

 inside front cover

 [image: IBC-01]

 Type hierarchy for numbers in Julia, showing abstract and concrete number types in dark gray and light gray, respectively

 [image: IBC-02]

 Type hierarchy for arrays and ranges in Julia. The dark gray types are abstract while the light gray are concrete types.

 [image:]

 Julia as a Second Language

 General purpose programming with a taste of data science

 ERIK ENGHEIM

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Milan Ćurčić

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Kathleen Rossland

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Maurizio Tomasi

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299711

 dedication

 To my grandparents, who paid for my first computer: an Amiga 1000.

contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Basics

 1 Why Julia?

 1.1 What is Julia?

 Pros and cons of statically and dynamically typed languages

 1.2 Julia combines elegance, productivity, and performance

 1.3 Why Julia was created

 Scientists need the interactive programming that dynamically typed languages offer

 Developers in other fields also need the interactivity a dynamically typed language offers

 1.4 Julia’s higher performance solves the two-language problem

 1.5 Julia is for everyone

 1.6 What can I build with Julia?

 Julia in the sciences

 Nonscience uses of Julia

 1.7 Where Julia is less ideal

 1.8 What you will learn in this book

 2 Julia as a calculator

 2.1 The Julia command line

 2.2 Using constants and variables

 Assigning and binding values to variables

 Using the ans variable

 What is a literal coefficient?

 2.3 Different number types and their bit length in Julia

 Writing numbers using different number formats

 2.4 Floating-point numbers

 Performing operations on integers and floating-point numbers

 2.5 Defining functions

 Storing function definitions in a file

 Working with functions in the REPL

 Functions everywhere

 Functions to work with numbers

 2.6 How to use numbers in practice

 3 Control flow

 3.1 Navigation and trigonometry

 3.2 Boolean expressions

 Compound statements

 3.3 Looping

 Flowchart

 Making a mathematical table for the sine function

 Range objects

 For loops

 3.4 Multiline functions

 Implementing the sine trigonometric function

 3.5 Implementing factorial

 3.6 Factorial with recursion

 3.7 If statements

 If-else statements

 Elseif clause

 3.8 Throwing exceptions to handle errors

 3.9 Control flow vs. data flow

 3.10 Counting rabbits

 Base case

 Iteration vs. recursion

 To return or not return

 4 Julia as a spreadsheet

 4.1 Analyzing pizza sales

 4.2 Different types of arrays

 4.3 Performing operations on arrays

 4.4 Working with the statistics module

 4.5 Accessing elements

 4.6 Creating arrays

 4.7 Mapping values in an array

 4.8 Introducing characters and strings

 4.9 Storing pizza data in tuples

 4.10 Filtering pizzas based on predicates

 Combining higher-order functions

 4.11 Mapping and reducing an array

 Sine table with map and reduce

 4.12 Counting matches with Boolean arrays

 5 Working with text

 5.1 Making a pretty pizza sales table

 Print, println, and printstyled

 Printing multiple elements

 Printing multiple pizzas

 Align with lpad and rpad

 Adding lines

 5.2 Printing a trigonometric table

 5.3 Reading and writing pizza sales to CSV files

 Writing pizza sales to a file

 Reading pizza sales from a file

 5.4 Interacting with the user

 6 Storing data in dictionaries

 6.1 Parsing Roman numerals

 6.2 Using the Dict type

 6.3 Looping over characters

 6.4 Enumerating values and indices

 6.5 Explaining the conversion process

 6.6 Using dictionaries

 Creating dictionaries

 Element access

 6.7 Why use a dictionary?

 6.8 Using named tuples as dictionaries

 When do you use a named tuple?

 Tying it all together

 Part 2 Types

 7 Understanding types

 7.1 Creating composite types from primitive types

 7.2 Exploring type hierarchies

 7.3 Creating a battle simulator

 Defining warrior types

 Adding behavior to warriors

 Using multiple dispatch to invoke methods

 7.4 How Julia selects method to call

 Contrasting Julia’s multiple dispatch with object-oriented languages

 How is multiple dispatch different from function overloading?

 8 Building a rocket

 8.1 Building a simple rocket

 8.2 Maintaining invariants in your code

 8.3 Making objects with constructor functions

 8.4 Differences between outer and inner constructors

 8.5 Modeling rocket engines and payloads

 8.6 Assembling a simple rocket

 8.7 Creating a rocket with multiple stages and engines

 8.7 Launching a rocket into space

 9 Conversion and promotion

 9.1 Exploring Julia’s number promotion system

 9.2 Understanding number conversion

 9.3 Defining custom units for angles

 Defining angle constructors

 Defining arithmetic operations on angles

 Defining accessors to extract degrees, minutes, and seconds

 Displaying DMS angles

 Defining type conversions

 Making pretty literals

 Type promotions

 10 Representing unknown values

 10.1 The nothing object

 10.2 Using nothing in data structures

 What is a parametric type?

