

 inside front cover

 [image:]

 [image:]

 Full Stack GraphQL Applications

 With React, Node.js, and Neo4j

 William Lyon

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Karen Miller

 	
 Technical development editor:

 	
 Doug Warren

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Niek Palm

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297038

 contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Getting started with full stack GraphQL

 1 What is full stack GraphQL?

 1.1 A look at full stack GraphQL

 1.2 GraphQL

 GraphQL type definitions

 Querying with GraphQL

 Advantages of GraphQL

 Disadvantages of GraphQL

 GraphQL tooling

 1.3 React

 React components

 JSX

 React tooling

 1.4 Apollo

 Apollo Server

 Apollo Client

 1.5 Neo4j Database

 Property graph data model

 Cypher query language

 Neo4j tooling

 1.6 How it all fits together

 React and Apollo Client: Making the request

 Apollo Server and GraphQL backend

 React and Apollo Client: Handling the response

 1.7 What we will build in this book

 1.8 Exercises

 2 Graph thinking with GraphQL

 2.1 Your application data is a graph

 2.2 Graphs in GraphQL

 API modeling with type definitions: GraphQL-first development

 Resolving data with resolvers

 Our first resolver

 2.3 Combining type definitions and resolvers with Apollo Server

 Using Apollo Server

 Apollo Studio

 Implementing resolvers

 Querying using Apollo Studio

 2.4 Exercises

 3 Graphs in the database

 3.1 Neo4j overview

 3.2 Graph data modeling with Neo4j

 The property graph model

 Database constraints and indexes

 3.3 Data modeling considerations

 Node vs. property

 Node vs. relationship

 Indexes

 Specificity of relationship types

 Choosing a relationship direction

 3.4 Tooling: Neo4j desktop

 3.5 Tooling: Neo4j Browser

 3.6 Cypher

 Pattern matching

 Properties

 CREATE

 MERGE

 Defining database constraints with cypher

 MATCH

 Aggregations

 3.7 Using the Neo4j client drivers

 3.8 Exercises

 4 The Neo4j GraphQL Library

 4.1 Common GraphQL problems

 Poor performance and the n + 1 query problem

 Boilerplate and developer productivity

 4.2 Introducing GraphQL database integrations

 4.3 The Neo4j GraphQL Library

 Project setup

 Generated GraphQL schema from type definitions

 4.4 Basic GraphQL queries

 4.5 Ordering and pagination

 4.6 Nested queries

 4.7 Filtering

 where argument

 Nested filter

 Logical operators: AND, OR

 Filtering in selections

 4.8 Working with temporal fields

 Using a Date type in queries

 Date and DateTime filters

 4.9 Working with spatial data

 The Point type in selections

 Distance filter

 4.10 Adding custom logic to our GraphQL API

 The @cypher GraphQL schema directive

 Implementing custom resolvers

 4.11 Introspecting GraphQL schema from an existing database

 4.12 Exercises

 Part 2 Building the frontend

 5 Building user interfaces with React

 5.1 React overview

 JSX and React elements

 React components

 Component hierarchy

 5.2 Create React App

 Creating a React application with Create React App

 5.3 State and React Hooks

 5.4 Exercises

 6 Client-side GraphQL with React and Apollo Client

 6.1 Apollo Client

 Adding Apollo Client to our React Application

 Apollo Client hooks

 GraphQL variables

 GraphQL fragments

 Caching with Apollo Client

 6.2 GraphQL mutations

 Creating nodes

 Creating relationships

 Updating and deleting

 6.3 Client state management with GraphQL

 Local-only fields and reactive variables

 6.4 Exercises

 Part 3 Full stack considerations

 7 Adding authorization and authentication

 7.1 Authorization in GraphQL: A naive approach

 7.2 JSON Web Tokens

 7.3 The @auth GraphQL schema directive

 Rules and operations

 The isAuthenticated authorization rule

 The roles authorization rule

 The allow authorization rule

 The where authorization rule

 The bind authorization rule

 7.4 Auth0: JWT as a service

 Configuring Auth0

 Auth0 React

 7.5 Exercises

 8 Deploying our full stack GraphQL application

 8.1 Deploying our full stack GraphQL application

 Advantages of this deployment approach

 Disadvantages of our deployment approach

 Overview of our approach to full stack GraphQL

 8.2 Neo4j Aura database as a service

 Creating a Neo4j Aura cluster

 Connecting to a Neo4j Aura cluster

 Uploading data to Neo4j Aura

 Exploring the graph with Neo4j Bloom

 8.3 Deploying a React application with Netlify Build

