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   foreword
 

  
 

   

   For the past two decades, search has been at the heart of nearly every aspect of our technical existence as humans. Need to find a fact? Do a search. Want to try a new restaurant? Do a search. Need directions to that trailhead in the mountains for your weekend hike? Do a search. Yet, for many engineers, the underpinnings of how search works or goes beyond simple keyword matching to truly unlock what users need out of an information system is a mystery, left untaught in almost all computer science courses and bootcamps. Given this relative lack of instruction and the new golden age of AI, there is no better time for AI-Powered Search to make its mark on the world by teaching all of the core principles required for readers to unlock AI in any application. 
 

  
 

   

   At the heart of all search systems is the goal of doing just that: unlocking information to help users make better decisions that help them understand and navigate their world. This unlocking primarily takes place in four ways:
 

  
 

   

   	 Combing through data, finding relevant pieces of information, and ranking and returning the most important bits for the user to synthesize 
 

   	 Summarizing data into smaller, more digestible forms for sharing and collaboration via visualizations and other abstractions 
 

   	 Relating data to other, ideally familiar, pieces of information and concepts 
 

   	 Feeding any of these three, along with other context from the user, into a large language model (LLM) for further synthesis, summarization, and insights, all while interacting and updating based on user feedback 
 

  
 

   

   In these same two decades that search has become ubiquitous in our lives at the consumer level, the engines powering this world, like Google, Elasticsearch, Apache Solr, and others, have evolved to tackle not only the retrieval and ranking part above, but also the other three challenges, and not just on text data, but on all forms of data. Search engines have leaped forward to tackle these problems by deeply incorporating statistical analysis, machine learning, large language models, and natural language processing; in other words, integrating artificial intelligence techniques into every aspect of their core. And yet, despite their depth and breadth of capabilities, they are all too often overlooked as that thing that does “keyword search.”
 

  
 

   

   In AI-Powered Search, Trey, Doug, and Max have crafted a rich and thorough guide designed to take engineers through all aspects of building intelligent information systems using all means available: LLMs, domain-specific knowledge, knowledge bases and graphs, and finally, user- and crowdsourced signals. Examples in the book highlight key concepts in accessible, easy-to-understand ways.
 

  
 

   

   As someone who has spent the better part of their career building, teaching, and promoting search as a means to help solve some of the most important challenges of our time, I’ve witnessed firsthand the A-ha! moments that launch engineers (after they push through the fuzziness inherent in dealing with messy, multimodal data) into lifelong careers working on one of the hardest and most interesting problems of our time. My hope in your reading this book is that you too will find endless fascination in the world of search.
 

  
 

   

   Happy searching!
 

  
 

   

   —Grant Ingersoll, CEO & founder of Develomentor LLC, OpenSearch Leadership Committee
 

  


 

   

   preface
 

  
 

   

   Thanks for purchasing AI-Powered Search! This book will teach you the knowledge and skills you need to deliver highly intelligent search applications that can automatically learn from every content update and user interaction, delivering continuously more relevant search results.
 

  
 

   

   There is no better time than now to learn how to implement AI-powered search. With the rise of generative AI, techniques like retrieval augmented generation (RAG) have arisen as the de facto way to ground AI systems with up-to-date and reliable data from which to drive responses. Yet the “R” in RAG is often the least-well-understood aspect of building such systems. This book provides a deep dive into how to do AI-powered information retrieval well, whether you’re using it to power an AI system, building a traditional search application, or creating a novel new application requiring intelligent ranking and matching.
 

  
 

   

   Over my career, I’ve had the opportunity to dive deep into search relevance, semantic search, personalized search and recommendations, behavioral signals processing, semantic knowledge graphs, learning to rank, LLMs and other foundation models, dense vector search, and many other AI-powered search capabilities, publishing research in top journals and conferences and, more importantly, delivering working software at massive scale. As founder of Searchkernel and as Lucidworks’ former chief algorithms officer and SVP of engineering, I’ve also helped deliver many of these capabilities to hundreds of the most innovative companies in the world to help them power search experiences you probably use every single day.
 

  
 

   

   I’m thrilled to also have Doug Turnbull (Reddit, previously Shopify) and Max Irwin (Max.io, previously OpenSource Connections) as contributing authors on this book, pulling from their many years of hands-on experience helping companies and clients with search and relevance engineering. 
 

  
 

   

   In this book, we distill our many decades of combined experience into a practical guide to help you take your search applications to the next level. You’ll discover how to enable your applications to continually learn to better understand your content, users, and domain in order to deliver optimally relevant experiences with each and every user interaction.
 

  
 

   

   Best wishes as you begin putting AI-powered search into practice!
 

  
 

   

   —Trey Grainger
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   about this book
 

  
 

   

   AI-Powered Search shows you how to build cutting-edge search engines that continuously learn from both your users and your content to drive more domain-aware and intelligent search. You’ll learn modern, data-science-driven search techniques, such as
 

  
 

   

   	 Semantic search using dense vector embeddings from foundation models 
 

   	 Retrieval augmented generation (RAG) 
 

   	 Question answering and summarization combining search and large language models (LLMs) 
 

   	 Fine-tuning Transformer-based LLMs 
 

   	 Personalized search based on user signals and vector embeddings 
 

   	 Collecting user behavioral signals and building signals-boosting models 
 

   	 Semantic knowledge graphs for domain-specific learning 
 

   	 Multimodal search (hybrid queries on text, image, and other types) 
 

   	 Implementing generalizable machine-learned ranking models (learning to rank) 
 

   	 Building click models to automate machine-learned ranking 
 

   	 Vector search optimization techniques like ANN search, quantization, representation learning, and bi-encoders versus cross-encoders 
 

   	 Generative search, hybrid search, and the search frontier 
 

  
 

   

   Today’s search engines are expected to be smart, understanding the nuances of natural language queries as well as each user’s preferences and context. This book empowers you to build search engines that take advantage of user interactions and the hidden semantic relationships in your content to automatically deliver better, more relevant search experiences. You’ll even learn how to integrate LLMs and multimodal foundation models to massively accelerate the capabilities of your search technology.
 

  
 

   

   Who should read this book
 

  
 

   

   This book is for search engineers, software engineers, and data scientists who want to learn how to build cutting-edge search engines integrating the latest machine learning techniques to drive more domain-aware and intelligent search. The book also provides a thorough overview of AI-powered search for product managers and business leaders who may not be able to implement the techniques themselves, but who want to understand the possibilities and limitations of AI-powered search.
 

  
 

   

   Technical readers who want to get the most out of this book can follow along with the Python code examples. Familiarity with SQL (Structured Query Language) syntax is assumed, as we’ve chosen to implement many of the data aggregations in this standardized representation when possible. A basic understanding of how search engines (such as Elasticsearch, Apache Solr, or OpenSearch) or vector databases work is also helpful, but not required.
 

  
 

   

   How this book is organized: A road map
 

  
 

   

   The book has 4 sections that include 15 chapters. Part 1 introduces AI-powered search and modern search relevance: 
 

  
 

   

   	 Chapter 1 provides an overview of AI-powered search, including the core concepts and techniques that underpin the rest of the book. 
 

   	 Chapter 2 covers working with natural language, providing a foundational background on the structure of language and how it enables intelligence to be learned from data. 
 

   	 Chapter 3 covers the basics of search relevance, explaining matching and ranking techniques leveraging vector embeddings and keyword matching. 
 

   	 Chapter 4 introduces crowdsourced relevance, covering how to collect and process user interaction signals and providing a survey of reflected intelligence approaches that will be utilized in later chapters to automatically optimize search relevance algorithms. 
 

  
 

   

   Part 2 covers domain-specific intent, focusing on leveraging content and user interactions to optimize query understanding:
 

  
 

   

   	 Chapter 5 introduces knowledge graph learning, focusing both on extracting explicit knowledge graphs and implicit semantic knowledge graphs for nuanced query understanding and expansion. 
 

   	 Chapter 6 teaches query intent classification, disambiguation of different meanings of words and phrases, and how to leverage both content and user behavioral signals to learn domain-specific terminology, related terms, misspellings, and alternate forms of terms. 
 

   	 Chapter 7 ties everything you’ve learned together as you build a query pipeline to parse domain-specific intent from your users’ queries to perform semantic search. 
 

  
 

   

   Part 3 covers reflected intelligence, the process of automatically optimizing search relevance algorithms based on ongoing user interactions:
 

  
 

   

   	 Chapter 8 covers signals boosting models, popularized relevance models that automatically optimize ranking for your most important queries. 
 

   	 Chapter 9 covers personalized search, leveraging collaborative filtering and dense vector embeddings to deliver personalized relevance models for each user. 
 

   	 Chapter 10 introduces machine-learned ranking (also known as learning to rank), the process of training a ranking classifier, based on user relevance judgments, to act as a generalized relevance model. 
 

   	 Chapter 11 extends learning to rank by training click models on incoming user behavioral signals to generate implicit user relevance judgments to continuously retrain the ranking model. 
 

   	 Chapter 12 introduces active learning and A/B testing to overcome inherent bias in machine-learned ranking models. 
 

  
 

   

   Part 4 covers the search frontier, exploring the latest techniques and emerging paradigms in AI-powered search:
 

  
 

   

   	 Chapter 13 covers how Transformers and LLMs work and how dense vector search and approximate nearest neighbor (ANN) search on embeddings can be used and optimized to deliver efficient semantic search leveraging bi-encoders and cross-encoders. 
 

   	 Chapter 14 demonstrates fine-tuning an LLM for question answering and demonstrates how to implement a system for answering questions that extracts answers directly from search results. 
 