 Using union types to end the wagon train

 10.3 Missing values

 10.4 Not a number

 10.5 Undefined data

 10.6 Putting it all together

 Part 3 Collections

 11 Working with strings

 11.1 UTF-8 and Unicode

 Understanding the relation between code points and code units

 11.2 String operations

 Converting from camel case to snake case

 Converting between numbers and strings

 String interpolation and concatenation

 sprintf formatting

 11.3 Using string interpolation to generate code

 11.4 Working with nonstandard string literals

 DateFormat strings

 Raw strings

 Using regular expressions to match text

 Making large integers with BigInt

 MIME types

 12 Understanding Julia collections

 12.1 Defining interfaces

 12.2 Propellant tank interface example

 12.3 Interfaces by convention

 12.4 Implementing engine cluster iteration

 Making clusters iterable

 12.5 Implementing rocket stage iteration

 Adding support for map and collect

 12.6 Comparison of linked lists and arrays

 Adding and removing elements

 12.7 Utility of custom types

 13 Working with sets

 13.1 What kind of problems can sets help solve?

 13.2 What is a set?

 Comparing properties of sets and arrays

 13.3 How to use set operations

 13.4 How to use sets in your code

 13.5 Searching for products using set operations

 Defining and using enumerations

 Creating test data to perform queries on

 Searching for screws

 Putting screw objects into sets

 Looking up screws using dictionaries

 13.6 Search in bug tracker using sets

 13.7 Relational databases and sets

 14 Working with vectors and matrices

 14.1 Vectors and matrices in mathematics

 14.2 Constructing a matrix from rows and columns

 14.3 The size, length, and norm of an array

 14.4 Slicing and dicing an array

 14.5 Combining matrices and vectors

 14.6 Creating matrices

 Part 4 Software engineering

 15 Functional programming in Julia

 15.1 How does functional programming differ from object-oriented programming?

 15.2 How and why you should learn to think functionally

 15.3 Avoid deeply nested calls with function chaining

 Understanding anonymous functions and closures

 Using the pipe operator |>

 Conveniently produce new functions using partial application

 15.4 Implementing Caesar and substitution ciphers

 Implementing the Caesar cipher

 Implementing substitution ciphers

 15.5 Creating a cipher-algorithm-agnostic service

 15.6 Building an encryption service using object-oriented programming

 15.7 Building an encryption service using functional programming

 Defining a functional Caesar cipher

 Defining a functional substitution cipher

 Implementing a functional password-keeper service

 16 Organizing and modularizing your code

 16.1 Setting up a work environment

 Using a package in the REPL

 How modules relate to packages

 16.2 Creating your own package and module

 Generating a package

 Adding code to your package

 16.3 Modifying and developing a package

 16.4 Tackling common misconceptions about modules

 16.5 Testing your package

 Part 5 Going in depth

 17 Input and output

 17.1 Introducing Julia’s I/O system

 17.2 Reading data from a process

 17.3 Reading and writing to a socket

 17.4 Parsing a CSV file

 Loading rocket engine data

 Saving rocket engine data

 18 Defining parametric types

 18.1 Defining parametric methods

 18.2 Defining parametric types

 18.3 Type safety benefits from parametric types

 18.4 Performance benefits from parametric types

 18.5 Memory benefits of parametric types

 appendix A Installing and configuring the Julia environment

 appendix B Numerics

 index

front matter

 preface

 I began programming as a teenager, learning from fun books containing comic strips with wizards and turtles. I read magazines that showed me how to make my own simple games or cause silly effects to appear on the screen. I had fun.

 But when I went to university, my books began discussing bank accounts, balances, sales departments, employees, and employers. I wondered if my life as a programmer would mean putting on a gray suit and writing code handling payroll systems. Oh, the horror!

 At least half of my class hated programming with a passion. I could not blame them. Why did programming books have to be so boring, functional, and sensible?

 Where was the sense of adventure and fun? Fun is underrated. Who cares if a book is silly and has stupid jokes if it makes you learn and enjoy learning?

 That is one of the reasons I wrote this book. I wanted the reader to enjoy learning programming—not through cracking jokes but by working through programming examples that are interesting and fun to do.

 I promise you, there will be no examples modeling a sales department. Instead, we will do things like simulate rocket launches, pretend to be Caesar sending a secret message to his army commanders using old Roman encryption techniques, and many others.

 The second important reason why I wanted to write this book is because people keep asking me, “Julia? Isn’t that a language only for science and scientists?” Julia has had major success in this area, which is why the Julia community today is full of brainy people working on hard problems, such as developing new drugs and modeling the spread of infectious diseases, climate change, or the economy.

 But no, you don’t need to be a genius or a scientist to use Julia. Julia is a wonderful general purpose programming language for everyone! I am not a scientist, and I have enjoyed using it for over 9 years now. With Julia, you will find that you can solve problems more quickly and elegantly than you have done in the past. And as a cherry on top, computationally intensive code will run blisteringly fast.

acknowledgments

 This book has lived through several incarnations. At one point, it was a self-published book. Later, chance brought me in touch with Manning Publications, and we agreed to work on publishing my book. Back then, I did not realize how much work I was getting myself into. In my mind, I would do minor revisions to the existing book, but from all the feedback I got, I realized I had to make many revisions.

 At times I felt like giving up. However, despite the difficulties, I believe the extensive system Manning has set up to aid us authors has helped me make a significantly better book. For that, I must thank Nicole Butterfield, who got me to sign on with Manning. I have had two Manning editors: Lesley Trites, in the early phase of the book, and Marina Michaels, who with her considerable experience and steady hand has helped get me over the finish line. I would like to extend a thanks to Milan Ćurčić, my technical development editor, who helped me a lot with his feedback in determining when material was understandable (or not) to my target audience. My copyeditor Christian Berk was invaluable for me as a non-native English speaker in correcting any odd constructs or grammar I may have written.

