
 [image: cover]

 Programming for Musicians and Digital Artists

 Ajay Kapur, Perry Cook, Spencer Salazar, and Ge Wang

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
Shelter Island, NY 11964

 	
 Development editor: Susanna Kline
Technical development editor: Bunny Blake
Copyeditor: Linda Recktenwald
Proofreader: Elizabeth Martin
Technical proofreader: Doug Sparling
Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 ISBN 9781617291708

 Printed in the United States of America

Dedication

 To Max V. Mathews (1926-2011) who started it all

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 Chapter 0. Introduction: ChucK programming for artists

 1. Introduction to programming in ChucK

 Chapter 1. Basics: sound, waves, and ChucK programming

 Chapter 2. Libraries: ChucK’s built-in tools

 Chapter 3. Arrays: arranging and accessing your compositional data

 Chapter 4. Sound files and sound manipulation

 Chapter 5. Functions: making your own tools

 2. Now it gets really interesting!

 Chapter 6. Unit generators: ChucK objects for sound synthesis and processing

 Chapter 7. Synthesis ToolKit instruments

 Chapter 8. Multithreading and concurrency: running many programs at once

 Chapter 9. Objects and classes: making your own ChucK power tools

 Chapter 10. Events: signaling between shreds and syncing to the outside world

 Chapter 11. Integrating with other systems via MIDI, OSC, serial, and more

 Appendix A. Installing ChucK and miniAudicle

 Appendix B. Library functions: Std, Math, other

 Appendix C. Unit generators

 Appendix D. Network communication with Open Sound Control

 Appendix E. File I/O

 Appendix F. Serial I/O

 Appendix G. ChucK on the command line

 Appendix H. Extending ChucK

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 Chapter 0. Introduction: ChucK programming for artists