   	 Chapter 15 wraps up our journey by exploring the latest techniques and emerging paradigms in AI-powered search, including generative search, retrieval augmented generation (RAG), multimodal search leveraging foundation models, synthetic data generation, and results summarization. 
 

  
 

   

   Appendix A covers running the code examples, and appendix B covers supported search engines and vector databases, in case you want to swap in your preferred technology choice.
 

  
 

   

   In general, readers should read all of part 1 (especially chapters 1–3) to ensure the foundational concepts are well understood before moving on to other parts of the book. If you want to jump around after that, keep in mind the following dependencies between chapters:
 

  
 

   

   	 Chapter 1: no dependencies 
 

   	 Chapter 2: no dependencies 
 

   	 Chapter 3: builds on chapter 2 
 

   	 Chapter 4: builds on chapters 1, 2, 3 
 

   	 Chapter 5: builds on chapters 1, 2, 3 
 

   	 Chapter 6: builds on chapters 1, 2, 3, 4, 5 
 

   	 Chapter 7: builds on chapters 1, 2, 3, 4, 5, 6 
 

   	 Chapter 8: builds on chapters 1, 2, 3, 4 
 

   	 Chapter 9: builds on chapters 1, 2, 3, 4, 8 
 

   	 Chapter 10: builds on chapters 1, 2, 3 
 

   	 Chapter 11: builds on chapters 1, 2, 3, 4, 10 
 

   	 Chapter 12: builds on chapters 1, 2, 3, 4, 10, 11 
 

   	 Chapter 13: builds on chapters 1, 2, 3 
 

   	 Chapter 14: builds on chapters 1, 2, 3, 13 
 

   	 Chapter 15: builds on chapters 1, 2, 3, 4, 13, 14 
 

  
 

   

   We also highly recommend loading the Jupyter notebooks and following along so that you can get hands-on experience with the data and code examples in the book.
 

  
 

   

   About the code 
 

  
 

   

   While the techniques in this book are broadly applicable for use in most search engines and vector databases, we have chosen to standardize on the following key technologies for the code examples:
 

  
 

   

   	 Programming language—Python 
 

   	 Data processing framework—Spark (PySpark) 
 

   	 Delivery mechanism—Docker containers 
 

   	 Code setup and walk-throughs—Jupyter notebooks 
 

   	 Search engine/vector database—Apache Solr (with plug-and-play support for using many other popular search engines and vector databases) 
 

  
 

   

   Running the code examples
 

  
 

   

   All of the book’s code is written in Python and shipped in Jupyter notebooks running in Docker containers. This enables readers to run the code examples from the book locally in a web browser with no additional configuration required. The notebooks are all designed so you can run them as many times as you like and get the same results, enabling you to focus on reading and understanding each chapter while following along by executing the corresponding code in a fully preconfigured environment.
 

  
 

   

   See appendix A for instructions on how to run the Docker containers. The source code is all open sourced under the Apache 2.0 license and is available at https://github.com/treygrainger/ai-powered-search.
 

  
 

   

   Coding conventions
 

  
 

   

   Coding convention-wise, we have chosen to omit most boilerplate code from the book, since all the code is easily accessible for reference in the Jupyter notebooks. Python imports, for example, are usually omitted from code listings for brevity unless they add significant context to the code example, such as avoiding potential confusion between namespaces. 
 

  
 

   

   Likewise, you will find that very long code listings or outputs may be abbreviated with an ellipsis (...) and that some helper functions may have their code omitted to save space when the excluded sections are not important for understanding the point of the code example.
 

  
 

   

   In some cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to two spaces (versus the Python standard of four spaces) to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). When possible, however, we have used Python line continuations (\) instead to keep the codebase and book listings consistent.
 

  
 

   

   Code annotations accompany many of the listings, highlighting important concepts. Additionally, comments in the source code have usually been removed from the listings when the code is described in the text or accompanying code annotations.
 

  
 

   

   The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/ai-powered-search. The most current and up-to-date code repository is hosted on Github and is still being actively improved. Readers can always download a zip file of the latest code at this URL: https://github.com/treygrainger/ai-powered-search/archive/refs/heads/main.zip. 
 

  
 

   

   Support for other search engines and vector databases
 

  
 

   

   The book also includes plug-and-play support for many popular search engines and vector databases, enabling you to run the code examples in the book against your engine of choice. Most of the book uses a generic engine and collection abstraction to ensure the code and concepts are as broadly applicable as possible to the wide variety of matching and ranking technologies available today. Unfortunately, it isn’t practical to include duplicate code examples in the book targeting every available search engine technology, so in the few cases where search-engine-specific syntax is required in examples, we chose to standardize on the open source Apache Solr search engine. 
 

  
 

   

   We use Solr’s JSON query syntax for all query examples, making them highly readable and reasonably easy to conceptually map to other engines. If you would like to use a different search engine, see appendix B for instructions on how to toggle between different engines or implement your own.
 

  
 

   

   System requirements for running code examples
 

  
 

   

   To comfortably run the examples in the book, you will need a Mac, Linux, or Windows computer, and we recommend a minimum of 8 GB of RAM to be able to run through some of the more heavy-duty Spark jobs. The only dependency you will need to install is Docker, after which you can pull or build the Docker containers for the book. The Docker containers and datasets are quite large, so we recommend a minimum of 25 GB of available disk space to pull and process all examples in the book. You may need to modify your system settings for Docker to ensure you have these minimum memory and storage amounts allocated.
 

  
 

   

   liveBook discussion forum
 

  
 

   

   Purchase of AI-Powered Search includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/ai-powered-search/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.
 

  
 

   

   Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
 

  
 

   

   Other online resources
 

  
 

   

   Join our growing community! While this book serves as a timely and comprehensive guide to building AI-powered search, the world of AI-powered search continues to grow and evolve quickly. In order to stay up to date with the latest and greatest new AI-powered search techniques and technologies for years to come, we invite you to join our AI-Powered Search Community.
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   When you join the AI-Powered Search Community, you’ll be able to interact with thousands of Search and AI practitioners, including many of the top experts (who have already joined) from the fields of AI and Information Retrieval. You can join for free at https://aipoweredsearch.com/community.
 

  
 

   

   The AI-Powered Search website (https://aipoweredsearch.com) is centered around three key pillars:
 

  
 

   

   	 Providing the ultimate Guide to building AI-powered search (this book and follow-on updates) 
 

   	 Being the ultimate Hub for AI-powered search content (ongoing posts and content updates from across the industry) 
 

   	 Building the ultimate Community for AI-powered search 
 

  
 

   

   With the purchase of this book, you now have the Guide. The AI-Powered Search website serves as the Hub and as a continually updating appendix for this book, adding in new and emerging techniques that you’ll be ready for after reading this book. Our invitation is now for you to join the Community, where you can both share what you’re working on and interact with other readers, this book’s authors, and the world’s other leading AI-powered search experts.
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   The figure on the cover of AI-Powered Search is “Homme des Environ’s de Rome,” or “Man from the Vicinity of Rome,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand. 
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Part 1 Modern search relevance

 

  
 

   

   Search engines serve as the gateway to accessing most of human knowledge. Web search engines offer a queryable cache of the internet, allowing you to instantly find information on any topic across billions of websites. Generative AI (artificial intelligence) relies heavily on search engines to perform retrieval augmented generation (RAG), which is the process of using search to find relevant context to provide to AI models so that they generate accurate responses for incoming prompts.
 

  
 

   

   Search algorithms also power matching and ranking in most data-driven applications: from e-commerce, to email, to social media, to company intranets and private filesystems. Performing search well requires optimizing search relevance—the ability to find and rank the most relevant results for a given query.
 

  
 

   

   In this first part of the book, we will explore modern search relevance. Chapter 1 provides an introduction to AI-powered search, highlighting the major topics you’ll learn throughout the book. Chapter 2 is about working with natural language, providing background into key natural language processing (NLP) concepts needed to implement AI-powered search. Chapter 3 then dives into relevance ranking, covering the mechanics of how search engines and vector databases find and rank the best results for a given query. Finally, chapter 4 covers crowdsourced relevance, the process of using ongoing user interactions with your search results to learn models that improve relevance ranking.
 

  


 

   

   
1  Introducing AI-powered search

 

  
 

   

   This chapter covers 
 

    

    	What is AI-powered search?
 

    	Understanding user intent
 

    	How AI-powered search works
 

    	Content and behavioral intelligence
 

    	Architecting an AI-powered search engine
 

   
 

  
 

   

   The search box has become the default user interface for interacting with data in most modern applications. If you think of every major app or website you use daily, one of the first things you likely do on each visit is enter a query to find the content or actions most relevant to you.
 

  
 

   

   When you’re not explicitly searching, you may instead be consuming streams of content customized to your tastes and interests. Whether these be video recommendations, items for purchase, prioritized emails, news articles, or other content, you’re likely still looking at filtered or ranked results and given the option to either page through or explicitly filter the content with your own query.
 

  
 

   

   For most people, the phrase “search engine” brings up thoughts of a website like Google, Bing, or Baidu that enables queries based on a crawl of the entire public internet. However, the reality is that search is now available in nearly all our digital interactions every day across the numerous websites and applications we use.
 

  
 

   

   These search engines are far from static. We’re seeing commercial technologies like OpenAI’s ChatGPT, Anthropic’s Claude, and Google’s Gemini, as well as hundreds of other more open large language models (LLMs), like Meta’s Llama and Mistral’s Mixtral, with source code and model weights published for public use. These all serve as models of the world’s information that can generate interpretations and responses to arbitrary queries. These models are being actively integrated into major search engines and will continue to heavily influence the evolution of AI-powered search.
 