 Adding a site to Netlify

 Setting environment variables for Netlify builds

 Netlify deploy previews

 8.4 Serverless GraphQL with AWS Lambda and Netlify Functions

 Serving a GraphQL API as a Lambda function

 The Netlify dev CLI

 Converting our GraphQL API to a Netlify function

 Adding a custom domain in Netlify

 8.5 Our deployment approach

 8.6 Exercises

 9 Advanced GraphQL considerations

 9.1 GraphQL abstract types

 Interface types

 Union types

 Using abstract types with the Neo4j GraphQL library

 9.2 Pagination with GraphQL

 Offset pagination

 Cursor pagination

 9.3 Relationship properties

 Interfaces and the @relationship GraphQL schema directive

 Creating relationship properties

 9.4 Wrapping up Full Stack GraphQL

 9.5 Exercises

 index

front matter

preface

 Thank you for reading Full Stack GraphQL Applications. The goal of this book is to demonstrate how GraphQL, React, Apollo, and Neo4j Database (the so-called GRANDstack) can be used together to build complex, data-intensive full stack applications. You may be wondering why we’ve chosen this specific combination of technologies. As you read through the book, I hope you will realize the developer productivity, performance, and intuitive benefits of using a graph data model throughout the stack—from the database to the API—and all the way through the frontend client data-fetching code.

 This is the book that I wished existed when I was the first engineering hire at a small startup, tasked with building out our full stack web application. We spent months evaluating technologies for our stack and exploring how they fit together. Eventually, we figured it out and got to production with a combination of technologies we were happy with, but getting there required many iterations.

 GraphQL is a technology that has fundamentally changed how developers approach web development over the last few years. This book is focused on GraphQL; however, understanding how to build GraphQL servers and write GraphQL operations is not enough to put a full stack application into production. We need to consider how to enable GraphQL data fetching and state management in our frontend application, how to secure our API, how to deploy our application, and myriad other considerations. That’s why this book isn’t about just GraphQL; instead, we explore using GraphQL holistically by showing how the pieces fit together. If you find yourself tasked with building a full stack application using GraphQL, then this book is for you!

acknowledgments

 Writing a book is a long process that involves the help and support of many others. It’s impossible to acknowledge everyone who helped this book come to fruition without missing some folks. Of course, this book wouldn’t be possible without everyone involved in creating the amazing technologies we cover.

 Thanks to Michael Stephens for approaching me with the idea of writing a book about GraphQL and helping to ideate on the idea of full stack GraphQL, to Karen Miller for all the great feedback on early versions of every chapter, and all the folks at Manning who were involved: Doug, Aleksandar, Andy, Christian, Melody, Niek, Gordan, and Marija. Thanks to my family for putting up with me while working on this book. Special thanks goes out to the graph community for helping to validate the ideas in this book as well as providing great feedback and contributions to the Neo4j GraphQL library as it has evolved.

 To all the reviewers: Andres Sacco, Brandon Friar, Christopher Haupt, Damian Esteban, Danilo Zekovic, Deniz Vehbi, Ferit Topcu, Frans Oilinki, Gustavo Gomes, Harsh Raval, Ivo Sánchez Checa Crosato, Jose Antonio Hernandez Orozco, Jose San Leandro, Kevin Ready, Konstantinos Leimonis, Krzysztof Kamyczek, Michele Adduci, Miguel Isidoro, Richard Meinsen, Richard Vaughan, Rob Lacey, Ronald Borman, Ryan Huber, Satej Kumar Sahu, Simeon Leyzerzon, Stefan Turalski, Tanya Wilke, Theofanis Despoudis, and Vladimir Pasman, your suggestions helped make this a better book.

about this book

 The goal of Full Stack GraphQL Applications is to show how the pieces of a full stack GraphQL application fit together and how full stack developers can leverage online services to enable development and deployment. This is done by introducing concepts and building upon each chapter as we build and deploy a full stack business review application.

Who should read this book?

