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foreword


  At the dawn of a new decade, developers are confronted with a myriad of database options when beginning a new project. The stalwart relational database still rules the roost, maintaining popularity in both legacy and greenfield projects. This is for good reason; flexibility and forty plus years of cumulative engineering history are hard to argue with. Despite the success of relational databases, the last decade saw an explosion of new commercial and open-source database systems that were designed around alternative models and query languages. Some tackle traditional RDBMS workloads with a new twist, perhaps focusing horizontal scale out or high performance via the embrace of in-memory optimization that have become available due to decreases in RAM prices. Many other systems diverged from the relational model altogether. Out of this set, we find a variety of focus areas and modeling paradigms. This book focuses on one of the more expressive and powerful developments, the graph model, and the property graph in particular.


   Graph databases aren’t a new thing. Hierarchical and navigational databases have existed since the 60s, but these have recently experienced an increase in developer popularity. I think this is largely due to the intuitiveness of the property graph data model. People are already wired to think in graphs. If you draw a graph on a whiteboard, technical and non-technical folks get it. Consequently, after you overlay the graph model onto your software tasks at hand, everything starts to look like a graph problem.


  With all that said, we’re still dealing with technology, and the available property graph databases are the newer technology at that, so there isn’t any magic. This is where Dave and Josh come in. I can’t imagine a better pair to help lay out the signposts and guide you on the journey to graph understanding. Both are accomplished graph architects and developers that have been involved in this junior space since before its recent uptick in popularity. Having worked in graph-based product development and consulting, they’ve racked up years of real-world experience.


  This experience has influenced their pragmatic approach to the problems of graph application development, and though both proponents of graphs, they’re proponents with a healthy dose of skepticism and are not overly fascinated with the technology. After all, as mentioned, one of the first and most important questions new developers have is, “Is this a graph problem?” As you make your way through this book, you’ll hone an intuition for translating real world problems into graph data models and build up your Gremlin query chops, a popular and powerful property graph query language. The rubber meets the road in chapter 6 where you use this knowledge to build your first graph application. By the time you’ve finished, you’ll have the knowledge to evaluate if a graph database is a good fit for your next project, and if so, to execute on that vision having already built an example graph database application.


  Ted Wilmes


  Data Architect & JanusGraph Technical Steering Committee Member


  Expero Inc.


  
preface


  Two complementary trends started in the mid to late 2000s. First, companies began using and collecting more data on their customers, competition, and users than ever before. Second, the information companies wanted from this data became more complex, often containing hidden connections. These two trends drove the need for an easier exploration of expansive, yet highly connected data. Graph databases met that need.


  Both the authors have gotten an up-close and personal view of this market as the technology, usage, and adoption of graph technology has matured. We both started using graph databases in the mid 2010s while working for a niche software consulting company. Independently, we each worked on projects that used graph databases to solve specific types of complex data problems. At that time, graph databases were new and very rough. Despite the challenges of working with new technologies, we both recognized the power of this tool and were hooked.


  Since then, we have spent countless hours banging our heads against a proverbial wall to understand all the intricacies and nuances of building graph-backed applications. This book is the distillation of those countless hours of struggle. It is our hope that the hands-on nature of this book will provide a solid, foundational understanding of the skills needed to build graph-backed applications and, in the process, help you to avoid some of the pitfalls that we encountered.
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about this book


  This book is written for anyone building applications using graph databases. It is designed to provide a foundational understanding of graphs and graph databases, as well as to provide a framework for building applications using common graph database patterns. To teach this framework, this book follows the development lifecycle of a fictitious application called DiningByFriends. We use this application throughout the book to provide a realistic grounding of graph principles and examples of the concepts and content we teach. In many areas throughout this book, we compare and contrast the differences between building a graph-backed application and using the more traditional relational database model. By the end of this book, you will not only have the skills needed to build your own graph-backed application, but you will have built your first application, DiningByFriends.


  
Who should read this book


  This book is for application developers, data engineers, and database developers who want to use graph databases as the backing data store for their applications. Throughout this book, we do not expect the reader to have any prior experience using graph databases, but you should be familiar with data modeling concepts, specifically with relational database development, as these are used heavily throughout as a common point of reference. Although all the application code is written in Java, any developer with object-oriented application development experience should be able to follow along with the concepts and content.


  
How this book is organized: A roadmap


  This book is organized into 3 parts, comprising of 11 chapters. In part 1, “Getting started with graph databases,” we establish the foundation for our DiningByFriends application:


  
    	
      Chapter 1 begins with an introduction to graphs and graph terminology. We discuss how graph databases differ from relational databases and how you can use graph databases to solve highly connected data problems. We finish this chapter by discussing what makes a problem a good candidate for using a graph database.

    


    	
      Chapter 2 is where we hit the ground running by building an initial data model for our DiningByFriends application. We start with the types of information needed to begin the data modeling process. We then show how to turn this information into a conceptual data model. Finally, we walk through a framework for taking our business needs and our conceptual data model and turn that into our initial data model using the elements of a graph database: vertices, edges, and properties.

    


    	
      Chapter 3 begins a set of three chapters focused on learning the process of querying a graph database, known as traversing. We begin by teaching you how to retrieve and filter data from our graph. We follow this with learning how to navigate the structure of our graph and how that differs from working with a relational database. Then we finish up this chapter by demonstrating the ease with which you can recursively traverse through a graph to retrieve complex, interconnected data.