  
 

   

   While the expected response from a search box may have historically been to return “ten blue links”—a list of ranked documents for a user to investigate further to find information in response to their query—expectations for the intelligence level of search technologies have skyrocketed in recent years.
 

  
 

   

   Users today expect search technology to be 
 

  
 

   

   	 Domain-aware —Search technology should understand the entities, terminology, categories, and attributes of each specific use case and corpus of documents, not just use generic statistics on strings of text. 
 

   	 Contextual and personalized —It should be able to take into account user context (location, last search, profile, previous interactions, user recommendations, and user classification), query context (other keywords, similar searches), and domain context (inventory, business rules, domain-specific terminology) to better interpret user intent. 
 

   	 Conversational —It should be able to interact in natural language and guide users through a multi-step discovery process while learning and remembering relevant new information along the way. 
 

   	 Multi-modal —It should be able to resolve queries issued by text, voice, images, video, or other content types, and to use those queries to also search across the other content types. 
 

   	 Intelligent —It should be able to deliver predictive type-ahead and to understand what users mean (spelling correction, phrase and attribute detection, intent classification, conceptual searching) to deliver the right answers at the right time and to constantly get smarter. 
 

   	 Assistive —It should move beyond delivering just links to delivering answers, summaries, explanations, and available actions. 
 

  
 

   

   Many of these capabilities are enabled by LLMs, while others are driven by analyzing user behavior and building domain-specific personalization profiles, knowledge graphs, and ranking models.
 

  
 

   

   Search interfaces are also evolving to include more chatbot and conversational information discovery sessions as LLMs become more ubiquitous, but even today’s best models struggle with hallucinating (making up bad answers) and going off the rails unless tethered to an actual information source, such as a search engine index, to reliably find and return information from trusted sources. Retrieval augmented generation (RAG), the technique of using a search engine or vector database as a knowledge source to provide LLMs accurate and up-to-date information as context, is one of the most reliable techniques for improving the accuracy of generative AI models today. 
 

  
 

   

   The goal of AI-powered search is to use automated machine learning techniques to deliver on all these desired capabilities. While many organizations start with basic text search and spend many years trying to manually optimize synonym lists, business rules, ontologies, field weights, and countless other aspects of their search configuration, some are beginning to realize that most of this process can be automated.
 

  
 

   

   Throughout the book, you’ll learn to implement many key AI-powered search techniques, such as
 

  
 

   

   	 Using LLMs for query interpretation, embeddings, question answering, and results summarization 
 

   	 Fine-tuning LLMs for search and question answering 
 

   	 Collecting and using user signals for crowdsourced relevance 
 

   	 Signals-boosting models 
 

   	 Knowledge graph learning from both signals and content 
 

   	 Semantic knowledge graphs 
 

   	 Query intent classification and query-sense disambiguation 
 

   	 Personalized search and recommendations 
 

   	 Machine-learned ranking (learning to rank) 
 

   	 Click models for implicit relevance feedback 
 

   	 Avoiding bias in ranking models through active learning 
 

   	 Hybrid search and multimodal search across text, images, and mixed content types 
 

   	 Semantic search using both knowledge graphs and LLMs 
 

  
 

   

   This book is an example-driven guide through the most applicable machine learning algorithms and techniques commonly used to build intelligent search systems. We’ll not only walk through key concepts but will also provide reusable code examples to cover data collection and processing techniques, as well as the self-learning query interpretation and relevance strategies employed to deliver AI-powered search capabilities across today’s leading organizations—hopefully soon to include your own!
 

  
 

   

   
1.1 What is AI-powered search?
 

  
 

   

   Prior to November 2022, when OpenAI released ChatGPT to the world as a generalizable algorithm that non-technical users could talk with to solve many problems, the definition of “artificial intelligence” was a bit nebulous to the general public. It was understood to include things like self-driving cars, autonomous robots, and other futuristic technologies that made computers appear to be intelligent, but AI appeared to many to be more of a marketing buzzword than a well-defined term. A more concrete definition has existed in the software industry for years, however. 
 

  
 

   

   In the context of software development, the term artificial intelligence generally describes any computer program that can perform a task that previously required human intelligence. That program often includes machine learning techniques, allowing it to learn from data and improve its performance over time. That said, even rules-based systems that do not involve machine learning techniques but generate human-like feedback have also traditionally been considered “AI” systems. We’ll adopt this more general definition of AI in this book, though we’ll be primarily discussing the machine-learning aspects of AI.
 

  
 

   

   The term search (or search engine) is likewise considered by the general public to refer to web search engines like Google or Bing. In software development, the term is also used to describe any technology that enables users to query for and find information. Search typically involves at least two critical steps—finding documents that match a query (matching) and then ordering those documents by relevance to the query (ranking). Search can also include many preprocessing steps to better understand the query, and postprocessing steps to extract answers or summarize results from the matched documents. Search is often the primary way users find information, whether conducting general web search, product search, enterprise search, video/image search, or any of hundreds of other common use cases for finding and ranking information. It is also the primary way generative AI systems quickly find updated factual content to use as context for their prompts. 
 

  
 

   

    But what is AI-powered search, and how does it differ from traditional “search”? Many buzzwords such as “AI”, “machine learning”, “data science”, and “deep learning” are often thrown around interchangeably, and it’s important to understand the distinctions and how they overlap with AI-powered search. Figure 1.1 demonstrates the important relationships between these related areas.
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Figure 1.1 AI-powered search includes all the technologies and techniques at the intersection of the fields of search and AI. These overlap heavily with and use the fields of data science, machine learning, and deep learning. 


  
 

   

    Machine learning is a subset of AI that focuses on using data to train models to perform tasks based on insights learned from the training data. Deep learning is a further subset of machine learning that focuses on training artificial neural networks—algorithms that partially mimic the structure of the human brain—to learn to solve complex problems. In figure 1.1, notice that deep learning is a fully contained subset of machine learning, which is then a fully contained subset of artificial intelligence. Data science is a discipline that overlaps heavily with AI and search, but it also contains other distinct focus areas, so it is not completely a superset or subset of either.
 

  
 

   

   Our focus in this book is specifically on the intersection of search (also known as information retrieval) and AI, and in particular on the application of machine learning and deep learning techniques to improve the relevance of search results and to automate the process of tuning search relevance. Building AI-powered search involves many well-known machine learning techniques, but also many that are specific to information retrieval and the search domain. Figure 1.2 provides a categorized list of some key AI-powered search techniques we’ll cover in this book, broken down by whether they are deep learning techniques, other machine learning techniques not requiring deep learning, or other artificial intelligence techniques not requiring machine learning. 
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Figure 1.2 Specific AI-powered search techniques, broken down by whether they are deep learning techniques, other machine learning techniques not requiring deep learning, or other artificial intelligence techniques not requiring machine learning


  
 

   

   In the AI-only category, question-answering systems, virtual assistants, chatbots, and rules-based relevancy are all examples of AI techniques that are often built using machine learning, but which do not require machine learning. Many have built chatbots based entirely on rules to understand different user utterances and intents, and likewise question-answering systems can be built solely on rules and ontologies. That said, machine learning is often used to learn these kinds of rules and ontologies, so the lines between these categories are often blurred.
 

  
 

   

   When algorithms begin to use data to train models, we enter into the machine learning subcategory of AI-powered search. We use behavioral signals from search engine users (clicks, likes, add-to-carts, purchases, etc.) to build models that can learn to better rank documents. This can include signals-boosting models (top documents per query or category), collaborative filtering models that generate recommendations or personalize search results, and ranking classifiers (learning to rank) that learn from content and behavioral signals to better rank results. Machine learning is also used to learn knowledge graphs, which are graphs of entities, concepts, and their relationships that can be used to better understand the domain and to better interpret user queries. Semantic search (search on meaning, not just keywords) can be enabled by such knowledge graphs, along with traditional natural language processing approaches, query intent classification, document clustering, and other techniques driven by user queries, documents, and user behavioral signals.
 

  
 

   

   Finally, in the deep learning subcategory of AI-powered search, we see the use of neural networks to build models that can understand user queries and documents, as well as rank and summarize search results. Here, text is used to train LLMs to understand the meaning of words and phrases, to generate answers to questions, and to generate summaries of documents. LLMs are a type of foundation model that can interpret text content and are often trained on massive amounts of text from the internet. Foundation models can also be trained on other types of content beyond just text (images, audio, video) to enable multimodal search across those content types: text-to-image search, text-to-audio, image-to-video, and so on. LLMs are also used to generate embeddings, which are vector representations of content that represent the content’s meaning. Since a search engine’s primary job is to find and rank content similar to an incoming query, these embeddings enable a sophisticated ability to search on a query’s meaning and significantly improve query understanding and ranking. Further fine-tuning of foundation models on specific goals or domain-specific datasets will also make them significantly better at understanding the nuances of those domains or use cases. 
 

  
 

   

   Foundation models compress a large amount of human knowledge (often much of the internet), providing them with a broad understanding across most domains. This compression of knowledge, however, is a lossy compression—the original data is not stored, and specific facts and concepts can be easily confused. Foundation models are well known to hallucinate answers to questions, making them generally unreliable for answering factual questions. As a result, in addition to search engines using foundation models to improve query understanding and ranking, we’re also seeing them used heavily for RAG—where search serves as a knowledge source that foundation models can rely on for accurate and up-to-date information as context for generative AI tasks.
 

  
 

   

   We’ll cover each of these AI-powered search techniques in detail throughout this book. But first, let’s discuss the goals of AI-powered search and how it differs from traditional search. 
 

