

 inside front cover

 [image:]

 (Continued on inside back cover)

 [image:]

 Grokking Functional Programming

 Michał Płachta

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Jennifer Stout

 	
 Technical development editor:

 	
 Josh White

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Ubaldo Pescatore

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Hames

 ISBN: 9781617291838

Dedication

 To my dear family: Marta, Wojtek, and Ola, for all the good vibes and inspiration.

 To my parents: Renia and Leszek, for all the opportunities you’ve given me.

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 Part 1. The functional toolkit

 1 Learning functional programming

 Perhaps you picked up this book because...

 What do you need to know before we start?

 What do functions look like?

 Meet the function

 When the code lies...

 Imperative vs. declarative

 Coffee break: Imperative vs. declarative

 Coffee break explained: Imperative vs. declarative

 How useful is learning functional programming?

 Leaping into Scala

 Practicing functions in Scala

 Getting your tools ready

 Getting to know the REPL

 Writing your first functions!

 How to use this book

 2 Pure functions

 Why do we need pure functions?

 Coding imperatively

 Breaking the code

 Passing copies of the data

 Breaking the code . . . again

 Recalculating instead of storing

 Focusing on the logic by passing the state

 Where did the state go?

 The difference between impure and pure functions

 Coffee break: Refactoring to a pure function

 Coffee break explained: Refactoring to a pure function

 In pure functions we trust

 Pure functions in programming languages

 Difficulty of staying pure...

 Pure functions and clean code

 Coffee break: Pure or impure?

 Coffee break explained: Pure or impure?

 Using Scala to write pure functions

 Practicing pure functions in Scala

 Testing pure functions

 Coffee break: Testing pure functions

 Coffee break explained: Testing pure functions

 3 Immutable values

 The fuel for the engine

 Another case for immutability

 Can you trust this function?

 Mutability is dangerous

 Functions that lie... again

 Fighting mutability by working with copies

 Coffee break: Getting burned by mutability

 Coffee break explained: Getting burned by mutability

 Introducing shared mutable state

 State’s impact on programming abilities

 Dealing with the moving parts

 Dealing with the moving parts using FP

 Immutable values in Scala

 Building our intuition about immutability

 Coffee break: The immutable String API

 Coffee break explained: The immutable String API

 Hold on . . . Isn’t this bad?

 Purely functional approach to shared mutable state

 Practicing immutable slicing and appending

 4 Functions as values

 Implementing requirements as functions

 Impure functions and mutable values strike back

 Using Java Streams to sort the list

 Function signatures should tell the whole story

 Changing requirements

 We just pass the code around!

 Using Java’s Function values

 Using the Function syntax to deal with code duplication

 Passing user-defined functions as arguments

 Coffee break: Functions as parameters

 Coffee break explained: Functions as parameters

 Problems with reading functional Java

 Passing functions in Scala

 Deep dive into sortBy

 Signatures with function parameters in Scala

 Passing functions as arguments in Scala

 Practicing function passing

 Embracing declarative programming

 Passing functions to custom-made functions

 Small functions and their responsibilities

 Passing functions inline

 Coffee break: Passing functions in Scala

 Coffee break explained: Passing functions in Scala

 What else can we achieve just by passing functions?

 Applying a function to each element of a list

 Applying a function to each element of a list using map

 Getting to know map

 Practicing map

 Learn once, use everywhere

 Returning parts of the list based on a condition

 Returning parts of the list using filter

 Getting to know filter

 Practicing filter

 Our journey so far...

 Don’t repeat yourself?

 Is my API easy to use?

 Adding a new parameter is not enough

 Functions can return functions

 Using functions that can return functions

 Functions are values

 Coffee break: Returning functions

 Coffee break explained: Returning functions

 Designing functional APIs

 Iterative design of functional APIs

 Returning functions from returned functions

 How to return functions from returned functions

 Using the flexible API built with returned functions

 Using multiple parameter lists in functions

 We have been currying!

 Practicing currying

 Programming by passing function values

 Reducing many values into a single value

 Reducing many values into a single one using foldLeft

 Getting to know foldLeft

 foldLeft must-knows

 Practicing foldLeft

 Modeling immutable data

 Using product types with higher-order functions

 More concise syntax for inline functions

 Part 2. Functional programs

 5 Sequential programs

 Writing pipeline-based algorithms

 Composing larger programs from smaller pieces

 The imperative approach

 flatten and flatMap

 Practical use case of using more flatMaps

 flatMap and changing the size of the list

 Coffee break: Dealing with lists of lists

 Coffee break explained: Dealing with lists of lists

 Chained flatMaps and maps 144

 Nested flatMaps

 Values that depend on other values

 Practicing nested flatMaps

 A better syntax for nested flatMaps

 For comprehensions to the rescue!

 Coffee break: flatMaps vs. for comprehensions

 Coffee break explained: flatMaps vs. for comprehensions

 Getting to know for comprehensions

 It’s not the for you are looking for!

 Inside a for comprehension

 More sophisticated for comprehensions

 Checking all combinations using a for comprehension

 Filtering techniques

 Coffee break: Filtering techniques

 Coffee break explained: Filtering techniques

 Looking for a greater abstraction

 Comparing map, foldLeft, and flatMap

 Using for comprehensions with Sets

 Using for comprehensions with many types

 Practicing for comprehensions

 Defining for comprehensions... again

 Using for comprehensions with noncollection types

 Avoiding nulls: Option type

 Parsing as a pipeline

 Coffee break: Parsing with Option 169

 Coffee break explained: Parsing with Option 170

 6 Error handling

 Handling lots of different errors, gracefully

 Is it even possible to handle them all?

 Sort the list of TV shows by their running time

 Implementing the sorting requirement

 Dealing with data coming from the outside world

 Functional design: Building from small blocks

 Parsing Strings into immutable objects

 Parsing a List is just parsing one element

 Parsing a String into a TvShow

 What about potential errors?

 Is returning null a good idea?

 How do we handle potential errors more gracefully?

 Implementing a function that returns an Option

 Option forces us to handle possible errors

 Building from small blocks

 Functional design is building from small blocks

 Writing a small, safe function that returns an Option

 Functions, values, and expressions

 Practicing safe functions that return Options

 How do errors propagate?

 Values represent errors

 Option, for comprehensions, and checked exceptions...

 What about checked exceptions?

 Conditional recovery

 Conditional recovery using the imperative style

 Conditional recovery using the functional style

 Checked exceptions don’t compose—Options do!

 How does orElse work?

 Practicing functional error handling

 Functions compose, even in the presence of errors

 Compiler reminds us that errors need to be covered

 Compilation errors are good for us!

 Transforming a List of Options into a flat List

 Let the compiler be our guide...

 ...but let’s not trust the compiler too much!

 Coffee break: Error-handling strategies

 Coffee break explained: Error-handling strategies

 Two different error-handling strategies

 All-or-nothing error-handling strategy

 Folding a List of Options into an Option of a List

 We now know how to handle multiple possible errors!

 How to know what failed

 We need to convey error details in the return value

 Conveying error details using Either

 Refactoring to Either

 Returning an Either instead of an Option

 Practicing safe functions that return Either

 What we learned about Option works with Either

 Coffee break: Error handling using Either

 Coffee break explained: Error handling using Either

 Working with Option/Either

 7 Requirements as types

 Modeling data to minimize programmers’ mistakes

 Well-modeled data can’t lie

 Designing using what we know so far (which is primitive types)

 Using data modeled as primitive types

 Coffee break: The pain of primitive types

 Coffee break explained: The pain of primitive types

 Problems with the primitive type approach to modeling

 Using primitive types makes our jobs harder!

 Newtypes protect against misplaced parameters

 Using newtypes in data models

 Practicing newtypes

 Making sure only valid data combinations are possible

 Modeling possibility of absence in your data

 Changes in the model force changes in the logic

 Using data modeled as Options in your logic

 Higher-order functions for the win!

 There is probably a higher-order function for that!

 Coffee break: forall/exists/contains

 Coffee break explained: forall/exists/contains

 Coupling a concept inside a single product type

 Modeling finite possibilities

 Using sum types

 Even better modeling with sum types

 Using the sum type + product type combo

 Product types + sum types = algebraic data types (ADTs)

 Using ADT-based models in behaviors (functions)

 Destructuring ADTs using pattern matching

 Duplication and DRY

 Practicing pattern matching

 Newtypes, ADTs, and pattern matching in the wild

 What about inheritance?

 Coffee break: Functional data design

 Coffee break explained: Functional data design

 Modeling behaviors

 Modeling behaviors as data

 Implementing functions with ADT-based parameters

 Coffee break: Design and maintainability

 Coffee break explained: Design and maintainability

 8 IO as values

 Talking to the outside world

 Integrating with an external API

 Properties of a side-effectful IO action

 Imperative solution to side-effecting IO code

 Problems with the imperative approach to IO

 Can we really do better using FP?

 Doing IO vs. using IO’s result

 Handling IO imperatively

 Computations as IO values

 IO values

 IO values in the wild

 Pushing the impurity out

 Using values fetched from two IO actions

 Combining two IO values into a single IO value

 Practicing creating and combining IO values

 Disentangling concerns by working with values only

 The IO type is viral

 Coffee break: Working with values

 Coffee break explained: Working with values

 Toward functional IO

 What about IO failures?

 Running a program described by IO may fail!

 Remember orElse?

 Lazy and eager evaluation

 Implementing recovery strategies using IO.orElse

 Implementing fallbacks using orElse and pure

 Practicing failure recovery in IO values

 Where should we handle potential failures?

 Toward functional IO with failure handling

 Pure functions don’t lie, even in the unsafe world!

 Functional architecture

 Using IO to store data

 Coffee break: Using IO to store data

 Coffee break explained: Using IO to store data

 Treating everything as values

 Treating retries as values

 Treating an unknown number of API calls as values

 Practicing functional signature intuitions

 9 Streams as values

 To infinity and beyond

 Dealing with an unknown number of values

 Dealing with external impure API calls (again)

 The functional approach to the design

 Immutable maps

 Practicing immutable maps

 How many IO calls should we make?

 The bottom-up design

 Advanced list operations

 Introducing tuples

 Zipping and dropping

 Pattern matching on tuples

 Coffee break: Working with maps and tuples

 Coffee break explained: Working with maps and tuples

 Functional jigsaw puzzle

 Following types in a bottom-up design

 Prototyping and dead ends

 Recursive functions

 Infinity and laziness

 Recursive function structure

 Dealing with an absence in the future (using recursion)

 Usefulness of infinite recursive calls

 Coffee break: Recursion and infinity

 Coffee break explained: Recursion and infinity

 Creating different IO programs using recursion

 Using recursion to make an arbitrary number of calls

 Problems with the recursive version

 Introducing data streams

 Streams in imperative languages

 Values on demand

 Stream processing, producers, and consumers

 Streams and IO

 The functional Stream

 Streams in FP are values

 Streams are recursive values

 Primitive operations and combinators

 Streams of IO-based values

 Infinite streams of IO-based values

 Executing for side effects

 Practicing stream operations

 Using streams to our advantage

 Infinite stream of API calls

 Handling IO failures in streams

 Separated concerns

 Sliding windows

 Waiting between IO calls

 Zipping streams

 Benefits of using the stream-based approach

 10 Concurrent programs

 Threads, threads everywhere

 Declarative concurrency

 Sequential vs. concurrent

 Coffee break: Sequential thinking

 Coffee break explained: Sequential thinking

 The need for batching

 Batching implementation

 The concurrent world

 The concurrent state

 Imperative concurrency

 Atomic references

 Introducing Ref

 Updating Ref values

 Using Ref values

 Making it all concurrent

 parSequence in action

 Practicing concurrent IOs

 Modeling concurrency

 Coding using Refs and fibers

 IOs that run infinitely

 Coffee break: Concurrent thinking

 Coffee break explained: Concurrent thinking

 The need for asynchronicity

 Preparing for asynchronous access

 Designing functional asynchronous programs

 Managing fibers manually

 Coding functional asynchronous programs

 Part 3. Applied functional programming

 11 Designing functional programs

 Make it work, make it right, make it fast

 Modeling using immutable values

 Business domain modeling and FP

 Data access modeling

 A bag of functions

 Business logic as a pure function

 Separating the real data access concern

 Integrating with APIs using imperative libraries and IO

 Following the design

 Implementing input actions as IO values

 Separating the library IO from other concerns

 Currying and inversion of control

 Functions as values

 Connecting the dots

 We made it work

 Making it right

 Resource leaks

 Handling resources

 Using a Resource value

 We made it right

 Coffee break: Make it fast

 Coffee break explained: Make it fast

 12 Testing functional programs

 Do you have tests for that?

 Tests are just functions

 Choosing functions to test

 Testing by providing examples

 Practicing testing by example

 Generating good examples

 Generating properties

 Property-based testing

 Testing by providing properties

 Delegating the work by passing functions

 Understanding failures of property-based tests

 Wrong test or a bug?

 Custom generators

 Using custom generators

 Testing more complicated scenarios in a readable way

 Finding and fixing bugs in the implementation

 Coffee break: Property-based tests

 Coffee break explained: Property-based tests

 Properties and examples

 Requirements coverage

 Testing side-effectful requirements

 Identifying the right test for the job

 Data usage tests

 Practicing stubbing external services using IO

 Testing and design

 Service integration tests

 Local servers as Resources in integration tests

 Writing isolated integration tests

 Integration with a service is a single responsibility

 Coffee break: Writing integration tests

 Coffee break explained: Writing integration tests

 Integration tests take more time

 Property-based integration tests

 Choosing the right testing approach

 Test-driven development

 Writing a test for a feature that doesn’t exist

 Red-green-refactor

 Making tests green

 Adding more red tests

 The last TDD iteration

 Appendix A. Scala cheat sheet

 Appendix B. Functional gems

 index

Front matter

 preface

 Hello! Thanks for purchasing Grokking Functional Programming. I’ve spent the last decade talking with programmers about the approach to programming, its maintainability, and how functional programming concepts are slowly being adopted by mainstream languages. Many of those professional developers say it’s still very difficult to learn functional concepts from existing sources, which are either too simplistic or too complex. That’s the gap this book is trying to fill. It aims to provide a step-by-step practical guide for programmers who want to get the full picture of fundamental functional programming concepts.