    


    	
      Chapter 4 continues our exploration of graph traversals with data mutation use cases. We then show how you can traverse the graph to find the entities and relationships that connect two items, known as the path. Finally, we look at how to leverage properties on relationships to filter the traversals and increase their performance.

    


    	
      Chapter 5 finishes our initial focus on graph traversals with a discussion of ways to format the results of our traversal into a desired output. Additionally, you learn how to perform common operations such as sorting, filtering, and limiting the results returned.

    


    	
      Chapter 6 begins the process of building our DiningByFriends application by taking the traversals we developed in chapters 3, 4, and 5 and walking through incorporating these into a Java application. Then we’ll process the results to complete this first part.

    

  


  In part 2, “Building an application with graph databases,” we extend the concepts introduced in part 1:


  
    	
      Chapter 7 uses the foundations of data modeling from chapter 2, as well as what you learned about traversing a graph, to extend the data model for more complex use cases, such as recommendation engines and personalization.

    


    	
      Chapter 8 leverages a recommendation engine use case to demonstrate the power of using a known-walk pattern to create a robust recommendation application pattern.

    


    	
      Chapter 9 uses our personalization use case to demonstrate how to use a subgraph access pattern within a graph-backed application.

    

  


  In part 3, “Beyond the basics,” we move past the DiningByFriends application to discuss our next steps in the application development process.


  
    	
      Chapter 10 discusses how to debug and troubleshoot common performance problems with traversals. We then investigate exactly what supernodes are and why they cause issues in graph-backed applications. We follow up these common performance problems with common application and traversal pitfalls and anti-patterns, as well as how to recognize and avoid them.

    


    	
      Chapter 11 takes a forward-looking view and discusses some of the next steps you might want to take with your graph-backed application. We also discuss some of the most common graph analytics algorithms and how you can apply these to solve a specific problem. Finally, we wrap up this chapter with a brief overview of how to leverage graphs in machine learning (ML) application.

    

  


  
About the code


  This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page size in the book. In rare cases, even this was not enough and code listings include line-continuation markers (➥). Additionally, code annotations accompany many of the listings, highlighting important concepts.


  The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/graph-databases-in-action, and from GitHub at https://github.com/bechbd/graph-databases-in-action.


  
About the technologies


  Our goal throughout this book is to equip the reader with the conceptual knowledge needed to build graph-backed applications. However, in order to provide practical examples of these concepts, we had to make decisions regarding the technologies used for demonstration.


  Our first decision was to pick the type of database. We decided to use a labeled property graph database, instead of, for example, an RDF store or triplestore database. Labeled property graph databases are the most common type we have seen in production use and seem to be the ones with the most momentum behind them. Additionally, these are the closest to the familiar concepts of relational databases, so labeled property graph databases are quite effective for comparisons.


  This lead us to our next decision: the traversal language to use, openCypher or Gremlin.


  While there’s a strong case for using openCypher, the goal of this book is to remain as vendor-agnostic as possible. It is important to us that these concepts and techniques are easily transferable to many popular databases when you start to build your applications. In the end, we decided to use the Apache TinkerPop version 3.4.x framework because it currently has the most database vendors with compatible implementations.


  We have been questioned multiple times during the proposal and review processes as to why we chose this stack over a Neo4j/Cypher stack. Given the popularity of the Neo4j ecosystem this is a fair question which deserves fuller comment. There are three reasons we chose TinkerPop’s Gremlin for the illustrations throughout this book:


  
    	
      Gremlin is a better tool for teaching how a traversal works.

    


    	
      Gremlin is a common language of choice for enterprise applications.

    


    	
      Gremlin is the most portable language between property graph databases.

    

  


  As for the first reason, we believe that the imperative design of Gremlin provides a better teaching tool for learning how a graph traversal works compared to the declarative approach of Cypher/openCypher. The syntax of Gremlin requires that we think about how we are moving through our graph in order to determine where we will move next. While we do appreciate the simplicity of Cypher/openCypher, it can also obfuscate critical technical matters, especially when dealing with issues of performance or scale. So while Cypher/openCypher is a great starting point for learning how to work with connected data, we feel that Gremlin is better suited for building high performing, scalable data applications.


  Because Gremlin is the common language of choice for enterprise applications, many of these applications were built using TinkerPop-enabled databases. This means that Gremlin is the query language of choice. Some organizations have both Cypher/openCypher and Gremlin applications. But in our experience, the bigger, more complex enterprise-level projects seem to have chosen one of the many TinkerPop-enabled databases or cloud services.


  As for our third choice, at this time, it is easy to say that Gremlin is the most widely available query language across graph database engines. Nearly all of the major cloud vendors (Amazon Web Services, Microsoft Azure, IBM, Huawei, and so forth) offer graph databases or services compatible with Gremlin. The lone exception is the Google Cloud Platform, which offers Neo4j as a service.


  Our goal is not to advocate for one database or language over another. We seek to provide you with a solid foundation for how to use a graph database when building applications with highly connected data and to illustrate how graph databases work under the cover. We think that Gremlin provides the best path to accomplish this.