 This book is intended for full stack web developers interested in GraphQL who have at least a basic level of understanding of Node.js API applications and client JavaScript applications that connect to these APIs. The successful reader will have some basic familiarity with Node.js and a basic understanding of client-side JavaScript but, most importantly, they will have a motivation for understanding how to build GraphQL services and applications leveraging GraphQL.

How this book is organized: A roadmap

 This book is composed of nine chapters, divided into three parts. Each chapter introduces new concepts and technologies in the context of building a full stack business review application.

 In part 1, we introduce GraphQL, the Neo4j graph database, and the concept of thinking in graphs:

 	
 Chapter 1 discusses the components of a full stack GraphQL application, including an introduction to each specific technology we’ll be using in the book (GraphQL, React, Apollo, and Neo4j Database).

 	
 Chapter 2 introduces GraphQL and the basics of building a GraphQL API (type definitions and resolver functions).

 	
 Chapter 3 introduces the Neo4j graph database, the property graph data model, and the Cypher query language.

 	
 Chapter 4 shows how to bring the power of GraphQL to the Neo4j graph database, using the Neo4j GraphQL library.

 In part 2, we focus on developing our client application using React:

 	
 Chapter 5 introduces the React framework and concepts that are important for working with React as we begin building our front-end application.

 	
 Chapter 6 shows how to enable data fetching and client state management with React and GraphQL as we pull in data from the GraphQL API we built in previous chapters.

 In part 3, we explore securing our application and deploying it using cloud services:

 	
 Chapter 7 shows how we can secure our application, using GraphQL and Auth0.

 	
 Chapter 8 introduces the cloud services we will use to deploy our database, GraphQL API, and React application.

 	
 Chapter 9 closes the book with a look at how to leverage abstract types in GraphQL, cursor-based pagination, and handling relationship properties in GraphQL.

 This book is designed to be read from beginning to end, as each chapter builds on work done in previous chapters, all working toward building a full stack business review application. Readers may choose to focus on individual chapters to dive into specific topics of interest, but be sure to refer to previous chapters for context on how and why other parts of the applications have been built.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/fullstack-graphql-applications. The complete code for the examples in the book is available for download from the Manning website at www.manning.com, and from GitHub at https://github.com/johnymontana/fullstack-graphql-book.

Software/hardware requirements

 Readers will need to have installed a recent version of Node.js. I used the latest version, v16, so I recommend using the nvm tool for installing and managing Node.js versions. Installation and usage instructions for nvm can be found at https://github.com/nvm-sh/nvm.

 We will also be using several (free) online services for deployment. Most of these can be accessed using a GitHub account, so be sure to create a GitHub account, if you don’t currently have one, at https://github.com/.

liveBook discussion forum

 Purchase of Full Stack GraphQL Applications includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/fullstack-graphql-applications/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Be sure to consult the documentation for the Neo4j GraphQL library at https://neo4j.com/docs/graphql-manual/current/. Other online resources that might be helpful include the free online courses available at GraphAcademy (https://graphacademy.neo4j.com/) and the Neo4j Community site (https://community.neo4j.com/).

about the author

 [image: Lyon_author.photo]

 William Lyon is a Staff Developer Advocate at Neo4j, where he helps developers be successful building applications with graphs. Prior to joining Neo4j, he worked as a software engineer at startups working on systems for quantitative finance, mobile apps for the real estate industry, and predictive API services. He holds a master’s degree in computer science from the University of Montana and publishes a blog at lyonwj.com.

about the cover illustration

 The figure on the cover of Full Stack GraphQL Applications is captioned “Dame de l’Isle de Tinne,” or “Lady of the Isle of Tinne,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Getting started with full stack GraphQL

 Before beginning our journey with full stack GraphQL, we will take a look at the technologies we will be using and introduce the powerful concept of thinking in graphs. This section of the book focuses on the backend of our full stack application, specifically the database and GraphQL API.

 In chapter 1, we introduce the components of a full stack GraphQL application and take a look at the specific technologies we will use throughout the book: GraphQL, React, Apollo, and Neo4j Database. In chapter 2, we dive head first into GraphQL and the basics of building a GraphQL API application. In chapter 3, we explore the Neo4j graph database, the property graph data model, and the Cypher query language. Then, in chapter 4, we show how to leverage database integrations for GraphQL and, specifically, the Neo4j GraphQL library to build GraphQL APIs backed by a graph database. After completing this first part of the book, we will have our database and initial GraphQL API application up and running and will be ready to start building the frontend in part 2.