 Furthermore, I’d like to thank the reviewers who took the time to read my manuscript at various stages during its development and who provided invaluable feedback: Alan Lenton, Amanda Debler, Andy Robinson, Chris Bailey, Daniel Kenney, Darrin Bishop, Eli Mayost, Emanuele Piccinelli, Ganesh Swaminathan, Geert Van Laethem, Geoff Barto, Ivo Balbaert, Jeremy Chen, John Zoetebier, Jonathan Owens, Jort Rodenburg, Katia Patkin, Kevin Cheung, Krzysztof Jȩdrzejewski, Louis Luangkesorn, Mark Thomas, Maura Wilder, Mike Baran, Nikos Kanakaris, Ninoslav Čerkez, Orlando Alejo Méndez Morales, Patrick Regan, Paul Silisteanu, Paul Verbeke, Samvid Mistry, Simone Sguazza, Steve Grey-Wilson, Timothy Wolodzko, and Thomas Heiman.

 Special thanks go to Maurizio Tomasi, technical proofreader, for his careful review of the code one last time, shortly before the book went into production. Finally, thank you to the creators of Julia. You have created the programming language for the future, which I believe will transform the computer industry. That may sound like hyperbole, but I truly believe Julia is a major milestone in the evolution of programming languages.

about this book

 Julia as a Second Language is an introduction to the Julia programming language for software developers. It not only covers the syntax and semantics of the language but also tries to teach the reader how to think and work like a Julia developer through extensive focus on interactive coding in a read-evaluate-print-loop (REPL) based environment.

Who should read this book?

 Julia as a Second Language is written for developers curious about the Julia programming language but who do not necessarily have a scientific or mathematical background. The book is also a good starting point for anyone who wants to explore data science or scientific computing, as Julia is a language very well designed for such work. However, that does not exclude other uses. Any developer who would like to program in a modern, high performance language that makes them more productive would benefit from this book.

How this book is organized

 The book is organized into five parts, consisting of 18 chapters.

 Part 1 covers the basics of the language.

 	
 Chapter 1 explains what kind of language Julia is, why it got created, and the advantages of using the Julia programming language.

 	
 Chapter 2 discusses working with numbers in Julia. It shows how you can use the Julia REPL environment as a very sophisticated calculator.

 	
 Chapter 3 explains control flow statements, such as if statements, while loops, and for loops, by implementing a trigonometry function and calculating the Fibonacci numbers.

 	
 Chapter 4 explains how to work with collections of numbers using the array type. Readers will work through an example involving pizza sales data.

 	
 Chapter 5 is about working with text. This chapter walks you through making nicely formatted displays of pizza sales data with colors as well as reading and writing pizza data to files.

 	
 Chapter 6 discusses how a program to convert Roman numerals to decimal numbers can be implemented using the dictionary collection type.

 Part 2 covers the Julia type system in greater detail.

 	
 Chapter 7 explains type hierarchies in Julia and how you can define your own composite types. This is one of the most important chapters because it also explains multiple dispatch, which is one of the most important and unique features in Julia.

 	
 Chapter 8 introduces a rocket simulation code example we will use through several chapters. This chapter is focused on defining types for different rocket parts.

 	
 Chapter 9 gets into depth on numerical conversion and promotion in Julia by building up a code example dealing with different units for degrees. This chapter helps cement an understanding of the multiple dispatch system in Julia.

 	
 Chapter 10 explains how you can represent objects that are nonexistent, missing, or undefined in Julia.

 Part 3 revisits collection types, such as arrays, dictionaries, and strings covered in part 1, but this time digs into more details.

 	
 Chapter 11 goes into much more detail about strings, including topics such as Unicode and UTF-8 usage in Julia as well as their effects on your use of strings.

 	
 Chapter 12 explains traits common to all Julia collections, such as iterating over elements and building your own collections.

 	
 Chapter 13 walks through several code examples to show how sets and set operations are used to organize and search for data in many types of applications.

 	
 Chapter 14 shows how you can work with and combine arrays of different dimensions, such as vectors and matrices.

 Part 4 focuses on methods for organizing your code at different levels, including modularizing at the function level all the way up to packages, files, and directories.

 	
 Chapter 15 digs deeper into using functions in Julia, with emphasis on how functional programming differs from object-oriented programming.

 	
 Chapter 16 is about organizing your code into modules, using third-party packages, and creating your own packages for sharing code with others.

 Part 5 digs into details that were hard to explain without the previous chapters as a foundation.

 	
 Chapter 17 builds on chapter 5. You will get into the details of the Julia I/O system by reading and writing rocket engines to files, sockets, and pipes in CSV format.

 	
 Chapter 18 explains how a parametric data type can be defined and why parametric types are beneficial for performance, memory usage, and correctness.

About the code

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this. Code annotations accompany many of the listings, highlighting important concepts.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the sourcecode have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Much of the code you write is in the Julia REPL (read-evaluate-print-loop) environment or in a Unix shell. In these cases, you see a prompt such as julia>, shell>, help?> or $. These should not be included when you type. However, Julia is normally able to filter out the prompt if you paste code examples into your terminal window.