  With the decision to use TinkerPop’s Gremlin made, we had to pick a specific TinkerPop-enabled database to use. In the spirit of remaining vendor agnostic, we’ve decided to use TinkerGraph for the examples. TinkerGraph is the graph implementation used in the Gremlin Server and Gremlin Console, the reference software provided as part of the Apache Software Foundation’s TinkerPop project.


  Finally, we had to decide on an application programming language to build our example application, DiningByFriends. As Java is the most common language we have used with graph databases, we chose that as our application language. We should note that it is possible to build the same application with other languages such as C#, JavaScript and Python. Not only is it possible, we have done so ourselves. But all the traversals provided in this book are written in Gremlin and any application code is written in Java.


  While almost all the concepts presented throughout this book are not specific to TinkerPop-enabled databases, there are a few we discuss that are unique to TinkerPop. When this is the case, we'll note where a TinkerPop-specific feature is used so that you’re aware that a particular feature might not be available in your graph database of choice. If no such note is given, it is safe to assume that the concept we discuss is applicable to other labeled property graph databases as well.


  
liveBook discussion forum


  Purchase of Graph Databases in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/graph-databases-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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Part 1. Getting started with graph databases

  


  Journeys into new technologies take work, and in this book, our journey will extend your current knowledge of building relational database applications to demonstrate how you can solve complex data problems by building graph databases and graph-backed applications. In this first part, we ease into your journey by establishing concepts, terms, and processes, while highlighting the critical differences required when approaching a problem with a graph mindset.


  Chapter 1 introduces the core concepts of graphs and discusses the types of problems that are well suited for these models. In chapter 2, we establish a data modeling methodology and build a simple data model for a social network that we’ll use in our example application, DiningByFriends. The next three chapters introduce the most common operations that you’ll use to find and manipulate data in graph databases. We approach these operations in three stages, starting with the basics of moving around a graph in chapter 3. Chapter 4 then covers how to perform basic CRUD (Create/Read/Update/Delete) operations before extending the work we did in chapter 3 to perform more complex recursive and pathfinding traversals. In chapter 5, we close our introduction by using simple graph operations to examine ways to organize your results. Chapter 6 completes this part by synthesizing the work from chapters 2 through 5 into our working Java application, DiningByFriends.


  
    
1 Introduction to graphs

  


  This chapter covers


  
    	
An introduction to graphs and graph terminology


    	
How graph databases help solve highly connected data problems


    	
The advantages of graph databases over relational databases


    	
Identifying problems that make good candidates for using a graph database

  


  Modern applications are built on data--data that is ever increasing in both size and complexity. Even as the complexity of our data grows, so do our expectations of what insight our applications can derive from that data. If you are old enough, you likely remember when applications took a long time to load data and had limited features. Today’s reality is different; applications provide powerful, flexible, and immediate insight into data. But for every 100 questions modern applications answer, the most common data tool these use (namely, a relational database) handles only about 88 of those questions well. That leaves 12 types of questions where relational databases struggle. These remaining questions deal with the links and connections within the data, those aspects of the data that can generate powerful and unique insights. This puts us at a crossroad: we can use the relational database “hammer” to pound away at those questions and make this work well enough, or we can take a step back and look at what other tools can answer these questions better, faster, and with less effort.


  By reading this book, you decided to take a step back from your relational database hammer and investigate a road less traveled: graph databases. This book is written for developers, engineers, and architects who are interested in other ways to solve problems specific to working with highly connected data. We assume you are already familiar with relational databases but are interested in learning when, where, and how graph databases are a better tool.


  Our goal with this book is to equip you with the techniques needed to add graph databases as another tool in your toolbelt. We like to think of this book as the guide that we wish we had when we started building graph-backed applications. Throughout this book, we’ll demonstrate common graph patterns that highlight how graph databases enable navigation and exploration of data in ways not easily accomplished with a traditional relational database.


  Our primary approach is through an example of building a fictitious restaurant review and recommendation application we call “DiningByFriends.” As we move through the software development life cycle from planning, to analysis, to design, and on to implementation, this application demonstrates how to think about and work with graph data. Each chapter builds on the previous chapter, and by the end of this book, we’ll have created a functioning application on a graph database. We believe that putting the concepts immediately to work by solving a realistic set of problems, even if they are somewhat simplistic, is the best way to get comfortable using a new technology. Let’s begin our journey with an introduction to what graphs and graph databases are and how they compare with traditional tools such as relational databases.


  
1.1 What is a graph?


  When you look at a road map, examine an organizational chart, or use social networks such as Facebook, LinkedIn, or Twitter, you use a graph. Graphs are a nearly ubiquitous way to think about real-world scenarios as these abstract out the items and the relationships being represented, and this abstraction allows for quick and efficient processing of the connections within the data.


  Let’s demonstrate with a common task: going to the supermarket. Take out a piece of paper and draw out a plan for getting from your house to your supermarket. Chances are it looks something like figure 1.1.


  [image: ]


  Figure 1.1 A graph representing directions to the supermarket


  Figure 1.1 shows a graph where the key items and relationships are represented by abstractions. First, we abstracted key locations, like intersections, and represented these as circles. We then designated the connections between these key intersections as lines, showing how the key intersections are related. This is just one example of how we naturally represent real-world problems as graphs.