 People learn best from examples, and that’s why this book is heavy with them. Theory always comes second. After finishing this introductory book, you’ll be able to write fully featured programs using functional programming and comfortably dive into its theoretical foundations.

 You’ll get the most benefit from this book if you’ve already created some non-trivial applications using an imperative object-oriented language like Java or Ruby. It’s a big plus if you’ve worked on a team who struggled with lots of bugs and maintainability issues, because this is where functional programming shines the most.

 I hope you’ll enjoy reading the chapters and solving the exercises as much as I enjoyed writing them. Thanks again for your interest in the book!

 —Michał Płachta

 [image:]

acknowledgments

 I’d like to first of all thank the Scala community for its continuous pursuit of tools and techniques that help build maintainable software. All of the ideas presented in the book are the result of countless hours of code reviews, discussions, multiple back-and-forth blog articles, hot-take presentations, and production outage postmortems. Thank you all for your passion.

 I’d like to thank my family, especially my wife Marta, for supporting me during the writing of this book with huge amounts of encouragement and love. Many thanks go to my wonderful kids, Wojtek and Ola, for making sure I don’t sit at the computer for too long.

 This book has been the work of many people. I’d like to thank the staff at Manning: Michael Stephens, acquisitions editor; Bert Bates, editor; Jenny Stout, development editor; Josh White, technical development editor; Christian Berk, copy editor; Keri Hales, production editor; Ubaldo Pescatore, technical proofreader; Katie Tennant, proofreader; and all of the behind-the-scenes folks who helped get this book into print.

 To all the reviewers: Ahmad Nazir Raja, Andrew Collier, Anjan Bacchu, Charles Daniels, Chris Kottmyer, Flavio Diez, Geoffrey Bonser, Gianluigi Spagnuolo, Gustavo Filipe Ramos Gomes, James Nyika, James Watson, Janeen Johnson, Jeff Lim, Jocelyn Lecomte, John Griffin, Josh Cohen, Kerry Koitzsch, Marc Clifton, Mike Ted, Nikolaos Vogiatzis, Paul Brown, Ryan B. Harvey, Sander Rossel, Scott King, Srihari Sridharan, Taylor Dolezal, Tyler Kowallis, and William Wheeler, thank you; your suggestions helped make this a better book.

about this book

 Who should read this book

 The book assumes that the reader has at least one year of commercial experience developing software using a mainstream object-oriented programming language like Java. Examples use Scala as the teaching language, but this is not a Scala book. No prior knowledge of Scala or functional programming is required.

 How this book is organized: A road map

 The book is divided into three parts. The first part lays the foundation. We will learn tools and techniques that are ubiquitous in functional programming (FP). In chapter 1, we will discuss how to learn FP with this book. In chapter 2, we will show the difference between pure and impure functions. In chapter 3, we will introduce the immutable value. Finally, in chapter 4, we will show how pure functions are just immutable values and demonstrate all the superpowers that we get from this fact.

 In the second part of the book, we will use only immutable values and pure functions to solve real-world problems. In chapter 5, we will introduce the most important function in FP and show how it helps in building sequential values (and programs) in a concise and readable way. In chapter 6, we will learn how to build sequential programs that may return errors. We will use chapter 7 to learn about functional software design. Chapter 8 will teach you how to deal with an impure, external, side-effectful world in a safe and functional way. Then, we will introduce streams and streaming systems in chapter 9. We will build streams of hundreds of thousands of items using the functional approach. In chapter 10, we will finally create some functional and safe concurrent programs.

 In the third part we will implement a real-world functional application that uses Wikidata as a data source. We will use it to highlight everything we learned in the previous parts. In chapter 11, we will need to create an immutable-based data model and use proper types, including IO, to integrate with Wikidata, use caching and multiple threads to make the application fast. We will wrap all of these concerns in pure functions and additionally show how we can reuse our object-oriented design intuitions in the functional world. In chapter 12, we will show how to test the application we developed in chapter 11 and how easy it is to maintain, even in the presence of big requirement changes.

 Finally, we will wrap up the book with a final set of exercises that will make sure you grokked functional programming.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/grokking-functional-programming. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/grokking-functional-programming, and from GitHub at https://github.com/miciek/grokkingfp-examples. All book resources, including bonus materials, are available at https://michalplachta.com/book/.

 liveBook discussion forum

 Purchase of Grokking Functional Programming includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grokking-functional-programming/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Michał Płachta is an experienced software engineer and an active contributor to the functional programming community. He regularly speaks at conferences, runs workshops, organizes meetups, and blogs about creating maintainable software.

Part 1. The functional toolkit

 The first part of Grokking Functional Programming lays the foundation. We will learn tools and techniques that are ubiquitous in functional programming. Everything we learn in this part will be reused in the remaining chapters and the rest of your career.

 In chapter 1, we will discuss the basics and make sure we are on the same page regarding the approach to teaching this book embraces. We will set up our environment, write some code, and solve some first exercises.

 In chapter 2, we will discuss the difference between pure and impure functions. We will use some imperative examples to show the dangers and functional snippets that help mitigate them.

 In chapter 3, we will introduce the pure function’s dancing partner: the immutable value. We will present how one cannot live without the other and that both of them define what functional programming is.

 Finally, in chapter 4, we will show how pure functions are just values and demonstrate all the superpowers that we get from this fact. This will allow us to connect all the dots together and assemble our first full-fledged functional toolkit.

 1 Learning functional programming

 In this chapter you will learn

 	who this book is for

 	what a function is

 	how useful functional programming is

 	how to install needed tools

 	how to use this book

 “I can only approach you by particular examples and let you infer what it is.”

 —Richard Hamming, “Learning to Learn”

Perhaps you picked up this book because ...

 You are curious about functional programming 1

 You heard about functional programming, read the Wikipedia entry, and looked at a few books too. Maybe you rolled your eyes at the mathy explanations behind all the code, but you still remained curious about it.

 	
 [image:]

 	
 I dreamed about writing the least intimidating functional programming book ever. This is it: entry-level, practical, and with as little eye-rolling as possible.

 	
 [image:]

 You tried to learn functional programming before 2

 You have tried learning functional programming more than once and still don’t get it. Just when you understand one key concept, the next obstacle waits around the corner. And this obstacle requires understanding many more things before even approaching it.

 	
 [image:]

 	
 Learning functional programming should be enjoyable. This book encourages you to take small steps and assumes that your endorphins will keep you going.

 	
 [image:]

 You are still on the fence 3

 You have been programming for many years in an object-oriented or imperative programming language. You have experienced the buzz of functional programming, read some blog posts, and tried coding a bit. Still, you cannot see how it makes your programming life better.

 	
 [image:]

 	
 This book is heavily focused on practical applications of functional programming. It will add some functional concepts to your mental toolbox. You will be able to use them—no matter what language you use.

 	
 [image:]

 Or maybe something else?

 Whatever your reasons, this book tries to address them differently. It focuses on learning through experimentation and play. It encourages you to ask questions and come up with answers by coding. It will help you grow to new levels as a programmer. I hope you’ll enjoy the ride.

What do you need to know before we start?

 We assume that you have been developing software in any of the popular languages, such as Java, C++, C#, JavaScript, or Python. This is a very vague statement, so here are some quick checklists that will help us make sure we are on the same page.

 You will follow along comfortably if

 	
 You are familiar with basic object-orientation concepts like classes and objects.

 	
 You are able to read and comprehend code like this:

 class Book {
 private String title; ①
 private List<Author> authors; ①
 public Book(String title) { ②
 this.title = title;
 this.authors = new ArrayList<Author>();
 }

 public void addAuthor(Author author) { ③
 this.authors.add(author);
 }
 }

 ① Book has a title and a list of Author objects.

 ② Constructor: Creates a new Book object with a title and no authors

 ③ Adds an Author for this instance of Book

 You will get maximum benefits if

 	
 You have had problems with stability, testability, regression or integration of your software modules.

 	
 You have experienced problems debugging code like this:

 public void makeSoup(List<String> ingredients) { ①
 if(ingredients.contains("water")) {
 add("water");
 } else throw new NotEnoughIngredientsException();
 heatUpUntilBoiling();
 addVegetablesUsing(ingredients);
 waitMinutes(20);
 }

 ① It probably isn’t going to be the best soup you’ve ever tasted ...

 You don’t need to

 	
 Be an expert in object orientation

 	
 Be a Java/C++/C#/Python master

 	
 Know anything about any functional programming language, such as Kotlin, Scala, F#, Rust, Clojure, or Haskell

What do functions look like?

 Without further ado, let’s jump right into some code! We don’t really have all the necessary tools set up yet, but this won’t stop us, will it?

 Here are a bunch of different functions. All of them have something in common: they get some values as inputs, do something, and maybe return values as outputs. Let’s see:

 public static int add(int a, int b) { ①
 return a + b;
}

public static char getFirstCharacter(String s) { ②
 return s.charAt(0);
}

public static int divide(int a, int b) { ③
 return a / b;
}

public static void eatSoup(Soup soup) {
 // TODO: "eating the soup" algorithm ④
}

 ① Gets two ints, adds them, and returns the sum

 ② Gets a String and returns its first character

 ③ Gets two ints, divides the first by the second one, and returns the result

 ④ Gets the Soup object, does something with it, and returns nothing

 Why all the public statics?

 You probably wonder about the public static modifier in each definition. Well, it’s there on purpose. Functions we use in this book are all static (i.e., they don’t need any object instance to be executed). They are free—they can be called by anybody from anywhere, as long as the caller has the input parameters they require. They work only with the data the caller provides—nothing more.

 This has, of course, some major ramifications, which we will address later in the book. For now, let’s remember that when we say function, we mean a public static function that can be called from anywhere.

 Quick exercise [image:]

 Implement the two functions below:

 public static int increment(int x) {
 // TODO
}
public static String concatenate(String a, String b) {
 // TODO
}

 Answers:

 return x + 1;

 return a + b;

Meet the function

 As we’ve seen, functions come in different flavors. Basically, each function consists of a signature and a body, which implements the signature.

 public static int add(int a, int b) { ①
 return a + b; ②
}

 ① Signature

 ② Body

 In this book we will focus on functions which return values because, as we shall see, these functions are at the heart of functional programming. We won’t use functions that return nothing (i.e., void).

 [image:]

 We can treat a function as a box that gets an input value, does something with it, and returns an output value. Inside the box is the body. Types and names of input and output values are part of the signature. So we can represent the add function as follows:

 [image:]

 Signature vs. body

 In the diagrams above, the implementation of the function, its body, is hidden inside the box, while the signature is publicly visible. This is a very important distinction. If the signature alone is enough to understand what’s going on inside the box, it is a big win for the programmers who read the code because they don’t need to go inside and analyze how it’s implemented before they use it.

 THIS IS BIG!

 In FP, we tend to focus more on signatures than bodies of functions we use.

 Quick exercise [image:]

 Draw a function diagram for the function below. What’s inside the box?

 public static int increment(int x)

 Answer:

 There is a single arrow going in, named int x, and a single arrow going out, named int. The implementation is return x + 1;

When the code lies ...

 Some of the most difficult problems a programmer encounters happen when a code does something it’s not supposed to do. These problems are often related to the signature telling a different story than the body. To see this in action, let’s briefly revisit the four functions we’ve seen earlier:

 	
 public static int add(int a, int b) {
 return a + b;
}

 	

 [image:]

 	
 public static char getFirstCharacter(String s) {
 return s.charAt(0);
}

 	

 [image:]

 	
 public static int divide(int a, int b) {
 return a / b;
}

 	

 [image:]

 	
 public static void eatSoup(Soup soup) {
 // TODO: "eating a soup" algorithm
}

 	

 [image:]

 Surprisingly, three of the above four functions lie.

 [image:]

 Q So functions can lie?

 A Unfortunately, yes. Some of the functions above lie with a straight face. It usually boils down to the signature not telling the whole story about the body.

 getFirstCharacter promises that when we provide a String, it will give us a char in return. However, sneaky as we are, when we provide an empty String, it will not give us any char, it will throw an exception!

 divide will not provide a promised int if we give it 0 as b.

 eatSoup promises to eat the soup we provide, but when we do, it does nothing and returns void. This is probably what most children have as the default implementation.

 add, on the other hand, will return an int, no matter what we provide as a and b—as promised! We can count on such functions! *

 In this book, we will focus on functions that don’t lie. We want their signatures to tell the whole story about the body. You will learn how to build real-world programs using only these kinds of functions.

 THIS IS BIG!

 Functions that don’t lie are very important features of FP.

 * After reading this book, rewriting your functions to their trustworthy functional counterparts will be a piece of cake for you!

Imperative vs. declarative

 Some programmers divide programming languages into two main paradigms: imperative and declarative. Let’s try to grasp the difference between these two paradigms by going through a simple exercise.

 Imagine we are tasked with creating a function that calculates a score in some word-based game. A player submits a word, and the function returns a score. One point is given for each character in the word.

 Calculating the score imperatively

 public static int calculateScore(String word) { ①
 int score = 0;
 for(char c : word.toCharArray()) {
 score++;
 }
 return score;
}

 ① Developer reads: To calculate the score for a word, first initialize score as 0, then go through word’s characters, and for each character increment the score. Return the score.

 Imperative programming focuses on how the result should be computed. It is all about defining specific steps in a specific order. We achieve the final result by providing a detailed step-by-step algorithm.

 Calculating the score declaratively

 public static int wordScore(String word) { ①
 return word.length();
}

 ① Developer reads: The score for a word is its length.

 The declarative approach focuses on what needs to be done—not how. In this case we are saying we need a length of this string, and we return this length as the score for this particular word. That’s why we can just use the length method from Java’s String to get the number of characters, and we don’t care how it was computed.