 Code meant to be written into a file will usually not be shown with a prompt. However, you can typically paste this code into the Julia REPL if you like.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/julia-as-a-second-language. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/julia-as-a-second-language, and from GitHub at https://github.com/ordovician/code-samples-julia-second-language.

 Julia version 1.7 or higher is recommended to run the example code in this book.

liveBook discussion forum

 Purchase of Julia as a Second Language includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/julia-as-a-second-language/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Need additional help? The Julia language has an active Slack workspace/community with over 10,000 members, many of whom you can communicate with in real time. Find information about registration at https://julialang.org/slack.

 	
 Julia Discourse (https://discourse.julialang.org) is the go-to place for Julia-related questions.

 	
 The Julia community page at https://julialang.org/community has info about YouTube channels, upcoming Julia events, GitHub, and Twitter.

 	
 Official documentation of the Julia language and standard library can be found at https://docs.julialang.org/en/v1/.

about the author

 [image: Engheim_author]

 Erik Engheim is a writer, conference speaker, video course author, and software developer. He has spent much of his career developing 3D modeling software for reservoir modeling and simulation in the Norwegian gas and oil industry. Erik also spent several years as an iOS and Android developer. Erik has programmed in Julia and written and made videos about Julia since 2013.

about the cover illustration

 The figure on the cover of Julia as a Second Language is “Paysanne Anglaise”, or “English peasant woman”, taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Basics

 These chapters cover all of Julia at a basic level. Later chapters will expand on topics covered in this part. You will learn about working with numbers, arrays, if statements, for loops, text strings, basic I/O, and storing and retrieving data from dictionaries. Subsequent parts of the text then discuss these topics in greater depth.

1 Why Julia?

 This chapter covers

 	
The type of problems Julia solves

 	
The benefits of a fast, dynamically typed language

 	
How Julia increases programmer productivity

 You can choose from hundreds of programming languages—many of them much more popular than Julia. So why pick Julia?

 How would you like to write code faster than you have done before? How about building systems with a fraction of the number of lines of code you normally require? Surely, such productivity will come at the cost of deplorable performance and high memory consumption. Nope. In fact, Julia is the language of choice for next-generation climate models, which have extreme performance and memory requirements.

 I know such accolades may come across like a bad sales pitch from a used car salesman, but there is no denying that Julia, in many ways, is a revolutionary programming language. You may ask, “If Julia is so great, then why isn’t everybody using it? Why are so many people still using the C programming language?” Familiarity, packages, libraries, and community matter. Mission-critical software built up in large organizations isn’t just transitioned away from on a whim.

 Many of you reading this book may not care about having the more efficient and productive programming language. Instead, what you care about is what you can build with it. The simple answer is: anything. Julia is a general-purpose programming language.

 That may not be a satisfactory answer. You could build anything with JavaScript too, in principle. Yet you know JavaScript dominates frontend web development. You could write anything with Lua as well, but it is mostly used as a scripting language for computer games. Your primary interest in reading this book may be the kind of job Julia can land you.

 Presently, the Julia community is strongest within scientific computing, data science, and machine learning. But learning Julia is also a bet on the future. A language with such strong capabilities will not remain within a small niche. If you read on, it will become clearer what Julia is and why it has such potential. I will also cover areas where Julia is not ideal.

1.1 What is Julia?

 Julia is a general-purpose, multi-platform programming language that is

 	
 Suited for numerical analysis and computational science

 	
 Dynamically typed

 	
 High performance and just-in-time compiled

 	
 Using automatic memory management (garbage collection)

 	
 Composable

 That’s a lot, and some of these things sound like contradictions. So how can Julia be a general-purpose language and also tailored toward numerical programming? It’s general-purpose because, like Python, Julia can be used for almost anything. It’s numerical because, like MATLAB, it is well suited for numerical programming. But it isn’t limited to numerical programming; it’s good for other uses as well. By composable I mean that Julia makes it easy to express many object-oriented and functional programming patterns facilitating code reuse.

1.1.1 Pros and cons of statically and dynamically typed languages

 Let’s focus on one aspect of Julia: the fact that it’s dynamically typed. Usually, programming languages are divided into two broad categories:

 	
 Dynamically typed

 	
 Statically typed

 In static languages, expressions have types; in dynamic languages, values have types.

 —Stefan Karpinski Julia Creator

 Examples of statically typed languages are C/C++, C#, Java, Swift, Go, Rust, Pascal, and Fortran. In a statically typed language, type checks are performed on all your code before your program is allowed to run.

 Examples of dynamically typed languages are Python, Perl, Ruby, JavaScript, MATLAB, and LISP. Dynamically typed languages perform type checks while the program is running. Unfortunately, dynamically typed languages tend to be very slow.

 In dynamic languages values such as numbers, characters, and strings have attached tags that say what type they are. These tags allow programs written in a dynamically typed language to check type correctness at runtime.

 Julia is unusual in that it is both a dynamically typed language and high performance. To many, this is a contradiction. This unique trait of Julia is made possible because the language was explicitly designed for just-in-time (JIT) compilation and uses a feature called multiple-dispatch for all function calls. Languages such as C/C++ and Fortran use ahead-of-time (AOT) compilation. A compiler translates the whole program into machine code before it can run. Other languages, such as Python, Ruby, and Basic, use an interpreter. With interpreted languages, a program reads each line of source code and interprets it at runtime to carry out the instructions given. Now that you have an idea of what kind of language Julia is, I can begin discussing the appeal of Julia.