  It is human nature to abstract real-world entities and their relationships, and the mathematical name for this abstract construct is a graph. When thinking about a set of data that contains a vast array of highly interconnected items, we might also describe this data set as a web of interconnected things, which is just another way of saying a graph.


  On maps, cities are frequently represented by circles, and the roads that connect these are represented by lines. On an organizational chart (org chart), a circle usually represents a person, normally with an associated title, and lines that connect these people together show the employer-employee relationship. In a social network, people connect to one another via friending or following. This process of generalizing entities and the connections between them is the fundamental basis for graphs and graph theory. Because graphs have been defined and studied by mathematicians for centuries, we can offer these definitions used in graph theory as our starting terms:


  
    	
      Graph --A set of vertices (singular, vertex) and edges

    


    	
      Vertex --A point in a graph where zero or more edges meet, also referred to as a node or an entity

    


    	
      Edge --A relationship between two vertices within a graph, sometimes called a relationship, link, or connection

    

  


  
    Euler and origins of graph theory


    The origins of graph theory are generally attributed to a paper published by Leonhard Euler (pronounced “OI-ler”) in 1736, concerning the Seven Bridges of Königsberg. Königsberg (now known as Kaliningrad) was a Prussian city located on the Pregel river. The river contained two islands and was traversed, or connected, by seven bridges. The experiment was to devise a path that would allow citizens of the town to cross all seven bridges exactly once. Euler approached this problem by creating an abstract representation of the land masses (as the vertices) and the bridges (as the connections or edges) between these. Based on this abstraction, Euler stated that it was not the items specifically that mattered, but the topology of how these items were connected that played the most significant role.


    In his “Seven Bridges of Königsberg” paper, Euler stated that for the problem to be resolved, the graph needed either zero or two nodes with an odd number of connections. Nowadays, any graph meeting this condition is known as an Eulerian graph. If the path visits each edge exactly once, then it contains an Eulerian path. If the start and end vertex are the same, then it has an Eulerian circuit, which is also known as an Eulerian cycle. We share this as an interesting bit of historical context, but in our combined experience, we have never used these academic facts or Eulerian definitions in any real-world problems.

  


  While definitions are nice, graphs have the advantage of being simple to illustrate. When working with graphs, diagrams usually consist of circles representing vertices and lines representing edges, as figure 1.2 shows.
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  Figure 1.2 A graph is easily illustrated with circles for the vertices and lines for the edges.


  Note We use the terms vertex and edge throughout this book. Some graph databases use the term node instead of vertex and relationship instead of edge, but these are conceptually the same.


  Graphs are not new concepts to software developers. These are the basis of many common data structures that we use in software development all the time, likely without even realizing it. Common data structures such as linked lists and trees are simply types of graphs with specific rules applied to them. While these data structures are well known to developers, the actual implementation details specific to graphs are usually abstracted away.


  
1.1.1 What is a graph database?


  A graph database is a data-storage engine that combines the basic graph structures of vertices and edges with a persistence technology and a traversal (query) language to create a database optimized for storage and fast retrieval of highly connected data. Unlike other database technologies, graph databases are built on the concept that the relationships between entities are as or more important than the entities within the data. Because entities and relationships are treated with equal importance in a graph database, we can represent and reason over real-world relationships more accurately and easily, especially when compared to other database technologies. As we’ll show in this book, graph databases are better tools for both representing the rich and varied relationships between things, and recognizing patterns based on these relationships.


  Let’s briefly look at some of the challenges of representing multiple varying types of relationships with relational databases. Relational databases (in a fit of naming irony) are rather poor at representing rich relationships. The relationships in relational databases are foreign keys, which are pointers to primary keys in other tables. These pointers are not things we can observe and manipulate easily. Instead, the foreign keys are followed (at query time) from one row to another row. (Though possible, it is often expensive to follow these in the reverse direction.) Lookup or linking tables move away from the query-time-only-pointer construct to allow for storing attributes about the relationship, similar to the edge-construct in graph databases.


  On the other hand, graph databases provide excellent tools for moving through relationships in our data. By making the connections (edges) as important as the items, the edges connect to (vertices), graph databases represent these associations as full-fledged constructs of the database that can be easily observed and manipulated. This ability to store rich relationships is one of the main reasons that graph databases are better suited to handling complex linked-data use cases. In developer parlance, we might say that edges are “first-class citizens” just like the vertices. That is, the relationships are as critical and useful in the data model as the things or entities.


  As a final point, graph databases enhance developer productivity for certain problems in ways that other technologies cannot. Storing data in a manner that better represents its real-world counterpart can make it easier for developers to reason over and understand the domain in which they are working. This allows new team members to get up to speed more quickly on the domain. They learn the domain and its database representation simultaneously.


  
1.1.2 Comparison with other types of databases


  Though this book is focused on graph databases, and it uses relational databases as the primary foil for comparison, we should note that the database world is not limited to these two types of data stores. In the broadest of terms, a database can be categorized as an engine type in one of the five following ways. Figure 1.3 summarizes the relationships between these types of engines:


  
    	
      Key-value --Represents all data by a unique identifier (a key) and an associated data object (the value). Examples include Berkeley DB, RocksDB, Redis, and Memcached.