 We also changed the name of the function from calculateScore to wordScore. This may seem like a minor difference, but using a noun makes our brain switch into the declarative mode and focus on what needs to be done rather than the details of how to achieve it.

 Declarative code is usually more succinct and more comprehensible than imperative code. Even though many internals, like the JVM or CPUs, are strongly imperative, we, as application developers, can heavily use the declarative approach and hide imperative internals, just like we did with the length function. In this book, you will learn how to write real-world programs using the declarative approach.

 By the way, SQL is also a mostly declarative language. You usually state what data you need, and you don’t really care how it’s fetched (at least during development).

Coffee break: Imperative vs. declarative [image:]

 Welcome to the very first coffee break exercise section of the book! We’ll try to make sure you have grasped the difference between imperative and declarative approaches.

 What are coffee breaks in this book?

 There are several types of exercises in the book. You’ve already encountered the first one: quick exercise. They are marked using a big question mark and scattered around the book. They should be pretty straightforward to solve without any paper or computer access.

 The second type of exercise is the coffee break. Here, we assume that you have some time with a piece of paper or a computer, and you’d like to be stretched a little bit. During coffee breaks, we’ll try to bring a particular topic home. They are critical to the learning process.

 Some of the coffee breaks may be harder for you, but don’t worry if you are stuck. There is always an answer and an explanation on the next page. But before you read it, make sure you’ve been trying to solve an exercise for around 5–10 minutes. This is crucial to gain the understanding of the topic at hand, even if you can’t figure it out. *

 * You learn the most when you struggle at first!

 In this exercise, we need to enhance our imperative calculateScore and declarative wordScore functions. The new requirement says that the score of the word should now be equal to the number of characters that are different than 'a'. Here’s your task. You are given the code below:

 public static int calculateScore(String word) {
 int score = 0;
 for(char c : word.toCharArray()) {
 score++;
 }
 return score;
}
public static int wordScore(String word) {
 return word.length();
}

 Change the functions above so that the following are true:

 calculateScore("imperative") == 9 wordScore("declarative") == 9
calculateScore("no") == 2 wordScore("yes") == 3 ①

 ① Make sure to think about the solution for a bit before checking the next page. The best way to do this is to write your answer on a piece of paper or using a computer.

Coffee break explained: Imperative vs. declarative [image:]

 I hope you’ve enjoyed your first coffee break. Now it’s time to check your answers. Let’s start with the imperative solution.

 Imperative solution

 The imperative approach strongly encourages us to directly implement the algorithm—the “how.” So we need to get the word, go through all the characters in this word, increment the score for each character that is different than 'a', and return the final score when finished.

 public static int calculateScore(String word) {
 int score = 0;
 for(char c : word.toCharArray()) {
 if(c != 'a')
 score++;
 }
 return score;
}

 And that’s it! We just added an if clause inside the for loop.

 Declarative solution

 The declarative approach focuses on the what. In this case, the requirement was already defined declaratively: “The score of the word should now be equal to the number of characters that are different than 'a'.” We can almost directly implement this requirement as

 public static int wordScore(String word) {
 return word.replace("a", "").length();
}

 Alternatively, we can introduce a helper function.

 public static String stringWithoutChar(String s, char c) {
 return s.replace(Character.toString(c), "");
}

public static int wordScore(String word) {
 return stringWithoutChar(word, 'a').length();
}

 You may have come up with a different solution. Its is acceptable if it focuses on the string without as (what), instead of fors and ifs (how).

 THIS IS BIG!

 In FP, we focus on what needs to happen more often than how it should happen.

How useful is learning functional programming?

 Functional programming is programming using functions with

 	
 Signatures that don’t lie

 	
 Bodies that are as declarative as possible

 In this book, we’ll dive deeper into these topics, step by step, and eventually we will be able to build real-world programs without even thinking about the old habits. This alone will be a game changer. However, the benefits don’t stop here. There are other useful side effects you acquire when learning functional programming with this book.

 [image:]

 It’s a style of writing code in any language

 So far, we have used Java to write functions, even though it is considered an object-oriented imperative language. It turns out the techniques and features of declarative and functional programming are making their way into Java and other traditionally imperative languages. You can already use some of the techniques in your language of choice.

 Functional concepts are the same in FP languages

 This book focuses on general, universal features and techniques of functional programming. This means that if you learn a concept here, using Scala, you will be able to apply it in many other functional programming languages out there. We are focusing on things that are common between many FP languages, not on single-language specifics.

 Functional and declarative thinking

 One of the most important skills you will learn is the different approach to solving programming problems. By mastering all those functional techniques, you will add another, very powerful, tool to your software engineer toolbox. This new perspective will definitely help you grow in your profession, no matter how your story has unfolded so far.

Leaping into Scala

 The majority of examples and exercises in this book use Scala. If you don’t know this language, don’t worry, you will learn all the necessary basics very soon.

 [image:]

 Q Why Scala?

 A This is a pragmatic choice. Scala has all the functional programming features, while its syntax is still similar to one of the mainstream imperative languages. This should smoothen the learning process. Remember, we want to spend the minimum amount of time focusing on syntax. We want to learn just enough Scala to allow us to talk about bigger concepts in functional programming. We want to learn just enough syntax to be able to solve big, real-world programming problems functionally. Finally, we treat Scala as just a teaching tool. After reading this book, you will decide on your own whether Scala is enough for your daily programming tasks or you want to pick up any other functional programming language, with crazier syntax but the same concepts. *

 * We will still use some Java to present the imperative examples. The intention is to use Scala only for the completely functional code snippets.

 Meet the function ... in Scala

 Earlier in this chapter, we met our first function, written in Java. The function accepted two integer parameters and returned the sum of them.

 public static int add(int a, int b) {
 return a + b;
}

 It’s time to rewrite this function in Scala and learn some new syntax.

 [image:] *

 * Scala allows us to omit braces (they are optional). If a programmer doesn’t include braces, then the compiler assumes that the indentation is significant, like in Python. You can use this feature if you prefer it. However, we will include braces in this book because we want to spend a minimum amount of time focusing on syntax differences, as mentioned.

Practicing functions in Scala [image:]

 Now that we know the syntax of a function in Scala, we can try to rewrite some of our previous Java snippets in Scala. Hopefully, this will make the transition a little easier.

 What are practicing ... sections in this book?

 There are three types of exercises in the book. You’ve already encountered two of them: quick exercise (small exercises marked with a big question mark and easy to solve in your head) and coffee breaks (longer and harder and aimed to make you think about a concept from a different perspective, using a piece of paper or a computer).

 The third type is a practicing ... exercise. This is the most tedious of the three because it’s heavily based on repetition. Usually, you are tasked with three to five exercises that are solved in exactly the same way. This is done on purpose—to train your muscle memory. The things you learn in those sections are used extensively in the book, so it’s important to get them into your system as quickly as possible.

 Your task is to rewrite the three functions below from Java to Scala: *

 public static int increment(int x) {
 return x + 1;
}

public static char getFirstCharacter(String s) {
 return s.charAt(0);
}

public static int wordScore(String word) {
 return word.length();
}

 * We haven’t talked about the tools we need to install on our computers to write Scala, so please do this one on a piece of paper.

 Notes:

 - String in Scala has exactly the same API as String in Java.

 - Character type in Scala is Char.

 - Integer type in Scala is Int.

 - We don’t need semicolons in Scala.

 Answers

 def increment(x: Int): Int = {
 x + 1
}

def getFirstCharacter(s: String): Char = {
 s.charAt(0)
}

def wordScore(word: String): Int = {
 word.length()
}

Getting your tools ready

 It’s time to start writing some functional Scala code on the actual computer. To do that, we need to install some things. As each computer system is different, please follow these steps with caution.

 Download the book’s companion source code project

 First and foremost: each piece of code that you see in this book is also available in the book’s companion Java/Scala project. Download or check it out by going to https://michalplachta.com/book. The project comes with a README file that has all the up-to-date details on how to get started. *

 * If you fancy a more automatic way of installing the JDK/Scala or you prefer to use Docker or a web interface, make sure to visit the book’s website to learn about alternative ways of coding exercises in the book.

 Install the Java Development Kit (JDK)

 Let’s make sure you have the JDK installed on your computer. This will allow us to run Java and Scala (which is a JVM language) code. If you are unsure, please run javac -version in your terminal, and you should get something like javac 17. If you don’t, please visit https://jdk.java.net/17/. *

 * JDK 17 is the latest long-term-support (LTS) version as of writing this book. Other LTS versions should be fine too.

 Install sbt (Scala build tool)

 sbt is a build tool used in the Scala ecosystem. It can be used to create, build, and test projects. Visit https://www.scala-sbt.org/download.html to get the instructions of how to install the sbt on your platform.

 Note: We recommend using the REPL (sbt console) with this book, especially at the beginning, because it works out of the box, and you won’t get distracted. You will be able to load all exercises directly into your REPL. However, when you get familiar with the way exercises work, you are free to switch to an IDE. The most beginner-friendly one is IntelliJ IDEA. After installing Java, you can download this IDE from https://www.jetbrains.com/idea/.

 Run it!

 In your shell, you will need to run an sbt console command, which will start the Scala read–evaluate–print loop (REPL). This is the preferred tool to run examples and do exercises in this book. It allows you to write a line of code, press Enter, and get feedback immediately. If you run this command inside the book’s source code folder, you will additionally get access to all exercises, which should come in handy, especially later in the book, when they get more complicated. Let’s not get ahead of ourselves, though, and start playing around with the REPL itself. Have a look below to get some intuition on how to use this tool. After running sbt console:

 Welcome to Scala 3.1.3 ①
Type in expressions for evaluation. Or try :help.

scala> ②
scala> 20 + 19

val res0: Int = 39 ③

 ① The version of Scala we use

 ② This is the Scala prompt where we enter commands and the code. Go ahead, write some mathematical expression, and press Enter!

 ③ The expression was evaluated to a value named res0 that has type Int and is 39.

Getting to know the REPL

 Let’s do a quick REPL session together and learn some new Scala tricks along the way!

 scala> print("Hello, World!") ①
Hello, World! ②

scala> val n = 20 ③
val n: Int = 20 ④

scala> n * 2 + 2 ⑤
val res1: Int = 42 ⑥

scala> res1 / 2 ⑦
val res2: Int = 21 ⑧

scala> n ⑨
val res3: Int = 20

scala> :load src/main/scala/ch01_IntroScala.scala ⑩
def increment(x: Int): Int
def getFirstCharacter(s: String): Char
def wordScore(word: String): Int
// defined object ch01_IntroScala

scala> :quit ⑪

 ① Type code here, and press the Enter key to execute it immediately.

 ② The REPL prints the output to the console.

 ③ val is a Scala keyword that defines a constant value. Note that val is part of the language and not a REPL command.

 ④ The REPL created n as an Int with the value 20. This value will be in the scope for the duration of the REPL session.

 ⑤ We can reference any value that was previously defined.

 ⑥ Whenever we don’t assign a name to the result, the REPL will generate a name for us. In this case, res1 is a name that the REPL created. It is of type Int and has the value 42.

 ⑦ We can reference any REPL-generated value just like any other value.

 ⑧ Here, the REPL generates another value named res2 of type Int.

 ⑨ Just input the previously defined name to inspect its value.

 ⑩ You can :load any Scala file from the book’s companion repository. Here, we load the chapter 1 code. The REPL shows what was loaded: the three functions you wrote in the previous exercise! Make sure to confirm it by viewing this file in a text editor.

 ⑪ All commands to the REPL itself (not code) are preceded with a :colon. Use :quit or :q to quit the REPL.

 Useful REPL commands

 :help Show all the commands with descriptions

 :reset Forget everything and start fresh

 :quit End the session (quit the REPL)

 Useful keyboard shortcuts

 up/down arrows Cycle through previous entries

 tab Reveal auto-completion options, if any

Writing your first functions!

 The time has come! This is the moment when you write (and use!) your first functions in Scala. We’ll use the ones we are already familiar with.

 Fire up the Scala REPL (sbt console), and write

 scala> def increment(x: Int): Int = {
 | x + 1 ①
 | } ①
def increment(x: Int): Int

 ① The | character appears in the REPL output whenever you press Enter while writing a multi-line expression.

 As you can see, the REPL responded with a line of its own. It said that it understood what we typed: the name is increment, and it is a function that gets a parameter x of type Int and returns an Int back. Let’s use it!

 scala> increment(6)
val res0: Int = 7

 We called our function by applying 6 as the argument. The function returned 7, as expected! Additionally, the REPL named this value res0.

 Using code snippets from this book [image:]

 To make the code listings as readable as possible, we won’t be printing the REPL prompt scala> in this book anymore. We also won’t print detailed responses from the REPL. The example above is what you should do in your REPL session. However, in the book we’ll only print

 def increment(x: Int): Int = {
 x + 1
}

increment(6)
→ 7

 As you can see, we denote answers from the REPL using →. It means, “After entering the code above and pressing Enter, the REPL should respond with a value 7.”

 	
 >

 	
 We will use this graphic to indicate that you should try to write code in your own REPL session.

 Now, let’s try to write and call another function we met earlier:

 	
 >

 	
 def wordScore(word: String): Int = {
 word.length()
}

wordScore("Scala")
→ 5

 	
 >

 	

scala> wordScore("Scala") ①
val res1: Int = 5

 ① Again, this is how the snippet on the above may look in your REPL.

How to use this book

 Before we wrap up this chapter, let’s first go through all the ways this book can and should be used. Remember, this is a technical book, so do not expect to read it from cover to cover in one sitting. Instead, keep the book at your desk, working with it next to your keyboard and a few sheets of paper to write on. Shift your perspective from being a receiver of thoughts to being an active participant. Following are some additional tips.

 Do the exercises

 Make the commitment to do every exercise. Resist the temptation to cut and paste code or absentmindedly transfer it from the book into the REPL. *

 * Don’t look up answers, especially for coffee breaks. It may feel good to solve an exercise very quickly, but it impedes your long-term learning success.