 Language design and JIT compilation

 In principle, a programming language is decoupled from the method used to run it. Yet you will find that I talk about Julia as a JIT-compiled language and Fortran as an AOT compiled language. Strictly speaking, this is imprecise. For instance, Julia can run through an interpreter as well. However, most languages have been designed for a particular form of execution. Julia was designed for JIT compilation.

1.2 Julia combines elegance, productivity, and performance

 While performance is one of the key selling points of Julia, what caught my attention back in 2013 when I first discovered it was how well thought out, powerful, and easy to use it was. I had a program I had rewritten in several languages to compare how expressive, easy to use, and productive each language was. With Julia, I managed to make the most elegant, compact, and easily readable variant of this code ever. Since then, I have tried many programming languages but have never gotten close to what I achieved with Julia. Here are some one-liners that exemplify the expressiveness of Julia.

 Listing 1.1 Julia one-liners

 filter(!isempty, readlines(filename)) # strip out empty lines
filter(endswith(".png"), readdir()) # get PNG files
findall(==(4), [4, 8, 4, 2, 5, 1]) # find every index of the number 4

 Having been programming since the 1990s, I have had periods where I have felt I had enough of programming; Julia helped me regain my joy for programming. Part of the reason is that once you master Julia, you will feel that you have a language in your toolbox that works as a member of your team rather than against you. I think many of us have had the experience of working on a problem we have a good idea of how to solve, but the language we are using is getting in our way. The limitations of the language force us to add one hack after another. With Julia, I can build software the way I want without the language putting up obstacles.

 Another aspect that adds to your productivity and sense of fun is that Julia comes bundled with a rich standard library. You hit the ground running. You can get a lot done without hunting all over the web for some library to do what you want. Julia has you covered, whether you want to do linear algebra, statistics, HTTP, or string manipulation or you want to work with different date formats. And if the capability you want isn’t in the standard library, Julia has a tightly integrated package manager that makes adding third-party libraries a walk in the park. Programming with Julia almost makes you feel guilty or spoiled because you can build rich and elegant abstractions without taking a performance hit.

 Another essential advantage of Julia is that it is easy to learn. This ease of learning can help Julia gain a larger community over time. To understand why Julia is easy to learn, consider the famous Hello world program written in Julia:

 print("Hello world")

 When run, this code writes the text Hello world to the screen. While trivial, many languages require a lot of complex scaffolding to do something that simple. The following is a Java program which does the same thing:

 public class Main {
 public static void main(String[] args) {
 System.out.print("hello world");
 }
}

 That exposes the beginner to a lot more concepts all at once, which can be overwhelming. Julia is easier to learn because you can focus on learning one concept at a time. You can learn to write a function without ever seeing a type definition. With a lot of functionality available out of the box, you don’t even need to know how to import external libraries to write helpful code.

1.3 Why Julia was created

 To truly understand what Julia brings to the table, you need to understand better why Julia was created in the first place. The creators of the Julia programming language wanted to solve what they have called the two-language problem.

 This problem refers to the fact that a lot of software is written using two different programming languages, each with different characteristics. In the scientific domain, machine learning and data analysis dynamic languages are often preferred. However, these languages usually don’t give good enough performance. Thus solutions often have to be rewritten in higher-performance, statically typed languages. But why does this preference exist? Why not write everything in a traditional high-performance, statically typed language?

1.3.1 Scientists need the interactive programming that dynamically typed languages offer

 Scientists began writing software, including large weather simulations, in Fortran1 and neural networks2 in C or C++.3 These languages offer the kind of performance you need to tackle these large-scale problems. However, these languages come at a price. They tend to be rigid, verbose, and lacking in expressiveness—all of which reduce programmer productivity.

 The fundamental problem, however, is that these languages are not suited for interactive programming. What do I mean by that? Interactive programming is the ability to write code and get immediate feedback.

 Interactive programming matters a lot in data science and machine learning. In a typical data analysis process, data is explored by a developer loading large amounts of data into an interactive programming environment. Then the developer performs various analyses of this data. These analyses could include finding averages and maximum values or plotting a histogram. The results of the first analysis tell the programmer what the next steps should be.

 Figure 1.1 shows this process in a dynamically typed language. You start by running the code, which loads the data, which you can then observe. However, you don’t have to go through this whole process after you change the code. You can change the code and observe changes immediately. You don’t need to load massive amounts of data over again.

 [image: 01-01]

 Figure 1.1 In dynamically typed languages you can ping-pong between coding and observing. Large data sets do not need to be reloaded into memory.

 Let’s contrast this experience with the use of a statically typed language, such as Fortran, C/C++, or Java.4 The developer would write some code to load the data and explore it, without knowing anything about what the data looks like. They would then have to wait for the program to do the following:

 	
 Compile

 	
 Launch, then load a large amount of data

 At this point the developer sees a plot of the data and statistics, which gives them the information they need to choose the next analysis. But choosing the next analysis would require repeating the whole cycle over again. The large blob of data has to be reloaded on every iteration. This makes each iteration exceedingly slow, which slows down the whole analysis process. This is a static, noninteractive way of programming (figure 1.2).

 [image: 01-02]

 Figure 1.2 Statically typed languages require the whole loop to be repeated.

