

 inside front cover

 [image: IFC_F0102_Spilca2]

 [image:]

 Spring Start Here

 Learn what you need and learn it well

 Laurenţiu Spilcă

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Marina Michaels

 	

 Technical development editor:

 	

 Al Scherer

 	

 Review editor:

 	

 Mihaela Batinić

 	

 Production editor:

 	

 Andy Marinkovich

 	

 Copy editor:

 	

 Michele Mitchell

 	

 Proofreader:

 	

 Keri Hales

 	

 Technical proofreader:

 	

 Jean-François Morin

 	

 Typesetter:

 	

 Gordan Salinović

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617298691

contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Fundamentals

 1 Spring in the real world

 1.1 Why should we use frameworks?

 1.2 The Spring ecosystem

 Discovering Spring Core: The foundation of Spring

 Using Spring Data Access feature to implement the app’s persistence

 The Spring MVC capabilities for developing web apps

 The Spring testing feature

 Projects from the Spring ecosystem

 1.3 Spring in real-world scenarios

 Using Spring in the development of a backend app

 Using Spring in a test automation app

 Using Spring for the development of a desktop app

 Using Spring in mobile apps

 1.4 When not to use frameworks

 You need to have a small footprint

 Security needs dictate custom code

 Abundant existing customizations make a framework impractical

 You won’t benefit from switching to a framework

 1.5 What will you learn in this book

 2 The Spring context: Defining beans

 2.1 Creating a Maven project

 2.2 Adding new beans to the Spring context

 Using the @Bean annotation to add beans into the Spring context

 Using stereotype annotations to add beans to the Spring context

 Programmatically adding beans to the Spring context

 3 The Spring context: Wiring beans

 3.1 Implementing relationships among beans defined in the configuration file

 Wiring the beans using a direct method call between the @Bean methods

 Wiring the beans using the @Bean annotated method’s parameters

 3.2 Using the @Autowired annotation to inject beans

 Using @Autowired to inject the values through the class fields

 Using @Autowired to inject the values through the constructor

 Using dependency injection through the setter

 3.3 Dealing with circular dependencies

 3.4 Choosing from multiple beans in the Spring context

 4 The Spring context: Using abstractions

 4.1 Using interfaces to define contracts

 Using interfaces for decoupling implementations

 The requirement of the scenario

 Implementing the requirement without using a framework

 4.2 Using dependency injection with abstractions

 Deciding which objects should be part of the Spring context

 Choosing what to auto-wire from multiple implementations of an abstraction

 4.3 Focusing on object responsibilities with stereotype annotations

 5 The Spring context: Bean scopes and life cycle

 5.1 Using the singleton bean scope

 How singleton beans work

 Singleton beans in real-world scenarios

 Using eager and lazy instantiation

 5.2 Using the prototype bean scope

 How prototype beans work

 Prototype beans in real-world scenarios

 6 Using aspects with Spring AOP

 6.1 How aspects work in Spring

 6.2 Implementing aspects with Spring AOP

 Implementing a simple aspect

 Altering the intercepted method’s parameters and the returned value

 Intercepting annotated methods

 Other advice annotations you can use

 6.3 The aspect execution chain

 Part 2 Implementation

 7 Understanding Spring Boot and Spring MVC

 7.1 What is a web app?

 A general overview of a web app

 Different fashions of implementing a web app with Spring

 Using a servlet container in web app development

 7.2 The magic of Spring Boot

 Using a project initialization service to create a Spring Boot project

 Using dependency starters to simplify the dependency management

 Using autoconfiguration by convention based on dependencies

 7.3 Implementing a web app with Spring MVC

 8 Implementing web apps with Spring Boot and Spring MVC

 8.1 Implementing web apps with a dynamic view

 Getting data on the HTTP request

 Using request parameters to send data from client to server

 Using path variables to send data from client to server

 8.2 Using the GET and POST HTTP methods

 9 Using the Spring web scopes

 9.1 Using the request scope in a Spring web app

 9.2 Using the session scope in a Spring web app

 9.3 Using the application scope in a Spring web app

 10 Implementing REST services

 10.1 Using REST services to exchange data between apps

 10.2 Implementing a REST endpoint

 10.3 Managing the HTTP response

 Sending objects as a response body

 Setting the response status and headers

 Managing exceptions at the endpoint level

 10.4 Using a request body to get data from the client

 11 Consuming REST endpoints

 11.1 Calling REST endpoints using Spring Cloud OpenFeign

 11.2 Calling REST endpoints using RestTemplate

 11.3 Calling REST endpoints using WebClient

 12 Using data sources in Spring apps

 12.1 What a data source is

 12.2 Using JdbcTemplate to work with persisted data

 12.3 Customizing the configuration of the data source

 Defining the data source in the application properties file

 Using a custom DataSource bean

 13 Using transactions in Spring apps

 13.1 Transactions

 13.2 How transactions work in Spring

 13.3 Using transactions in Spring apps

 14 Implementing data persistence with Spring Data

 14.1 What Spring Data is

 14.2 How Spring Data works

 14.3 Using Spring Data JDBC

 15 Testing your Spring app

 15.1 Writing correctly implemented tests

 15.2 Implementing tests in Spring apps

 Implementing unit tests

 Implementing integration tests

 appendix A Architectural approaches

 appendix B Using XML for the context configuration

 appendix C A quick introduction to HTTP

 appendix D Using JSON formatting

 appendix E Installing MySQL and creating a database

 appendix F Recommended tools

 appendix G Recommended learning materials for further study

 index

 front matter

foreword

 Born as an alternative to EJBs in the early 2000s, the Spring framework quickly overtook its opponent with the simplicity of its programming model, the variety of its features, and its third-party library integrations. The Spring ecosystem grew over the years into the broadest and most mature development framework available in any programming language. Its main competitor quit the race when Oracle stopped the evolution of Java EE 8, and the community took over its maintenance via Jakarta EE.

 According to recent surveys (http://mng.bz/l9VB and http://mng.bz/B1Ar), Spring is the framework underlying more than half of the Java applications. This fact builds up an enormous codebase that makes it critical for any Java developer to learn Spring, as it’s inevitable you’ll encounter this technology in your career. I’ve been developing applications with Spring for 15 years, and today the teams that I train in hundreds of companies are almost all using Spring.

 The reality is that despite being so popular, it’s pretty hard to find quality introductory material. The reference documentation is thousands of pages long, describing all the subtleties and details that could be helpful in very specific scenarios, so it’s not an option for a newcomer. While online videos and tutorials typically fail to engage the student, very few books capture the essence of Spring framework, often spending long pages debating topics that prove to be irrelevant to the problems faced in modern application development. With this book, however, it’s very hard to find anything to remove; all the concepts covered are recurring topics in the development of any Spring application.