  
 

   

   
1.2 Understanding user intent
 

  
 

   

   To deliver AI-powered search, we’ll need a cohesive understanding of the dimensions involved in interpreting user intent and returning content matching that intent. Within the field of information retrieval, search engines and recommendation engines are the two most popular technologies employed to deliver the relevant content required to satisfy users’ information need. Many organizations think of search engines and recommendation engines as separate technologies solving different use cases. Commonly, different teams within the same organization—often with different skill sets—work independently on separate search engines and recommendation engines. In this section, we’ll discuss why separating search and recommendations into independent functions and teams can often lead to less-than-ideal outcomes. 
 

  
 

   

   
1.2.1 What is a search engine?
 

  
 

   

   A search engine is typically thought of as a technology for explicitly entering queries and receiving a response (figure 1.3). It is usually exposed to end users through a text box into which a user can enter keywords or questions. The results are often returned in a list, alongside additional filtering options that enable further refinement of the initial query. Using this mechanism, search is used as a tool for direct discovery of relevant content. When a user is finished with their search session, they can usually issue a new query and start with a blank slate, ignoring the context of previous searches. 
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Figure 1.3 A typical search experience, with a user entering a query and seeing search results with filtering options to support further refinement of the search results


  
 

   

   A search engine is one of the most cross-functional kinds of systems within the software engineering world. Most underlying search engine technology is designed to operate in a massively scalable way, serving large volumes of queries against millions, billions, or even trillions of documents, and delivering results in hundreds of milliseconds or less. In many cases, real-time processing and near-real-time searching on newly ingested data is required, and all of this must be parallelizable across numerous servers to scale out and meet such high-performance requirements.
 

  
 

   

   Implementing search engines also requires substantial work building search-specific data structures like an inverted index or ANN-based vector store, an understanding of linear algebra and vector similarity scoring, experience with text analysis and natural language processing, and knowledge of numerous search-specific types of data models and capabilities (spell checking, autosuggest, faceting, text highlighting, embeddings, and so on).
 

  
 

   

   For a search engine to fully interpret user intent, it’s critical that you combine a thorough understanding of your content, your users, and your domain. We’ll revisit why this is important after briefly discussing the related topic of recommendation engines. 
 

  
 

   

   
1.2.2 What do recommendation engines offer?
 

  
 

   

   Most people think of recommendation engines (or “recommendation systems”) as systems that don’t accept direct user input and instead deliver content based upon what the engine learns about them, calculating best matches for their interests and behaviors. These interests are inferred in a variety of ways through user preferences, user behavior, viewed content, and so on. This lack of direct user input for recommendation engines stands in direct contrast with search engines, which are traditionally thought of as technology that requires explicit user-driven queries. 
 

  
 

   

   If you routinely visit Amazon.com or any other major e-commerce website, you are no doubt familiar with recommendation engine sections stating that “based on your interest in this item, you may also like . . .” or otherwise just recommending a list of items based upon your collective browsing and purchase history, like the example in figure 1.4. These recommendations often drive significant revenue for companies, and they help customers discover relevant, personalized, and related content that often complements what they are searching for explicitly.
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Figure 1.4 Recommendations based upon users expressing interest in similar items


  
 

   

   Recommendation algorithms can roughly be divided into three categories:
 

  
 

   

   	 Content-based recommenders —These match based on attributes of items or users 
 

   	 Behavior-based recommenders —These match based upon the overlap of interactions from similar users with similar items 
 

   	 Multimodal recommenders —These perform hybrid matching based on both similar content-based attributes and overlapping behavior-based interactions. 
 

  
 

   

   
1.2.3 The personalization spectrum between search and recommendations
 

  
 

   

   The key difference between search engines and recommendation engines is that search engines are typically guided by users and match the users’ explicitly entered queries, whereas recommendation engines typically accept no direct user input and instead recommend—based upon already-known or inferred knowledge—what a user may want to see next. 
 

  
 

   

   But these two systems are really two sides of the same coin, and treating them as separate systems creates a false dichotomy. The goal, in both cases, is to understand what a user is looking for and to deliver relevant results to meet that user’s information need. A broad range of personalization capabilities lies within the spectrum between search and recommendation systems.
 

  
 

   

   Assuming you have both explicit queries and a user-specific personalization profile available when trying to find content for your end users, you can do any of the following:
 

  
 

   

   	 Traditional keyword search —Ignore the profile and only use explicit inputs. 
 

   	 Personalized search —Use the profile implicitly along with other explicit user input. 
 

   	 User-guided recommendations —Use the profile explicitly and provide the user with the ability to adjust it. 
 

   	 Traditional recommendations —Use the profile explicitly with no ability for a user to adjust it. 
 

  
 

   

   Figure 1.5 shows this personalization spectrum.
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Figure 1.5 The personalization spectrum, showing traditional keyword search and traditional recommendations as two ends of a larger continuum


  
 

   

   While the two ends of this personalization spectrum represent the extremes, they are also the two most common approaches. Unfortunately, one of the biggest mistakes we see in many organizations is teams built around the belief that search and recommendations are separate problems. This often leads to data science teams building complicated personalization and segmentation models only capable of recommendations and not search, and engineering teams building large-scale keyword matching engines that can’t easily take advantage of the robust models built by the recommendations teams.
 

  
 

   

   More often than not, the recommendation teams are staffed by data scientists with minimal information retrieval background, and the search teams are often staffed by engineers with minimal data science background. Due to Conway’s law (“organizations which design systems … are constrained to produce designs which are copies of the communication structures of these organizations”), this ultimately results in challenges solving problems along the personalization spectrum (particularly in the middle) that need the best from both teams. In this book, we focus on the shared techniques that make it possible for search to become smarter and for recommendations to become more flexible through a unified approach. AI-powered search platforms need to be able to continuously learn from both your users and your content and then enable your users to guide the results so they continue to improve. 
 

  
 

   

   
1.2.4 Semantic search and knowledge graphs
 

  
 

   

   We presented search and recommendations as a personalization spectrum in figure 1.5, with personalized search and user-guided recommendations in between, but there’s one more dimension that is critical for building a good AI-powered search system—a deep understanding of the given domain. It’s not enough to match on keywords and to recommend content based upon how users collectively interact with documents. The engine must also learn as much as it can about the domain. This includes 
 

  
 

   

   	 Learning all the important domain-specific phrases, synonyms, and related terms 
 

   	 Identifying entities in documents and queries 
 

   	 Generating a knowledge graph that relates those entities 
 

   	 Disambiguating the many nuanced meanings represented by domain-specific terminology 
 

   	 Being able to effectively parse, interpret, and conceptually match the nuanced intent of users within your domain. 
 

  
 

   

   Figure 1.6 shows an example of semantic parsing of a query, with the goal being to search for “things” (known entities) instead of “strings” (just text matching).
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Figure 1.6 Semantic parsing of a query, demonstrating an understanding of the entities (“things”) represented by query terms


  
 

   

   To make their searches smarter, many companies spend considerable money employing large teams to manually create dictionaries and knowledge graphs to identify the relationships between entities in their users’ queries. This book focuses on a more scalable approach: building an AI-powered search engine that can automatically learn these relationships continuously. We also dive into additional techniques for semantic search, including dense vector search on embeddings and generative search using LLMs. 
 

  
 

   

   
1.2.5 Understanding the dimensions of user intent
 

  
 

   

   We’ve discussed the important roles of traditional keyword search, recommendations, and the personalization spectrum in between. We also discussed the need for semantic search to provide domain-specific understanding of your content and your users’ queries. All of these are key pillars of a singular, larger goal: fully understanding user intent. Figure 1.7 demonstrates the interplay between each of these key pillars of user intent. 
 

  
 

   

   The top-left circle in figure 1.7 represents content understanding—the ability to find the right content based on keywords, language patterns, and known attribute matching. The top-right circle represents user understanding—the ability to understand each user’s specific preferences and use those to return more personalized results. Finally, the lower circle represents domain understanding—the ability to interpret words, phrases, concepts, entities, and nuanced interpretations and relationships between each of these within your own domain-specific context. 
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Figure 1.7 The dimensions of user intent: a combination of content understanding, user understanding, and domain understanding


  
 

   

   A query only in the content understanding circle represents traditional keyword search, enabling matching on keywords but without using any domain or user-specific context. A query only in the user understanding circle would be recommendations from collaborative filtering, with no ability for the user to override the inputs and no understanding of the domain or content of the underlying documents. A query only in the domain understanding circle might be a structured query on known tags, categories, or entities, or even a browse-like interface that allowed for exploration of a knowledge graph of these domain-specific entities and their relationships, but without any user-specific personalization or ability to find arbitrary terms, phrases, and content. 
 

  
 

   

   When traditional keyword search and recommendations overlap, we get personalized search or guided recommendations. When traditional keyword search and knowledge graphs overlap, we get semantic search: a smart, domain-specific search experience. Finally, when recommendations and knowledge graphs overlap, we get smarter domain-aware recommendations that match on crowdsourced user interactions across similar documents and also on a domain-specific understanding of the important attributes of those documents. 
 

  
 

   

   The holy grail for AI-powered search is to harness the intersection of all three categories: semantic search, personalized search, and domain-aware recommendations. That is to say, to truly understand user intent, we need all of the following:
 

  
 

   

   	 An expert understanding of the domain the user is searching 
 

   	 An expert understanding of the user and their preferences 
 

   	 An expert ability to match and rank arbitrary queries against any content 
 

  
 

   

   AI-powered search starts with the three pillars of user intent (content, domain, and user), and then employs intelligent algorithms to constantly learn and improve in each of these areas. This learning includes techniques like automatically learning ranking criteria, automatically learning user preferences, and automatically learning knowledge graphs and language models of the represented domain. At the end of the day, a balanced combination of these three approaches provides the key to optimal understanding of users and their query intent, which is the end goal of our AI-powered search system. 
 