 0.1. Why do musicians and artists need to program?

 0.2. What is ChucK? How is it different?

 0.3. Why program in ChucK?

 0.4. ChucK-powered and pre-ChucK computer-mediated art

 0.5. Summary

 1. Introduction to programming in ChucK

 Chapter 1. Basics: sound, waves, and ChucK programming

 1.1. Sound waves and waveforms

 1.2. Your first ChucK programs

 1.2.1. Your first program: “Hello World”

 1.2.2. Your first sound program: “Hello Sine!”

 1.2.3. Now let’s make music

 1.2.4. Trying new waveforms

 1.3. Data types and variables

 1.4. Time in ChucK: It’s about now

 1.4.1. Variables of type dur

 1.4.2. The importance of time

 1.4.3. Variables of type time

 1.4.4. Working with now

 1.5. Logic and control structures for your compositions

 1.5.1. Programming power through logic statements: the if statement

 1.5.2. Logical operators and conditions

 1.5.3. The for loop control structure

 1.5.4. The while loop control structure

 1.6. Using multiple oscillators in your music

 1.7. A final example: “Twinkle” with oscillators, variables, logic, and control structures

 1.8. Summary

 Chapter 2. Libraries: ChucK’s built-in tools

 2.1. The Standard library: tools for pitch, loudness, and more

 2.1.1. Deriving musical frequencies from MIDI note numbers

 2.1.2. Converting between data types: float to int

 2.1.3. Obtaining an int from a number expressed as text

 2.2. The ChucK Math library

 2.2.1. Math library random functions

 2.2.2. Rounding numbers: being more fair about float-to-int conversion

 2.3. Stereo and panning

 2.4. Example: random music with two voices and panning

 2.5. Summary

 Chapter 3. Arrays: arranging and accessing your compositional data

 3.1. Declaring and storing data in arrays

 3.2. Reading and modifying array data

 3.3. Using array data to play a melody

 3.4. Storing other types of data in arrays

 3.4.1. Using an array to store durations

 3.4.2. Arrays of strings: text can be musical too

 3.5. Example: a song with melody, harmony, and lyrics!

 3.6. Summary

 Chapter 4. Sound files and sound manipulation

 4.1. Sampling: turning sound into numbers

 4.2. SndBuf: loading and playing sound files in ChucK

 4.2.1. Organizing your sound files

 4.2.2. Looping (automatically repeating) your samples

 4.2.3. Playing your samples backward

 4.2.4. Managing multiple samples at a time

 4.3. Stereo sound files and playback

 4.4. Example: making a drum machine

 4.4.1. Adding logic for different drums on different beats

 4.4.2. Controlling when drums play using logic arrays

 4.5. A new math/music tool: the modulo operator

 4.6. Tying it all together: your coolest drum machine yet

 4.7. Summary

 For further reading

 Chapter 5. Functions: making your own tools

 5.1. Creating and using functions in your programs

 5.1.1. Declaring functions

 5.1.2. Your first musical function

 5.1.3. Local vs. global variables

 5.2. Some functions to compute gain and frequency

 5.2.1. Making real music with functions

 5.2.2. Using a function to gradually change sonic parameters

 5.2.3. Granularize: an audio blender function for SndBuf

 5.3. Functions to make compositional forms

 5.3.1. Playing a scale with functions and global variables

 5.3.2. Changing scale pitches by using a function on an array

 5.3.3. Building a drum machine with functions and arrays

 5.4. Recursion (functions that call themselves)

 5.4.1. Computing factorial by recursion

 5.4.2. Sonifying the recursive factorial function

 5.4.3. Using recursion to make rhythmic structures

 5.5. Example: making chords using functions

 5.6. Summary

 2. Now it gets really interesting!

 Chapter 6. Unit generators: ChucK objects for sound synthesis and processing

 6.1. ChucK’s special UGens: adc, dac, and blackhole

 6.2. The pulse width oscillator: an electronic music classic

 6.3. Envelope (smooth slow function) unit generators

 6.3.1. Making a clarinet sound using SqrOsc and Envelope

 6.3.2. Making a violin sound with SawOsc and the ADSR Envelope UG

 6.4. Frequency modulation synthesis

 6.5. Plucked string synthesis by physical modeling

 6.5.1. The simplest plucked string

 6.5.2. Exciting the plucked string with noise

 6.5.3. Modeling frequency-dependent decay with a filter

 6.5.4. Modeling fractional (tuning) delay and adding an ADSR for plucking

 6.6. Intro to filter UGens: frequency-dependent gain

 6.7. More on delays: room acoustics and reverberation

 6.8. Delay-based audio effects

 6.9. Example: fun with Filter and Delay UGens

 6.10. Summary

 Chapter 7. Synthesis ToolKit instruments

 7.1. STK wind instruments

 7.1.1. The STK brass instrument physical model UGen

 7.1.2. The STK Flute physical model UGen

 7.2. Better stringed instruments