 The reader is gently brought to a level sufficient to become rapidly productive in a project based on the Spring framework. My own experience training thousands of employees showed me that the vast majority of developers working with Spring today don’t see the ideas as clearly as this book paints them. Furthermore, developers are unaware of the many pitfalls about which this book warns its readers. In my opinion, this book is a must-read for any developer starting on their first Spring project.

 The attention with which Laurenţiu anticipates the typical questions occurring in the reader’s mind proves his extensive experience teaching Spring in class. This teaching fluency allows the author to adopt a personal, warm tone that makes this book an effortless and pleasant read. The book has a clear, sharp structure, and I really loved how complex topics were progressively revealed and explained and reiterated in subsequent chapters.

 This book shines in that the reader is also introduced to fundamental concerns regarding a legacy project using the Spring framework. In an ecosystem dominated by Spring Boot, I find it very useful to sneak a peek under the hood. On the other end, the book also gently introduces the reader to last-generation technologies, like Feign clients and even reactive programming.

 I wish you a pleasant reading, and never hesitate to get your hands dirty with some code whenever you think things get complicated.

 —Victor Rentea

 Java champion, trainer, and consultant

preface

 Sharing knowledge and creating learning material is a hobby for me. In addition to being a software developer, I’m also a teacher. As a Java trainer since 2009, I’ve taught Java to thousands of developers with various levels of experience, from university students to experienced developers in large corporations. In the past few years, I’ve come to consider Spring a must-learn for beginners. Apps today are no longer implemented with vanilla languages—almost everything relies on frameworks. Since Spring is the most popular application framework in the Java world today, Spring is something a developer needs to learn in their first software development steps.

 In teaching Spring to beginners, I’ve realized that it is still treated as something you learn only when you already have some experience coding. When I started writing Spring Start Here, there were already plenty of tutorials, books, and articles on the topic, but my students continued to tell me they found those materials hard to understand. I realized the problem was not that the existing learning material wasn’t excellent, but that there was no dedicated study guide for an absolute beginner, so I decided to write a book that doesn’t consider Spring something you learn after you have some experience, but instead something you can learn with minimal foundational knowledge.

 Technology changes quickly. But it’s not only the technology changing. We also need to consider how we can improve the way we teach these technologies. Some years ago, one would start learning the language fundamentals and get employed as a developer without even knowing what a framework is. But today, these things are different. Learning all the details of a language up-front is no longer the way to quickly develop the skills you need to work in a software development team. Now, I recommend developers start with the fundamentals and, once they feel comfortable with the basics, start learning an application framework. Spring is, in my opinion, the best application framework to start learning. Understanding the Spring basics also opens doors to learning other technologies and changes the old, linear learning approach into something that looks more like a tree—and each branch of the tree is a new framework you learn in parallel with others.

 I designed Spring Start Here to be the book you want to start learning the Spring framework with. This book leads you step-by-step, providing you with all the essential theoretical knowledge, accompanied by examples that practically apply the discussed topics. I hope this book will bring significant value to you, the reader, and help you quickly boost your Spring knowledge and open doors for further learning.

acknowledgments

 This book wouldn’t be possible without the large number of smart, professional, and friendly people who helped me throughout its development process.

 First, a big thank you to my wife, Daniela, who was always there for me, and whose valuable opinions, continuous support, and encouragement were a huge help to me.

 I’d also like to express my gratitude and send special thanks to all the colleagues and friends who helped me from the very first table of contents and proposal with their valuable advice.

 A big thank you goes to the entire Manning team for their huge help in making this book a reality. I especially want to recognize Marina Michaels, Al Scherer, and Jean-François Morin for always being incredibly supportive and professional. Your advice has brought great value to this book.

 I’d like to thank my friend Ioana Göz for the drawings she created for the book. She turned my thoughts into the cartoons in the book.

 I also want to express my appreciation to all the reviewers who provided such useful feedback at every step. To Alain Lompo, Aleksandr Karpenko, Andrea Carlo Granata, Andrea Paciolla, Andres Damian Sacco, Andrew Oswald, Bobby Lin, Bonnie Malec, Christian Kreutzer-Beck, Daniel Carl, David Lisle Orpen, DeUndre’ Rushon, Harinath Kuntamukkala, Håvard Wall, Jérôme Baton, Jim Welch, João Miguel Pires Dias, Lucian Enache, Matt D., Matthew Greene, Mikael Byström, Mladen Knežic´, Nathan B. Crocker, Pierre-Michel Ansel, Rajesh Mohanan, Ricardo Di Pasquale, Sunita Chowdhury, Tan Wee, and Zoheb Ainapore, your input has made this a much better book.

 Finally, a special thank you to my friends, Maria Chiţu, Andreea Tudose, Florin Ciuculescu, and Daniela Ileana for advising me along the way.

about this book

 Since you’ve opened this book, I assume you’re a software developer in the Java ecosystem who found out it’s useful to learn Spring. This book teaches you the Spring foundations, assuming you know nothing in the first place about frameworks and, of course, about Spring.

 You’ll start with what a framework is and then gradually learn the basics of Spring with applied examples. You will not only learn to use the framework’s components and capabilities, but you’ll also learn the essentials of what happens behind the scenes in these capabilities. Knowing how the framework operates when you use a particular component helps you design better apps, and solve problems faster.

 When you finish this book, you’ll have learned the following skills, which are highly relevant in implementing apps:

 	

 Configuring and using the Spring context and dependency injection with Spring

 	

 Designing and using aspects

 	

 Implementing web apps

 	

 Implementing data exchange between apps

 	

 Persisting data

 	

 Testing implementations

 You’ll find this book is valuable for the following:

 	

 Working on an app using Spring for your job

 	

 Succeeding in a technical interview for a Java developer role

 	

 Obtaining your Spring certification

 Even if this book’s first purpose is not to prepare you for a Spring certification, I consider it a must-read before digging into details a certification exam typically requires.

Who should read this book

 This book is for developers who understand basic object-oriented programming and Java concepts and want to learn Spring or refresh their Spring fundamentals knowledge. You do not need to have previous experience with any framework, but you need to understand Java because this is the language we use throughout the book’s examples.

 Spring is one of the most encountered technologies in Java apps and will most likely be used even more in the future. For a Java developer, this makes Spring a must-know today. Learning what I teach you in this book will help you upskill, provide you with the Spring foundation knowledge and skills you need to successfully pass a Java interview, and work on an app using Spring technologies. The book also opens doors to further study Spring details that are more complex.

How this book is organized: A roadmap

 This book is divided into two parts that cover 15 chapters. We’ll start our discussion (in the first part of the book) with straightforward examples to show you how to make Spring aware of your application. We’ll then build examples that enable you to understand the core of any real-world Spring app. Once we finish with Spring Core basics, we’ll discuss Spring Data and Spring Boot basics.