  
 

   

   
1.3 How does AI-powered search work?
 

  
 

   

   We laid out our end goal of matching user intent through content understanding, user understanding, and domain understanding. With that background established, let’s wrap up this chapter with an overview of the actual components needed to deliver an AI-powered search platform. Search intelligence typically matures along a predictable progression iteratively over time, as shown in figure 1.8. Basic keyword search is a typical starting point for organizations. Once in production, they realize their search relevancy needs to be improved, and they start manually tuning field weights, boosts, text and language analysis, and introducing additional features and functions. 
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Figure 1.8 The typical search intelligence progression, from basic keyword search to a full self-learning search platform


  
 

   

   Eventually, they realize they need to inject domain understanding into their search capabilities, at which point organizations begin to invest in synonym lists, taxonomies, lists of known entities, and domain-specific business rules. While these all help, organizations eventually also discover that relevant search is very much dependent upon successfully interpreting user queries and understanding user intent, so they begin investing in techniques for query classification, semantic query parsing, knowledge graphs, personalization, and other attempts to correctly interpret user queries.
 

  
 

   

   Because these tasks yield improvements, this success often results in the creation of large teams investing significant time manually tuning lists and parameters, and eventually organizations may realize that it is possible (and more expedient) to automate as much of that process as possible through learning from user signals, user testing (A/B testing, offline relevancy simulations, and active learning), and building of machine-learned relevancy models. The end goal is to completely automate each of these steps along the search intelligence progression and enable the engine to be self-learning.
 

  
 

   

   
1.3.1 The core search foundation
 

  
 

   

   The first step in building a search platform is almost always to get traditional keyword search working (the “content understanding” part in figure 1.7). Teams often spend years tuning and improving this step, and a whole discipline called relevance engineering has arisen that has historically focused significant effort into understanding content; improving content for search; adjusting boosts, query parameters, and query functions; and otherwise trying to maximize the relevance of the traditional search experience. For a deep dive into this world of relevance engineering and tuning traditional keyword search relevance, we recommend the book Relevant Search by Doug Turnbull and John Berryman (Manning, 2016). 
 

  
 

   

   As relevance engineers become more sophisticated, their work often moves into the realms of user understanding and recommendations, as well as into domain-understanding and semantic search. The rise of large language models has made it easy in recent years to implement out-of-the-box semantic search, but getting to the next level in optimizing the relevance and matching requires much more sophisticated approaches, as you’ll learn throughout this book. Our focus in AI-Powered Search will be on automating the process of learning and optimizing search relevance so it operates as a continuous feedback loop. We essentially want to automate much of the relevance engineer’s job, relying on algorithms, where possible, to continually learn optimal matching and ranking strategies.
 

  
 

   

   So, what characteristics differentiate a well-tuned search engine from an AI-powered search engine? A well-tuned search engine is the foundation upon which AI-powered search is built, but AI-powered search goes far beyond that, continuously learning and improving through reflected intelligence. Reflected intelligence is the idea of using continual feedback loops of user input, content updates, and user interactions with content to continually learn and improve the quality of your search application. 
 

  
 

   

   
1.3.2 Reflected intelligence through feedback loops
 

  
 

   

   Feedback loops are critical to building an AI-powered search solution. Imagine if your entire education (elementary school through to your highest degree) had consisted of nothing more than you reading textbooks: no teachers to ask questions, no exams to test your knowledge and provide feedback, and no classmates or others with which to interact, study, or collaborate. You would have probably hit endless walls where you were unable to fully grasp certain concepts or even understand what you were reading, and you would have understood many ideas incorrectly and never had the opportunity to realize this or to adjust your assumptions. 
 

  
 

   

   Search engines often operate this same way. Smart engineers push data to the search engine and tune certain features and feature weights, but the engine just reads those configurations and acts upon them the same way every time for repeated user queries. Search engines are the perfect kind of system for interactive learning, however, when we introduce feedback loops.
 

  
 

   

   Figure 1.9 shows the typical flow of information through a search feedback loop. First, a user issues a query. This query executes a search, which returns results, such as a specific answer, a list of answers, or a list of links to pages, to an end user. Once presented with the list, the user then takes one or more actions. These actions usually start with clicks on documents, but those clicks can ultimately lead to adding an item to a shopping cart and purchasing it (e-commerce), giving the item a thumbs up or thumbs down (media consumption website), liking or commenting on the result (social media website), or any number of other context-specific actions.
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Figure 1.9 Reflected intelligence through feedback loops


  
 

   

   These actions can then be used to generate an improved relevance ranking model for future searches. Your search application can automatically adjust the ranking of future search results, delivering an improved search experience for the next user’s search. 
 

  
 

   

   
1.3.3 Signals boosting, collaborative filtering, and learning to rank
 

  
 

   

   The searches, clicks, likes, add to carts, purchases, comments, and other interactions with your search application are critical data that you need to capture. We collectively refer to these data points as signals. Signals provide a constant stream of feedback to your search application, recording every meaningful interaction with your end users. These digital moments can then be used by machine learning algorithms to generate models to power user understanding, content understanding, and domain understanding. 
 

  
 

   

   Figure 1.10 shows the data flow for the collection and processing of signals in a typical AI-powered search application. You can see signals being collected for each search, as well as resulting clicks and purchases. Unique signals can also be recorded for any other kind of user interaction (add-to-cart, facet click, bookmark, hover, or even page dwell time).
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Figure 1.10 Signal collection and processing data flow


  
 

   

   Signals are one of the two sources of data that power the intelligence engine of an AI-powered search application, with the other being content. Many AI-powered search algorithms incorporate signals feedback loops to build reflected intelligence models. Some of these key types of reflected intelligence algorithms include
 

  
 

   

   	 Popularized relevance—Signals-boosting algorithms create models that use aggregated signals to boost the rankings of the most important documents for your most popular queries.  
 

   	 Personalized relevance—Collaborative filtering algorithms create models using matrix factorization or similar techniques that use signals to generate recommendations and user profiles to personalize search results for each user.  
 

   	 Generalized relevance—Learning to rank algorithms train ranking classifiers to perform machine-learned ranking based on relevance judgments generated from user-signals-based click models. This process learns a set of features and ranking weights that can be applied generally to all queries—even ones that have not been previously seen.  
 

  
 

   

   These algorithms enable your search application to learn from user interactions and to automatically adjust rankings for future search results, delivering an improved search experience for the next users’ searches. 
 

  
 

   

   
1.3.4 Content and domain intelligence
 

  
 

   

   While signals provide a constant stream of usage and feedback data to your search application, your content is also a rich source of information that can be incorporated in your feedback loops. For example, if someone searches for a particular keyword, the other keywords and top categories in the documents returned serve as valuable data points. Those data points can be used to tag or categorize the query and can be shown to other end users (as facets, for example), leading to further interactions that generate signals from which the engine can learn. 
 

  
 

   

   The content of your documents forms a representative textual model of your domain. Entities, domain-specific terminology, and the sentences contained within your documents serve as a rich, semantic graph. That graph can be utilized to drive powerful conceptual and semantic search that better understands your domain. We’ll dive more deeply into understanding your content in chapter 2, and into semantic search capabilities using this rich semantic knowledge graph (SKG) in chapter 5. 
 

  
 

   

   In recent years, LLMs have revolutionized how search engines can interpret queries and responses. LLMs are deep neural networks trained on massive amounts of text data. They can recognize, translate, summarize, predict, and generate new data based on incoming prompts and any additional context provided. Often, LLMs are trained on text, receive a prompt as text, and return a response as text, though similar multimodal models can also be trained on images, audio, other data, or all the above. LLMs often contain billions of parameters within the neural network, and this number is likely to continue to grow in the future so long as model performance continues to improve with more parameters.
 

  
 

   

   Today’s most successful LLMs are based on the Transformer architecture, introduced by Google researchers in 2017, which applies the concept of “attention” to language learning (“Attention is All You Need”, Ashish Vaswani et al.). Massive amounts of textual data are fed into a neural network, and a representation of the words and their relationships within each context are modeled using unsupervised learning. Once the model is built, it’s able to interpret an incoming string of text, a prompt, as a context and to encode the context into embeddings, which are numerical vector representations of the meaning of the prompt. In addition to being able to encode prompts into embeddings, Transformers also contain a decoder layer, which can convert embeddings back into text. Transformers can be used to solve many kinds of problems, from similarity search on embeddings (text search, image search, etc.), to question answering, to classification, to summarization of content, and even to generation of new content (writing, code, poems, images, etc.). 
 

  
 

   

   Transformers are context-sensitive. An LLM tuned for question answering might respond to the prompt “What is the difference between a capital and capitol?” with the answer “A capital is a city or town that serves as the seat of government for a state or country. A capitol is a building in which a state legislature meets.” However, the same LLM may respond to the question “What is the difference between a capital and lowercase word?” with the following context-based answer: “The difference between a capital and lowercase word is that a capital letter is used at the beginning of a sentence or proper nouns, while a lowercase letter is used for all other letters in a word.”
 