1 What is full stack GraphQL?

 This chapter covers

 	
Components that make up a typical full stack GraphQL application

 	
Technologies used throughout the book (GraphQL, React, Apollo, and Neo4j Database) and how each piece fits together in the context of a full stack application

 	
Requirements for the application we will build throughout the book

1.1 A look at full stack GraphQL

 In this chapter, we take an introductory look at the technologies we will use throughout the book. Specifically, we’ll look at the following:

 	
 GraphQL—For building our API

 	
 React—For building our user interface and JavaScript client web application

 	
 Apollo—Tools for working with GraphQL, on both the server and client

 	
 Neo4j Database—The database we will use for storing and manipulating our application data

 Building a full stack GraphQL application involves working with a multitier architecture, commonly known as a three-tier application, which consists of a frontend application, the API layer, and a database. In figure 1.1 we see the individual components of a full stack GraphQL application and how they interact with each other.

 [image: CH01_F01_Lyon]

 Figure 1.1 The components of a full stack GraphQL application: GraphQL, React, Apollo, and Neo4j Database

 Throughout this book, we will use these technologies to build a simple business review application, working through each technology component as we implement it in the context of our application. In the last section of this chapter, we review the basic requirements of the application we will be building throughout the book.

 The focus of this book is learning how to build applications with GraphQL, so as we cover GraphQL, we’ll do so in the context of building a full stack application and using GraphQL with other technologies, including designing our schema, integrating with a database, building a web application that can query our GraphQL API, adding authentication to our application, and so on. As a result, this book assumes some basic knowledge of how web applications are typically built, but it does not necessarily require experience with each specific technology. To be successful, the reader should have a basic familiarity with JavaScript, both client side and Node.js, and concepts such as APIs and databases. You should have installed node and should be familiar with the basics of the npm command line tool (or yarn) and how to use it to create Node.js projects and install dependencies. We will use the latest LTS version of Node.js as of this writing (16.14.2), which is available to download at https://nodejs.org/. You may wish to use a Node.js version manager such as nvm for managing Node versions. See https://github.com/nvm-sh/nvm for more information.

 We include a brief introduction to each technology and suggest other resources for more in-depth coverage where needed by the reader. It is also important to note that we will cover specific technologies to be used alongside GraphQL and that at each phase, a similar technology could be substituted (e.g., we could build our frontend using Vue instead of React). Ultimately, the goal of this book is to show how these technologies fit together and provide the reader with a full stack framework for thinking about and building applications with GraphQL.

1.2 GraphQL

 At its core, GraphQL is a specification for building APIs. The GraphQL specification describes an API query language and a way of fulfilling those requests. When building a GraphQL API, we describe the data available using a strict type system. These type definitions become the specification for the API, and the client is free to request the data it requires based on these type definitions, which also define the entry points for the API.

 GraphQL is typically framed as an alternative to REST, which is the API paradigm you are mostly likely to be familiar with. This can be true in some cases; however, GraphQL can also wrap existing REST APIs or other data sources. This is due to the benefit of GraphQL being data-layer-agnostic, meaning we can use GraphQL with any data source.

 GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools.

 —graphql.org

 Let’s dive into some more specific aspects of GraphQL.

1.2.1 GraphQL type definitions

 Rather than being organized around endpoints that map to resources (as with REST), GraphQL APIs are centered around type definitions that define the data types, fields, and how they are connected in the API. These type definitions become the schema of the API, which is served from a single endpoint.

 Since GraphQL services can be implemented in any language, a language-agnostic GraphQL Schema Definition Language (SDL) is used to define GraphQL types. Let’s look at an example in figure 1.2, motivated by considering a simple movie application. Imagine you’ve been hired to create a website that allows users to search a movie catalog for movie details, such as title, actors, and description, as well as show recommendations for similar movies the user may find interesting.

 [image: CH01_F02_Lyon]

 Figure 1.2 A simple movie web application

 Let’s start in the next listing by creating some simple GraphQL type definitions that will define the data domain of our application.

 Listing 1.1 Simple GraphQL type definitions for a movie GraphQL API

 type Movie { ❶
 movieId: ID!
 title: String ❷
 actors: [Actor] ❸
}

type Actor {
 actorId: ID! ❹
 name: String
 movies: [Movie]
}

type Query { ❺
 allActors: [Actor]
 allMovies: [Movie]
 movieSearch(searchString: String!): [Movie] ❻
 moviesByTitle(title: String!): [Movie]
}

 ❶ Movie is a GraphQL object type, which means a type that contains one or more fields.