 From chapter 2 to the end of this book, you’ll find that theoretical aspects are accompanied by projects in which we apply the notions we discuss. I explain the code in these examples snippet by snippet. My recommendation is you build these examples with me while reading. Then, you can compare your result with my solution.

 As presented in the following figure, I designed the book’s chapters to be read in the given order. In chapters 2 through 5, where we discuss the Spring context, you might find the examples predominantly theoretical. For anyone with little or no experience with Spring, it’s essential to start this way. Don’t worry! I present the foundations in the easiest possible way, and then our examples and discussions gradually become more sophisticated to reflect real-world, production-ready code.

 [image: FM_UN01_Spilca2]

 Figure 1 If you start with no (or very little) knowledge about Spring, the best way to read the book is to start with the first chapter and read everything in order.

 If you already understand the Spring context and Spring AOP well, you can skip part 1 and go directly to part 2, “Implementation” (chapters 7-15), as presented in the next figure.

 [image: FM_UN02_Spilca2]

 Figure 2 If you already understand the Spring framework’s foundation and know how to use the Spring context and design aspects, you can start with part 2, where we use Spring capabilities to implement apps mirroring scenarios you face in real-world systems.

 Once you finish reading this book, you’ll have learned plenty of skills to develop apps like a professional. You’ll learn to connect to databases using the most encountered techniques today, and you’ll learn how to make apps communicate with each other. We’ll end the book with teaching a critical topic: testing. I’ll season the text here and there by adding stories of my experience and notes with valuable pieces of advice.

 Remember that Spring is a vast universe, and one book won’t teach you everything about it. With this book, you get started with the framework and learn the fundamental skills of using Spring’s valuable components. Throughout the book, I refer, where appropriate, to other resources and books that detail the topics we discuss. I strongly recommend you read those additional resources and books to broaden your perspective on the discussed topics.

About the code

 The book provides about 70 projects, which we’ll work on in chapters 2 through 14. When working on a specific example, I mention the project’s name, which implements that example. My recommendation is to try to write your example from scratch and then use the provided project only to compare your solution with mine. This approach will help you better understand the concepts you’re learning.

 Each of the projects is built with Maven, making it easy to import into any IDE. I used IntelliJ IDEA to write the projects, but you can choose to run them in Eclipse, Netbeans, or any other tool of your choice. Appendix F gives you an overview of the recommended tools.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Spring Start Here includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/spring-start-here/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook .manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	

 [image: spilca]

 	

 Laurenţiu Spilcă is a dedicated development lead and trainer at Endava, where he leads the development of projects in the financial market with users in Europe, the US, and Asia. He has over 10 years of experience. Laurenţiu believes it’s important to not only deliver high-quality software, but also share knowledge and help others to upskill. These beliefs have driven him to design and teach courses related to Java technologies and deliver presentations and workshops. His Twitter handle is @laurspilca.

about the cover illustration

 The figure on the cover of Spring Start Here is captioned “Femme d’ajaccio isle de Corse,” or a woman from Ajaccio on the island of Corsica. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1 Fundamentals

 Any building stands on a foundation. A framework is no different in this regard. In part 1, you’ll learn to use the basic components that enable the Spring framework. These components are the Spring context and Spring aspects. Further in the book, you’ll discover that all Spring capabilities rely on these essential components.

1 Spring in the real world

 This chapter covers

 	
What a framework is

 	
When to use and when to avoid using frameworks

 	
What the Spring framework is

 	
Using Spring in real-world scenarios

 The Spring framework (shortly, Spring) is an application framework that is part of the Java ecosystem. An application framework is a set of common software functionalities that provides a foundation structure for developing an application. An application framework eases the effort of writing an application by taking out the effort of writing all the program code from scratch.

 We use Spring in the development of many kinds of applications nowadays, from large backend solutions to automation testing apps. According to many survey reports on Java technologies (like this one of JRebel from 2020: http:// mng.bz/N4V7; or this one from JAXEnter: http://mng.bz/DK9a), Spring is the most used Java framework today.

 Spring is popular, and developers have started to use it more often with other JVM languages than Java as well. In the last few years, we observed an impressive growth of developers using Spring with Kotlin (another appreciated language from the JVM family). In this book, we’ll focus on the foundations of Spring, and I’ll teach you essential skills for using Spring in real-world examples. To make the subject more comfortable for you and allow you to focus on Spring, we’ll use only Java examples. Throughout the book, we’ll discuss and apply, with examples, essential skills like connecting to a database, establishing communication between applications, and securing and testing an app.

 Before diving into more technical details in the next chapters, let’s talk about the Spring framework and where you’ll actually use it. Why is Spring so appreciated, and when should you even use it?

 In this chapter, we’ll focus on what a framework is, referring in particular to the Spring framework. In section 1.1, we discuss the advantages of using a framework. In section 1.2, we discuss the Spring ecosystem with the components you need to learn to get started with Spring. Then I’ll take you through possible usages of the Spring framework—in particular, real-world scenarios in section 1.3. In section 1.4, we’ll discuss when using frameworks might not be the right approach. You need to understand all these things about the Spring framework before trying to use it. Otherwise, you might try to use a hammer to dig your garden.

 Depending on your level, you might feel this chapter difficult. I might introduce some notions that you haven’t heard about, and this aspect might disturb you. But don’t worry; even if you don’t understand some of the things now, they will be clarified later in the book. Sometimes, throughout the book, I’ll refer to something said in earlier chapters. I use this approach because learning a framework like Spring doesn’t always offer us a linear learning path, and sometimes you need to wait until you get more pieces of the puzzle before you see the complete picture. But in the end, you’ll get a clear image, and you’ll get the valuable skills you need to develop apps like a professional.

1.1 Why should we use frameworks?

 In this section, we discuss frameworks. What are they? How did this concept appear, and why? To be motivated to use something, you need to know how that something brings you value. And that’s also the case with Spring. I’ll teach you these essential details by sharing the knowledge I gathered from my own experience and by studying and using various frameworks in real-world scenarios, including Spring.

 An application framework is a set of functionalities on top of which we build applications. The application framework provides us a broad set of tools and functionalities that you can use to build apps. You don’t need to use all the features the framework offers. Depending on the requirements of the app you make, you’ll choose the right parts of the framework to use.

 Here’s an analogy I like for application frameworks. Did you ever buy a piece of furniture from a DIY store like Ikea? Say you buy a wardrobe—you won’t get an assembled wardrobe, but the right components you need to build it and a manual on how to assemble your piece of furniture. Now imagine you ordered a wardrobe, but instead of getting only the right components you need, you get all the possible components you can use to assemble any piece of furniture: a table, a wardrobe, and so on. If you want a wardrobe, you have to find the right parts and assemble them. It’s like an application framework. The application framework offers you various pieces of software you need to build your app. You need to know what features to choose and how to assemble them to achieve the right result (figure 1.1).