 7.2.1. The STK Sitar physical model UGen

 7.2.2. The STK Mandolin physical model UGen

 7.2.3. The STK bowed string instrument UGen

 7.3. Bars and other rigid things

 7.4. Particle models

 7.5. Synth soundz

 7.6. Voices

 7.7. Example: Indian music

 7.8. Summary

 For further reading

 Chapter 8. Multithreading and concurrency: running many programs at once

 8.1. Programming with concurrency

 8.2. Shreds and sporking

 8.3. A parallel, multithreaded, concurrent drum machine

 8.4. Using concurrency to control aspects of common objects

 8.5. Machine commands: adding ChucK files as new shreds

 8.5.1. ChucK Machine commands for adding and running files

 8.5.2. Using Machine functions for composition

 8.6. Example: building a multithreaded jazz band

 8.6.1. A file organization structure for your jazz band

 8.6.2. Programming the individual players

 8.6.3. An architecture for running your concurrent code

 8.7. Summary

 Chapter 9. Objects and classes: making your own ChucK power tools

 9.1. Object-oriented programming: objects and classes

 9.1.1. Objects in general

 9.1.2. Classes

 9.2. Writing your own classes

 9.3. Overloading: different functions can share the same name

 9.4. Public vs. private classes

 9.4.1. Useful applications for public classes

 9.4.2. The Clear VM button

 9.4.3. Static variables

 9.5. Initialize.ck: an architecture for organizing your code

 9.6. Conducting a drum pattern using a time-varying BPM

 9.7. Making new classes from existing classes

 9.7.1. Inheritance: modeling and modifying parents

 9.7.2. Polymorphism: managing many children

 9.8. Example: building a smart mandolin player

 9.9. Summary

 Chapter 10. Events: signaling between shreds and syncing to the outside world

 10.1. What are events?

 10.2. Programming with events: keyboard input

 10.3. Inter-shred communication using events

 10.3.1. Using event.signal() to synchronize one shred to another

 10.3.2. Using signal to synchronize multiple shreds

 10.3.3. Triggering multiple shreds at the same time using events

 10.4. Customized events example: a multi-instrument gamelan

 10.5. Summary

 Chapter 11. Integrating with other systems via MIDI, OSC, serial, and more

 11.1. Using MIDI: history, basics, and advanced applications

 11.1.1. MIDI messages

 11.1.2. External MIDI controllers for ChucK

 11.1.3. ChucK to ChucK using a virtual MIDI port

 11.1.4. Controlling robots via MIDI

 11.2. Open Sound Control: networking music

 11.3. Serial input/output to the outside world

 11.4. Summary: looking outward and forward

 Appendix A. Installing ChucK and miniAudicle

 Installing on Mac OS X

 Installing on Windows

 Installing on Ubuntu Linux

 Appendix B. Library functions: Std, Math, other

 B.1. The ChucK Standard Library

 B.2. The ChucK Math library

 B.3. Virtual machine commands and functions

 B.4. Shred object functions

 B.5. String object functions

 B.6. Array object functions

 Appendix C. Unit generators

 C.1. Audio input and output UGens

 C.2. Methods common to all unit generators

 C.3. Gain and stereo/mono UGens

 C.4. Basic sound waves and function generator UGens

 C.5. Oscillator unit generators

 C.6. Lookup table unit generators

 C.7. LiSa: a live sampling unit generator

 C.8. STK Envelope generators

 C.9. STK delays, reverberators, and delay-based effects

 C.10. Sound file unit generators

 C.11. Synthesis ToolKit filters

 C.12. Non-linear signal-processing UGens

 C.13. STK instruments

 C.14. Blit: band-limited oscillator family

 Appendix D. Network communication with Open Sound Control

 Appendix E. File I/O

 E.1. File basics

 E.1.1 Opening and writing files

 E.1.2 Reading files

 E.1.3 Options for opening files

 E.1.4. Non-sequential file access

 E.2. Standard output and error

 Appendix F. Serial I/O

 F.1. Serial I/O reading

 F.1.1 Bytes, ints, floats, strings

 F.2. Serial I/O writing

 Appendix G. ChucK on the command line

 G.1. Mac OS command-line basics

 G.2. The command line on Windows

 G.3. On-the-fly programming

 G.4. ChucK command-line reference

 G.4.1 Source ChucK files

 G.4.2 Basic command-line ChucK options

 G.4.3 Audio options

 G.4.4 Network options

 G.4.5 ChuGin options

 G.4.6 Advanced options

 Appendix H. Extending ChucK

 Chugens

 Chubgraphs

 ChuGins

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 “Happy ChucKing!”

 What could this short phrase, uttered by Ge Wang, one of the authors of this excellent book, mean? My interpretation is “Happy ChucKing!” means exploring and composing sound in a playful way with ChucK, the programming language that is the basis of this book. But, “ChucKing” is more than that—it’s an approach to learning to code with a focus on the arts; it is both lively and profound.