1.3.2 Developers in other fields also need the interactivity a dynamically typed language offers

 This problem isn’t unique to scientists; game developers have long faced the same problem. Game engines are usually written in a language such as C or C++, which can compile to fast machine code. This part of the software often does well-understood and well-defined things, such as drawing objects on the screen and checking if they collide with each other.

 Like a data analyst, a game developer has a lot of code, which will need numerous iterations to work satisfactorily. Specifically, developing good game play requires a lot of experimentation and iteration. One has to tweak and alter code for how characters in the game behave. The layout of a map or level has to be experimented with repeatedly to get it right. For this reason, almost all game engines use a second language that allows on-the-fly change of code. Frequently, this is a language such as Lua,5 JavaScript, and Python.6

 With these languages, the code for game characters and maps can be changed without requiring a recompile and reloading of maps, levels, and characters. Thus one can experiment with game play, pause, make code changes, and continue straight away with the new changes.

 Machine learning professionals face similar challenges. They build predictive models, such as neural networks, which they feed large amounts of data to train. This is often as much of a science as an art. Getting it right requires experimentation. If you need to reload training data every time you modify your model, you will slow down the development process. For this reason, dynamically typed languages, such as Python, R, and MATLAB, became very popular in the scientific community.

 However, because these languages aren’t very fast, they get paired with languages such as Fortran and C/C++ to get good performance. A neural network made with TensorFlow7 or PyTorch8 is made up of components written in C/C++. Python is used to arrange and connect these components. Thus at runtime you can rearrange these components using Python, without reloading the whole program.

 Climate and macroeconomic models may get developed in a dynamic language first and tested on a small dataset while being developed. Once the model is finished, many organizations hire C/C++ or Fortran developers to rewrite the solution in a high-performance language. Thus there is an extra step, complicating the development processes and adding costs.

1.4 Julia’s higher performance solves the two-language problem

 Julia was created to solve the problem of needing to use two languages. It makes it possible to combine the flexibility of a dynamically typed language with the performance of a statically typed language. That’s why the following saying has gained some popularity:

 Julia walks like Python, runs like C.

 —Popular saying in Julia community

 Using Julia, developers within many fields can write code with the same productivity as with languages such as Python, Ruby, R, and MATLAB. Because of this, Julia has had a profound impact on the industry. In the July 2019 edition of Nature, several interviews were conducted with various scientists about their use of Julia.

 For instance, the University of Melbourne has seen an 800x improvement by porting computational models from R to Julia. Jane Herriman, Materials Science Caltech, reports seeing tenfold-faster runs since rewriting her Python code in Julia.

 You can do things in an hour that would otherwise take weeks or months.

 —Michael Stumpf

 At the International Conference for Supercomputing in 2019 (SC19), Alan Edelman, one of the Julia creators, recounts how a group at the Massachusetts Institute of Technology (MIT) rewrote part of their Fortran climate model into Julia. They determined ahead of time that they would tolerate a 3x slowdown of their code. That was an acceptable tradeoff for gaining access to a high-level language with higher productivity, in their view. Instead, they got a 3x speed boost by switching to Julia.

 These are just a few of the many stories that abound today about how Julia is revolutionizing scientific computing and high-performance computing in general. By avoiding the two-language problem, scientists can work much faster than before.

1.5 Julia is for everyone

 These stories might give the false impression that Julia is a language for brainiacs in white lab coats. But nothing could be further from the truth. It turns out that a lot of the traits that make Julia a great language for scientists also make it an excellent language for everybody else. Julia offers

 	
 Strong facilities for modularizing and reusing code.

 	
 A strict type system that helps catch bugs in your code when it runs.

 	
 A sophisticated system for reducing repetitive boilerplate code (metaprogramming9).

 	
 A rich and flexible type system that allows you to model a wide variety of problems.

 	
 A well-equipped standard library and various third-party libraries to handle various tasks.

 	
 Great string processing facilities. This ability is usually a key selling point for any Swiss-Army-knife-style programming language. It is what initially made languages such as Perl, Python, and Ruby popular.

 	
 Easy interfacing with a variety of other programming languages and tools.

 While Julia’s big selling point is that it fixes the two-language problem, that does not mean the need to interface with existing Fortran, C, or C++ code is alleviated. The point of fixing the two-language problem is to avoid having to write Fortran or C code each time you hit a performance problem. You can stick with Julia the whole way.

 However, if somebody has already solved a problem you have in another language, it may not make sense for you to rewrite that solution from scratch in Julia. Python, R, C, C++, and Fortran have large packages that have been built over many years, and the Julia community can’t replace those overnight. To be productive, Julia developers need to be able to take advantage of existing software solutions.

 In the long term, there is an obvious advantage to transitioning legacy software to Julia. Maintaining old Fortran libraries will often require a lot more developer effort than maintaining a Julia library.

 The greatest benefit is probably in the combinatorial power Julia gives. There are certain types of problems that require the construction of large monolithic libraries. Julia, in contrast, is exceptionally well suited for making small libraries that can easily be combined to match the functionality offered by large monolithic libraries in other languages. Let me give one example.