 [image: CH01_F01_Spilca2]

 Figure 1.1 David ordered a wardrobe from the UAssemble store. But the store (framework) doesn’t deliver to David (the programmer) just the components (software capabilities) he needs to build his new wardrobe (the app). The store ships him all the possible parts he might need to build the wardrobe. It’s David’s (the programmer’s) choice on which components (software capabilities) are right and how to assemble them to get the right result (the application).

 The idea of a framework isn’t new. Throughout the history of software development, programmers observed they could reuse parts of code they’d written in multiple applications. Initially, when not so many applications were implemented, each application was unique and developed from scratch using a specific programming language. When the software development domain extended, and more and more applications started to be published on the market, it became easier to observe that many of these apps had similar requirements. Let’s name a few of them:

 	

 Logging error, warning, and info messages happen in every app.

 	

 Most applications use transactions to process data changes. Transactions represent an important mechanism that takes care of data consistency. We’ll discuss this subject in detail in chapter 13.

 	

 Most applications use protection mechanisms against the same common vulnerabilities.

 	

 Most applications use similar ways to communicate with each other.

 	

 Most applications use similar mechanisms to improve their performance, like caching or data compression.

 And the list continues. It turns out that the business logic code implemented in an app is significantly smaller than the wheels and belts that make the engine of the application (also often referred to as “the plumbing”).

 When I say “business logic code,” I refer to the code that implements the business requirements of the application. This code is what implements the user’s expectations in an application. For example, “clicking on a specific link will generate an invoice” is something users expect to happen. Some code of the application you develop implements this functionality, and this part of code is what developers call the business logic code. However, any app takes care of several more aspects: security, logging, data consistency, and so on (figure 1.2).

 [image: CH01_F02_Spilca2]

 Figure 1.2 The user’s perspective is similar to viewing an iceberg. Users mainly observe the results of the business logic code, but this is only a small part of what builds the app’s complete functionality. Like an iceberg that is mostly underwater and hidden from view, we don't see most of the code in an enterprise app because it's provided by dependencies.

 Moreover, the business logic code is what makes an application different from another from the functionality point of view. If you take two different apps, say a ridesharing system and a social networking app, they have different use cases.

 NOTE A use case represents the reason a person uses the app. For example, in a ridesharing app, a use case is “requesting a car.” For an app managing food delivery, a use case is “ordering a pizza.”

 You take different actions, but they both need data storing, data transfer, logging, security configurations, probably caching, and so on. Various applications can reuse these nonbusiness implementations. Is it then efficient to rewrite the same functionalities every time? Of course not:

 	

 You spare a lot of time and money by reusing something rather than developing it yourself.

 	

 An existing implementation that many apps already use has fewer chances to introduce bugs, as others have tested it.

 	

 You benefit from the advice of a community because you now have a lot of developers understanding the same functionality. If you had implemented your own code, only a few people would know it.

 A story of transition

 One of the first applications I worked on was a huge system developed in Java. This system was composed of multiple applications designed around an old-fashioned architecture server, all of them written from scratch using Java SE. The development of this application started with the language about 25 years ago. This was the main reason for its shape. And almost no one could have imagined how big it would become. At that time, more advanced concepts of system architectures didn’t exist, and things in general worked differently from the individual systems due to the slow internet connection.

 But time passed, and years later, the app was more like a big ball of mud. For valid reasons I won’t cover here, the team decided they had to go to a modern architecture. This change implied first cleaning up the code, and one of the main steps was using a framework. We decided to go with Spring. At that time, we had as an alternative Java EE (now named Jakarta EE), but most members of the team considered it’s better to go with Spring, which offered a lighter alternative that was easier to implement and that we also considered easier to maintain.

 The transition wasn’t an easy one. Together with a few colleagues, experts in their domain and knowledgeable about the application itself, we invested a lot of effort into this transformation.

 The result was amazing! We removed over 40% of the lines of code. This transition was the first moment I understood how significant the impact of using a framework could be.

 NOTE Choosing and using a framework is linked to the design and architecture of an application. You’ll find it useful to learn more about these subjects along with learning the Spring framework. In appendix A, you’ll find a discussion about software architectures with excellent resources if you’d like to go into details.

1.2 The Spring ecosystem

 In this section, we will discuss Spring and related projects like Spring Boot or Spring Data. You’ll learn all about these in this book, and the links among them. In real-world scenarios, it’s common to use different frameworks together, where each framework is designed to help you implement a specific part of the app faster.

 We refer to Spring as a framework, but it is much more complex. Spring is an ecosystem of frameworks. Usually, when developers refer to the Spring framework, they refer to a part of the software capabilities that include the following:

 	

 Spring Core—One of the fundamental parts of Spring that includes foundational capabilities. One of these features is the Spring context. As you’ll learn in detail in chapter 2, the Spring context is a fundamental capability of the Spring framework that enables Spring to manage instances of your app. Also, as part of Spring Core, you find the Spring aspects functionality. Aspects help Spring intercept and manipulate methods you define in your app. We discuss more details of the aspects in chapter 6. The Spring Expression Language (SpEL) is another capability you’ll find as part of Spring Core, which enables you to describe configurations for Spring using a specific language. All of these are new notions, and I don’t expect you to know them yet. But soon you’ll understand that Spring Core holds the mechanisms Spring uses to integrate into your app.

 	

 Spring model-view-controller (MVC)—The part of the Spring framework that enables you to develop web applications that serve HTTP requests. We’ll use Spring MVC starting in chapter 7.

 	

 Spring Data Access—Also one of the fundamental parts of Spring. It provides basic tools you can use to connect to SQL databases to implement the persistence layer of your app. We’ll use Spring Data Access starting in chapter 13.

 	

 Spring testing—The part holding the tools you need to write tests for your Spring application. We’ll discuss this subject in chapter 15.

 You can initially imagine the Spring framework as a solar system, where Spring Core represents the star in the middle, which holds all the framework together (figure 1.3).

 [image: CH01_F03_Spilca2]

 Figure 1.3 You can imagine the Spring framework as a solar system with the Spring Core in the center. The software capabilities are planets around Spring Core kept close to it by its gravitational field.

1.2.1 Discovering Spring Core: The foundation of Spring

 Spring Core is the part of the Spring framework that provides the foundational mechanisms to integrate into apps. Spring works based on the principle inversion of control (IoC). When using this principle, instead of allowing the app to control the execution, we give control to some other piece of software—in our case, the Spring framework. Through configurations, we instruct the framework on how to manage the code we write, which defines the logic of the app. Here’s where the “inversion” in IoC comes from: you don’t let the app control the execution by its own code and use dependencies. Instead, we allow the framework (the dependency) to control the app and its code (figure 1.4).