 Like many, I care about the visual arts and music more than anything else. I am interested in computers too, but primarily as tools to make images and noise. However, through the many times I failed to learn how to program computers from the ages of 10 to 25, I was forced to learn to code by making text—by printing “Hello World” to a screen or writing code to calculate numbers. To clarify, I like to write and I find math invaluable for what I love to do, but words and numbers are never the focus. They are always a means to an end.

 What if I could have learned to program through what I cared about the most? To learn to program by making images and noise? Before computers became the extraordinary media machines they are today, most people used computers to work with only text. Students who were most interested in images and sound weren’t able to learn to program by pursuing their passions. Fortunately, this has changed and now computers (from mobile phones to supercomputers) can generate images, synthesize sound, and do much more. Unfortunately, most learn-to-program classes remain the same way they were 40 years ago—learning to program forces everyone, visual artists and musicians alike, into the rigid constraints of inputting and outputting alphanumeric characters.

 I struggled through learning to code in the traditional way. For the last decade, I have taught people how to program through a new programming platform that I co-invented with Ben Fry. At MIT in 2001, we started to develop a programming language and environment called Processing. Processing was created for people to learn how to program for the first time and to encourage “sketching” with code. The most important thing about Processing is that people learn all of the basics of coding, but they learn through working with dynamic visual media—for instance, drawing, color, and animation. At the time we were starting Processing, we didn’t know that Ge Wang, then a graduate student at Princeton, was doing the same thing for the domain of music. Through his “on-the-fly” programming language, ChucK, people learn to program through creating sound.

 One of the first programs you’ll see in this book cuts to the core:

 SinOsc s => dac;
440 => s.freq;
1:: second => now;

 This program creates a pure tone for one second; it’s the software equivalent of hitting a piano key for the first time. This is an extraordinary way to learn to program; it invites exciting questions. What is this strange => symbol? To what does 440 refer? The answers to these questions open a new world; a new way to think about making sound and music while simultaneously learning the basics of coding. From this program, a new world of possibilities opens.

 I was thrilled to read Programming for Musicians and Digital Artists. With a plethora of well-explained examples in the fascinating ChucK language, readers learn in an engaged, hands-on way. I can’t imagine a more knowledgeable and clever group to write about learning to program through creating music. Ajay Kapur, Perry Cook, Spencer Salazar, and Ge created ChucK and developed the way it is taught. After over a decade of experience with ChucK in the classroom and deep experience prior to that, this book sets the bar impossibly high. I hope you enjoy learning to code the “ChucKian” way and “Happy ChucKing!”

 CASEY REAS

 ASSOCIATE PROFESSOR

 DEPARTMENT OF DESIGN MEDIA ARTS AT UCLA

 COCREATOR OF THE PROCESSING PROGRAMMING LANGUAGE

Preface

 Welcome to ChucK!!

 We tend to do our best work when we follow our true interests. ChucK was created because we genuinely love both music and programming—and for anyone who wants to make music with computers (or learn to do so). As the creator and chief designer of ChucK, I earnestly believe that programming is (or should be) a creative endeavor in and of itself. It should be fun, expressive, rewarding. And to create music through programming, well, that is doubly awesome.

 I started working on ChucK in 2002, having started in the Computer Science PhD. program at Princeton University a year earlier. If rock music was my gateway-drug into music-making (and my undergrad alma mater Duke University my passage to programming) then Princeton was where I started putting these elements together. Although I couldn’t quite articulate it at the time, I was drawn to the elegance of certain features in programming languages, and aspired to create things, programmable software things, that empower people to make music, but in a way that was aesthetically nuanced and fun. I wanted to rock, and help others rock—with the computer.

 Perry R. Cook was my adviser (one of the best things professionally and personally to happen to me); his work on physical interaction design and his Synthesis ToolKit (STK) were great inspiration. Also, Perry’s fun, whimsical, and imaginative personality helped set the tone and encouraged freedom in exploration. I still remember showing Perry the initial ideas for “a new programming language for music” glued together by the ChucK operator (which looks like =>, something you will see a lot in this book), and Perry saying, “Well that’s pretty insane. Go for it!”