 	
 Quick exercises, coffee breaks, and practicing ... sections

 There are three types of exercises in the book:

 	

 	

 	
 Quick exercises are small exercises that can be completed without any external tools—in your head.

 	

 [image:]

 	

 	
 Coffee breaks are longer and harder and aimed to make you think about a concept from a different perspective. This usually requires you to use a piece of paper or a computer.

 	

 [image:]

 	

 	
 Practicing ... sections are based heavily on repetition. They are used to train your muscle memory in concepts and techniques that are critical in the rest of the book.

 	

 [image:]

 Create a space to learn

 Keep some paper nearby and a few pencils or pens of different colors. Sharpies or flip chart markers are good too. We want you to work in a space that radiates information—not a dull, sterile place.

 Don’t rush

 Work at a pace that is comfortable. It’s OK to not have a consistently steady pace, too. Sometimes we run; other times we crawl. Sometimes we do nothing. Rest is very important. Remember that some topics may be harder than others. *

 * On the other hand, if it feels easy, you’re not learning.

 Write code and lots of it

 This book has hundreds of snippets that you can transfer directly into your REPL session. Each chapter is written as a “REPL story,” but you are encouraged to play with the code, write your own versions, and just have fun! *

 * Remember that all the code you encounter in this book is available in the book’s companion source code repository.

Summary

 In this chapter you learned five very important skills and concepts, which we’ll use as a foundation in the rest of the book.

 Who is this book for?

 We started by defining you—the reader. There are three main reasons you may have chosen this book: maybe you are just curious about FP or you didn’t have enough time or luck to learn it properly before, or maybe you learned it before and didn’t like it very much. Whatever the reasons, our reader is a programmer who wants to learn some new ways of creating real-world applications and do so by experimentation and play. We require that you are acquainted with an object-oriented language like Java.

 What is a function?

 Then, we introduced our protagonist, the function, and talked a little bit about signatures and bodies. We also touched on a problem that we encounter when signatures are not telling the whole story about the body and how it makes programming such a difficult endeavor.

 How useful is functional programming?

 We talked about the difference between imperative and declarative programming, defining, roughly, what functional programming is and how it can help you grow as a software professional.

 Installing needed tools

 We installed sbt and used the Scala REPL to write our first functions in Scala. We learned how the code snippets from the book work in the REPL and how we use → to denote REPL responses in code snippets.

 	
 >

 	
 REPL sessions are marked with this graphic throughout the book. Remember to :reset your session before starting a new chapter.

 Learning how to use this book

 Finally, we went through all the administrative features of the book. We described three types of exercises (quick exercises, coffee breaks, and practicing ... sections), discussed how to prepare your workspace to learn as much as possible, and described how to work with the code snippets. You can copy and paste them into your REPL session, transfer them manually, or :load them from the Scala files included in the book’s repository. Remember to get the source code by going to https://michalplachta.com/book. There is also a README file there that will help you set everything up. ↓

 CODE: CH01_*

 Explore this chapter’s source code by looking at ch01_* files in the book’s repository.

 2 Pure functions

 In this chapter you will learn

 	why we need pure functions

 	how to pass copies of the data

 	how to recalculate instead of storing

 	how to pass the state

 	how to test pure functions

 “Sometimes, the elegant implementation is just a function. Not a method. Not a class. Not a framework. Just a function.”

 —John Carmack

Why do we need pure functions?

 In the last chapter we learned about functions that don’t lie. Their signatures tell the whole story about their body. We concluded that these are the functions we can trust: the fewer surprises there are when we code, the fewer bugs there will be in the applications we create. In this chapter we will learn about the most trustworthy of all the functions that don’t lie: a pure function.

 THIS IS BIG!

 Pure functions are the foundation of functional programming.

 Shopping cart discounts

 Let’s start by looking at an example that doesn’t use pure functions. We’ll go through its problems and try to solve them intuitively first. Our task is to write a “shopping cart functionality” that is able to calculate discounts based on the current cart contents.

 Requirements: Shopping cart [image:]

 	
 Any item (modeled as a String) can be added to the cart.

 	
 If any book has been added to the cart, the discount is 5%.

 	
 If no book has been added, the discount is 0%.

 	
 Items in the cart can be accessed at any time.

 We can design a solution that is a direct encoding of the requirements above. Here’s a diagram of the ShoppingCart class responsible for handling them:

 Note that we sometimes omit types and other details in drawings to make them as clear as possible. Here, we omitted the String type in the addItem parameter list.

 [image:]

 Before we dive into the implementation and real code, let’s briefly go through the diagram above. The ShoppingCart class has two fields, items and bookAdded, which are used as an internal state. Then, each requirement is implemented as a single method. The three methods are being used as a public interface by the rest of the world (class clients).

Coding imperatively

 We designed a solution for our problem by coming up with some state fields and public interface methods. Warning! The design of ShoppingCart has some very serious problems! We will discuss them shortly. If you have already spotted them, good for you! If not, please keep thinking about all the possible ways this design and the code below may be misused.

 [image:]

 Now, it’s time to write some code.

 public class ShoppingCart {
 private List<String> items = new ArrayList<>();
 private boolean bookAdded = false;
 public void addItem(String item) {
 items.add(item);
 if(item.equals("Book")) {
 bookAdded = true;
 }
 }

 public int getDiscountPercentage() {
 if(bookAdded) {
 return 5;
 } else {
 return 0;
 }
 }

 public List<String> getItems() {
 return items;
 }
}

 Here’s the diagram that represents the code snippet at the bottom of the page. The gray area represents state (i.e., variables that will change over time).

 [image:]

 Remember that this is only a small example, which aims to showcase some non-obvious problems that do exist in real codebases and are much harder to detect.

 [image:]

 Looks reasonable, right? If a book is added to the cart, we set the bookAdded flag to true. This in turn is used in getDiscountPercentage to return the proper discount percentage. Both items and bookAdded are called state because these values change over time. Now, let’s look at how we could use this class.

 ShoppingCart cart = new ShoppingCart();
cart.addItem("Apple");
System.out.println(cart.getDiscountPercentage());
console output: 0
cart.addItem("Book");
System.out.println(cart.getDiscountPercentage());
console output: 5

 [image:]

Breaking the code

 Even though all the code we’ve seen so far looks good, the implementation of the ShoppingCart class is still incorrect. And this has a lot to do with the state: items and bookAdded fields. Let’s look at one possible flow in the program to see this problem.

 class ShoppingCart {
 private List items = new ArrayList<>();
 private boolean bookAdded = false;
 public void addItem(String item) {
 items.add(item);
 if(item.equals("Book")) {
 bookAdded = true;
 }
 }
 public int getDiscountPercentage() {
 if(bookAdded) {
 return 5;
 } else {
 return 0;
 }
 }
 public List getItems() {
 return items;
 }
}

 [image:]

 	
 Yes, we didn’t plan for this kind of usage of getItems, but remember that if it is possible, it will most likely be used by someone in the future. When programming, we need to think about all the possible usages to confirm we guard the internal state the best we can.

 	

 [image:]

 After removing the book directly from the list, we create a state that is corrupted: there is no book in the cart, but getDiscountPercentage() returns 5. This problematic outcome arises because the state is handled improperly.

 By the way, using getItems().add would also cause problems! Experienced developers may be quick to disregard this example as an obvious code smell, but rest assured that such problems happen quite often!

Passing copies of the data

 The problem we hit in the previous example can easily be fixed by returning a copy of the List when somebody calls getItems.

 public class ShoppingCart {
 private List items = new ArrayList<>();
 private boolean bookAdded = false;

 public void addItem(String item) {
 items.add(item);
 if(item.equals("Book")) {
 bookAdded = true;
 }
 }

 public int getDiscountPercentage() {
 if(bookAdded) {
 return 5;
 } else {
 return 0;
 }
 }

 public List<String> getItems() {
 return items;
 }
}

 We are not returning the current items state but making a copy and returning it instead. This way nobody will be able to corrupt it.

 public List<String> getItems() {
 return new ArrayList<>(items); ①
 }

 ① We will explain why we are using copies instead of Collections.unmodifiableList in chapter 3.

 This may not seem like a big change but passing copies of data is one of the fundamental things done in functional programming! We will cover this technique in depth very soon. But first, we need to make sure the whole ShoppingCart class is correct—no matter how it’s used.

 Removing an item

 Let’s assume a client of our class, surprisingly, needs an additional functionality that was not specified at the beginning. We learned about it the hard way when our code misbehaved. Here’s requirement #5:

 5. Any item previously added to the cart can be removed.

 THIS IS BIG!

 We pass copies of data in FP instead of changing the data in place.

 Since we are now returning a copy of items, to satisfy this requirement we need to add another public method:

 public void removeItem(String item) {
 items.remove(item);
 if(item.equals("Book")) {
 bookAdded = false;
 }
}

 	
 Is this the end of our problems? Is the code correct now?

 	

 [image:]

Breaking the code . . . again

 We started returning a copy of items and added the removeItem method, which improved our solution a lot. Can we call it a day? It turns out we can’t. Surprisingly, there are even more problems with ShoppingCart and its internal state than one might have anticipated. Let’s look at another possible flow in the program to see a new problem.

 class ShoppingCart {
 private List<String> items = new ArrayList<>();
 private boolean bookAdded = false;

 public void addItem(String item) {
 items.add(item);
 if(item.equals("Book")) {
 bookAdded = true;
 }
 }

 public int getDiscountPercentage() {
 if(bookAdded) {
 return 5;
 } else {
 return 0;
 }
 }
 public List<String> getItems() {
 return new ArrayList<>(items);
 }
 public void removeItem(String item) {
 items.remove(item);
 if(item.equals("Book")) {
 bookAdded = false;
 }
 }
}

 [image:]

 We added two books and removed only one of them. That’s how we created a state that is corrupted: there is a book in the cart, but getDiscountPercentage() returns 0! This problematic outcome arises because, again, the state is handled improperly.

Recalculating instead of storing

 The problem we hit in the previous example can be fixed by taking a step back and rethinking our main objective.

 We were tasked with creating a shopping cart functionality that is able to calculate a discount. We trapped ourselves by trying to keep track of all the additions and removals and imperatively deciding whether a book has been added or not. Instead, we could just recalculate the discount every time it’s needed by going through the whole list.

 [image:]

 What a change! Our code is much safer and less problematic now. All the logic related to discounts is now in getDiscountPercentage. We don’t have the bookAdded state, which caused us so many problems. The only downside of this change is that for very large shopping lists, the discount may take a long time to calculate. We are trading corner-case performance for readability and maintainability. *

 * We will come back to this topic in chapter 3.

Focusing on the logic by passing the state

 Let’s look at the final solution and think a bit about what it really does.

 class ShoppingCart {
 private List<String> items = new ArrayList<>(); ①
 public void addItem(String item) { ②
 items.add(item);
 }

 public int getDiscountPercentage() { ③
 if(items.contains("Book")) {
 return 5;
 } else {
 return 0;
 }
 }

 public List<String> getItems() {
 return new ArrayList<>(items); ④
 }

 public void removeItem(String item) { ⑤
 items.remove(item);
 }
}

 ① items is our internal state that we need to tiptoe around.

 ② addItem is just a wrapper around List’s add method.

 ③ This function is the only original one. It fulfills our requirements.

 ④ getItems is just a wrapper that we need to guard the List by always returning its copy.

 ⑤ removeItem is just a wrapper around List’s remove method.

 The problem with the solution above is that we need lots of boilerplate code to make sure the state can’t be accessed outside of the class. At the same time the most important function, from the business-requirements perspective, is getDiscountPercentage. In fact, this is the only functionality that’s needed!

 We can get rid of all the wrapper functions around items by requiring it to be passed as an argument.

 class ShoppingCart {
 public static int getDiscountPercentage(List<String> items) {
 if(items.contains("Book")) {
 return 5;
 } else {
 return 0;
 }
 }
}

 	
 We use the static keyword to indicate that the function doesn’t need any instance to be useful.

 	

 [image:]

 And this is the functional solution to this problem.

Where did the state go?

 	
 You are probably worried about the latest change in the ShoppingCart class. How can we just remove all the state and leave one function there? What about the remaining requirements? The three below are still not satisfied by getDiscountPercentage in its current form:

 	

 [image:]

 	
 Any item (modeled as a String) can be added to the cart.

 	
 Items in the cart can be accessed at any time.

 	
 Any item previously added to the cart can be removed.

 However, when you look closer, these requirements can be satisfied by any list-like class! And there are plenty to choose from in the standard library. Even if we didn’t have any in the standard library, we could write our own that doesn’t know anything about discounts.

 List<String> items = new ArrayList<>();
items.add("Apple");
System.out.println(ShoppingCart.getDiscountPercentage(items));
console output: 0
items.add("Book");
System.out.println(ShoppingCart.getDiscountPercentage(items));
console output: 5

 [image:]

 As you see, we don’t have any state, we just pass a list of items to our discount-calculation function. We still have all the powers we had before, but now we have less code!

 Separation of concerns *

 We split the requirements into two separate sets that are fulfilled by different pieces of code! This way we have smaller, independent functions and classes, which means they are easier to read and write. In software engineering, this is called a separation of concerns: every piece of code has its own responsibility and is concerned only about it. To see it in action, let’s go through all the requirements and see how they are fulfilled.

 THIS IS BIG!

 In FP, we separate concerns into different functions.

 [image:]

 As you can see, all state handling is now done in the ArrayList class.

 * We will spend more time on this topic later in the book, particularly in chapters 8 and 11.

The difference between impure and pure functions

 We’ve come a long way from an imperative to a fully functional solution. Along the way, we fixed some bugs and discovered some patterns. It’s about time to list those patterns and, finally, meet the protagonist of this chapter. It turns out that the latest version of the getDiscountPercentage function has all the characteristics of a pure function.