  
 

   

   Many LLMs are open sourced, but for optimal output quality, LLMs benefit from being fine-tuned for the task at hand with domain-specific content and prompts. Fine-tuning is the act of taking a pretrained model, which already has a strong general understanding of language and general concepts, and “teaching” it about new content and tasks. The original pretrained models are often referred to as foundation models, as they form the foundation upon which the domain-specific fine-tuning will be applied. The process of fine-tuning usually takes a small fraction of the time necessary to train the original LLM. Some LLMs have been trained on so much data and such a wide variety of data (such as a comprehensive web crawl of the internet) that they can perform quite well without retraining, but retraining for the task at hand almost always improves performance. 
 

  
 

   

   
1.3.5 Generative AI and retrieval augmented generation
 

  
 

   

   Generative AI is accelerating at a rapid pace, and search engines both benefit from it and serve as a key component of generative AI systems. LLMs (and other foundation models) serve as reasoning engines, having enough knowledge of the world to interpret language and generally reason about most concepts, but without the ability to reliably recall factual information without the risk of hallucinating (making up false information). 
 

  
 

   

   As a result, search engines are used in retrieval augmented generation (RAG) pipelines as a knowledge source for LLMs, allowing relevant context to be retrieved and passed to the LLM to ensure it has up-to-date and accurate data from which to answer. This entire book is effectively about using AI to optimize the “retrieval” part of RAG, and we’ll cover the “generative” part in chapter 15. 
 

  
 

   

   While RAG makes search engines a critical component of generative AI systems, LLMs also serve as critical components of search engines. LLMs can be used to interpret queries, generate embeddings for vector search, generate summaries of search results, and even generate answers to questions directly from search results.
 

  
 

   

   The transition from traditional information retrieval to these new generative search capabilities is shown in figure 1.11. For decades, traditional search has returned a list of search results (“ten blue links”), showing the top-ranked documents most relevant for a query. For queries on entities and well-known topics, search engines often show precalculated info boxes with summary information or show predetermined answers to known questions. Search engines often also extract words, sentences, or paragraph snippets out of search results to answer questions instead of forcing users to open and read the search results to find the answer. This process is known as extractive question answering, and it is a more targeted form of search, since it additionally searches and ranks answers found within documents. 
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Figure 1.11 The transition from traditional information retrieval to generative search


  
 

   

   However, there’s a fine line between extracting answers from search results and synthesizing new content to return in the results, and this is where we transition into the realm of generative search. Results summarization is the process of rewriting search results into a more concise and readable format, often combining information from multiple sources and even providing citations for the sources within the summarized response. Abstractive question answering is the process of generating answers to questions by synthesizing information from one or more ranked search results into an answer to a user’s question. The difference between extractive question answering and abstractive question answering is that extractive question answering finds relevant content within documents to return as answers (“extracting it”), whereas abstractive question answering writes a synthesized response by interpreting results and generating an answer that may look different than what’s written in any of the documents. New content generation is also possible within a generative search experience, such as responding to queries with creative new prose, code, poems, images, or other content, based on the keywords or prompts being submitted by users. 
 

  
 

   

   In summary, generative AI and AI-powered search are tightly intertwined. Generative AI is a critical component of “AI-powered search” (powering answer generation and results summarization), and AI-powered search is a critical component of “search-powered AI” (RAG). Both heavily utilize LLMs and other foundation models, and both are critical components of intelligent and accurate AI systems. 
 

  
 

   

   
1.3.6 Curated vs. black-box AI
 

  
 

   

   Like LLMs, many modern AI techniques rely heavily on deep learning based on artificial neural networks. Unfortunately, it is often challenging for a human to understand the specific factors that go into any particular prediction or output from a deep learning model due to the internal complexity of the learned model. 
 

  
 

   

   This sometimes results in a “black-box AI” system, where the results may be correct or impressive, but they are not easy to debug or correct when the model makes an incorrect judgment. An entire field of explainable AI (sometimes called interpretable AI or transparent AI) has arisen out of a need to be able to understand, curate, and trust these models. 
 

  
 

   

   In this book, we’ll cover deep learning approaches to search, such as dense vector search on embeddings, question answering, synthetic training data generation, and results summarization using LLMs. We’ll mostly focus our efforts, however, on creating intelligence that can be expressed in human terms and then corrected and augmented by human intelligence. You can think of this as “AI-assisted human curation”, or as “human-assisted AI”, but either way, the overriding philosophy of this book is to use AI to automate the process of search intelligence while keeping the human in the loop with the ability to take control and augment or override the system.
 

  
 

   

   As a learning exercise, this approach also leads to a deeper, intuitive understanding of how search ranking and relevance work, and how you can integrate many different AI-driven approaches without forfeiting control of the system. 
 

  
 

   

   
1.3.7 Architecture for an AI-powered search engine
 

  
 

   

   The architecture for an AI-powered search engine often requires numerous building blocks to be assembled to form a smart end-to-end system. You start with a core search engine like Apache Solr, OpenSearch, or one of the other search engines or vector databases identified in appendix B. You then feed your searchable content into the engine, running various transformations to make it more useful. These index-time transformations might include changes like these:
 

  
 

   

   	 Interpreting the meaning of your documents into embeddings using LLMs 
 

   	 Classifying the document, adding the classification as a field 
 

   	 Normalizing field values 
 

   	 Extracting entities from text, adding entities in separate fields 
 

   	 Clustering content, adding clusters as a field 
 

   	 Detecting and annotating phrases 
 

   	 Pulling in additional data from a knowledge graph, external API, or other data source 
 

   	 Performing part of speech (POS) detection and other natural language processing steps  
 

   	 Extracting facts (such as RDF triples) 
 

   	 Applying other machine learning models or ETL rules to enrich the document 
 

  
 

   

   Once the data is in the engine, your goal is to make it available for searching. This requires query pipelines, which can interpret incoming queries; identify concepts, phrases, and entities; correct misspellings; expand the query to include related terms, synonyms, concepts, or embedding representations; and then rewrite the query so your core engine can find the most relevant results. Individual search documents may then be returned to the end user, summaries of results may be generated from language models, or answers may be explicitly extracted from the results.
 

  
 

   

   Much of this query intelligence requires a robust understanding of your domain, however. This requires running batch jobs on your content and user signals to learn patterns and derive domain-specific intelligence. What are the most common misspellings from your users, and what do they choose as the correct spelling among multiple candidates? When a user searches for specific queries, which documents should be boosted as the most popular? For unknown queries, what is the ideal ranking among all the attributes or features available for matching?
 

  
 

   

   We need access to most of these answers at query time (either precomputed or quickly computable) because we expect queries to return within milliseconds to seconds. This requires a job processing framework (we use Apache Spark in this book) and a workflow scheduling mechanism to keep the jobs running in sequence.
 

  
 

   

   You’ll also need a mechanism for collecting the constant stream of incoming user signals (capturing them on the frontend application and then storing them in your search engine or other backend datastore).
 

  
 

   

   The signals will then be used to generate all kinds of models—from signals boosting models that boost the most popular items for top queries, to learning to rank models that apply a generalizable ranking function to all queries, to personalization models that output user-specific recommendations and personalization preferences for each user or segment of users.
 

  
 

   

   AI-powered search is way more than just using the latest LLM to interpret queries. It’s about engineering an end-to-end system for continuous learning. Ultimately, you’ll end up with a system that receives constant streams of document changes and user signals, continually processes those streams to improve models, and then constantly adjusts future search results and measures the effect of changes in order to deliver more intelligent results. That is the key behind AI-powered search: implementing a process of continual learning and improvement based upon real user interactions, updating content patterns, and evolving models to optimally understand current user intent and to deliver an ever-improving search experience. 
 

  
 

   

   Summary
 

  
 

   

   	 Expectations for search sophistication are evolving with the rise of LLMs, with end users expecting search to now be domain-aware, contextual and personalized, conversational, multimodal, intelligent, and assistive. 
 

   	 Search and recommendations are the two extreme ends of a continuous personalization spectrum within information retrieval, and it’s important to consider the opportunities in between to optimize relevance. 
 

   	 Correctly interpreting user intent requires simultaneous understanding of your content, your user and their preferences, and the knowledge domain in which your platform operates. 
 

   	 Optimal search relevance lies at the intersection of personalized search (traditional keyword search plus collaborative recommendations), semantic search (traditional keyword search plus knowledge graphs), and domain-aware recommendations (collaborative recommendations plus knowledge graphs). 
 

   	 AI-powered search operates on and learns from two key types of data: content and user signals. 
 

   	 Search and generative AI go hand in hand. Generative search capabilities, such as RAG, are a critical component of modern generative AI systems (to prevent hallucinations); and generative AI capabilities, such as results summarization, are critical components of modern search engines (to return better answers). 
 

   	 Reflected intelligence—the use of feedback loops to continually collect signals, tune results, and measure improvements—is the engine that enables AI-powered search to learn and constantly improve. 
 

  


 

   

   
2  Working with natural language

 

  
 

   

   This chapter covers
 

    

    	The hidden structures in unstructured data
 

    	A search-centric philosophy of language 
 

    	Exploring distributional semantics and vector-based embeddings
 

    	Modeling domain-specific knowledge
 

    	Challenges with natural language and querys 
 

    	Applying natural language understanding techniques to both content and signals
 

   
 

  
 

   

   In the first chapter, we provided a high-level overview of what it means to build an AI-powered search system. Throughout the rest of the book, we’ll explore and demonstrate the numerous ways your search application can continuously learn from your content and your users’ behavioral signals to better understand your content, your users, and your domain, and to ultimately deliver users the answers they need. We will get much more hands-on in chapter 3, firing up a search server of your choice and a data processing layer (Apache Spark) and starting with the first of our Jupyter notebooks, which we’ll use throughout the book to walk through many step-by-step examples.
 