 	

 Fact

 Portions of my initial scribbling remained on Perry’s office whiteboard for the next five years, though I later discovered that it was due to a malfunction with the board that made it nearly impossible to erase.

 	

 Soon thereafter, and somewhat serendipitously, I designed the time and concurrency mechanisms (both intrinsic to how ChucK works) into the fledgling language. I say serendipitously because both components began as casual mind-wandering, but once I worked out how these mechanisms might function together, it resonated so deeply with my warped mind that I had to see it through. And thus began a journey to make ChucK that, surprisingly to me, remains stronger-than-ever over a decade later, and that has involved some of the craziest and most wonderful collaborators I have ever known.

 Ajay Kapur was a crazy and most industrious undergrad in Perry’s lab, building the eTabla, eSitar, eDholak (a two-person Indian drum), who would go on to create entire orchestras of robotic machines. Wonderfully supportive of ChucK since the very beginning, Ajay pioneered new ways to teach computer music and interaction design with ChucK. Currently he teaches at CalArts and is the (and still crazy) associate dean of music technology there.

 One day in 2004, a Princeton undergraduate student by the name of Spencer Salazar emailed me, confessed that he enjoys programming and building things, and asked if he could help with the ChucK project. Answering “yup” changed ChucK forever, for Spencer turned out to be a monster coder and a most thoughtful innovator. In addition to adding support for joysticks, mice, keyboards, WiiMotes (via the HID interfaces, covered in chapter 10), Spencer authored the miniAudicle, the ChucK development environment used in this book. And all that was in the first year! Serial support, ChuGins, Chugens, and Chubgraphs are among his recent additions (covered in appendix H). Spencer is now pursuing a PhD. at Stanford University’s CCRMA.

 	

 Fact

 Spencer and I are avid StarCraft fans, and semi-regularly get owned online by players who possess actual skill. Ajay once played StarCraft for 8 hours straight on a road trip to Montreal, and has never played since (that I know of). Perry, to my knowledge, has never touched the game.

 	

 By this point, you are probably getting a sense of the type of crazy (and actually pretty laid-back) folks who labored to make ChucK happen. The list doesn’t stop there. Philip Davidson and Ari Lazier both contributed large chunks of ChucK; Phil and I even built a prototype for a real-time animated development environment called the Audicle (a rough predecessor to the miniAudicle). Ananya Misra and Matt Hoffman pitched in generously and threw down large servings of new functionality, while elsewhere Adam Tindale wrote a ChucK manual. Meanwhile, sage individuals like Paul Lansky, Roger Dannenberg, Andrew Appel, and Brian Kernighan (all programming language creators themselves) generously dispensed wisdom on the direction of ChucK.

 The online ChucK community formed between 2003 and 2004, and we started to rapidly release bug fixes and new features (and new bugs). It was magical how folks we have never met stepped up to generously contribute to an open source project and community such as this. One particularly notable individual is Kassen Oud, who has shepherded countless new users, answered endless questions, and generally distributed peace and good will to all ChucK users for more than 10 years. (Kassen is credited on the ChucK website as Sporksperson, Forum Moderator, and ChucKian Sherpa.) I have never met Kassen face-to-face, though I sense a kindred spirit out there!

 There is a rule of software development from The Mythical Man-Month (a great treatise on how humans create software) that says: plan to throw one away. The idea is that when building something new, the first implementation is often not architected suitably. One should not fear starting over, armed with the knowledge gained from the initial endeavor (this is actually a pretty good rule for many things in life). In 2005, I completely overhauled ChucK’s core to support arrays and objects, and made it easier to add a bazillion other features. This turned out to be a good move, for the (totally insane) Princeton Laptop Orchestra (PLOrk) started that fall, led by the magnificent Dan Trueman and Perry, with Scott Smallwood and myself as teaching assistants. ChucK was to be used as a primary programming and teaching tool.