 	
 Imperative

 	
 Functional

 	
 class ShoppingCart {
 private List<String> items = new ArrayList<>();
 private boolean bookAdded = false;

 public void addItem(String item) {
 items.add(item);
 if(item.equals("Book")) {
 bookAdded = true;
 }
 }

 [image:] Function doesn't return a value

 [image:] Function mutates existing values

 	
 class ShoppingCart {
 public static int getDiscountPercentage(List items) {
 if(items.contains("Book")) {
 return 5;
 } else {
 return 0;
 }
 }
}

 [image:] Function always returns a single value

 [image:] Function calculates the return value based only on its arguments

 	
 public int getDiscountPercentage() {
 if(bookAdded) {
 return 5;
 } else {
 return 0;
 }
 }

 [image:] Function calculates the return value based on more than just arguments

 	

 	
 public List getItems() {
 return items;
 }
}

 [image:] Function calculates the return value based on more than just arguments

 	

 [image:] Function doesn't mutate any existing values

 [image:]

 THIS IS BIG!

 We use three rules to create pure functions, which are less buggy.

 On the left side you can see the imperative solution we started with. It looked quite OK, but then we analyzed it more deeply and found some problems. We intuitively solved those problems and accidentally ended up with a class with a single static function (on the right).

 Then, we analyzed the differences between those functions. We noticed three characteristics that the functional ShoppingCart has, which are missing in the imperative ShoppingCart class. These are the main rules we should all follow when programming functionally. We don’t really need intuition to solve our problems. Following these rules alone will highlight problems in our code and suggest refactorings. We will discuss this deeply very soon, but first I will let you use these three rules to do a refactoring of your own.

Coffee break: Refactoring to a pure function [image:]

 Now it’s your turn to refactor imperative code into a pure function, but in a totally different piece of code. You are going to refactor the TipCalculator class that can be used by a group of friends to calculate a tip based on the amount of people involved. The tip is 10% if the number of people splitting the bill is from one to five. If a group is larger than five people, the tip is 20%. We also cover the corner case of dining and dashing—when there are no people, then the tip is obviously 0%.

 Here’s the code. Your task is to refactor the class below, so each function satisfies the three rules of a pure function.

 class TipCalculator {
 private List<String> names = new ArrayList<>();
 private int tipPercentage = 0;

 public void addPerson(String name) {
 names.add(name);
 if(names.size() > 5) {
 tipPercentage = 20;
 } else if(names.size() > 0) {
 tipPercentage = 10;
 }
 }

 public List<String> getNames() {
 return names;
 }

 public int getTipPercentage() {
 return tipPercentage;
 }
}

 Rules of a pure function

 	
 Function always returns a single value.

 	
 Function calculates the return value based only on its arguments.

 	
 Function doesn’t mutate any existing values.

 Remember the three techniques we learned about: recalculating instead of storing, passing the state as an argument, and passing copies of data.

Coffee break explained: Refactoring to a pure function [image:]

 It looks like the TipCalculator class suffers from some problems we are very familiar with. We know exactly what we should do.

 First, let’s see which rules are broken by functions in TipCalculator.

 class TipCalculator {
 private List<String> names = new ArrayList<>();
 private int tipPercentage = 0;

 public void addPerson(String name) { ①
 names.add(name);
 if(names.size() > 5) {
 tipPercentage = 20;
 } else if(names.size() > 0) {
 tipPercentage = 10; ②
 }
 }

 public List<String> getNames() { ③
 return names;
 }

 public int getTipPercentage() { ④
 return tipPercentage;
 }
}

 ① addPerson doesn’t return any value. A pure function should always return a single value.

 ② addPerson mutates existing values: names and tipPercentage. A pure function should never mutate any values, it can only create new ones.

 ③ getNames calculates its return value based on the external state (the names variable). A pure function should only use arguments to create the return value.

 ④ getTipPercentage calculates its return value based on the external state (the tipPercentage variable). A pure function should only use arguments to create the return value.

 Recalculating instead of storing

 Let’s fix getTipPercentage first. It calculates its value based on the tipPercentage field, which is an external variable and not passed as an argument. The tipPercentage field is calculated and stored by the addPerson function. To fix the getTipPercentage function, we will need to use two techniques. The first one is recalculating instead of storing.

 public int getTipPercentage() { ①
 if(names.size() > 5) {
 return 20;
 } else if(names.size() > 0) {
 return 10;
 }
 return 0;
}

 ① getTipPercentage still calculates its return value based on an external state, but we are one step closer to making it pure.

 Passing state as an argument

 	
 The getTipPercentage function calculates a discount instead of using the stored value, but it still uses the external names value to do the calculation. We need to pass the state as an argument and make the getTipPercentage function pure. Others, however, are still not pure.

 	

 [image:]

 class TipCalculator {
 private List<String> names = new ArrayList<>();

 public void addPerson(String name) { ①
 names.add(name); ②
 }

 public List<String> getNames() { ③
 return names;
 }

 public static int getTipPercentage(List<String> names) {
 if(names.size() > 5) {
 return 20;
 } else if(names.size() > 0) {
 return 10; ④
 }
}

 ① addPerson still doesn’t return any value.

 ② addPerson mutates an existing value: names.

 ③ getNames calculates its return value based on the external state.

 ④ Since this function is pure, it only uses arguments to calculate the return value. It now recalculates the tip each time getTipPercentage is called with the current list of names. It is much safer than the original version. We don’t have an additional moving part of mutable state, and we can reason about getTipPercentage in isolation.

 Passing copies of data

 To fix addPerson, we need it to stop mutating any existing values and start returning modified copies as return values.

 class TipCalculator {
 public List<String> addPerson(List<String> names, ①
 String name) {
 List<String> updated = new ArrayList<>(names);
 updated.add(name);
 return updated;
 }
 public static int getTipPercentage(List<String> names) {
 if(names.size() > 5) {
 return 20;
 } else if(names.size() > 0) {
 return 10;
 } else return 0;
 }
}

 ① addPerson is now a pure function because it doesn’t mutate any existing values. However, we can also just remove it because it’s only a wrapper around the add method of ArrayList.

 Note that we specifically asked to refactor three functions. However, we slightly changed the API in the process and ended up with two (or just one?) functions. This is how pure function rules can guide us to better and safer APIs!

 And that’s a wrap! We transformed imperative functions into pure ones just by following the three rules. Our code is now easier to comprehend and therefore more maintainable.

In pure functions we trust

 We started this chapter by going through a real-world example that had tricky bugs. We were able to refactor it into a pure function by following three simple rules. It goes without saying that we could also fix the bugs using an imperative approach. However, the point here is that programmers tend to create fewer bugs just by trying to write pure functions than when they follow the requirements and directly encode them as classes and methods.

 We say that pure functions are “easy to reason about.” We don’t have to build large models of state transitions in our brains to understand them. Everything a function can do is right there in its signature. It takes some arguments and returns a value. Nothing else matters.

 THIS IS BIG!

 Pure functions are the foundation of functional programming.

 Mathematical functions are pure

 Pure functions’ existence in programming is inspired by mathematical functions, which are always pure. Let’s say we need calculate the final price of a discounted item we want to buy. The discount is 5%. We get our calculator out and input the price, $20, then press *, then 95 (100% - 5%) and then we get rid of percentages by pressing / 100. After pressing =, we get our final price: $19. What we just did, mathematically speaking, is

 f(x) = x * 95 / 100 ①

 ① If the price is $20, we will pay only $19 after the discount! Pretty cool!

 For any given price x, the function f above will give us a discounted price back. So, if we give 20, 100, or 10 as x, calling f will give us the correct answers:

 f(20) = 19
f(100) = 95
f(10) = 9.5

 f is a pure function because it has three important characteristics:

 	
 It always returns a single value.

 	
 It calculates the return value based only on its arguments.

 	
 It doesn’t mutate any existing values.

 These three characteristics are the main focus of this chapter. We have already applied them in our real programming tasks and seen that we can trust more in our code if it’s built in a pure way.

 Now, it’s time to discuss the characteristics and rules of a pure function in depth. We’ll learn how to detect pure functions and what programming language primitives are needed to write them.

Pure functions in programming languages

 This is the pure mathematical function that calculates a discounted price:

 	
 f(x) = x * 95 / 100

 	
 [image:]

 	
 Math

 	
 Both snippets do the same thing: they calculate 95% of a given value.

 	
 It can be easily translated to Java:

 	

 	
 static double f(double x) {
 return x * 95.0 / 100.0;
}

 	
 Java

 Most importantly, nothing was lost in translation. This function, written in Java, still has the three characteristics of the pure function.

 It returns only a single value

 The Java version of the function, as its mathematical counterpart, exists to do one thing and one thing only: it always returns exactly one value.

 Note that a list is also a single value, although it can hold multiple values inside. That’s OK! The main point here is that a function always returns a value.

 It calculates the return value based on its arguments

 The Java version of the function, exactly like the math version, takes one argument and calculates the result based solely on this argument. Nothing more is used by the function.

 It doesn’t mutate any existing values

 Both the Java and math versions of the function don’t change anything in their environment. They don’t mutate any existing values, and they don’t use nor change any state fields. We can call them many times, and we will get the same result when we provide the same list of arguments. No surprises!

 Pure function

 More generally, we say that a function is pure if

 	
 It returns only a single value.

 	
 It calculates the return value based only on its arguments.

 	
 It doesn’t mutate any existing values.

 Quick exercise [image:]

 Let’s quickly test your intuitions. Are these functions pure?

 	
 static int f1(String s) {
 return s.length() * 3;
}

 	
 static double f2(double x) {
 return x * Math.random();
}

 Answers:

 f1: yes, f2: no.

Difficulty of staying pure ...

 Now we know how we can write pure functions in our programming languages. Assuming they make our programming life better, why aren’t they more prevalent? The short answer is this: because we are not constrained to use them—languages we use don’t require us to.

 The long answer, however, needs some background. Let’s go back to the function that calculates the price we’ll pay after a 5% discount.

 static double f(double x) {
 return x * 95.0 / 100.0;
}

 We already know that it’s pure. However, Java doesn’t constrain us at all: we could get away with a different, not-so-pure implementation. Math, on the other hand, requires us to write only pure functions.

 	
 Math

 We are constrained a lot more when writing or changing mathematical functions. We can’t add “something more” to the function. If somebody uses our function f, they may safely assume that it returns a number when given a number. Math restricts the implementation from doing anything surprising.

 	
 Programming

 In most mainstream languages, we can change and add anything we want almost anywhere we want. In the function f, we could

 double f(double x) {
 spaceship.goToMars(); ①
 return x * 95.0 / 100.0;
}

 ① This function is no longer pure. Even worse! It is lying to us because it may not return a double if this Mars mission fails with an exception.

 And suddenly our promise to the user of f is broken.

 	

 [image:]

 The difficulty of staying pure comes from the fact that programming languages are usually a lot more powerful and elastic than math. However, with great power comes great responsibility. We are responsible for creating software that solves real problems and is maintainable at the same time. Unfortunately, our powerful tools can backfire—and often, they do.

 Let’s be more like math ...

 We already know that the choice between writing pure functions and impure functions is ours to make. We know that we can transfer some of our knowledge of math to our programming endeavors. To do that, we need to focus on three characteristics of a pure function and try to follow them wherever we go.

Pure functions and clean code

 We discovered what rules we should follow to make functions pure. It turns out that all three rules have some specific effects on the way we work. They make our code cleaner. But wait! Their benefits don’t stop here. There are more!

 Pure function

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 Single responsibility

 When a function can return only a single value and can’t mutate any existing values, it can only do one thing and nothing more. In computer science, we say that it has a single responsibility.

 No side effects

 When a function’s only observable result is the value it returns, we say that the function doesn’t have any side effects.

 [image:]

 Q What is a side effect?

 A Anything a function does besides computing its return value based on its arguments is a side effect. So if your function does an HTTP call, it has side effects. If it changes a global variable or an instance field, it also has side effects. If it inserts something into a database, then yes, it has side effects! If it prints to the standard output, logs something using a logger, creates a thread, throws an exception, draws something on the screen, then ... you guessed it! Side effect, side effect, and side effect as well. *

 * Don’t worry, it doesn’t mean you can’t do those things in a functional program! We will do many of them later in this book.

 Referential transparency

 When we can call a function many times—at different times of day and night but with exactly the same parameters—we get exactly the same answer. No matter what thread, what state the application is in, whether the database is up or down—f(20), f(20), f(20) will return 19, 19, 19. This property is called referential transparency.

 If you have a referentially transparent function, you could substitute a function call, say f(20), with its result, 19, without changing the program’s behavior. If the function uses only its arguments to compute a value, and it doesn’t mutate any existing values, it automatically becomes referentially transparent.

Coffee break: Pure or impure? [image:]

 Before we move on to refactoring some impure functions, let’s make sure you understand the three characteristics of a pure function.

 Your task is to judge if a given function has zero, one, two, or three of the pure function characteristics. Zero means the function is impure; three means the function is pure. Any other value means the function is impure with some pure characteristics. For example:

 static double f(double x) {
 return x * 95.0 / 100.0;
}

 Three characteristics are present (it’s a pure function).

 Now it’s your turn. Make sure you analyze each function thoroughly before answering. Use the pure function checklist to guide you. ↓

 Pure function

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 static int increment(int x) {
 return x + 1;
}

static double randomPart(double x) {
 return x * Math.random();
}

static int add(int a, int b) {
 return a + b;
}

class ShoppingCart {
 private List<String> items = new ArrayList<>();

 public int addItem(String item) {
 items.add(item);
 return items.size() + 5;
 }
}

static char getFirstCharacter(String s) {
 return s.charAt(0);
}

Coffee break explained: Pure or impure? [image:]

 To solve this, we need to ask three questions about each function:

 	
 Does it always return a single value?

 	
 Does it compute its value based only on the data provided as arguments?

 	
 Does it stay away from mutating any existing values?

 static int increment(int x) {
 return x + 1;
}

 Pure function

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 Yes, yes, and yes! It’s a pure function.

 [image:]

 static double randomPart(double x) {
 return x * Math.random();
}

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 Yes, no, and yes. This one returns only one value and doesn’t mutate any existing values, but it uses Math.random() to generate random data based on something more than the provided arguments (side effects).