 [image: CH01_F04_Spilca2]

 Figure 1.4 Inversion of control. Instead of executing its own code, which makes use of several other dependencies, in case of an IoC scenario, the app execution is controlled by the dependency. The Spring framework controls an app during its execution. Therefore, it implements an IoC scenario of execution.

 NOTE In this context the term “controls” refers to actions like “creating an instance” or “calling a method.” A framework can create objects of the classes you define in your app. Based on the configurations that you write, Spring intercepts the method to augment it with various features. For example, Spring can intercept a specific method to log any error that might appear during the method’s execution.

 You will start learning Spring with Spring Core by discussing the Spring IoC functionality in chapters 2 through 5. The IoC container glues Spring components and components of your application to the framework together. Using the IoC container, to which you often refer as the Spring context, you make certain objects known to Spring, which enables the framework to use them in the way you configured.

 In chapter 6, we’ll continue our discussion with Spring aspect-oriented programming (AOP). Spring can control instances added to its IoC container, and one of the things it can do is intercept methods that represent the behavior of these instances. This capability is called aspecting the method. Spring AOP is one of the most common ways the framework interacts with what your app does. This trait makes Spring AOP part of the essentials as well. Part of the Spring Core, we also find resource management, internationalization (i18n), type conversion, and SpEL. We’ll encounter aspects of these features in examples throughout the book.

1.2.2 Using Spring Data Access feature to implement the app’s persistence

 For most applications, it’s critical to persist part of the data they process. Working with databases is a fundamental subject, and in Spring, it’s the Data Access module that you’ll use to take care of data persistence in many cases. The Spring Data Access includes using JDBC, integrating with object-relational mapping (ORM) frameworks like Hibernate (don’t worry if you don’t yet know what an ORM framework is or haven’t heard about Hibernate; we’ll discuss these aspects later in the book), and managing transactions. In chapters 12 through 14, we’ll cover everything needed to get you started with Spring Data Access.

1.2.3 The Spring MVC capabilities for developing web apps

 The most common applications developed with Spring are web apps, and within the Spring ecosystem, you’ll find a large set of tools that enables you to write web applications and web services in different fashions. You can use the Spring MVC to develop apps using a standard servlet fashion, which is common in a vast number of applications today. In chapter 7, we’ll go into more detail on using the Spring MVC.

1.2.4 The Spring testing feature

 The Spring testing module offers us a large set of tools that we’ll use to write unit and integration tests. There have been many pages written about the testing topic, but we’ll discuss everything that is essential to get you started with Spring testing in chapter 15. I’ll also refer to some valuable resources you need to read to get all the details of this topic. My rule of thumb is that you’re not a mature developer if you don’t understand testing, so this topic is one you should care about.

1.2.5 Projects from the Spring ecosystem

 The Spring ecosystem is so much more than just the capabilities discussed earlier in this section. It includes a big collection of other frameworks that integrate well and form a larger universe. Here we have projects like Spring Data, Spring Security, Spring Cloud, Spring Batch, Spring Boot, and so on. When you develop an app, you can use more of these projects together. For example, you can build an app using all of Spring Boot, Spring Security, and Spring Data. In the next few chapters, we’ll work on smaller projects that make use of various projects of the Spring ecosystem. When I say project, I refer to a part of the Spring ecosystem that is independently developed. Each of these projects has a separate team that works on extending its capabilities. Also, each project is separately described and has its own reference on the Spring official website: https://spring.io/projects.

 Out of this vast universe created by Spring, we’ll also refer to Spring Data and Spring Boot. These projects are often encountered in apps, so it’s important to get to know them from the beginning.

 Extending the persistence capabilities with Spring Data

 The Spring Data project implements a part of the Spring ecosystem that enables you to easily connect to databases and use the persistence layer with a minimum number of lines of code written. The project refers to both SQL and NoSQL technologies and creates a high-level layer, which simplifies the way you work with data persistence.

 NOTE We have Spring Data Access, which is a module of Spring Core, and we also have an independent project in the Spring ecosystem named Spring Data. Spring Data Access contains fundamental data access implementations like the transaction mechanism and JDBC tools. Spring Data enhances access to databases and offers a broader set of tools, which makes development more accessible and enables your app to connect to different kinds of data sources. We’ll discuss this subject in chapter 14.

 Spring Boot

 Spring Boot is a project part of the Spring ecosystem that introduces the concept of “convention over configuration.” The main idea of this concept is that instead of setting up all the configurations of a framework yourself, Spring Boot offers you a default configuration that you can customize as needed. The result, in general, is that you write less code because you follow known conventions and your app differs from others in few or small ways. So instead of writing all the configurations for each and every app, it’s more efficient to start with a default configuration and only change what’s different from the convention. We’ll discuss more about Spring Boot starting in chapter 7.

 The Spring ecosystem is vast and contains many projects. Some of them you encounter more often than others, and some you may not use at all if you’re building an application without a particular need. In this book, we refer only to the projects that are essential for you to get started: Spring Core, Spring Data, and Spring Boot. You can find a full list of projects that are part of the Spring ecosystem on the official Spring website: https://spring.io/projects/.

 Alternatives for using Spring

 We can’t really discuss alternatives to Spring because someone could misunderstand them as alternatives to the entire ecosystem. But for many of the individual components and projects that create the Spring ecosystem, you can find other options like other open source or commercial frameworks or libraries.

 For example, let’s take the Spring IoC container. Years ago, the Java EE specification was a solution very much appreciated by the developers. With a slightly different philosophy, Java EE (which in 2017 was open sourced and remade in Jakarta EE, https://jakarta.ee/) offered specifications like Context and Dependency Injection (CDI) or Enterprise Java Beans (EJB). You could use CDI or EJB to manage a context of object instances and implement aspects (named “interceptors” in the EE terminology). Also, throughout history, Google Guice (https://github.com/google/guice) was an appreciated framework for the management of object instances in a container.

 For some of the projects taken individually, you could find one or more alternatives. For example, you could choose to use Apache Shiro (https://shiro.apache.org/) instead of Spring Security. Or you could decide to implement your web app using the Play framework (https://www.playframework.com/) instead of Spring MVC and Spring-related technologies.

 A more recent project that looks promising is Red Hat Quarkus. Quarkus is designed for cloud native implementations and becomes more and more mature with rapid steps. I wouldn’t be surprised to see it as one of the lead projects in developing enterprise apps in the Java ecosystem in the future (https://quarkus.io/).

 My advice for you is to always take into consideration your alternatives. In software development, you need to be open-minded and never trust one solution as being “the one.” You’ll always find scenarios in which a specific technology works better than another.

 1.3 Spring in real-world scenarios

 Now that you have an overview of Spring, you’re aware of when and why you should use a framework. In this section, I’ll give you some application scenarios in which using the Spring framework might be an excellent fit. Too often, I’ve seen developers only refer to backend applications for using a framework like Spring. I’ve even seen a trend of restricting, even more, the scenario to backend web applications. While it’s true that in plenty of cases we see Spring used in this way, it’s important to remember that the framework isn’t limited to this scenario. I’ve seen teams successfully using Spring in different kinds of applications, such as the development of an automation testing app or even in standalone desktop scenarios.

