explains what controllers are and how action methods help you interface with the web. It also
 explains how routing works and introduces the different scopes.

 Chapter 6 covers how to handle user input. We show you how to use Play’s Form API, as well as how binding and validation work.

 Chapter 7 introduces database persistence. We explain the concept of an ORM and show you how to use the Ebean ORM tool with Play. At
 the end of the chapter, we discuss how you can use JPA with Play instead of Ebean, should you choose to do so.

 Chapter 8 explains how view templates work. It explains the template syntax, and shows how to use composition to structure your pages
 in a reusable manner. At the end of the chapter, we look at using Play’s support for LESS and CoffeeScript, and introduce
 the internationalization API.

 Chapter 9 covers one of the more powerful features of Play: asynchronous request handling. It explains why long-running tasks are better
 performed “in the background,” and how to achieve that easily. It also shows how you can have a web application with streaming
 data, using WebSockets or Comet.

 Chapter 10 explains how you can build a secure application in Play. It also explains how you can avoid common security problems, and
 how you can use filters to implement authentication.

 Chapter 11 covers the build process of Play. It explains the configuration files, and shows you how to package your code in reusable
 modules. Finally, it shows you what’s involved with taking your application to production.

 Chapter 12 introduces the tools that Play has for testing your application. It explains the different kinds of automated tests there
 are, and how you can write them for your application.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. The
 current version of Play is 2.2 at the time of writing. That means that all the code we demonstrate assumes a Play version
 of 2.2.x, and we’ve tested every code sample under version 2.2.0.

 Source code for all working examples in this book is available for download from GitHub at https://github.com/playforjava, as well as from the publisher’s website at www.manning.com/PlayforJava.

Author Online

 The purchase of Play for Java includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access the forum and subscribe to it, visit www.manning.com/PlayforJava. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to readers is to provide a venue for meaningful dialogue between individual readers and between readers
 and the authors. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution
 to the forum remains voluntary (and unpaid). Let your voice be heard, and keep the authors on their toes!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 Nicolas Leroux is a senior architect and Technical Director at Lunatech Research where he’s worked since 2001 and where he
 is mainly involved in JEE projects for Lunatech’s customers. Since 2009, Nicolas has developed a passion for the Play framework
 and is a core developer of its open source project. He was involved in the first version of the Play framework and is contributing
 to the second one. Nicolas also enjoys introducing Play to new audiences and is a frequent speaker at conferences.

 SIETSE DE KAPER started his career as a software developer at Lunatech Research in 2007. He has worked on several commercial web applications
 using various web frameworks—mostly Java, but also PHP, Ruby, and Scala. Sietse started developing applications with the Play
 framework when version 1.0 came out in October 2009. After using Play on several projects, he now considers it the most effective
 framework in the Java ecosystem.

About the cover illustration

 The figure on the cover of Play for Java is captioned a “Farmer from Dobrota, Montenegro.” The illustration is taken from the reproduction, published in 2006, of
 a nineteenth-century collection of costumes and ethnographic descriptions entitled Dalmatia by Professor Frane Carrara (1812–1854), an archaeologist and historian, and the first director of the Museum of Antiquity
 in Split, Croatia. The illustrations were obtained from a helpful librarian at the Ethnographic Museum (formerly the Museum
 of Antiquity), itself situated in the Roman core of the medieval center of Split: the ruins of Emperor Diocletian’s retirement
 palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Dalmatia, accompanied
 by descriptions of the costumes and of everyday life.

 Dobrota is a small town on the Adriatic coast, officially a part of the municipality of Kotor, an ancient Mediterranean port
 on Kotor Bay, surrounded by fortifications built in the Venetian period. Today it is increasingly a tourist destination, due
 to the dramatic limestone cliffs and beautiful coastal vistas. The man on the cover is wearing an embroidered vest over black
 woolen pantaloons and a wide colorful sash. He is carrying a long pipe, a musket, and has pistols inserted in his sash. The
 rich and colorful embroidery on his costume is typical for this region, and marks this as an outfit for special occasions
 and not for working the land.

 Dress codes have changed since the nineteenth century, and the diversity by region, so rich at the time, has faded away. It
 is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by illustrations from collections such as this one.

Part 1. Introduction and first steps

 In Part 1, we introduce Play and show the basics of creating a Play application.

 Chapter 1 introduces Play, its core concepts, and its key features. We install Play and create our first application.

 Chapter 2 breaks down the structure of a Play application, explaining what each file and folder is for.