  
 

   

   Before we dive into those hands-on examples and specific implementations, however, it is important in this chapter that we first establish a shared mental model for the higher-level problems we’re trying to solve. Specifically, when it comes to intelligent search, we have to deal with many complexities and nuances in natural language—both in the content we’re searching and in our users’ search queries. We have to deal with keywords, entities, concepts, misspellings, synonyms, acronyms, initialisms, ambiguous terms, explicit and implied relationships between concepts, hierarchical relationships usually found in taxonomies, higher-level relationships usually found in ontologies, and specific instances of entity relationships usually found in comprehensive knowledge graphs.
 

  
 

   

   While it might be tempting to dive immediately into some specific problems, like how to automatically learn misspellings from content or how to discover synonyms from mining user search sessions, it will be more prudent to first establish a conceptual foundation that explains what kinds of problems we have to deal with in search and natural language understanding (NLU). Establishing that philosophical foundation will enable us to build better end-to-end solutions in our AI-powered search system, where all the parts work together in a cohesive and integrated way. This chapter will thus provide the philosophical underpinnings for how we tackle the problems of natural language understanding throughout this book and how we apply those solutions to make our search applications more intelligent. 
 

  
 

   

   We’ll begin by discussing some common misconceptions about the nature of free text and other unstructured data sources.
 

  
 

   

   
2.1 The myth of unstructured data
 

  
 

   

   The term “unstructured data” has been used for years to describe textual data, because it does not appear to be formatted in a way that can be readily interpreted and queried. The widely held idea that text, or any other data that doesn’t fit a predefined schema (“structure”), is actually “unstructured”, however, is a myth that we’ll spend time reconsidering throughout this section. 
 

  
 

   

   If you look up unstructured data in Wikipedia, it is defined as “information that either does not have a pre-defined data model or is not organized in a pre-defined manner”. The entry goes on to say that “unstructured information is typically text-heavy, but may contain data such as dates, numbers, and facts as well”.
 

  
 

   

   The phrase “unstructured data” is a poor term to describe textual content, however. In reality, the terms and phrases present in text encode an enormous amount of meaning, and the linguistic rules applied to the text to give it meaning serve as their own structure. Calling text unstructured is a bit like calling a song playing on the radio “arbitrary audio waves”. Even though every song has unique characteristics, most exhibit common attributes (tempo, melodies, harmonies, lyrics, and so on). Though these attributes may differ or be absent from song to song, they nevertheless fit common expectations that enable meaning to be conveyed by and extracted from each song. Textual information typically follows similar rules—sentence structure, grammar, punctuation, interaction between parts of speech, and so on. Figure 2.1 shows an example of text we’ll explore a bit more in the upcoming sections as we investigate this structure.
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Figure 2.1 Unstructured data. This text represents typical unstructured data you may find in a search engine.


  
 

   

   While text is the most commonly recognized type of unstructured data, there are several other kinds of unstructured data with similar characteristics, as we’ll see in the next section.
 

  
 

   

   
2.1.1 Types of unstructured data
 

  
 

   

   Free text content is considered the primary type of unstructured data, but search engines also commonly index many other kinds of data that similarly don’t fit neatly into a structured database. Common examples include images, audio, video, and event logs. Figure 2.2 expands on our text example from figure 2.1 and includes several other types of unstructured data, such as audio, images, and video. 
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Figure 2.2 Multiple types of unstructured data. In addition to the text from the last figure, we now see images, audio, and video, which are other forms of unstructured data.


  
 

   

   Audio is the most similar to text content, since it is often just another way to encode words and sentences. Of course, audio can include much more than just spoken words—it can include music and non-language sounds, and it can more effectively encode nuances such as emotion, tone of voice, and simultaneously overlapping communication.
 

  
 

   

   Images are another kind of unstructured data. Just as words form sentences and paragraphs to express ideas, images form grids of colors that, taken together, form pictures.
 

  
 

   

   Video, then, serves as yet another kind of unstructured data, as it is a combination of multiple images over time, as well as optional audio that coincides with the progression of images.
 

  
 

   

   When unstructured data is found mixed with structured data, we typically refer to this as semi-structured data. Log data is a great example of such semi-structured data. Often, log messages contain a structured event date, structured event types (such as warning versus error or search versus click), and then some kind of unstructured message or description in free text.
 

  
 

   

   Technically speaking, virtually any kind of file could be considered unstructured data, but we’ll primarily deal with the aforementioned types. Search engines are often tasked with handling each of these kinds of unstructured data, so we’ll discuss strategies for handling them throughout the book. 
 

  
 

   

   
2.1.2 Data types in traditional structured databases
 

  
 

   

   To better deal with our unstructured data, it may be useful to first contrast it with structured data in a SQL database. This will allow us to later draw parallels between how we can query unstructured data representations versus structured ones. 
 

  
 

   

   A record (row) in a SQL database is segmented into columns, which can each be of a particular data type. Some of these data types represent discrete values—values that come from an enumerated list, such as IDs, names, or textual attributes. Other columns may hold continuous values, such as date/time ranges, numbers, and other column types that represent ranges without a finite number of possible values.
 

  
 

   

   Generally speaking, when one wants to relate different rows together or to relate them to rows in other database tables, “joins” will be performed on the discrete values. Joins use a shared value (often an ID field) to link two or more records together to form a composite record. 
 

  
 

   

   For example, if someone had two tables of data, one representing employees and another representing companies, then there would likely be an id column on the companies table, and a corresponding company_id column on the employees table. The company_id field on the employees table is known as a foreign key, which is a value in one table that refers to an entity in another table, linking the records together based upon a shared identifier. Figure 2.3 demonstrates this, showing examples of discrete values, continuous values, and a join across tables using a foreign key. 
 

  
 

   

   This notion of joining different records together based upon known relationships (keys and foreign keys) is a powerful way to work with relational data across explicitly
 

  
 

    

   [image: figure] 

   
Figure 2.3 Structured data in a typical database. Discrete values represent identifiers and enumerated values, continuous values represent data that falls within ranges, and foreign keys exist when the same value exists across two tables and can thus be used as a shared attribute that creates a relationship between corresponding rows from each table.


  
 

   

   modeled tables, but as we’ll see in the next section, very similar techniques can also be applied to free-form unstructured data. 
 

  
 

   

   
2.1.3 Joins, fuzzy joins, and entity resolution in unstructured data
 

  
 

   

   Whereas structured data in a database is already in an easily queryable form, the reality is that unstructured data suffers less from a lack of structure, and more from having a large amount of information packed into a very flexible structure. In this section, we’ll walk through a concrete example that uncovers this hidden structure in unstructured data and demonstrates the ways it can similarly be used to find and join relationships between documents. 
 

  
 

   

   Foreign keys in unstructured data
 

  
 

   

   We’ve discussed how foreign keys can be used to join two rows together in a database, based on a shared identifier between the two records. In this section, we’ll show how the same objective can be achieved with text data. 
 

  
 

   

   For example, we can easily map the idea of foreign keys used in a SQL table to the unstructured information we explored in figure 2.2. Notice in figure 2.4 that two different sections of text both contain the word “Haystack”, which refers to a technology conference focused on search relevance.
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Figure 2.4 Foreign keys in unstructured data. In this example, the same term is being used to join across two related text documents.


  
 

   

   The first instance indicates a conference being spoken at, while the second block of text contains general information about the event. For the purposes of our example, let’s assume that every piece of information (block of text, image, video, and audio clip) is represented as a separate document in our search engine. There is functionally very little difference between having two rows in a database table that each contain a column with the value “Haystack”, and having separate documents in our search engine that each contain the value “Haystack”. In both cases, we can think of these documents as related by a foreign key. 
 

  
 

   

   Fuzzy foreign keys in unstructured data
 

  
 

   

   With unstructured data, however, we have much more power than with traditional structured data modeling. In figure 2.5, for example, notice that now two documents are linked and that they both refer to the lead author of this book—one using my full name of “Trey Grainger”, and one simply using my first name of “Trey”. 
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Figure 2.5 Fuzzy foreign keys. In this example, the same entity is being referenced using different terms, and a join is occurring based upon multiple phrases resolving to the same entity.


  
 

   

   This is an example of entity resolution, where there are two different representations of the entity, but they can still be resolved to the same meaning, and therefore can still be used to join information between two documents. You can think of this as a “fuzzy foreign key”, since it’s still a foreign key, but not in a strict token-matching sense, as it requires additional natural language processing and entity resolution techniques to resolve. 
 

  
 

   

   Once we’ve opened this door to advanced text processing for entity resolution, we can learn even more from our unstructured information. For example, not only do the names “Trey” and “Trey Grainger” in these documents refer to the same entity, but so do the words “he” and “his”.
 

  
 

   

   You’ll also notice that both an image of me (in the bottom-left corner, in case you have no idea what I look like) and a video containing a reference to my name are identified as related and joined back to the textual references. We’re relying on the hidden structure present in all of this unstructured data to understand the meaning, relate the documents together, and learn even more about each of the referenced entities in those documents. 
 

  
 

   

   Dealing with ambiguous terms
 

  
 

   

   So far, so good, but in real-world content it’s not always appropriate to assume that the same term in multiple places carries the same meaning, or even that our entity resolution always resolves entities correctly. This problem of the same spelling of words and phrases having multiple potential meanings is called polysemy, and dealing with these ambiguous terms can be a huge problem in search applications. 
 