 ❷ title is a field on the Movie type.

 ❸ Fields can reference other types, such as a list of Actor objects in this case.

 ❹ actorId is a required (or non-nullable) field on the Actor type, which is indicated by the ! character.

 ❺ The Query type is a special type in GraphQL, which indicates the entry points for the API.

 ❻ Fields can also have arguments; in this case, the movieSearch field takes a required string argument: searchString.

 Our GraphQL type definitions declare the types used in the API, their fields, and how they are connected. When defining an object type (such as Movie), all fields available on the object and the type of each field are also specified (we can also add fields later, using the extend keyword). In this case, we define title to be a scalar String type—a type that resolves to a single value, as opposed to an object type, which can contain multiple fields and references to other types. Here actors is a field on the Movie type that resolves to an array of Actor objects, indicating that the actors and movies are connected (the foundation of the “graph” in GraphQL).

 Fields can be either optional or required. The actorId field on the Actor object type is required (or non-nullable). This means that every Actor object must have a value for actorId. Fields that do not include a ! are nullable, meaning values for those fields are optional.

 The fields of the Query type become the entry points for queries into the GraphQL service. GraphQL schemas may also contain a Mutation type, which defines the entry points for write operations into the API. A third special entry-point-related type is the Subscription type, which defines events to which a client can subscribe.

 Note We’re skipping over many important GraphQL concepts here, such as mutation operations, interface and union types, and so on, but don’t worry; we’re just getting started and will get to these soon enough!

 At this point, you may be wondering where the graph is in GraphQL. It turns out that we’ve defined a graph using our GraphQL type definitions. A graph is a data structure composed of nodes (the entities or objects in our data model) and relationships that connect nodes, which is exactly the structure we’ve defined in our type definitions using SDL. The GraphQL type definitions previously shown have defined a simple graph with the following structure (see figure 1.3).

 [image: CH01_F03_Lyon]

 Figure 1.3 GraphQL type definitions for our movie web application expressed as a graph diagram

 Graphs are all about describing connected data, and here we’ve defined how our movies and actors are connected in a graph. GraphQL allows us to model application data as a graph and traverse the data graph through GraphQL operations.

 When a GraphQL service receives an operation (e.g., a GraphQL query), it is validated and executed against the GraphQL schema defined by these type definitions. Let’s look at an example query that could be executed against a GraphQL service defined using the previously shown type definitions.

1.2.2 Querying with GraphQL

 GraphQL queries define a traversal through the data graph defined by our type definitions and request a subset of fields to be returned by the query—this is known as the selection set. In this query, we start from the allMovies query field entry point and traverse the graph to find actors connected to each movie (see the next listing). Then, for each of these actors, we traverse to all the other movies they are connected to.

 Listing 1.2 A GraphQL query to find movies and actors

 query FetchSomeMovies { ❶
 allMovies { ❷
 title ❸
 actors { ❹
 name
 movies { ❺
 title
 }
 }
 }
}

 ❶ This is the optional naming of the operation. query is the default operation and can, therefore, be omitted. Naming the query—in this case, FetchSomeMovies—is also optional and can be omitted.

 ❷ Here we specify the entry point, which is a field on either the Query or Mutation type. In this case, our entry point for the query is the allMovies query field.

 ❸ The selection set defines the fields to be returned by the query.

 ❹ In the case of object fields, a nested selection set is used to specify the fields to be returned.

 ❺ A further nested selection is needed for the fields on movies to be returned.

 Note that our query is nested and describes how to traverse the graph of related objects (in this case, movies and actors). We can represent this traversal through the data graph and the results visually (see figure 1.4).

 [image: CH01_F04_Lyon]

 Figure 1.4 A GraphQL query traversal through the movies data graph

 Although we can represent the traversal of the traversal of the data graph visually, the typical result of a GraphQL query is a JSON document, as shown in the next listing.