 [image:]

 static int add(int a, int b) {
 return a + b;
}

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 Yes, yes, and yes again! Another pure function!

 [image:]

 public int addItem(String item) {
 items.add(item);
 return items.size() + 5;
}

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 Yes, no, and no. This is an impure function. It returns just one value, but it doesn’t compute it based only on arguments (it uses items state, which may contain various values), and it doesn’t stay away from mutating existing values (again, it adds an item to the items state value).

 [image:]

 static char getFirstCharacter(String s) {
 return s.charAt(0);
} ①

 ① This one may be controversial because it’s an isolated example. Most often, exceptions are treated as another program flow. We’ll come back to this topic in chapter 6.

 [image:] Returns a single value

 [image:] Uses only its arguments

 [image:] Doesn't mutate existing values

 No, yes, and yes. Another impure one. It doesn’t always return a value. It returns the first character of a given String or throws an exception (for the empty String). It uses only data passed as an argument and doesn’t mutate any existing values.

Using Scala to write pure functions

 It’s time for more coding! So far, we’ve seen that we can use Java to write simple pure functions without much hassle. This is also true in many other mainstream languages that support basic functional programming features and allow writing pure functions. However, some functional features that we are going to discuss later in the book have not gone mainstream (yet!), and we will use Scala to present them. *

 Thus, before we dive deeper, let’s stop for a moment and practice writing pure functions in Scala. Here’s the functional Java version:

 class ShoppingCart {
 public static int getDiscountPercentage(List<String> items) {
 if(items.contains("Book")) {
 return 5;
 } else {
 return 0;
 }
 }
}

 In Scala, we use the object keyword to create a single program-wide instance of an object. We use it as a container for pure functions. The Scala equivalent of the Java function above looks like this:

 object ShoppingCart { ①
 def getDiscountPercentage(items: List[String]): Int = { ①
 if (items.contains("Book")) { ②
 5 ②
 } else { ②
 0 ②
 } ②
 } ②
}

 ① object contains functions. def marks a function.

 ② There is no return key word because if in Scala and other FP languages is an expression. The last expression in the function is used as the return value.

 Using this function is a little bit different than in Java, because Lists in Scala are immutable, which means that once they are created, they cannot be changed. Surprisingly, this helps a lot when programming functionally.

 	
 >

 	
 val justApple = List("Apple")
ShoppingCart.getDiscountPercentage(justApple)
→ 0
val appleAndBook = List("Apple", "Book") ①
ShoppingCart.getDiscountPercentage(appleAndBook)
→ 5

 ① We will focus on immutable values in the next chapter, so treat this as a sneak peek.

 * We will show some code from different languages, not just Java, throughout the book. The main reason for that is to prove that techniques presented here are universal. Additionally, many of them are being introduced into traditionally imperative mainstream languages.

Practicing pure functions in Scala [image:]

 Your task is to rewrite the code below from Java to Scala.

 class TipCalculator {
 public static int getTipPercentage(List<String> names) {
 if(names.size() > 5) {
 return 20;
 } else if(names.size() > 0) {
 return 10;
 } else return 0;
 }
}

List<String> names = new ArrayList<>();
System.out.println(TipCalculator.getTipPercentage(names));
console output: 0
names.add("Alice");
names.add("Bob");
names.add("Charlie");
System.out.println(TipCalculator.getTipPercentage(names)); ①
console output: 10
names.add("Daniel");
names.add("Emily");
names.add("Frank");
System.out.println(TipCalculator.getTipPercentage(names));
console output: 20

 ① Note that in Java snippets we use println to show the value a function returns, while in Scala we just call the function and see the result as a REPL response. If you like this way better, you can try using jshell for Java expressions.

 Notes:

 - List in Scala is created by using the constructor List(...) and passing all the items as comma-separated parameters.

 - You can create an empty list by calling a special function called List.empty.

 - List in Scala can’t be modified, so you need to create an instance for each case.

 - In Scala, a list of strings is written as List[String].

 Answer

 	
 >

 	
 object TipCalculator {
 def getTipPercentage(names: List[String]): Int = {
 if (names.size > 5) 20
 else if (names.size > 0) 10
 else 0
 }
}

TipCalculator.getTipPercentage(List.empty) ①
→ 0
val smallGroup = List("Alice", "Bob", "Charlie")
TipCalculator.getTipPercentage(smallGroup)
→ 10
val largeGroup = List("Alice", "Bob", "Charlie", "Daniel", "Emily", "Frank")
TipCalculator.getTipPercentage(largeGroup)
→ 20

 ① List.empty returns the empty list. Here, we pass an empty list as an argument.

Testing pure functions

 One of the biggest benefits of working with pure functions is their testability. Easy testing is key to writing readable and maintainable production code. *

 Functional programmers often strive to have as many critical functionalities implemented as pure functions as possible. This way, we are able to test them using a very straightforward unit test approach.

 Reminder: Using code snippets from this book

 We have been using > at the beginning of code listings. Please remember it’s a sign that you should execute Scala REPL in your terminal (sbt console) and then follow the listing. Code listings that contain Scala REPL responses are marked as →.

 	
 >

 	
 def getDiscountPercentage(items: List[String]): Int = {
 if (items.contains("Book")) {
 5
 } else {
 0
 }
}
→ getDiscountPercentage
getDiscountPercentage(List.empty) == 1 ①
→ false ②
getDiscountPercentage(List.empty) == 0
→ true
getDiscountPercentage(List("Apple", "Book")) == 5
→ true ③

 ① We don’t use any testing library here—just raw assertions (Boolean expressions). Since we are in the REPL, we can immediately get the result of an assertion.

 ② You get false in the REPL if your assertion is invalid.

 ③ We will use this style of assertions throughout the book.

 Note that pure function–based assertions are stunningly similar to real usage code. You just call a function! This helps a lot with writing better tests. A single line describes both the input and the expected output. Compare the three pure function tests above with a test you’d need to write for the imperative ShoppingCart we started with (in Java):

 ShoppingCart cart = new ShoppingCart();
cart.addItem("Apple");
cart.addItem("Book");
assert(cart.getDiscountPercentage() == 5); ①

 ① This test has multiple lines of the test setup code, which doesn’t help readers understand what’s being tested as quickly as a single-line pure function call. This approach gets even more complicated when we test bigger classes.

 As you can see, imperative code usually needs more test code because you need to set up all the state before making assertions.

 * Testing topics have their own chapter in this book (12), but we will briefly discuss some testing approaches and techniques before we get there to additionally highlight their importance.

Coffee break: Testing pure functions [image:]

 When we use pure functions, we tend to make fewer mistakes. But the benefits don’t end there. Testing is far easier when using pure functions. The last coffee break of the chapter helps you write better unit tests.

 Your task is to write some unit tests for each of the pure functions below. Try to write at least two assertions per function, with each one testing a different requirement. To write the best possible tests, do not look at implementations; just look at signatures and their requirements.

 def increment(x: Int): Int = {
 x + 1
}

def add(a: Int, b: Int): Int = {
 a + b
}

def wordScore(word: String): Int = {
 word.replaceAll("a", "").length
}

 Treat the definition of the word score as a business requirement for a word game.

 The wordScore function gets a string and returns the score of a given word in a word game. The score of the word is defined as the number of characters that are different than 'a'..

 def getTipPercentage(names: List[String]): Int = {
 if (names.size > 5) 20
 else if (names.size > 0) 10
 else 0
}

 The getTipPercentage function gets a list of names and outputs a tip that should be added to the bill. For small groups (up to five people), the tip is 10%. For larger groups, 20% should be returned. If the list of names is empty, the answer should be 0.

 def getFirstCharacter(s: String): Char = {
 if (s.length > 0) s.charAt(0)
 else ' '
}

 The function gets a String and returns its first character. In case an empty String is passed, the space character (' ') should be returned.

Coffee break explained: Testing pure functions [image:]

 Here are some examples of valid tests. This list is by no means complete! Your tests are most certainly different, and that’s OK. The most important thing is to get acquainted with the difference between old-school stateful tests and functional tests of pure functions (plus some REPL exposure).

 def increment(x: Int): Int = {
 x + 1
}
increment(6) == 7 ①
increment(0) == 1 ①
increment(-6) == -5 ①
increment(Integer.MAX_VALUE - 1) == Integer.MAX_VALUE ①

def add(a: Int, b: Int): Int = {
 a + b
}
add(2, 5) == 7 ②
add(-2, 5) == 3 ②

def wordScore(word: String): Int = {
 word.replaceAll("a", "").length
}
wordScore("Scala") == 3 ③
wordScore("function") == 8 ③
wordScore("") == 0 ③

def getTipPercentage(names: List[String]): Int = {
 if (names.size > 5) 20
 else if (names.size > 0) 10
 else 0
}
getTipPercentage(List("Alice", "Bob")) == 10 ④
getTipPercentage(List("Alice", "Bob", "Charlie", ④
 "Danny", "Emily", "Wojtek")) == 20 ④
getTipPercentage(List.empty) == 0 ④

def getFirstCharacter(s: String): Char = {
 if (s.length > 0) s.charAt(0)
 else ' '
}
getFirstCharacter("Ola") == 'O' ⑤
getFirstCharacter("") == ' ' ⑤
getFirstCharacter(" Ha! ") == ' ' ⑤

 ① Four tests should be enough to test different corner cases, such as incrementing positive value, negative value, 0, and a value close to the maximum integer.

 ② Here are some cases with adding positive and negative values. We should also test maximum and minimum values as we did for increment.

 ③ A word with a’s, a word without them, and an empty word.

 ④ A case for each requirement should be written: a small group, a large group, and the empty list.

 ⑤ A case for each requirement should be written: a normal word and an empty word. Additionally it’s good to confirm that words starting with a space will have the same answer as empty words (corner case).

 I hope you enjoyed writing one-line, fast, and stable tests.

Summary

 That’s it! Let’s summarize everything we learned about pure functions.

 Pure function

 	
 It returns only a single value.

 	
 It calculates the return value based only on its arguments.

 	
 It doesn’t mutate any existing values.

 CODE: CH02_*

 Explore this chapter’s source code by looking at ch02_* files in the book’s repository.

 Why do we need pure functions?

 We started with a simple, imperative solution to a real-world problem. It turned out that the solution had some problems, which were connected to handling the state. We concluded that even simple, stateful, imperative computations may present some surprising challenges.

 Passing copies of data

 The first problem appeared when users of our class started using the remove() function on the ArrayList we returned. We learned that we can deal with such problems by passing and returning copies of data.

 Recalculating instead of storing

 There was one more problem left. Even after adding the removeItem API method (which turned out to be missing before), we didn’t handle state updates correctly, which left us with a corrupted state. We learned that we can remove some of the state and just recalculate the discount based on current cart contents every time the discount is needed.

 Passing the state

 We ended up with a class with five methods, four of which were just simple wrappers around ArrayList methods. We decided to remove this boilerplate and pass a List value directly to the getDiscountPercentage function instead. We ended up with a single small function that solves our problem.

 Testing pure functions

 Finally, we briefly talked about another big benefit of pure functions: how easy it is to test them. Testing is important because it doesn’t only ensure the correctness of a solution, but it also acts as its documentation. However, to achieve that, tests need to be concise and understandable. We will come back to this topic and discuss testing in depth in chapter 12.

 3 Immutable values

 In this chapter you will learn

 	why mutability is dangerous

 	how to fight mutability by working with copies

 	what shared mutable state is

 	how to fight mutability by working with immutable values

 	how to use immutable APIs of String and List

 “Bad programmers worry about the code. Good programmers worry about data structures and their relationships.”

 —Linus Torvalds

The fuel for the engine

 In the last chapter we met the pure function, which is going to be our best friend throughout the rest of the book. We introduced and briefly discussed some caveats regarding values that may change—mutable states. This chapter focuses on problems with mutable states and explains why pure functions can’t use them in the majority of cases. We are going to learn about immutable values, which are used extensively in functional programming. The relation between a pure function and an immutable value is so strong that we can define functional programming using just two concepts.

 	

 Functional programming

 is programming using pure functions that manipulate immutable values.

 	

 [image:]

 If pure functions make up the engine of functional programs, immutable values are its fuel, oil, and fumes.

 [image:]

 [image:]

 Q How is it even possible to write fully working applications using only pure functions and values that can never change?

 A The short answer is this: pure functions make copies of data and pass them along. We need specific constructs in the language to be able to easily program using copies. You can find out more by reading the longer answer in this and the following chapters.

Another case for immutability

 We’ve already seen some problems a mutable state can cause when we met the pure function. Now it’s time to reiterate what we have learned and introduce even more potential problems.

 The European trip

 The context of our next example is a trip itinerary. Suppose we want to plan a trip around European cities: from Paris to Kraków. We draft the first plan:

 List<String> planA = new ArrayList<>();
planA.add("Paris");
planA.add("Berlin");
planA.add("Kraków");
System.out.println("Plan A: " + planA);
console output: Plan A: [Paris, Berlin, Kraków]

 [image:]

 But then we learn that one of our friends is a big fan of Mozart and insists on visiting Vienna before going to Kraków:

 [image:]

 List<String> planB = replan(planA, "Vienna", "Kraków");
System.out.println("Plan B: " + planB);
console output: Plan B: [Paris, Berlin, Vienna, Kraków]

 Our task is to write the replan function that will return an updated plan. It will need three parameters:

 	
 A plan that we want to change (e.g., [Paris, Berlin, Kraków])

 	
 A new city we want to add (e.g., Vienna)

 	
 A city before which the new one should be added (e.g., Kraków)

 Based on this specification and the usage example, we may conclude that the replan function should have the following signature:

 [image:]

Can you trust this function?

 Let’s look at one of the possible implementations of the replan function. We will explain this implementation by going through our original example, adding Vienna before Kraków at the end:

 List<String> planA = new ArrayList<>();
planA.add("Paris");
planA.add("Berlin");
planA.add("Kraków");
List<String> planB = replan(planA, "Vienna", "Kraków"); ①

 ① The code on the left is represented graphically using the diagram below. We use the gray area on the left to visualize variables and how they change over time (read top down).