    


    	
      Wide-column (or column-oriented) --Stores data in rows with a potentially large number or possibly varying numbers of columns in each row. Examples include Apache HBase, Azure Table Storage, Apache Cassandra, and Google Cloud Bigtable.

    


    	
      Document --Stores data in a uniquely keyed document that can have varying schema and that can contain nested data. Examples include MongoDB and Apache CouchDB.

    


    	
      Relational --Stores data in tables containing rows with strict schema. Relationships can be established between tables allowing the joining of rows. Examples include PostgreSQL, Oracle Database, and Microsoft SQL Server.

    


    	
      Graph --Stores data as vertices (nodes, components) and edges (relationships). Examples include Neo4j, Apache TinkerPop’s Gremlin Server, JanusGraph, and TigerGraph.
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  Figure 1.3 Database engine types ordered by data complexity


  As you can see from these examples, only the relational databases and graph databases, by default, include the ability to relate entities within the data. It may be possible to do that with specific implementations of key-value, wide column, or document databases, but this is usually an enhancement added by a vendor’s specific implementation. Because our focus is on graph databases and only relational databases offer a comparable functionality, the rest of our discussions are exclusive to these two types of engines.


  
1.1.3 Why can’t I use SQL?


  As developers, we often choose a familiar tool over an optimal one, especially when dealing with databases. Most development teams have an in-depth knowledge of the ins and outs of relational databases, but few have expertise in other types of databases. Therefore, we often default to the relational database either through convenience or ignorance, while there are better tools in the toolbox to solve certain problems.


  We are not trying to say that relational databases are a poor tool. In fact, it’s usually the first one that we reach for when working on our own applications. But relational databases have their limitations. While it is possible to use relational databases with highly connected data, in many cases the work can be simplified by using a tool designed for these types of use cases. In this section, we look at three areas where graph databases provide a simpler, more elegant solution than using a relational database:


  
    	
      Recursive queries (for example, an organization’s employee reporting hierarchy, or org chart)

    


    	
      Different result types (for example, an orders and products reporting example)

    


    	
      Paths (for example, a river-crossing puzzle)

    

  


  For this chapter, we chose three different examples to represent these three unique graph database capabilities. Starting with the next chapter, we’ll introduce the DiningByFriends problem domain and start the formal data modeling process. At that point, most of the examples will follow with the development of this sample domain. But until then, we’ll use a variety of ways to introduce you to the basic concepts of graphs and graph databases.


  Recursive queries


  Recursive queries are executed multiple times in succession, repeatedly calling themselves until they reach some escape or terminating condition. Relational databases do not handle recursive operations (especially unbounded ones) well, struggling both with syntax and performance. This usually leads to writing and maintaining complex queries, excessive denormalization of our data, or both, all in an effort to return results in a timely fashion.


  On the other hand, graph databases use their rich relationship representations to handle these unbounded recursive queries cleanly and efficiently. To see what we’re talking about, let’s take a look at what a recursive query looks like in both SQL and in a graph database. Given a list of employees and managers in a company, as shown in figure 1.4, let’s examine how we determine a person’s reporting hierarchy.
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  Figure 1.4 Management hierarchy in a company, demonstrating recursive queries


  To model this hierarchy in a relational database, the following query shows how we would define a table. Then we take this table schema and lay out the data (table 1.1):

  CREATE TABLE org_chart (
 NOT NULL,
  manager_employee_id   SMALLINT NULL,
  employee_name         VARCHAR(20) NOT NULL
);


  Table 1.1 Example of a company’s management hierarchy in a relational database


  
    
      	
        employee_id

      

      	
        Manager_employee_id

      

      	
        employee_name

      
    


    
      	
        1

      

      	
        3

      

      	
        You

      
    


    
      	
        2

      

      	
        3

      

      	
        Co-worker

      
    


    
      	
        3

      

      	
        4

      

      	
        Team Lead

      
    


    
      	
        4

      

      	
        5

      

      	
        Manager #2

      
    


    
      	
        5

      

      	
        8

      

      	
        VP

      
    


    
      	
        6

      

      	
        5

      

      	
        Manager #1

      
    


    
      	
        7

      

      	
        5

      

      	
        Manager #3

      
    


    
      	
        8

      

      	
        NULL

      

      	
        President/CEO

      
    

  


  We then use a recursive function to query this data to find a user’s management hierarchy. The following code snippet show the query:

  WITH RECURSIVE org AS (
     SELECT employee_id,
            manager_employee_id,
            employee_name,
            1 AS level
     FROM org_chart
  UNION
     SELECT e.employee_id,
            e.manager_employee_id,
            e.employee_name,
            m.level + 1 AS level
     FROM org_chart AS e
       INNER JOIN org AS m ON e.manager_employee_id = m.employee_id
  )
 
SELECT employee_id, manager_employee_id, employee_name 
FROM org 
ORDER BY level ASC;


  If you’ve ever written common table expressions (CTEs) in SQL like our management hierarchy query, then you know that these can be complex to write and debug, and are notorious for poor performance. On the other hand, nested and recursive queries like the previous hierarchy example are the types of questions that graph databases are optimized to answer. For example, figure 1.5 shows what the same data looks like as a graph.