  
 

   

   You may have noticed an odd image in the upper-right corner of the previous figures that seemed a bit out of place. This image is of a fairly terrifying man holding a machete. Apparently, if you go to Google and search for Trey Grainger, this image comes back. If you dig in further, you’ll see in figure 2.6 that there’s an x.com (formerly Twitter) user also named “Trey Grainger”, and this image is his profile picture.
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Figure 2.6 Polysemy. This image shows a Google search for Trey Grainger. Pictures of multiple different people are returned because those people’s names share the same spelling, making the phrase “Trey Grainger” ambiguous.


  
 

   

   The picture is apparently of Robert Shaw (who plays Quint in the 1975 movie Jaws), but it’s definitely not the kind of thing you want people to first come across when they search for you online!
 

  
 

   

   There are two key lessons to take away here. First, perhaps never Google yourself (you might be terrified at what you find!). Second, and on a more serious note, polysemy is a major problem in search and natural language understanding. It’s not safe to assume a term has a single meaning or even a consistent meaning across different contexts, so our AI-powered search engine needs to use context to differentiate these various meanings. 
 

  
 

   

   Unstructured data as a giant graph of relationships
 

  
 

   

   In the previous sections, we saw that unstructured data not only contains rich information (entities and their relationships) but also that it’s possible to relate different documents by joining them on shared entities, similar to how foreign keys work in traditional databases. Typical unstructured data contains so many of these relationships, however, that instead of thinking in terms of rows and columns, it may be more useful to think of the collection of data as a giant graph of relationships, as we’ll explore in this section. 
 

  
 

   

   At this point, it should be clear that there is much more structure hidden in unstructured data than most people appreciate. Unstructured information is really more like “hyper-structured” information—it is a graph that contains much more structure than typical “structured data”.
 

  
 

   

   Figure 2.7 demonstrates this giant graph of relationships that is present in even the small handful of documents in our example. You can see names, dates, events, locations, people, companies, and other entities, and you can infer relationships between them, using joins between the entities across documents. You’ll also notice that the images have been correctly disambiguated so that the machete guy is now disconnected from the graph. If all of this can be learned from just a few documents, imagine what can be learned from the thousands, millions, or billions of documents you have within your search engine.
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Figure 2.7 Giant graph of relationships. A rich graph of relationships emerges from even a small collection of related documents.


  
 

   

   Part of the value of an AI-powered search platform is being able to learn insights like this from your data. The question is, how do you use this enormous graph of semantic knowledge to drive this intelligence?
 

  
 

   

   One of the most powerful ways to use a graph from text data is through a large language model (LLM), such as a Transformer model, which was introduced in section 1.3.4. These models use deep learning to learn billions of parameters across massive datasets, such as crawls of most of the internet, to build a detailed understanding of language. This understanding includes both the meanings of words in different contexts and the linguistic and conceptual connections between words. These models internally represent the giant graph of relationships found in all the data they are trained on, which is usually more general than your dataset, so the models must be fine-tuned to learn any domain-specific relationships from your data. This need for fine-tuning can create some challenges due to LLMs being somewhat of a black box, as they otherwise don’t optimally represent your dataset, and the information they return could be erroneous. 
 

  
 

   

   Fortunately, the inherent structure of the inverted index in your search engine makes it very easy to traverse the large graph of relationships in your data without any additional explicit data modeling required. An inverted index is the primary data structure used for lexical search, mapping each keyword or term in the fields of your documents to lists (called postings lists) of all the documents containing those keywords. The inverted index enables very fast lookups of the set of documents containing any given term (or term sequences, when considering positional matching and Boolean logic implemented through set operations). With those lookups, it is possible to traverse between different term sequences using their shared documents to calculate a weighted edge in a graph. We will dive deep into how to harness this semantic knowledge graph hidden in your data in chapter 5. 
 

  
 

   

   
2.2 The structure of natural language
 

  
 

   

   In the last section, we discussed how text and unstructured data typically contain a giant graph of relationships, which can be derived by looking at shared terms between different records. If you’ve been building search engines for a while, you’re used to thinking about content in terms of “documents”, “fields”, and “terms” within those fields. When interpreting the semantic meaning of your content, however, there are a few more levels to consider. 
 

  
 

   

   Figure 2.8 walks through these additional levels of semantic meaning. At the most basic level, you have characters, which are single letters, numbers, or symbols, such as the letter “e” in the figure. One or more characters are then combined to form character sequences such as “e”, “en”, “eng”, … “engineer”, and “engineers”. Some character sequences form terms, which are completed words or tokens that carry an identifiable meaning, such as “engineer”, “engineers”, “engineering”, or “software”. One or more terms can then be combined into term sequences—usually called phrases when the terms are all sequential. These include things like “software engineer”, “software engineers”, and “senior software engineer”. For simplicity in this book, we also consider single terms to be “term sequences”, so any time we refer to “phrases”, this includes single terms. 
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Figure 2.8 Semantic data encoded into free text content. Characters form character sequences, which form terms, which form term sequences, which form fields, which form documents, which form a corpus.


  
 

   

    

    Term sequences vs. phrases
 

   
 

    

    You may be wondering what the difference is between a “term sequence” and a “phrase”. Quite simply, a phrase is a term sequence where all of the terms appear sequentially. For example, "chief executive officer" is both a phrase and a term sequence, whereas "chief officer"~2 (meaning “officer” within two positions, or edit distances, of “chief”) is only a term sequence, since it specifies a sequence of terms that is not necessarily sequential. In the vast majority of cases, you will only be dealing with sequential term sequences, so we’ll mostly use the word “phrase” for simplicity throughout the book when referring inclusively to both single terms and multi-term sequential sequences. To avoid confusion, note that the word “term” is separately used to refer to “a unique value in a field in the search engine”. As such, we will sometimes also refer to unsplit strings with multiple words in them in the search engine as “terms”, even though linguistically they are considered “phrases” or “term sequences”.
 

   
 

  
 

   

   Of course, we know that a number of term sequences together can form sentences, multiple sentences can form paragraphs, and paragraphs can then be rolled up into even larger groups of text. For a search engine, though, the next higher-level level of grouping we’ll typically focus on after term sequences is a field. A field in a search engine is a partitioned and labeled section of a document, usually for purposes of searching on or returning as an independent portion of the document. Fields containing text can be analyzed in any number of ways using a text analyzer, which typically includes techniques like splitting on white space and punctuation, lowercasing all terms so they are case-insensitive, stripping out noise (stop words and certain characters), stemming or lemmatization to reduce terms to a base form, and removing accents. If the text analysis process is unfamiliar to you, or you would like a refresher, we recommend checking out chapter 6 of Solr in Action by Trey Grainger and Timothy Potter (Manning, 2014). 
 

  
 

   

   One or more fields are then composed together into a document, and multiple documents form a corpus or collection of data. Whenever a query is executed against the search index, it filters the corpus into a document set, which is a subset of the corpus that specifically relates to the query in question. 
 

  
 

   

   Each of these linguistic levels—character sequences, terms, term sequences, fields, documents, document sets, and the corpus—provides unique insights into understanding your content and its unique meaning within your specific domain. 
 

  
 

   

   
2.3 Distributional semantics and embeddings
 

  
 

   

   Distributional semantics is a research area within the field of natural language processing that focuses on the semantic relationships between terms and phrases based on the distributional hypothesis. The distributional hypothesis is that words that occur in similar contexts tend to share similar meanings. It is summarized well by the popular quote, “You shall know a word by the company it keeps.”1
 

  
 

   

   When applying machine learning approaches to your text, these distributional semantics become increasingly important, and the search engine makes it incredibly easy to derive the context for most linguistic representations present in your corpus. For example, if someone wants to find all documents about C-level executives, they could issue a query like this:
 

  
 

   

    

    c?o
  

   
 

  
 

   

   This query would match “CEO”, “CMO”, “CFO”, or any other CXO-style title, as it is asking for any character sequence starting with “c” and ending with “o” with a single character in between.
 

  
 

   

   The same kind of freedom exists to query for arbitrarily complex term sequences:
 

  
 

   

    

    "VP Engineering"~2
  

   
 

  
 

   

   This query would match “VP Engineering”, “VP of Engineering”, “Engineering VP”, or even “VP of Software Engineering”, as it is asking to find “VP” and “Engineering” within two positions (edit distances) of each other.
 

  
 

   

   Of course, the nature of a search engine’s inverted index also makes it trivial to support arbitrary Boolean queries. For example, if someone searches for the term “Word”, but we want to ensure any matched documents also contain either the term “Microsoft” or “MS” somewhere in the document, we could issue the following query:
 

  
 

   

    

    (Microsoft OR MS) AND Word
  

   
 

  
 

   

   Search engines support arbitrarily complex combinations of queries for character sequences, terms, and term sequences throughout your corpus, returning document sets that serve as a unique context of content matching that query. For example, if you run a query for pizza, the documents returned are more likely going to be restaurants than car rental companies, and if you run a query for machine learning, you’re more likely to see jobs for data scientists or software engineers than for accountants, food service workers, or pharmacists. This means that you can infer a strong relationship between “machine learning” and “software engineering”, and a weak relationship between “machine learning” and “food service worker”. If you dig deeper, you’ll also be able to see what other terms and phrases most commonly co-occur within the machine learning document set relative to the rest of your corpus, and thereby better understand the meaning and usage of the phrase “machine learning”. We’ll dive into hands-on examples of using these relationships in chapter 5.
 

  
 

   

    

    Introducing vectors
 

   
 

    

    A basic understanding of vector operations will be important as you progress through this book. A vector is a list of values describing some attributes of an item. For example, if your items are houses, you may have a list of attributes like price, size, and number of bedrooms. If you have a home costing $100,000 with 1,000 square feet and 2 bedrooms, this could be represented as the vector [100000, 1000, 2]. 
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