 [image:]

 As you can see, we first create planA, which is our original plan. Then, we call the replan function and request adding Vienna before Kraków.

 	
 Then, inside the replan function, we first figure out before which index the new city (Vienna) should be added (Kraków has index 2). We add Vienna at this index, moving all the other cities one index forward and expanding the list. Finally, we return and save the result as planB. We get the desired result, but we can’t celebrate just yet.

 It turns out that although planB seems to be correct, when we try to print our original planA, it’s different than what we created.

 	

 [image:]

 System.out.println("Plan A: " + planA);
console output: Plan A: [Paris, Berlin, Vienna, Kraków] ①

 ① How did Vienna sneak into the original planA, if we had only added them in planB?

 What happened? Have a look at the top of the page where we created planA. It only had three cities then. How did Vienna sneak into the original plan if we had only added it in planB? Unfortunately, the replan function doesn’t behave as promised. It does more than just return a new plan with a new city. It mutates more than just the returned list.

Mutability is dangerous

 When we use a function that takes a List and returns a List, we assume that a new List is returned. But nothing stops this function from modifying the list it received as a parameter.

 [image:]

 Now we know what happened! Unfortunately, replan lied to us. Even though the returned result is OK, the replan function additionally changed the list that we’d given it as an argument! plan inside the replan function pointed to the same list in the memory as planA outside the function. It promised to return a new value (the List return type suggests so), but instead it just mutated the list we’d given it as an argument! Changes to plan were applied to planA ...

 Experienced developers may be quick to disregard this example as an obvious code smell, but again, please bear in mind that these problems are harder to detect in larger codebases.

 Using mutable values is very dangerous. The replan is just a three-line function, so it’s possible to quickly look at the implementation and understand that it mutates the incoming argument, but there are far bigger functions that require us to pay a lot of attention to avoid introducing such a sneaky bug. There are many more things you need to focus on, and they are not related to the business problem at hand.

 THIS IS BIG!

 Avoiding mutability lies at the heart of functional programming.

 [image:]

Functions that lie ... again

 To solve the problem with the replan function, we need to quickly recall what we discussed in chapter 2: pure functions. This information should give us additional insight into this particular problem we encountered and, hopefully, even more problems related to mutable values.

 Is replan a pure function?

 static List<String> replan(List<String> plan,
 String newCity,
 String beforeCity) {
 int newCityIndex = plan.indexOf(beforeCity);
 plan.add(newCityIndex, newCity);
 return plan;
}

 Pure function

 	
 It returns only a single value.

 	
 It calculates the return value based only on its arguments.

 	
 It doesn’t mutate any existing values.

 	
 replan returns only one value and calculates it based on the provided arguments. But, as it turned out, it mutates existing values (in this case it mutates a list provided as the first argument: plan). So the answer is this: no, replan is not a pure function. Even worse! We needed to look at the implementation to be able to figure it out! At first, we just looked at its signature and assumed that it was a pure function. Then, we used it accordingly. That’s how bugs are introduced.

 	

 [image:]

 Such functions are the worst because they mess with our intuitions.* To understand this better, let’s have a look at other mutating functions we can find in the List API and try to guess which ones are mutating something and may cause us similar headaches.

 [image:]

 Again, these are three methods of the List class from the standard Java library. As you can see, all three of them use different approaches to mutations. This is very counterintuitive and leaves us error prone.

 * Intuition is very important in programming. The more intuitive the API you work with, the more effective you will be and the fewer bugs you will make. That’s why we strive to use intuition to our advantage.

Fighting mutability by working with copies

 To solve the problem we need to make sure that our replan function doesn’t mutate any existing values. We need to make sure that it is pure. Now that we know that users of our function expect us not to mutate values they provide as arguments, we can implement replan differently. We don’t need to change the API—just the internals:

 static List<String> replan(List<String> plan,
 String newCity,
 String beforeCity) { ①
 int newCityIndex = plan.indexOf(beforeCity);
 List<String> replanned = new ArrayList<>(plan);
 replanned.add(newCityIndex, newCity);
 return replanned;
}

 ① Remember referential transparency? If we call the replan function multiple times with the same arguments, do we always get the same result? Before the refactoring, we didn’t. After this refactoring, we do! Our replan function is now referentially transparent!

 Mutating values inside the pure function

 Did you notice how we made a copy of the incoming argument, named it replanned, then mutated it using add? How’s that not violating pure function rules?

 To answer this question, please remember how the third rule of a pure function is constructed. ↓

 Pure function

 	
 It returns only a single value.

 	
 It calculates the return value based only on its arguments.

 	
 It doesn’t mutate any existing values.

 	
 Pure functions don’t mutate any existing values. They can’t modify anything from the argument list or the global scope. However, they can mutate locally created values. In our case, replan creates a mutable List, modifies this list, then returns it. This is what we did in the replan function. Note that the Java programming language supports only mutable collections. However, we can still use the power of pure functions by mutating newly created copies inside functions. After this small change, the replan function behaves as expected, and we don’t have any surprises waiting for us.

 	

 [image:]

 We will show very soon that in functional languages we don’t have to mutate anything—even inside functions. Still, it’s good to know that many functional techniques can be used in traditionally imperative languages, like Java, without any additional functional libraries.

 System.out.println("Plan A: " + planA);
console output: Plan A: [Paris, Berlin, Kraków]
List<String> planB = replan(planA, "Vienna", "Kraków");
System.out.println("Plan B: " + planB);
console output: Plan B: [Paris, Berlin, Vienna, Kraków]
System.out.println("Plan A: " + planA);
console output: Plan A: [Paris, Berlin, Kraków]

Coffee break: Getting burned by mutability [image:]

 	
 It’s your turn to face the dangers of mutability. Here’s another problematic example that uses a different mutable method of List.

 	

 [image:]

 Lap times

 The most important things that are measured in motorsport are lap times. Cars or bikes are going around the circuit and try to record the best possible lap time. The quicker, the better! Here are two functions:

 static double totalTime(List<Double> lapTimes) {
 lapTimes.remove(0);
 double sum = 0;
 for (double x : lapTimes) {
 sum += x;
 }
 return sum;
}

 totalTime requirements

 	
 totalTime should return a total running time for all laps, excluding the first lap, which is an incomplete warm-up lap used to prepare the car and tires.

 	
 Only lists with a minimum of two laps will be passed.

 static double avgTime(List<Double> lapTimes) {
 double time = totalTime(lapTimes);
 int laps = lapTimes.size();
 return time / laps;
}

 avgTime requirements

 	
 avgTime should return average lap time, excluding the warm-up lap.

 	
 Only lists with a minimum of two laps will be passed.

 And here’s a sample usage of the functions above that generates a problem:

 ArrayList<Double> lapTimes = new ArrayList<>();
lapTimes.add(31.0); // warm-up lap (not taken into calculations)
lapTimes.add(20.9); ①
lapTimes.add(21.1);
lapTimes.add(21.3);
System.out.printf("Total: %.1fs\n", totalTime(lapTimes)); ②
System.out.printf("Avg: %.1fs", avgTime(lapTimes));

 ① A list is created, and four lap times are added as doubles (in seconds).

 ② We print the results of the functions with 0.1 precision.

 Think for a while about what could possibly go wrong there. Can you list as many potential problems as possible? Which part is the most suspicious? The code above, unfortunately, prints incorrect values:

 Total: 63.3s
Avg: 21.2s

 Your task is to figure out what the correct result should be and fix totalTime and/or avgTime accordingly.

Coffee break explained: Getting burned by mutability [image:]

 First, let’s figure out what the correct result should be. We can try to calculate average and total time in our heads.

 ArrayList lapTimes = new ArrayList<>();
 total laps avg
lapTimes.add(31.0); // warm-up lap │ 0.0 0 -
lapTimes.add(20.9); │ 20.9 1 20.9
lapTimes.add(21.1); │ 42.0 2 21.0
lapTimes.add(21.3); │ 63.3 3 21.1

System.out.printf("Total: %.1fs\n", totalTime(lapTimes));
System.out.printf("Avg: %.1fs", avgTime(lapTimes));

 If the functions had been written according to the specification, the code above would have printed

 Total: 63.3s
Avg: 21.1s

 But when we run it, we get the following:

 Total: 63.3s
Avg: 21.2s ①

 ① Why is there 21.2 instead of 21.1 that we calculated manually?! What happened?

 OK, so we got the proper result from totalTime (63.3). But why did we get a different average time (21.2) than the one we calculated manually (21.1)? Was it a rounding error? Or just a bug in the function we missed?

 Debugging mutations in totalTime

 Let’s find out by debugging both functions, starting with totalTime.

 [image:]

 The totalTime function gets a list of four lap times, removes the first one, then adds all the remaining doubles together, returning it back to the caller. It all seems reasonable, and indeed, we get the right result when we run it. So far so good.

 Debugging mutations in avgTime [image:]

 [image:]

 We can see that when we run avgTime in isolation, we get the correct result of 21.1. So why did we get 21.2 when we run the code below? This is still a big mystery, but let’s not lose hope just yet.

 System.out.printf("Total: %.1fs\n", totalTime(lapTimes));
console output: Total: 63.3s
System.out.printf("Avg: %.1fs", avgTime(lapTimes));
console output: Avg: 21.2s

 Debugging mutations in both totalTime and avgTime

 [image:]

 As you can see, the bug is not presenting itself when we use each function individually. It appears only when we use those functions in a bigger program. Mutation tricked us!

 Making functions pure by mutating copies [image:]

 We already learned how to deal with these kinds of problems. totalTime and avgTime are not pure functions because they mutate an existing value—in this case, lapTimes. To fix it, we need to work on a copy of the lapTimes inside both functions.

 static double totalTime(List<Double> lapTimes) {
 List<Double> withoutWarmUp = new ArrayList<>(lapTimes);
 withoutWarmUp.remove(0); // remove warm-up lap
 double sum = 0;
 for (double x : withoutWarmUp) {
 sum += x;
 }
 return sum;
}

static double avgTime(List<Double> lapTimes) {
 double time = totalTime(lapTimes);
 List<Double> withoutWarmUp = new ArrayList<>(lapTimes);
 withoutWarmUp.remove(0); // remove warm-up lap
 int laps = withoutWarmUp.size();
 return time / laps;
}

 Now, both functions are completely pure: they return a single value, which is computed based only on the arguments, and both of them don’t mutate any existing values. We can now trust those functions more because they behave more predictably. Again, this feature is called referential transparency. Our functions will return exactly the same value when we provide them exactly the same arguments—no matter what.↓

 If we can call a function multiple times with the same set of arguments and we always get the same result back, we say that this function is referentially transparent.

 Can we do better?

 Some of you probably wonder about the code duplication we introduced in the solution. Removing the warm-up lap functionality is duplicated in both functions. This is a slightly different problem, which violates a very popular rule: don’t repeat yourself (DRY). We will address the problem and the rule later in this book because we need another tool to solve it functionally.

 If you tried to solve this problem while doing the exercise and came up with a working solution that still doesn’t mutate any existing values, good for you! If not, however, don’t worry because you will learn how to do it soon enough. Right now, we need to focus only on avoiding mutability.

Introducing shared mutable state

 The problem that hit us in our previous examples is just one of many that are related directly to using and manipulating a shared mutable state.

 What is shared mutable state?

 A state is an instance of a value that is stored in one place and can be accessed from the code. If this value can be modified, we have a mutable state. Furthermore, if this mutable state can be accessed from different parts of the code, it’s a shared mutable state.

 [image:]

 Let’s go through our problematic examples and define which parts caused us headaches and could be categorized as a shared mutable state. *

 * Note how we change our focus from functions that operate on data (i.e., add or remove) to the data itself (i.e., plan and lapTimes).

 List<String> plan

 	
 This is a state because it can be accessed.

 	
 It’s mutable.

 	
 It’s shared (used and modified by replan and inside the main program).

 [image:]

 Here, the mutable shared state is the plan parameter! replan is not a pure function because of it.

 List<Double> lapTimes

 	
 This is a state because it can be accessed.

 	
 It’s mutable.

 	
 It’s shared (by avgTime, totalTime and main program).

 [image:]

 As you can see, both plan and lapTimes are shared mutable states.

 Shared mutable state is the building block of imperative programming.* It may take different forms: a global variable, an instance field in a class, or any kind of read–write storage like a database table or a file. It can also be passed as an argument. Most importantly, as we have just witnessed, it can cause some serious problems.

 * As you probably remember, imperative programming is all about following some step-by-step procedures. These procedures usually work on mutable states (e.g., sorting algorithms modify the arrays in place).

 [image:]

State’s impact on programming abilities

 A programmer’s brain gets easily overloaded. While programming, we need to keep many things in mind. The more things we need to take care of, the higher the probability is of missing something or getting something wrong. This problem isn’t directly related to the mutable state, but programming in general. However, mutable state is a starting point to the rest of the discussion.

 The more things we need to keep track of, the higher the cognitive load of a task is.

 [image:]

 In the previous example, we had a replan function that took a plan as a parameter and returned a new plan. Even though we used planA as an input to replan and planB to store the result of calling the replan function, we were operating on the same mutable object the whole time!

 Firstly, if we need to keep many things in mind to solve a programming problem—and usually we do—the problem gets a lot harder if these things can change anytime, such as between function calls or even between two lines of code (programming using threads).

 Secondly, if these ever-changing things are additionally shared, there’s a problem of ownership and responsibility for them. We need to constantly ask ourselves: “Can I safely change this value?” “What other parts of the program use this value?” and “If I change this value, what entity should I notify about this change?”

 Thirdly, if many entities can change a given state, we may have problems identifying all possible values of this state. It’s very tempting to assume that this state has values that can be generated only by the code at hand. But it’s a false assumption if this state is shared! Remember how we assumed that once a plan has been created, it cannot be changed because the replan function returns a new plan? ↓

 [image:]

 Mutable shared states are that we need to pay attention to while programming. Each part can move independently and nondeterministically. This is what makes mutable shared states hard.