  To find our user’s management chain in our graph, we need to write a query analogous to our SQL query, which in graphs is known as a traversal. For our hierarchy example, we would get a traversal like the following one:

  g.V().
  repeat(
'works_for')
  ).path().next() 


  Note The traversal is in a graph query language called Gremlin, which we’ll use throughout this book. At this point, it isn’t necessary to understand precisely how it works. We’ll delve into details starting in chapter 3. For now, just notice the relative simplicity of this query compared to the previous SQL query.


  This example demonstrates the straightforward nature with which you can recursively ask questions of a graph. If we compare this to figure 1.5, we can see how this traversal naturally maps to our instinct to visually navigate the hierarchy of the data.
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  Figure 1.5 Graph representation of organizational hierarchy with the circles as vertices and the arrows as edges


  Different result types


  Have you ever needed to return several different data types from a database, all within a single result set? While it is possible to achieve this with a union of all the columns in all of the tables, it tends to yield less than ideal results. One of the strengths of a graph database is the ability to return differing data types in the results. Let’s look at how relational and graph databases compare when returning different types.


  For instance, let’s say that we have an order-processing system and we want to return not only the order information but also the product information. Figure 1.6 represents a traditional implementation with tables in a relational database.
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  Figure 1.6 Orders and Products tables in a relational database; note the differences in column names.


  The following code snippet shows how to write a query to retrieve an order with the associated product information. Table 1.2 shows the result set for this query.

  SELECT id,
       name,
       address, 
       null AS product_name, 
       null AS cost,
  'Order' AS object_type
FROM Orders
UNION
SELECT id,
       null AS name, 
       null AS address,
       product_name,
       cost,
       'Product' AS object_type 
FROM Products;


  Table 1.2 Results from the SELECT query that retrieves the order and associated product information


  
    
      	
        id

      

      	
        Name

      

      	
        Address

      

      	
        product_name

      

      	
        cost

      

      	
        object_type

      
    


    
      	
        1

      

      	
        John Smith

      

      	
        123 Main St

      

      	
        <null>

      

      	
        <null>

      

      	
        Order

      
    


    
      	
        2

      

      	
        Jane Right

      

      	
        234 Park St

      

      	
        <null>

      

      	
        <null>

      

      	
        Order

      
    


    
      	
        123

      

      	
        <null>

      

      	
        <null>

      

      	
        widget 1

      

      	
        5.95

      

      	
        Product

      
    


    
      	
        234

      

      	
        <null>

      

      	
        <null>

      

      	
        widget 2

      

      	
        10.76

      

      	
        Product

      
    

  


  From the results, we see that the union of these two disparate data types dictates that our answer contains a large number of null values (commonly known as sparse data or sparse matrix). This abundance of null data is caused by the columns between the two tables being inconsistent. A relational database specifies that the returned result set must contain a consistent set of columns. In cases of sparse data, this not only inflates the amount of data returned, but it also reduces the descriptive nature of the data structure. Let’s take a look at how that same data appears in a graph database (figure 1.7).
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  Figure 1.7 Our order product information example shown as vertices in a graph (edges are not modeled)


  Using this graph, we can write a graph traversal to return both product and order data. In this example, a graph database returns these results:

  gremlin> g.V().valueMap(true)
==>[label:order, address:[123 Main St], name:[John Smith], id:1]
==>[label:order, address:[234 Park St], name:[Jane Right], id:2]
==>[label:product, cost:[10.76], id:234, product_name:[widget 2]]
==>[label:product, cost:[5.95], id:123, product_name:[widget 1]]


  Compared to the earlier SQL results, the data returned from the graph retains the semantic meaning of what the object is and what it represents, without the extraneous null data. Because graph databases provide the flexibility to return disparate data, we can create much cleaner code when working with highly varied data types.


  Paths


  A path is the sequence of vertices and edges that describe how the traversal moved through the graph; for example, in Google or Apple Maps, a set of directions between two locations. The ability to return how two objects are connected to each other from within the database is a feature unique to graph databases.


  Let’s look at a classic puzzle known as the “river crossing puzzle” to illustrate how paths can help solve problems in a novel fashion. In our river crossing puzzle, we have a fox, a goose, and a bag of barley that must be transported across a river by a farmer on a boat. However, this movement is bound by the following constraints:


  
    	
      The boat can only carry one item in addition to the farmer on each trip.

    


    	
      The farmer must go on each trip.

    


    	
      The fox cannot be left alone with the goose or it will eat it.

    


    	
      The goose cannot be left alone with the barley or it will eat it.

    

  


  Using a relational database, we can’t find a way to solve this riddle without using a brute force method to calculate all possible combinations. However, with a little clever data modeling and the power of a pathfinding algorithm, it’s rather straightforward to answer this riddle with a graph.


  Let’s start by modeling the initial state of our system as a vertex in our graph. We’ll call our vertex TGFB_, where each character represents part of the problem:


  T (the boat and the farmer)


  G (the goose)


  F (the fox)


  B (the barley)


  _ (the river)


  This TGFB_ vertex encodes the state of the puzzle by telling us that the boat (T), the goose (G), the fox (F), and the barley (B) are all on one side of the river (_). Our goal is to achieve a state where these are all on the other side of the river.
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  Figure 1.8 Graph representation of the farmer using the boat (T) to take the goose (G) across the river (_), leaving the fox (F) with the barley (B).