 I’ll further describe to you some common real-world scenarios in which I’ve seen Spring used successfully. These are not the only possible scenarios, and Spring might not work all the time in these cases. Remember what we discussed in section 1.2: a framework is not always a good choice. But these are common cases in which generally Spring is a good fit:

 	

 The development of a backend app

 	

 The development of an automation testing framework

 	

 The development of a desktop app

 	

 The development of a mobile app

1.3.1 Using Spring in the development of a backend app

 A backend application is the part of a system that executes on the server side and has the responsibility of managing data and serving client applications’ requests. The users access functionalities by using the client apps directly. Further, the client apps make requests to the backend app to work with the users’ data. The backend app might use databases to store data or communicate with other backend apps in different fashions.

 You can imagine, in a real-world scenario, that the app would be the backend application managing the transactions in your bank accounts. Users may access their accounts and manage them via a web application (online banking) or a mobile app. Both the mobile apps and the web apps represent clients for the backend application. To manage users’ transactions, the backend application needs to communicate with other backend solutions, and part of the data it manages needs to be persisted in a database. In figure 1.5, you can visualize the architecture of such a system.

 [image: CH01_F05_Spilca2]

 Figure 1.5 A backend app interacts in several ways with other apps and uses databases to manage data. Usually, a backend app is complex and may require the use of various technologies. Frameworks simplify the implementation by providing tools you can use to implement the backend solution faster.

 NOTE Don’t worry if you don’t understand all the details of figure 1.5. I don’t expect you to know what a message broker is and not even how to establish the data exchange among the components. What I want you to see is that such a system can become complex in the real world and then understand that projects from the Spring ecosystem were built to help you eliminate this complexity as much as possible.

 Spring offers an excellent set of tools for implementing backend applications. It makes your life easier with the different functionalities you generally implement in a backend solution, from integration with other apps to persistence in various database technologies. It’s no wonder developers often use Spring for such applications. The framework basically offers you everything you need in such implementations and is an excellent fit for any kind of architectural style. Figure 1.6 indicates the possibilities of using Spring for a backend app.

 [image: CH01_F06_Spilca2]

 Figure 1.6 The possibilities of using Spring in a backend application are endless, from exposing functionalities that other applications can call to managing the database access, and from securing the application to managing integration though third-party message brokers.

1.3.2 Using Spring in a automation test app

 Nowadays, we often use automation testing for end-to-end testing of systems we implement. Automation testing refers to implementing software that development teams use to make sure an application behaves as expected. A development team can schedule the automation testing implementation to frequently test the app and notify the developers if something is wrong. Having such functionality gives developers confidence because they know they’ll be notified if they break anything in the existing capabilities of the app while developing new features.

 While with small systems you can do the testing manually, it’s always a good idea to automate the test cases. For more complex systems, manually testing all the flows isn’t even an option. Because the flows are so numerous, it’d require a massive number of hours and too much energy to cover it completely.

 It turns out that the most efficient solution is to have a separate team implement an app that has the responsibility of validating all the flows of the tested system. While developers add new functionalities to the system, this testing app is also enhanced to cover what’s new, and the teams use it to validate that everything still works as desired. The developers eventually use an integration tool and schedule the app to run regularly to get feedback as soon as possible for their changes (figure 1.7).

 [image: CH01_F07_Spilca2]

 Figure 1.7 The team deploys the testing app in a test environment. A continuous integration tool like Jenkins executes the app regularly and sends feedback to the team. This way, the team is always aware of the system’s status, and they know if they break something during development.

 Such an application might become as complex as a backend app. In order to validate the flows, the app needs to communicate with the components of the system and even connect to databases. Sometimes the app mocks external dependencies to simulate different execution scenarios. For writing the test scenarios, developers use frameworks like Selenium, Cucumber, Gauge, and others. But, together with these frameworks, the app could still benefit in several ways from Spring’s tools. For example, the app could manage the object instances to make the code more maintainable using the Spring IoC container. It could use Spring Data to connect to the databases where it needs to validate the data. It could send messages to queues or topics of a broker system to simulate specific scenarios or simply use Spring to call some REST endpoints (figure 1.8). (Remember, it’s okay if this looks too advanced; meaning will be clarified as you progress through the book).

 [image: CH01_F08_Spilca2]

 Figure 1.8 A testing app might need to connect to databases or communicate with other systems or the tested system. The developers can use components of the Spring ecosystem to simplify the implementations of these functionalities.

1.3.3 Using Spring for the development of a desktop app

 Today, desktop applications are not that frequently developed, as web or mobile apps have taken the role of interacting with the user. However, there’s still a small number of desktop applications, and components of the Spring ecosystem could be a good choice in the development of their features. A desktop app could successfully use the Spring IoC container to manage the object instances. This way, the app’s implementation is cleaner and improves its maintainability. Additionally, the app could potentially use Spring’s tools to implement different features, for example to communicate with a backend or other components (calling web services or using other techniques for remote calls) or implement a caching solution.

1.3.4 Using Spring in mobile apps

 With its Spring for Android project (https://spring.io/projects/spring-android), the Spring community tries to help the development of mobile applications. Even though you’ll probably rarely encounter this situation, it’s worth mentioning that you can use Spring’s tools to develop Android apps. This Spring project provides a REST client for Android and authentication support for accessing secured APIs.

1.4 When not to use frameworks

 In this section, we discuss why you should sometimes avoid using frameworks. It’s essential you know when to use a framework and when to avoid using them. Sometimes, using a tool that’s too much for the job might consume more energy and also obtain a worse result. Imagine using a chainsaw to cut bread. While you could try to and even achieve a final result, it’d be more difficult and energy-consuming than using a regular knife (and you may end up with nothing but breadcrumbs instead of sliced bread). We’ll discuss a few scenarios in which using a framework isn’t a great idea, and then I’ll tell you a story about a team I was part of that failed in the implementation of an app because of using a framework.

 It turns out that, like everything else in software development, you shouldn’t apply a framework in all cases. You’ll find situations in which a framework is not a good fit—or maybe a framework is a good fit, but not the Spring framework. In which of the following scenarios should you consider not using a framework?

 	

 You need to implement a particular functionality with a footprint as small as possible. By footprint, I mean the storage memory occupied by the app’s files.

 	

 Specific security requirements force you to implement only custom code in your app without making use of any open source framework.

 	

 You’d have to make so many customizations over the framework that you’d write more code than if you’d simply not used it at all.

 	

 You already have a functional app, and by changing it to use a framework you don’t gain any benefit.

 Let’s discuss these points in more detail.