 Chapter 3 shows how to create a more fleshed-out application, giving you a taste of the key MVC components in a Play application.

Chapter 1. An introduction to Play

 This chapter covers

 	What the Play framework is

 	What high-productivity web frameworks are about

 	Why Play supports both Java and Scala

 	Reactive programming

 	Play 2 enterprise features

 	What a minimal Play application looks like

 Play isn’t really a Java web framework. Java’s involved, but that isn’t the whole story.

 The first version of Play may have been written in the Java language, but it also ignored the conventions of the Java platform,
 providing a fresh alternative to excessive enterprise architectures. Play was not based on Java Enterprise Edition APIs and
 made for Java developers; Play is for web developers.

 Play wasn’t written for web developers, it was written by web developers, and they brought high-productivity web development from modern frameworks like Ruby on Rails and Django to
 the JVM. Play is for productive web developers.

 Play 2 is written in Scala, but that doesn’t mean you have to write your web applications in Scala or even know anything about
 Scala. This is because Play 2 comes with a complete Java API, giving you the option to pick the language that suits you best. If you’ve used Play 1.x before, you’ll notice that the API has become more type-safe.

 Play isn’t about Scala and type safety, either. An important aspect of Play is the usability and attention to detail that
 results in a better developer experience (DX). When you add this to higher developer productivity and more elegant APIs and
 architectures, you get a new emergent property: Play is fun.

1.1. What Play is

 Play is fun. Play makes you more productive. Play is also a web framework whose HTTP interface is simple, convenient, flexible,
 and powerful. Most importantly, Play improves on the most popular non-Java web development languages and frameworks—PHP and
 Ruby on Rails—by introducing the advantages of the Java Virtual Machine (JVM).

 1.1.1. Key features

 A variety of features and qualities make Play productive and fun to use:

 	Simplicity

 	Declarative application URL scheme configuration

 	Type-safe mapping from HTTP to an idiomatic Scala or Java API

 	Type-safe template syntax

 	Architecture that embraces HTML5 client technologies

 	Live code changes when you reload the page in your web browser

 	Full-stack web-framework features, including persistence, security, and internationalization

 	Support for event-driven, resilient, and scalable applications

 We’ll get back to why Play makes you more productive, but first let’s look a little more closely at what it means for Play
 to be a full-stack framework. A full-stack framework gives you everything you need to build a typical web application, as
 illustrated in figure 1.1.

 Figure 1.1. Play framework stack

 [image:]

 Being “full stack” is not only a question of functionality, which may already exist as a collection of open source libraries.
 After all, what’s the point of a framework if these libraries already exist and already provide everything you need to build
 an application? The difference is that a full-stack framework also provides a documented pattern for using separate libraries
 together in a certain way, and therefore provides confidence that a developer can make the separate components work together.
 Without this, you never know whether you’re going to end up instead with two incompatible libraries or a badly designed architecture.

 When it comes to building a web application, what this all means is that the common tasks are directly supported in a simple
 way, which saves you time.

 1.1.2. Java and Scala

 Play supports Java, and is in fact the best way to build a Java web application. Java’s success as a programming language,
 particularly in enterprise software development, means that Play 1.x has been able to quickly build a large user community.
 If you’re planning to use Play with Java, you particularly get to benefit from this community’s size.

 But recent years have seen the introduction of numerous JVM languages that provide a modern alternative to Java, usually aiming
 to be more type-safe, resulting in more concise code and support for functional programming idioms, with the ultimate goal
 of allowing developers to be more expressive and productive when writing code. Scala is currently the most evolved of the
 new statically typed JVM languages, and it’s the second language that Play supports. Scala is meant (and proven) to be a scalable language, hence the name. Play 2 takes full advantage of the scalability that Scala offers, which means your Java applications
 will get these benefits, too.

 Scalability is one of the major features of Play: it allows you to easily create highly scalable web applications. Scalability
 can mean a lot of different things, and throughout the book you’ll see examples of how Play enables you to scale both horizontally
 and vertically. Most of this is thanks to Play’s stateless nature, but also its foundation of Scala (and Akka), which enabled
 the developers of the framework to provide concurrent and nonblocking request processing. It also enabled developers to support
 applications in an event-driven way without sacrificing scalability. Nowadays, applications need to react to events and display
 live feeds rather than batch process during the night. Play was conceived with this perspective in mind. We’ll talk more about
 this subject in the reactive programming section in this chapter.