  With the vertices representing possible states, we use edges to show how we transition from one state to the next. For example, figure 1.8 shows how we can represent the state change of the farmer taking the goose to the other side of the river, leaving the fox and the barley on the initial side. And figure 1.9 shows the result of modeling all the potential options as a representation of these states (vertices) and state changes (edges).
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  Figure 1.9 The full graph of the river crossing puzzle using a pathfinding algorithm. Notice the clear depiction of the possible solutions with any state that violates the highlighted constraints.


  Figure 1.10 illustrates what happens if we simplify our graph by removing any state (vertex) that violates a constraint and the adjoining relationships (edges). We can further simplify our graph by removing any edge that connects back to a previous state because this leads us to a previous state (known as a cycle in graphs).
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  Figure 1.10 The river crossing puzzle using our pathfinding algorithm with only the valid states


  By analyzing figure 1.10, we see two separate paths to get to our desired state. To query the graph to return these paths, we simply leverage the pathfinding capabilities of graph databases to return the two appropriate paths as shown by this traversal:

  'TFGB_').
  repeat(
    out()
  ).until(hasId('_TGFB')).
  path().next()


  When we run this traversal, it returns not only the first and last vertex visited, but also the entire set of vertices and edges that were visited along the way. The two lists represent two different paths to the solution:

  TFGB_ -take goose-> FB_TG -take empty-> TFB_G -take barley-> F_TGB -return goose-> TFG_B -take fox-> G_TBF -return empty-> TG_FB -take goose-> _TGFB
 
-take fox-> B_TFG -return goose-> TGB_F -take barley-> G_TBF -return empty-> TG_FB -take fox-> _TGFB


  Although this example is a riddle, it represents the same fundamental problems found in many real-world applications, such as finding a route on a map, finding optimal resource usage in a logistics system, or locating connections between people in a social network. Each of these cases is fundamentally about determining the optimal set of steps to get from one entity to another. The graph data structure allows us to leverage these pathfinding capabilities, which are not a native construct in other database types.


  
1.2 Is my problem a graph problem?


  From social network analysis, recommendation engines, dependency analysis, fraud detection, and master data management, to search problems and research on the internet, you’ll quickly encounter a listing of good use cases for graph databases. The difficulty with many of these lists is that unless your problem is one of those specified, it’s hard to know how or if it’s a good fit for a graph database.


  In this section, instead of focusing on specific use cases, we’ll look at problems in a more generic way. This is somewhat conceptual, but we find that it can be difficult to generalize from an example to a specific problem domain. We’ll start with defining a general problem and then providing some examples to illustrate. We’ll then close this section with a general framework for evaluating problems and with a decision tree (which is a form of graph!) to use as a tool for deciding whether to use a graph database or not.


  
1.2.1 Explore the questions


  While reading through the vast array of information on graph databases available on the internet, you might come across the statement that says, “. . . everything is a graph problem.” We agree that the real world is easily described in graph terms, but saying that everything is solved by one type of database is a drastic oversimplification. Just because a problem can be represented as a graph doesn’t necessarily mean that a graph database is the best technology to choose to solve that problem.


  Our process starts with one simple question: “What problem are we trying to solve?” Answering this question provides crucial details about what questions we are going to ask, and this governs the types of data we need to store and how we need to retrieve it. We break down our answers into the following categories of problems:


  
    	
      Selection/search

    


    	
      Related or recursive data

    


    	
      Aggregation

    


    	
      Pattern matching

    


    	
      Centrality, clustering, and influence

    

  


  Let’s examine each of these in turn and discuss what makes each a good or bad candidate for using a graph database.


  Selection/search


  We classify the following types of questions as search or selection problems. These questions narrowly focus on finding a small set of entities that all share a common attribute such as name, location, or employer:


  
    	
      Give me everyone who works at X?

    


    	
      Who in my system has a first name like John?

    


    	
      Locate all stores within X miles?

    

  


  These sorts of questions do not require rich relationships within the data. In most databases, answering these questions requires using a single filtering criterion or, potentially, an index. While you can answer these with a graph database, these problems do not use or require graph-specific functionality. Instead, it is advisable to use a relational database such as PostgreSQL (https://www.postgresql.org) or a search technology such as Apache Solr (http://lucene.apache.org/solr) or Elasticsearch (https:// www.elastic.co). These databases or tools are either more mature (e.g., RDBMS) or better optimized (e.g., search tools) to answer these sorts of questions. Because these problems don’t leverage the relationships in our data, in our experience, it’s unlikely that taking on the additional complexities of graph databases is worthwhile.


  Verdict For these types of questions, use an RDBMS or search technology.


  Related or recursive data


  Questions that explore the relationships between entities add meaning and provide topological value to data, providing a strong use case for a graph database. Some examples of these types of questions include


  
    	
      What’s the easiest way for me to be introduced to an executive at X ?

    


    	
      How do John and Paula know each other?

    


    	
      How’s company X related to company Y ?

    

  


  Graph databases leverage this information better than any other type of data engine, and their query languages are better suited to reasoning over the relationships within the data. Although not impossible in relational databases, these sorts of friends-of-friends queries require complex and difficult to maintain or reason over recursive CTEs or complex joins across many different tables.