 Listing 1.3 JSON query results

 "data": {
 "allMovies": [
 {
 "title": "Toy Story",
 "actors": [
 {
 "name": "Tom Hanks",
 "movies": [
 {
 "title": "Bachelor Party"
 }
]
 },
 {
 "name": " Jim Varney",
 "movies": [
 {
 "title": "3 Ninjas: High Noon On Mega Mountain"
 }
]
 }
]
 },
 {
 "title": "Jumanji",
 "actors": [
 {
 "name": "Robin Williams",
 "movies": [
 {
 "title": "Popeye"
 }
]
 },
 {
 "name": "Kirsten Dunst",
 "movies": [
 {
 "title": "Midnight Special"
 },
 {
 "title": "All Good Things"
 }
]
 }
]
 },
 {
 "title": "Grumpier Old Men",
 "actors": [
 {
 "name": "Walter Matthau",
 "movies": [
 {
 "title": "Cactus Flower"
 }
]
 },
 {
 "name": " Ann-Margret",
 "movies": [
 {
 "title": "Bye Bye Birdie"
 }
]
 }
]
 }
]
}

 As you can see from the results, the response matches the shape of the query’s selection set—exactly the fields requested in the query are returned. But where does the data come from? The data-fetching logic for GraphQL APIs is defined in functions called resolver functions, which contain the logic for resolving the data for an arbitrary GraphQL request from the data layer. GraphQL is data-layer-agnostic, so the resolvers could query one or more databases or fetch data from another API—even a REST API. We will cover resolvers in depth in the next chapter.

1.2.3 Advantages of GraphQL

 Now that we’ve seen our first GraphQL query, you may be thinking, “OK, that’s nice, but I can fetch data about movies with REST, too. What’s so great about GraphQL?” Let’s review some of the benefits of GraphQL.

 Overfetching and underfetching

 Overfetching refers to a pattern commonly associated with REST, in which unnecessary and unused data is sent over the network in response to an API request. Since REST is modeling resources, when we make a GET request for, say, /movie/tt0105265, we get back the representation of that movie—nothing more, nothing less.

 Listing 1.4 REST API response for GET /movie/tt0105265

 {
 "title": "A River Runs Through It",
 "year": 1992,
 "rated": "PG",
 "runtime": "123 min",
 "plot": "The story about two sons of a stern minister -- one reserved,
 one rebellious -- growing up in rural Montana while devoted to
 fly fishing.",
 "movieId": "tt0105265",
 "actors": ["nm0001729", "nm0000093", "nm0000643", "nm0000950"],
 "language": "English",
 "country": "USA",
 "production": "Sony Pictures Home Entertainment",
 "directors": ["nm0000602"],
 "writers": ["nm0533805", "nm0295030"],
 "genre": "Drama",
 "averageReviews": 7.3
}

 But what if the view of our application only needs to render the title and year of the movie? Then we’ve unnecessarily sent too much data over the network. Further, some of those movie fields may be expensive to compute. For example, if we need to calculate averageReviews by aggregating across all movie reviews for each request, but we’re not even showing that in the application view, that’s a lot of wasted compute time, which unnecessarily impacts the performance of our API. (Of course, in the real world, we may cache this, but that adds additional complexity as well.) Similarly, underfetching is a pattern associated with REST, in which insufficient data is returned by the request.

 Let’s say our application view needs to render the name of each actor in a movie. First, we make a GET request for /movie/tt0105265. As previously shown, we have an array of IDs for the actors connected to this movie. Now, to get the data required for our application, we need to iterate over this array of actor IDs to get the name of each actor by making another API request for each actor to be rendered in our view:

 /actor/nm0001729
/actor/nm0000093
/actor/nm0000643
/actor/nm0000950

 With GraphQL, since the client is in control of the data requested, we can accomplish this in a single request by specifying exactly the data needed by the application view in the selection set of the GraphQL query, solving both the overfetching and underfetching problems. This results in improved performance on the server side, as we are spending less compute resources at the data layer, there is less overall data sent over the network, and latency is reduced by being able to render our application view with a single network request to the API service.

 GraphQL specification

 GraphQL is a specification for client-server communication that describes the features, functionality, and capability of the GraphQL API query language. Having this specification gives a clear guide of how to implement your GraphQL API and clearly defines what is and what is not GraphQL.

 REST does not have a specification; instead, there are many different implementations, from what might be considered merely REST-ish to hypermedia as the engine of application state (HATEOAS). Having a specification as part of GraphQL simplifies debates over endpoints, status codes, and documentation. All of this comes built in with GraphQL, which leads to productivity wins for developers and API designers. The specification provides a clear path for API implementors.