 	

 Our sister book: Play for Scala

 If you’re also interested in using Play to build web applications in Scala, then you should look at Play for Scala, which was written at the same time as this book. The differences between Scala and Java go beyond the syntax, and the Scala
 book is much more than a copy of this book with code samples in Scala. Play for Scala is focused on the idiomatic use of the Scala language with Play 2.

 	

 1.1.3. Play is not Java EE

 Before Play, Java web frameworks were based on the Java Servlet API, the part of the Java Enterprise Edition (Java EE) stack
 that provides the HTTP interface. Java EE and its architectural patterns seemed like a really good idea, and brought some
 much-needed structure to enterprise software development. But this turned out to be a really bad idea, because structure came
 at the cost of additional complexity and low developer satisfaction. Play is different, for several reasons, which we’ll detail
 later in this chapter. The biggest difference between Java EE and Play is simplicity. Play focuses on providing simplicity
 to developers so that they can focus on their business problems and not on the framework itself. In contrast, Java EE used
 to be quite complex.

 Java’s design and evolution is focused on the Java platform, which also seemed like a good idea to developers who were trying
 to consolidate various kinds of software development. From a Java perspective, the web is only another external system. The
 Servlet API, for example, is an abstraction layer over the web’s own architecture that provides a more Java-like API. Unfortunately,
 this turned out to be a bad idea as well, because the web is more important than Java. When a web framework starts an architecture
 fight with the web, the framework loses. What we need instead is a web framework whose architecture embraces the web’s, and
 whose API embraces HTTP.

1.2. High-productivity web development

 Web frameworks for web developers are different. They embrace HTTP and provide APIs that use HTTP’s features instead of trying
 to hide HTTP, in the same way that web developers build expertise in the standard web technologies—HTTP, HTML, CSS, and JavaScript—instead
 of avoiding them.

 1.2.1. Working with HTTP

 Working with HTTP means letting the application developer make the web application aware of the different HTTP methods, such
 as GET, POST, PUT, and DELETE, instead of having an RPC-style layer on top of HTTP requests in order to tell the application whether you want to create,
 update, or delete data. It also means accepting that application URLs are part of the application’s public interface and should
 therefore be up to the application developer to design instead of fixed by the framework.

 This approach is for developers who not only work with the architecture of the World Wide Web instead of against it, but who
 may have even read it.[1]

 1 Architecture of the World Wide Web, Volume One, W3C, 2004 (http://www.w3.org/TR/webarch/).

 In the past, none of these web frameworks were written in Java, because the Java platform’s web technologies failed to emphasize
 simplicity, productivity, and usability. This is the world that started with Perl (not Lisp as some might assume), was largely
 taken over by PHP, and in more recent years has seen the rise of Ruby on Rails.

 1.2.2. Simplicity, productivity, and usability

 In a web framework, simplicity comes from making it easy to do simple things in a few lines of code without extensive configuration.
 A “Hello World” in PHP is a single line of code; the other extreme is JavaServer Faces, which requires numerous files of various
 kinds before you can even serve a blank page.

 Productivity starts with being able to make a code change, reload the web page in the browser, and see the result. This has
 always been the norm for many web developers, whereas Java web frameworks and application servers often have long build-redeploy
 cycles. Java hot-deployment solutions exist, but are not standard and come at the cost of additional configuration. Although
 there is more to productivity, this is what matters most.

 Usability is related to developer productivity, but also to developer happiness. You’re certainly more productive if it’s
 easier to simply get things done, no matter how smart you are, but a usable framework can be more than that; it can be a joy
 to use. Fun, even.

1.3. Reactive programming

 Play has unique features in the Java world. It allows applications to be nonblocking, asynchronous, and reactive. But what
 does this mean exactly? As we’ll see in chapter 4, application requirements have changed dramatically in recent years. Today applications are deployed on everything from mobile
 devices to cloud-based clusters. User expectations are high: applications need to respond in milliseconds, and no downtime
 is allowed. Data needs are expanding into the petabytes.

 Before Play and similar frameworks, scaling was achieved through buying larger servers, and concurrent processing via multithreading.
 Applications were running inside managed servers and containers. Applications were making little use of the multiple processors
 made available to them.

OEBPS/common01.jpg

OEBPS/01fig01_alt.jpg
Integrated HTTP server

Expressive HTTP interface RESTIul web
(provides full access to HTTP features) services API
High-performance Public asset oo
template engine compilation
HTML form validation ‘ Integrated cache | | Akka

Integrated
console

and buid
system

Datastore-agnostic model persistence.

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/cover.jpg
| | BT

Nicolas Leroux
Sietse de Kaper

Foreworosy James Ward ,§