 Machine learning, a hot topic, powers self-driving cars, face recognition, voice recognition, and many other innovative technologies. The most famous packages for machine learning are PyTorch and TensorFlow. These packages are enormous monoliths maintained by large teams. There is no code sharing between them. Julia has a multitude of machine learning libraries, such as Knet, Flux (see https://fluxml.ai), and Mocha (see http://mng.bz/epxG). These libraries are tiny in comparison. Why? Because the capabilities of PyTorch and TensorFlow can be matched by combining multiple small libraries in Julia. Explaining more about why this works is a complex topic that requires a much deeper knowledge of Julia and how neural network libraries work.

 Having many small libraries is an advantage for general applications. Anyone building any kind of software will benefit from the ability to reuse existing pieces of software in a multitude of new ways, instead of having to reinvent the wheel. With legacy programming languages, one often needs to repeatedly implement the same functionality. TensorFlow and PyTorch, for instance, have a lot of duplicate functionality. Julia avoids duplication by putting a lot more functionality in libraries shared between many machine learning libraries. As you work through the chapters in this book, it will become increasingly clear how Julia can pull this off and why this capability is hard to achieve in many other languages.

1.6 What can I build with Julia?

 In principle, you can use Julia to build anything. However, every language has an ecosystem of packages and a community that may push you toward some types of development over others. Julia is no different.

1.6.1 Julia in the sciences

 Julia has a strong presence in the sciences. It is used, for example, in

 	
 Computational biology

 	
 Statistics

 	
 Machine learning

 	
 Image processing

 	
 Computational calculus

 	
 Physics

 But Julia covers many more areas. For instance, it’s used in energy trading. The American Federal Reserve uses it to build complex macroeconomic models. Nobel Laureate Thomas J. Sargent founded QuantEcon, a platform that advances pedagogy in quantitative economics using both Julia and Python. He is a strong proponent of Julia, since the big problems in macroeconomics will be difficult to solve with other programming languages. In interviews with Lukas Biewald, Peter Norvig, a famous artificial intelligence (AI) researcher working at Google, has expressed how he thinks the machine learning world would benefit greatly from switching to Julia.

 I would be happier if Julia were the main language for AI.

 —Peter NorvigAuthor of Artificial Intelligence, A Modern Approach

 Life sciences is another obvious area for Julia. By 2025, 2-40 exabytes of human genome data will be collected every year. Most mainstream software cannot handle data at that scale. You will need a high-performance language, such as Julia, that can work with a variety of formats on a variety of hardware at the highest possible performance.

 At the time of writing this chapter, COVID-19 is still a major challenge in the world. The Julia package Pathogen is used to model infectious disease and has been used by COVID-19 researchers.

1.6.2 Nonscience uses of Julia

 What about its nonscience uses? Julia also has a multitude of packages for other interests:

 	
 Genie—A full-stack MVC web framework

 	
 Blink—For creating Electron GUI apps in Julia

 	
 GTK—For making Julia GUI applications using the popular Linux GUI toolkit GTK

 	
 QML—For creating cross-platform GUIs using the QML markup language used in the Qt GUI toolkit

 	
 GameZero—For beginner game developing

 	
 Luxor—For drawing vector images

 	
 Miletus—For writing financial contracts

 	
 TerminalMenus—For allowing interactive menus in the terminal

 	
 Gumbo—For parsing HTML pages

 	
 Cascadia—A CSS selector library for web scraping, extracting useful information from web pages

 	
 QRCode—For creating images of QR codes popular with ads to show machine-readable URLs

 As you can see, Julia has packages for general-purpose programming.

1.7 Where Julia is less ideal

 In principle, Julia can be used for almost anything, but being a young language means the selection of libraries is not equally comprehensive in every area. For example, the selection of packages for web development is limited. Building something like a mobile application would not work well with Julia. It is also not great for small, short-running scripts—the kind you often write in Bash, Python, or Ruby. These limitations are due to Julia being JIT compiled.

 That means Julia programs start more slowly than, for example, Python or Bash programs but begin to run much faster once the JIT compiler has converted critical parts of the code to machine code. There is an ongoing effort in the Julia community to reduce this problem, and there are myriad ways it can be tackled. Solutions include better caching of previous JIT compilations to being more selective about when something is JIT compiled.

 Julia is also not ideal for real-time systems. In a real-time system, the software must respond to things that happen in the real world. You can contrast this with, for instance, a weather simulator. With a weather simulator, it doesn’t matter what happens in the world outside the computer running the simulation.

 However, if your program has to process data arriving from a measuring instrument every millisecond, then you can’t have sudden hiccups or delays. Otherwise, you risk losing important measurements. Julia is a garbage-collected language. That means data no longer used in your program gets automatically recycled for other purposes. The process of determining what memory to recycle tends to introduce small random delays and hiccups in program execution.

 This problem cannot be overstated. Robotics that require real-time behavior are being done in Julia. Researchers at MIT have simulated real-time control of the Boston Dynamics Atlas humanoid robot balancing on flat ground, which was done to prove that Julia can be used for online control of robots by tweaking how it allocates and releases memory.

 Julia is not well suited for embedded systems with limited memory. The reason is that Julia achieves high performance by creating highly specialized versions of the same code. Hence memory usage for the code itself would be higher in Julia than for, say, C, C++, or Python.

 Finally, just like Python, Ruby, and other dynamic languages, Julia is not suited for typical systems programming, such as making database systems or operating system kernels. These tasks tend to require detailed control of resource usage, which Julia does not offer. Julia is a high-level language aimed at ease of use, which means many details about resource usage get abstracted away.