  Verdict For these types of questions, use a graph database.


  Aggregation


  Data aggregation queries constitute an excellent use case for a relational database. Relational databases are optimized to perform complex aggregation queries quickly and with a minimal amount of overhead. Example questions might include


  
    	
      How many companies are in my system?

    


    	
      What are my average sales for each day over the past month?

    


    	
      What’s the number of transactions processed by my system each day?

    

  


  These same sorts of queries can be performed in graph databases, but the nature of graph traversals requires that much more of the data is touched. But this causes higher query latency and resource utilization.


  Verdict For these types of questions, use an RDBMS.


  Pattern matching


  Pattern matching based on how entities are related is a prime example of how to leverage the power of graph databases. Typical use cases for this sort of query involve things like recommendation engines, fraud detection, or intrusion detection. Some questions might include


  
    	
      Who in my system has a similar profile to me?

    


    	
      Does this transaction look like other known fraudulent transactions?

    


    	
      Is the user J. Smith the same as Johan S.?

    

  


  Pattern-matching use cases are so commonly done in graph databases that graph query languages have specific, built-in features to handle precisely these sorts of queries.


  Verdict For these types of questions, use a graph database.


  Centrality, clustering, and influence


  The relative influence or importance of one entity compared to another is a typical graph database use case. Some example questions might include


  
    	
      Who’s the most influential person I am connected with on LinkedIn?

    


    	
      What equipment in my network has the most substantial impact if it breaks?

    


    	
      What parts tend to fail at the same time?

    

  


  Examples of other problems of this type include finding the most influential person in a Twitter network, identifying critical pieces of infrastructure, or locating groups of entities within your data. Calculating the answers to these sorts of problems requires looking at entities, their relationships, and the incident relationships and adjacent entities. As with pattern-matching use cases, these types of problems often have specific, built-in graph query languages features.


  Verdict For these types of questions, use a graph database.


  
1.2.2 I’m still confused. . . .  Is this a graph problem?


  The types of problems discussed so far provide a significant first step in deciding if your problem is a good candidate for using a graph, but what if your problem doesn’t neatly fit into one of these predefined types? In this section, we use the friends-of-friends problem with a decision framework to help us decide if we have a good problem for a graph.


  To illustrate, we use a small social graph that includes Alice, Bob, Ted, and Josh as vertices connected by follows edges, as shown in figure 1.11. The question we want to answer is, “Given a person in the graph, of the people that they follow, who do those people follow that the first person might also want to follow?” This question is the same as that answered by sites such as LinkedIn, Twitter, or Facebook to recommend connections to users on a daily basis. Let’s break this down into its four basic parts:


  
    	
      Given a person in the graph . . .

    


    	
       . . . of the people that they follow . . .

    


    	
       . . . who do those people follow . . .

    


    	
       . . . that the first person might also want to follow?
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  Figure 1.11 A simple social graph illustrates the common friends-of-friends pattern.


  Let’s take Bob as a place to start (first point). Bob follows Alice (second point). Alice follows both Ted and Josh (third point). Therefore, Bob might want to follow both Ted and Josh (final point).


  Take look at the decision tree in figure 1.12, which is designed to answer the question, “Should I use a graph database?” Then we examine each of the questions and analyze why these lead you to using or not using a graph database in your work. We should note at the outset that here we focus on transactional (as in online transactional processing or OLTP) use cases. The decision matrix could be different for analytical use cases (as in online analytical processing or OLAP). We focus almost exclusively on the transactional processing use cases through chapter 10, but in the final chapter, we give some guidance for whole-graph (or graph analytics) processing.
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  Figure 1.12 “Should I use a graph database?” decision tree. Start at the top and work down to a Yes, No, or Maybe.


  Do we care about the relationships between entities as much or more than the entities themselves?


  This question is perhaps the most critical clue, which is why we put it first. It speaks to the heart of one of the most powerful features of graph databases: relationships are as meaningful as entities. If our answer to this question is yes, then we probably need a data model that allows for sophisticated representations of the relationships--an excellent candidate for using a graph database. But if our answer is no, then perhaps another data engine would be a better choice.


  In the case of our friends-of-friends problem, the answer to this question is yes. After the starting step of our question (Given a person in the graph) each of the remaining steps requires the use of relationships between people to answer.


  Does my SQL query perform multiple joins on the same table or require a recursive CTE?


  While a large number of joins in a SQL query can indicate that a graph database might be a good fit, it doesn’t make that possibility certain. Large numbers of joins in a SQL query are often a sign of a well-normalized data model. But when those joins are not being used to retrieve reference data (as is done with a third normal form in a relational database) and, instead, are used to link items together (as with a parent-child relationship), then we may want to consider a graph database. Also, recursive query patterns benefit from graph databases when we do not know the number of joins that will be performed.


  Taking our friends-of-friends example, let’s say that we want to answer the question, “What are the connections to get from Bob to Ted?” Attempting to perform this query in a relational database requires an unknown number of joins, and it might not complete, indicating that no path exists between the two. However, graph databases can recurse efficiently over unbounded hierarchical data such as this. If a recursive approach helps to solve the problem, then a graph database is often preferable.
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