1.4.1 You need to have a small footprint

 For point one, I refer to situations in which you need to make your application small. In today’s systems, we find more and more cases in which the services are delivered in containers. You’ve likely heard about containers, such as Docker, Kubernetes, or other terms related to this subject (if not, again, that’s okay).

 Containers in their entirety is a topic beyond the scope of this book, so for now the only thing I need you to know is that when you use such a deployment fashion, you want your application to be as small as possible. A container is like a box in which your application lives. One crucial principle regarding app deployment in containers is that the containers should be easily disposable: they can be destroyed and recreated as fast as possible. The size of the app (footprint) matters a lot here. You can save seconds from the app initialization by making it smaller. That doesn’t mean you won’t use frameworks for all the apps deployed in containers.

 But for some apps, which are usually also quite small, it makes more sense to improve their initialization and make their footprint smaller rather than adding dependencies to different frameworks. Such a case is a kind of application called server-less function. These server-less functions are tiny applications deployed in containers. Because you don’t have too much access to the way they’re deployed, it looks like they execute without a server (hence their name). These apps need to be small, and that’s why, for this specific case of apps, you’ll want to avoid adding a framework as much as possible. Because of its size, it’s also possible that you won’t need a framework anyway.

1.4.2 Security needs dictate custom code

 I said in point two that in specific situations, apps could not use frameworks because of security requirements. This scenario usually happens with apps in the field of defense or governmental organizations. Again, it doesn’t mean all the apps used in governmental organizations are prohibited from using frameworks, but for some, restrictions are applied. You may wonder why. Well, say an open source framework like Spring is used. If someone finds a specific vulnerability, it will become known, and a hacker could use this knowledge to exploit it. Sometimes, stakeholders of such apps want to make sure the chances of someone hacking into their system is as close to zero as possible. This could lead to even rebuilding a functionality instead of using it from a third-party source.

 NOTE Wait! Earlier I said that it’s more secure to use an open source framework because if a vulnerability exists, someone will likely discover it. Well, if you invest enough time and money, you probably can achieve this yourself as well. In general, it’s cheaper to use a framework, of course. And if you don’t want to be extra cautious, it makes more sense to use a framework. But in some projects, the stakeholders really want to make sure no information becomes public.

1.4.3 Abundant existing customizations make a framework impractical

 Another case (point three) in which you might want to avoid using a framework is when you’d have to customize its components so much that you end up writing more code than if it hadn’t been used. As I specified in section 1.1, a framework provides you parts that you assemble with your business code to obtain an app. These components, provided by the framework, don’t fit perfectly, and you need to customize them in different ways. It’s perfectly normal to customize the framework’s components and the style in which they assemble than if you’d developed the functionality from scratch. If you find yourself in such a situation, you have probably chosen the wrong framework (search for alternatives) or you shouldn’t use a framework at all.

1.4.4 You won’t benefit from switching to a framework

 In point four, I mentioned that a potential mistake could be trying to use a framework to replace something that already exists and is working in an app. Sometimes we are tempted to replace an existing architecture with something new. A new framework appears, and it’s popular, and everyone uses it, so why shouldn’t we change our app as well to use this framework? You can, but you need to attentively analyze what you want to achieve by changing something that works. In some cases, like my story from section 1.1, it could be helpful to change your app and make it rely on a specific framework. As long as this change brings a benefit, do it! A reason could be that you want to make the app more maintainable, more performant, or more secure. But if this change doesn’t bring you a benefit, and sometimes it might even bring incertitude, then, in the end, you might discover you invested the time and money for a worse result. Let me tell you a story from my own experience.

1.5 What will you learn in this book

 Since you opened this book, I assume you’re probably a software developer in the Java ecosystem who found out it’s useful to learn Spring. The purpose of this book is to teach you the foundations of Spring, assuming you know nothing at all about frameworks and, of course, about Spring. When I say Spring, I refer to the Spring ecosystem, not just the core part of the framework.

 When you finish the book, you will have learned how to do the following:

 	

 Use the Spring context and implement aspects around objects managed by the framework.

 	

 Implement the mechanism of a Spring app to connect to a database and work with the persisted data.

 	

 Establish data exchange between apps using REST APIs implemented with Spring.

 	

 Build basic apps that use the convention-over-configuration approach.

 	

 Use best practices in the standard class design of a Spring application.

 	

 Properly test your Spring implementations.

 An avoidable mistake

 Using frameworks isn’t always the best choice, and I had to learn that the hard way. Years earlier, we were working on the backend of a web application. Times influence many things, including software architectures. The app was using JDBC to directly connect to an Oracle database. The code was quite ugly. Everywhere the app needed to execute a query on the database it opened a statement and then sent a query that was sometimes written on multiple rows. You might be young enough not to have encountered JDBC direct usage in apps, but trust me, it’s a long and ugly code.

 At that time, some frameworks using another methodology to work with the database were becoming more and more popular. I remember when I first encountered Hibernate. This is an ORM framework, which allows you to treat the tables and their relationships in a database as objects and relationships among objects. When used correctly, it enables you to write less code and more intuitive functionality. When misused, it may slow down your app, make the code less intuitive, and even introduce bugs.

 The application we were developing needed a change. We knew we could improve that ugly JDBC code. In my mind, we could at least minimize the number of lines. This change would have brought great benefits to maintainability. Together with other developers, we suggested using a tool provided by Spring called JdbcTemplate (you’ll learn this tool in chapter 12). But others strongly pushed the decision to use Hibernate. It was quite popular, so why not to use it? (Actually it still is one of the most popular frameworks of its kind, and you’ll learn about integrating it with Spring in chapter 13.) I could see changing that code to a completely new methodology would be a challenge. Moreover, I could see no benefits. The change also implied a greater risk of introducing bugs.

 Fortunately, the change started with a proof of concept. After a couple of months, lots of effort, and stress, the team decided to quit.

 After analyzing our options, we finished the implementation using JdbcTemplate. We managed to write cleaner code by eliminating a large number of lines of code, and we didn’t need to introduce any new framework for this change.

Summary

 	

 An application framework is a set of common software functionalities that provides a foundational structure for developing an application. A framework acts as the skeletal support to build an application.

 	

 A framework helps you build an app more efficiently by providing functionality that you assemble to your implementation instead of developing it yourself. Using a framework saves you time and helps ensure there are fewer chances of implementing buggy features.

 	

 Using a widely known framework like Spring opens a door to a large community, which makes it more likely that others will faces similar problems. You then have an excellent opportunity to learn about how others solved something similar to an issue you need to address, which will spare you the time of individual research.

 	

 When implementing an application, always think of all possibilities, including not using a framework. If you decide to use one or more frameworks, take into consideration all their alternatives. You should think about the purpose of the framework, who else is using it (how big the community is), and for how long it’s been on the market (maturity).