 With GraphQL, it’s graphs all the way down

 REST models itself as a hierarchy of resources, yet most interactions with APIs are done in terms of relationships. For example, given our previous movie query—for this movie, show me all of the actors connected to it, and for each actor, show me all the other movies they’ve acted in—we’re querying for relationships between actors and movies. This concept of relationships is even more prominent in real world applications, when we might be working with the relationships connecting customers and the products in their orders or users and their messages to other users in the context of a conversation.

 GraphQL can also help unify data from disparate systems. Since GraphQL is data-layer-agnostic, we can build GraphQL APIs that integrate data from multiple services together and provide a clear way to integrate data from these different systems into a single unified GraphQL schema.

 GraphQL can also be used to compartmentalize data fetching in the application in a component-based data interaction pattern. Since each GraphQL query can describe exactly the graph traversal and fields to be returned, encapsulating these queries with application components can help simplify application development and testing. We’ll see how to apply this once we start building our React application in chapter 5.

 Introspection

 Introspection is a powerful feature of GraphQL that allows us to ask a GraphQL API for the types and queries it supports. Introspection becomes a way of self-documenting the API. Tools that make use of introspection can provide human-readable API documentation, as well as visualization tooling, and leverage code generation to create API clients.

1.2.4 Disadvantages of GraphQL

 Of course, GraphQL is not a silver bullet, and we should not think of it as the solution to all of our API-related problems. One of the most notable challenges of adopting GraphQL is that some well-understood practices from REST don’t apply when using GraphQL. For example, HTTP status codes are commonly used to convey success, failure, and other cases of a REST request; 200 OK means our request was successful, and 404 Not Authorized means we forgot an auth token or don’t have the correct permissions for the resource requested. However, with GraphQL, each request returns 200 OK, regardless of whether the request was a complete success. This makes error handling a bit different in the GraphQL world. Instead of a single status code describing the result of our request, GraphQL errors are typically returned at the field level. This means we may have successfully retrieved part of our GraphQL query, while other fields returned errors and will need to be handled appropriately.

 Caching is another well-understood area of REST that is handled a bit differently with GraphQL. With REST, caching the response for /movie/123 is possible because we can return the same exact result for each GET request. This isn’t possible with GraphQL because each request could contain a different selection set, meaning we can’t simply return a cached result for the whole request. This is mitigated by most GraphQL clients implementing client caches at the application level, and in practice, much of the time, our GraphQL requests are in an authenticated environment, where caching isn’t applicable.

OEBPS/OEBPS/Images/CH01_F04_Lyon.png
/N

¢

Bachelor
Party

Grumpier
Old Men

/ O\ /

Robin Walter
Williams Matthau

\ '

Bye
Bye Birdie

Ann-Margret

Midnight
Special

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/Lyon_author.photo.png

OEBPS/OEBPS/Images/CH01_F02_Lyon.png
River Runs Through It Search

River Runs Through It, A

Year: 1992

Rating: 7.3

The story about two sons of a stern minister -- one reserved, one
rebellious -- growing up in rural Montana while devoted to fly fishing.

Drama

L dom
= lanks,

Fomrest
Gump

* TITANIOR

OEBPS/OEBPS/Images/CH01_F01_Lyon.png
Request
s
.A-
Response

Web
client

OEBPS/cover.jpeg
ull Stack
raphQL

Applications

With React, Node.js, and Neolj

William Lyon

/l. MANNING

OEBPS/OEBPS/Images/CH01_F03_Lyon.png
: actors
movieId:ID! —— actordId:ID!

: . : movies i
title:String name:String

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/IFC_F01_Lyon.png
{
moviesByTitle(title: "Matrix") {
title
React eay
®|}°
}
Apollo| | GraphQL query
Client
Request
< Response o |
{
"data": {
"moviesByTitle": [
{
"title": "Matrix
Web Reloaded, The",
client "year": 2003
}
1
}
}

0 Client issues GraphQL query

o GraphQL API sends Cypher query to Neo4j

o Response sent to client

o Data updated in React component props and view rendered

A GraphQL request in a full stack GraphQL application

@ GraphQL

GraphQL API

Apol lo
Server

MATCH (m:Movie {title:

RETURN m.title,

"Matrix"})
m.year

Cypher

Bolt JavaScript driver