 All these moving parts add to the complexity of our program. The bigger the codebase is, the harder all the above problems get! You have probably encountered a very common issue: changing a value in one place of the source code caused all sorts of hellish problems in another, seemingly very distant, place. This is the complexity of a shared mutable state in action.

Dealing with the moving parts

 Finally, we can talk about techniques that directly deal with the moving parts, or shared mutable states. We’ll introduce three approaches: the approach used when we fixed the replan function, an object-oriented approach, and a functional approach.

 Our approach

 	
 replan

 	
 static List<String> replan(List<String> plan, ①
 String newCity,
 String beforeCity) {
 int newCityIndex = plan.indexOf(beforeCity);
 List<String> replanned = new ArrayList<>(plan); ②
 replanned.add(newCityIndex, newCity);
 return replanned; ③
}

 ① This is a pure function. It returns a single value, which is calculated based only on the arguments. It also doesn’t mutate any existing values.

 ② We need to make sure it doesn’t mutate any existing values by creating a totally new list and copying elements from the incoming list.

 ③ This function can be trusted. You will always get the same result if you provide the same arguments.

 Object-oriented approach

 In object-oriented programming (OOP) we’d probably use encapsulation to guard the changing data.

 Encapsulation

 Encapsulation is a technique that isolates a mutable state, usually inside an object. This object guards the state by making it private and making sure that all mutations are done only through this object’s interface. Then, the code responsible for manipulating the state is kept in one place. All the moving parts are hidden.

 	
 Itinerary

 	
 private List<String> plan = new ArrayList<>(); ①

public void replan(String newCity, String beforeCity) {
 int newCityIndex = plan.indexOf(beforeCity);
 plan.add(newCityIndex, newCity); ②
}

public void add(String city) { ③
 plan.add(city);
}

public List<String> getPlan() {
 return Collections.unmodifiableList(plan); ③
}

 ① In object-oriented programming, data and methods that change this data are coupled together. Data is private; it can be mutated only by methods.

 ② This method returns void because it mutates data in place. We lose the previous version of the plan. Additionally, it can’t be trusted because the result of calling it with the same arguments may be different (depending on the state).

 ③ If we allow mutations, we need to explicitly expose them as separate methods.

 ④ We need to be very careful not to leak the internal data to the users of the class. We need to return a copy or a view to make sure nobody else mutates our state (i.e., it doesn’t become shared). The bigger the class is, the more taxing and error-prone this becomes.

OEBPS/OEBPS/Images/icon_cart.png

OEBPS/OEBPS/Images/01-02.png
int a

int b

add

int

OEBPS/OEBPS/Images/03-10.png
lapTines

totalTime

static double totalTime(List<Double> lapTines) {
1apTimes. remove(0) ;
double sunm = 0;
for (double x : lapTimes) {
s 4= x;

}

return sum;

1

63.3

OEBPS/OEBPS/Images/icon_exclamation_mark.png

OEBPS/OEBPS/Images/02-01.png
ShoppingCart

items: List<String>

Any item
can be added bookAdded: boolean If any book has been added
to the cart. to the cart, the discount is 5%.

~——W |addIten(item): void
getDiscountPercentage(): int Ifnobook
getItems(): List<String> ‘has been added,

(' the discount is 0%.
Ttems in the cart can be accessed any time.

OEBPS/OEBPS/Images/03-01.png

OEBPS/OEBPS/Images/icon_checkers.png

OEBPS/cover.jpeg
functional
programming

Michat Ptachta

WY

AR RN \
’siz\\\\‘
\\ ‘\\‘\\

OEBPS/OEBPS/Images/03-11.png
avgTime.

static double avgTime (List<Double> lapTimes) {
double tine = totalTine(lapTimes); €3.3
int laps = lapTimes.size(); 3
return tine / 1aps; 63373

1

OEBPS/OEBPS/Images/01-01.png
Input value ¢ Output value
— — — =

OEBPS/OEBPS/Images/03-02.png
Paris Berlin Krakéw
—————

Q

OEBPS/OEBPS/Images/03-04.png
static List<String> replan(List<String> plan, ‘We take a given plan,
String neuCity, ertnewCity
retun it as a new plan. String beforeCity) J before beforeCity,and...

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/01-05.png
define function parameter a parameterb function add
named add has type Int has type Int returns type Int

— " ™ "
def add(a: Int, b: Int): Int = {
a+ b -

function add has a body

1 body consists ofa single expression
defined inside (optional) braces

OEBPS/OEBPS/Images/03-13b.png
totalTime

static double totalline(List<Double> lapTimes) {
lapTimes.remove(0);
double sun
for (double x
sun += x;
1

return sum;

lapTimes) {

OEBPS/OEBPS/Images/icon_question_mark.png

OEBPS/OEBPS/Images/03-16.png
replan called

plamA —[paris

plan—|

replan returned

planA —| Paris

plang — | Krakow

OEBPS/OEBPS/Images/03-03.png
Paris Berlin kow

: Vien Krakow

OEBPS/OEBPS/Images/icon_bracket_right.png

OEBPS/OEBPS/Images/01-04.png
Style of

writing code\
Functiom\/ \ Functional
concepts

thinking

OEBPS/OEBPS/Images/icon_check_off.png

OEBPS/OEBPS/Images/icon_error.png

OEBPS/OEBPS/Images/02-04-1.png
public class ShoppingCart {
private List<Strings itens = new Arzaylist<>();
privete-boodeen-bookdded —fetae;

public void addIten(string iten) {
items. add(item); ‘We are removing the bookAdded state

and moving the logic that calculates it

from addten/renoveItem to
getDiscountPexcentage.

public int getDiscountPercentage() { ~ Public int getDiscountPercentage() {

1£(bookadded) { 1£(items. contains("Book")) {
zeturn 5; return 5;
}else { }else {
return 0; return 0;
i i
i i

getDiscountPercentage
calculates the discount by going
through the list cach time the

discount is needed.

public List<String getTtens() {
retum new ArzayListo>(itens);

i

public void removelten(String iten) {
itens. zenove iten);
“bookAdded ~ £alse;
N
i
1

OEBPS/OEBPS/Images/icon_coffee.png

OEBPS/OEBPS/Images/01-03c.png
int a
divide int

int b —

OEBPS/OEBPS/Images/03-15.png
lO
&=

OEBPS/OEBPS/Images/03-07.png
time

planA —

plan —

planA —|
plan—|

plana —

planB —

eplan

replan
called

Paris

Berlin

Vienna
Krakow | replan

static List<String> replan(List<String> plan, plan
String neuCity, “Vienna"
String beforeCity) { "Krakow"
int neuCityIndex = plan. index0f (beforeCity);
plan.add(neuCityIndex, neuCity);
return plan;

1

Tjjti/

plan

plan is just a reference to the same list in memory

as planA, so any modification to plan is also done
toplanA.

OEBPS/OEBPS/Images/icon_tick_in_circle.png

OEBPS/OEBPS/Images/01_preface.png

OEBPS/OEBPS/Images/icon_guy_exclamation_mark_2.png

OEBPS/OEBPS/Images/icon_arrow-double.png

OEBPS/OEBPS/Images/02-07.png

OEBPS/OEBPS/Images/icon_bracket_left.png

OEBPS/OEBPS/Images/02-02a.png
‘ShoppingCart

itens —

bookAdded

addten(iten)
getDiscountPercentage()
getltens()

‘cart.addItem("Appl

OEBPS/OEBPS/Images/03-05.png
time

planA —

plan—

planB —

replan
>
replan | Static List<String> replan(List<String> plan, plan
called String neuCity, “Vienna"
String beforeCity) { “Krakéw"
int newCityIndex = plan.indexOf (beforeCity); 2
plan.add(neuCityIndex, neuCity);
return plan;
}
replan
returned
. nane
/ Read this diagram from the top to the bottom. The gray >
blan areais the memory which changes over time. A name

pointing to a gray box represents a snapshot of a specific
memory address at a particular time.

OEBPS/OEBPS/Images/03-14.png
olejo
@O0
@HE
nE®

OEBPS/OEBPS/Images/01-03d.png
eat

Soup

Soup sou
20up Souh,

OEBPS/OEBPS/Images/02-06.png
If any book has been

added to the cart, the i ArroyList
e getdiscountPercentoge Any item o ""d% e
can be added
int getDiscountPercentage(List<string> itens) {| to the cart. rglementing the Lt interfoce
If no book if(itens. contains ("Book")) { P |add(string): void
has been added, return 5; An item »| remove(string): void
e || Batot canbe remioved | | iterator(): Iterator
retumn 0; from the cart.
}
k Items in the cart can be accessed any time.

OEBPS/OEBPS/Images/icon_check_ON.png

OEBPS/OEBPS/Images/03-13a.png
replan

static List<String> replan(List<String> plan,
String newCity,
String beforeCity) {
int neuCityIndex = plan.indexOf (beforeCity);
plan.add(newCityIndex, newCity);
return plan;

1

OEBPS/OEBPS/Images/icon_clock.png

OEBPS/OEBPS/Images/IFC.png
Learn functional programming in the
most practical way possible!

Hundreds of
code snippets... Like this one
Rl Al execustable $rom

your computer!
def parseShous (rauShous: List[String]): List[Tushou] = {

rawShows // List(The Wire (2002-2008)], (Chernobyl () |)

.map (parseShou) // List(Sone((TvShow(The Wire, 2002, 2008)]), None)

.map(_.toList) // List(List((TvShow(The Wire, 2002, 2008)|), List())

.flatten // List((TvShow(The Wire, 2002, 2008)|)

...and accompanying illustrations

flatten goes through each of the lis
all their elements into the resulting list in the same order.

"
List[List[A]].flatten: List[A]

List(List(C]C], ListO, List([l
Sust(COMRE)

List([)) . flatten

Twelve chapters, each including a éﬂ
different real-world scenario S
You will implement a travel guide, a planner, a $
meeting scheduler, a TV show parser, a music

artists search engine, a currency exchange, and
many more applications!

OEBPS/OEBPS/Images/01-03a.png
int a

odd int

int b e P

OEBPS/OEBPS/Images/02-04.png
ShoppingCart cart = new ShoppingCart ();

ShoppingCart

itens

bookAdded false

cart.addIten("Book")

addlten(iten)
getDiscountPezcentage ()
getItens()
removelten(iten)

\»

cart. addIten("Book")

ShoppingCart

cart.removelten("Book");

itens Book,
Book
bookhdded | true
addlten(iten)
getDiscountPezcentage ()
getItens()
removelten(iten)

\

ShoppingCart

itens Book
bookAdded true
addlten(iten)
getDiscountPercentage()
getItens()
removelten(iten)

ShoppingCart

itens Book
bookAdded false
addlten(iten)
getDiscountPezcentage()
getItens()

removelten(iten)

OEBPS/OEBPS/Images/03-12.png
lapTimes System.out.printf("Total: %.1fs\n", totalTime(lapTimes));

‘otalTime

static double totalTime(List<Double> lapTimes) {
apTines. renove(0);

double sum = 0;

for (double x : lapTimes) {
sum 4= x;

}

return sum;

}

System.out.printf("Avg: %.1fs", avgTime(lapTimes));

ovgTime

209 static double avgTine(List<Double> lapTines) {

21| | double time = totalTine(lapTimes); 42.4

2.3 > 212
ohalTere

static doble totallin (Listdouble> apTines) {
LipTines.zenove 0);

Fres domtesin = —eian 1
W o e - i) € 7
2

1 T
3)
A 1
1 int laps = lapTimes.size(); 2
B return tine / 1apsi 42,4 /2

¥

OEBPS/OEBPS/Images/icon_guy_asking.png

OEBPS/OEBPS/Images/02-02b.png
ShoppingCart
itens

mwmn

addlten(iten)
getDiscountPercentage()
getltens()

‘cart. addItem("Book

OEBPS/OEBPS/Images/02-05.png
s [

items.add("Apple”);

items

items. add("Book");

l

items

OEBPS/OEBPS/Images/03-09.png
Removes a string from this list
(void return type assures us that
that mutation is the only possible List<string

outcome).
~— | rerove(string): void
Appends all clements | addAll(collection): boolean
of collection (, subList(from, to): List<String>

to the end of this list.

Returns a list which is a view to the this list (it doesn't mutate directly, but if
the returned view is modified, then the mutation is also visible in this list).

OEBPS/OEBPS/Images/icon_curvy_line.png

OEBPS/OEBPS/Images/02-020.png
ShoppingCart

items: List<String>
bookAdded: boolean

addIten(item): void
getDiscountPercentage(): int
getItems(): List<String>

OEBPS/OEBPS/Images/01-03b.png
get

String s - char
tring s [Fiest | __ShAT

Character]

OEBPS/OEBPS/Images/02-03.png
ShoppingCart cart = new ShoppingCart();

ShoppingCart,

items

bookAdded | false

cart. addlten("Apple’ Shopprgcart
addIten(item)
getDi scountPercentage()
getItems() items Apple

bookAdded | false

cart.addIten("Lemon");

addlten(item)
getDiscountPercentage()
getItems()
ShoppingCart
items Apple,
Lenon
bookAdded | false
ShoppingCart
addIten(item)
getDi scountPercentage() s e
getItems() o

bookAdded | true

addlten(item)
getDiscountPercentage()
getItems()

cart.getIte

ShoppingCart
items Apple,
Lenon

bookAdded | true

addIten(item)
getDi scountPercentage()
getItens()

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/03-13.png
shared mutoble state
S |\ ——; S——y
“This value “This value “This value
can be accessed can be modified is stored ina
from many parts in place. single place and
of the program. is accessible.

OEBPS/OEBPS/Images/02-02c.png
addIten(iten)
getDiscountpercentage()
getTtens ()

OEBPS/OEBPS/Images/03-08.png
Can replan change
the lists I provide?

s the returned list
acopy or a view?

Can I reuse the list I
provided as an argument?