 	

 Spring is not just a framework. We often refer to Spring as “Spring framework” to indicate the core functionalities, but Spring offers an entire ecosystem formed of many projects used in application development. Each project is dedicated to a specific domain, and when implementing an app, you might use more of these projects to implement the functionality you desire. The projects of the Spring ecosystem we’ll use in this book are as follows:

 	

 	

 Spring Core, which builds the foundation of Spring and provides features like the context, aspects, and basic data access.

 	

 Spring Data, which provides a high-level, comfortable-to-use set of tools to implement the persistence layer of your apps. You’ll find how easy it is to use Spring Data to work with both SQL and NoSQL databases.

 	

 Spring Boot, which is a project of the Spring ecosystem that helps you apply a “convention-over-configuration” approach.

 	

 Quite often, learning materials (like books, articles, or video tutorials) offer examples with Spring only for backend applications. While it’s true that it’s widespread to use Spring with backend apps, you can use Spring with other kinds of apps as well, even in desktop applications and automation testing apps.

2 The Spring context: Defining beans

 This chapter covers

 	
Understanding the need for Spring context

 	
Adding new object instances to the Spring context

 In this chapter, you start learning how to work with a crucial Spring framework element: the context (also known as the application context in a Spring app). Imagine the context as a place in the memory of your app in which we add all the object instances that we want the framework to manage. By default, Spring doesn’t know any of the objects you define in your application. To enable Spring to see your objects, you need to add them to the context. Later in this book we discuss using different capabilities provided by Spring in apps. You’ll learn that plugging in such features is done through the context by adding object instances and establishing relationships among them. Spring uses the instances in the context to connect your app to various functionalities it provides. You’ll learn the basics of the most important features (e.g., transactions, testing, etc.) throughout the book.

OEBPS/Images/CH01_F02_Spilca2.png
Business logic code

‘x
Transactions ~_, Q\ Caching
Security - \

Data transfer

Logging J Data persistence

OEBPS/Images/CH01_F04_Spilca2.png
Without loC

Dependency Dependency

Dependency

Application

The application executes
and controls (uses) the
dependencies it needs.

With loC

Application

Framework (dependency)

The application executes
being controlled by the
framework (dependency).

OEBPS/Images/CH01_F01_Spilca2.png
vassemeLE
FURNITURE STORE-
How mAY 1 HELP
You Topayz

weLLor
1 WOULD LIKE To
ORDER THAT WONDERFUL
ARDROBE DISPLAYED
ON YOUR HOMEPAGE:

WHAT
15 ALL
THIS?
1 ONLY
ORDERED
A WARDROBE!

HERE ARE ALL
THE COMPONENTS
you may
USE TO
BUILD YOUR
WARDROBE: YOU
NEED TO FIND THE
PROPER ONES
YOURSELF AND
ASSEMBLE IT-

OEBPS/Images/CH01_F05_Spilca2.png
Other backend solutions
ua — make direct requests to
- your backend app.

The users interact with the
client apps to manage their data.

1

\

=h =

<

((

\ Your backend app directly
communicates with other
backend solutions.

The client app make requests Your backend app uses a a
to your backend app to resolve message broker and adds ?_'

users’ requests. messages in a queue or topic.

OEBPS/Images/spilca1.png

OEBPS/Images/CH01_F06_Spilca2.png
Use the Spring loC container to Use Spring Security to implement

manage object instances easier the authentication and authorization
and glue in other functionalities ﬂﬂ configurations.
Spring provides.
a —]
—]
! -

Use Spring MVC or Spring WebFlux X
to implement the REST endpoints Use Spring Data to connect to
called by the client apps or other «___ the SQL and NoSQL databases

backend solutions. \<« your backend app uses to persist
the data.

=

Use Spring Boot to ease the Use Spring Integration or ‘\a-ﬂ

complexity of your configurations Spring for Apache Kafka to :t
and write less code to implement more easily send messages
the app. to your JMS or Kafka topics.

OEBPS/Images/CH01_F08_Spilca2.png
The testing app may use
Spring MVC to simulate
calls from other systems. a, ﬂ

i
(@

The testing app may use
- Spring Data to connect to
v +—— the SQL and NoSQL database
your backend app uses to
persist the data.

The testing app may use / .\ﬂ
Spring Integration to send ——

messages to queues or topics.

OEBPS/Images/CH01_F07_Spilca2.png
A continuous integration tool like
Jenkins regularly runs all the tests.
The team continuously adds new tests to
cover all the flows developed in the system.
Usually, the app is stored in a repository of
a version management system like Git. TEST 1 passed
TEST 2 passed
TEST 3 failed

GIT

ONE OF THE
TESTS FAILED.
CHECK IT ouT!

T Jenkins

If a test is failing,
Jenkins notifies the team.

OEBPS/Images/cover.jpeg
LEARN WHAT YOU NEED
AND LEARN IT WELL

LAURENTIU SPILCA

FOREWORD BY VICTOR RENTEA

/'l MANNING

OEBPS/Images/FM_UN01_Spilca2.png
Introduction

Chapter 1

Spring aspects
Chapter 6

REST services
Chapters 10 and 11

Y / v /
The Spring context Spring Web
Chapters 2 through 5 Chapters 7 through 9

A
Persisting data
Chapters 12 through 14

-

Testing

Chapter 15

OEBPS/Images/FM_UN02_Spilca2.png
Spring Web

Chapters 7 through 9

Persisting data

Chapters 12 through 14

4

REST services
Chapters 10 and 11

-

Testing
Chapter 15

OEBPS/Images/Manning_M_small.png

OEBPS/Images/Manning_copyright.png

OEBPS/Images/IFC_F0102_Spilca2.png
Business logic code

.

Transactions __

Security ———

Logging —

Use the Spring loC container to
manage object instances easier
and glue in other functionalities
Spring provides.

Use Spring MVC or Spring WebFlux
to implement the REST endpoints
called by the client apps or other
backend solutions.

Use Spring Boot to ease the
complexity of your configurations
and write less code to implement
the app.

‘\

Data persistence

=

Figure 1 The user's perspective Is similar
toviewing an Iceberg. Users malnly observe
the results of the business loglc code, but

“Caching this Is only a small part of what bullds the
app’s complete functlonalty. Like an
\ Iceberg that Is mostly underwater and
Datatransfer hidden from view, we don't see most of

the code In an enterprise app because
It's provided by dependencies.

Use Spring Security to implement
the authentication and authorization
configurations.

as,

—

> Use Spring Data to connect to
& the SQLand NoSQL databases
] your backend app uses to persist
the data.

%

[
Use Spring Integration or \-ﬂ

Spring for Apache Kafla to o=
more easily send messages
to your JMS or Kafka topics.

OEBPS/Images/CH01_F03_Spilca2.png
Spring testing
AN

Spring MVC

- \

Spring Core