1.8 What you will learn in this book

 If you already program in another language, this book is for you. Every programming language has a unique set of features, tools, and communities. In this book, I focus on Julia’s unique characteristics as a language and on the tools and programming community built up around Julia, including the following integral aspects:

 	
 Interactive programming using a read-evaluate-print loop (REPL)10

 	
 Science- and mathematics-oriented code examples

 	
 Julia’s unique multiple-dispatch feature and type system

 	
 Functional programming and how it compares with object-oriented programming

 	
 Package-oriented development over app-oriented development

 Julia’s REPL-based development means you can launch the Julia command-line tool and start typing Julia expressions, which get evaluated when you press Enter:

 julia> reverse("abc")
"cba"

julia> 3+5
8

 I follow this approach through most of the book; it may be unfamiliar to readers who come from languages such as C/C++, Java, and C#, but in the Julia community, this development style is often favored. The REPL environment is used for experimentation, testing, and debugging.

 Because Julia is used heavily in data science, machine learning, mathematics, and science, I use many science- and math-oriented examples in this book, such as calculating sine values or simulating a rocket launch, rather than building a website or an inventory system. I keep the mathematics in this text at a high-school level.

 In this book, you will find in-depth coverage of Julia’s multiple-dispatch system and type system. These systems matter because they are a crucial reason Julia achieves such high performance. Because many Julia beginners are confused about these systems, I go into somewhat greater detail on these topics.

 Because the software industry is still dominated by object-oriented programming languages, it can be disorienting to jump into the more functional programming style of Julia. Thus I have devoted space to show how the same problems can be solved in a functional and object-oriented style. Many of the preferred functional programming practices are used throughout the book.

 When working through this book, you will not see a lot of applications made—that is, the kind where you click an icon, and it launches. Nor will you see command-line tools made in Julia that can be run from the console. This choice will be new to, for example, Ruby and Python developers, who are very accustomed to building software as command-line tools.

 The Julia community is, instead, very package oriented. They encourage you to build packages over standalone applications, as these can more easily be shared with others and reused. This preference is reflected in the Julia toolchain and package manager. Julia doesn’t prevent you from building applications, but this book will get you into the package-first mindset. Build a package first, and then turn that into an application.

 The package-oriented mindset is visible in how Julia’s tools tend to be delivered. The package manager and debugger are handled by loading particular packages into the Julia interactive environment and issuing commands there instead of in the shell. This way of working might be familiar to MATLAB and R users. One tends to focus on packages rather than applications in these two languages.

 A typical statistician, scientist, or data analyst using Julia may load up favored packages into their Julia environment and execute Julia commands rather than clicking on some application made using Julia. The Julia REPL will typically be an integral part of most Julia workflows.

Summary

 	
 Static typing makes it easier to construct high-performance programming languages and catch type mistakes before the program is run.

 	
 Dynamic typing makes it possible to make highly interactive programming languages. For programming that requires rapid iteration, this is an advantage.

 	
 Development of scientific code often requires the ability to experiment on large datasets easily. This requires interactive programming offered by dynamically typed languages.

 	
 Scientific code often needs high performance, which dynamically typed languages normally cannot offer.

 	
 Julia is able to solve the two-language problem by offering a high-performance, dynamically typed language. This ability drives the adoption of Julia in performance-demanding fields, such as climate modeling, astronomy, and macro-economic simulations.

 	
 Julia is not limited to science but is also an excellent general-purpose programming language.

 1.Fortran is an old language for scientific computing.

 2.Neural networks are a kind of algorithm inspired by the workings of the human brain.

 3.C and C++ are related and widely used statically typed languages for systems programming.

 4.Java is used for a lot of web server software and Android phones.

 5.Lua was originally made as a configuration language, but today it is primarily used to write games.

 6.Python is one of the most popular languages for data science and machine learning today.

 7.TensorFlow is a popular machine learning library and platform for Python.

 8.PyTorch is a popular machine learning framework for Python.

 9.Metaprogramming is code that writes code. It is an advanced concept not covered in this book.

 10.REPL refers to an interactive command line for a programming language.

2 Julia as a calculator

 This chapter covers

 	
Working with integers, floating-point numbers, and fractions

 	
Using variables to store long numbers

 	
Creating reusable calculations by defining functions

 	
The most basic types in Julia

 Even if you never end up using Julia as your primary language, you may still value it as a replacement for your desk calculator. Julia can even double as an advanced high-school graphing calculator (figure 2.1). As a bonus, it’s completely free to use.

OEBPS/OEBPS/Images/01-02.png
Code

Observe

Build

Load data

OEBPS/OEBPS/Images/IFC-01.png
Number

_DI

Real Complex

Abstract S — Abstract Rational
irrational e float
Aﬁ AN

Irrational

]

Floaté4 Float32

Bool

—]

Int32 Int64 UInt64 UInt8

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/IFC-02.png
AbstractArray

AbstractRange DenseArray

OrdinalRange

Abstract StepRange
UnitRange

UnitRange

OEBPS/cover.jpeg
General purpose programming
with a taste of data science

Erik Engheim

M MANNING

OEBPS/OEBPS/Images/Engheim_author.png

OEBPS/OEBPS/Images/01-01.png
I

Code Observe
Run q Load data

OEBPS/OEBPS/Images/Manning_copyright.png