 This was another transformative moment, for it was the first time we taught ChucK in a formal classroom setting, for a full semester, to 15 college freshmen with no previous programming experience. It also happened to be the first time anybody has ever taught a laptop orchestra, so we literally had to make it up as we went along. It was delightfully harrowing and exhilarating because we were neither guided nor bounded by established rules. The course turned out to be a resounding success, ChucK was battle-tested like never before, and we knew we could teach ChucK to pretty much anyone who has the heart and interest to learn.

 Awesome things continued to happen, for Rebecca Fiebrink arrived in 2006 to begin her PhD. and I found a most dear and amazing collaborator. During the one year we overlapped at Princeton (before I left to teach at Stanford University), Rebecca and I accomplished a rather insane amount of new ChucK-related things, including the Small Musically Expressive Laptop Toolkit (ChucK SMELT), as well as the architecture for Unit Analyzers in ChucK. Through all of this, I can say that cool things happen because (and really only because) of great people involved, and ChucK definitely embodies the personalities of the folks who make it.

 In 2007 (and while still working on my PhD. dissertation on ChucK) I joined the faculty at Stanford University’s Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”). CCRMA Director Chris Chafe (another kindred spirit) was already teaching ChucK in his courses, and I started to do the same in the all-new Stanford Laptop Orchestra (SLOrk), complete with speakers arrays fashioned out of IKEA salad bowls. (Presently, with Spencer and me both at CCRMA, it is the central hub of ChucK research and development.)

 As if things weren’t crazy enough already, I cofounded a startup in 2008 called Smule, aimed to bring computer-mediated music-making to a wide audience on mobile devices, and in synergy with academic computer music research. Spencer was a founding developer and Perry a founding adviser. ChucK became our rapid prototyping platform and part of the core audio engine. I designed Ocarina, an app that transformed the iPhone into an expressive flute-like instrument, and even allowed users to listen in on each other around the world, and used ChucK as the audio and interaction engine. To date, ChucK is on more than 10 million iPhones via the Ocarina and Ocarina 2 apps for iPhone.

 Meanwhile, more and more people in and beyond academic institutions are programming with ChucK. For example, Ajay has fashioned an entire curriculum at CalArts to teach music technology with ChucK (audio programming), processing (visual programming), and Arduino (microcontroller). Through a NSF-funded initiative, Ajay and Perry set out to create a ChucK-based curriculum aimed at digital art students. They got the proverbial band back together to write this book.

Why we use Chuck

 As devoted users of ChucK, we each have own reasons for using it. Perry loves ChucK because he needs to program often to keep his sanity, and ChucK is “the only language that lets me drop in for a few seconds, or as long as I like, and get something gratifying done. If I have an idea, I can try it out immediately in ChucK.”

 Spencer likes ChucK because it allows him to clearly and concisely express complex and nuanced aesthetic ideas in code. “Moreso than any other tool, ChucK gives me both the ability to control computational processes and the means to synthesize them satisfyingly.”

 As a robotic artist, Ajay works with MIDI from custom-built controllers and for custom built robotic instruments. “The power of ChucK has been the multithreading and how I can have multiple processes running sensor data, actuator control and composition processes all at different rates! This is why I use the language in teaching computer science to artists... showing them a language paradigm of the future...”

 We asked a few other people why they use ChucK, and here is what they had to say:

 [ChucK] suggests a mindset in approaching music, and the design of music, the experimentation with music, and the learning of coding. [...] I like the way that ChucK makes me think, and I was really depressed about music programming before I found ChucK.

 Rebecca Fiebrink Lecturer in Graphics and Interaction Department of Computing Goldsmiths, University of London

 With ChucK, I can easily think about the flow of time and how I might combine multiple musical layers simultaneously. It is the only language I know that is inherently contrapuntal, and it is by nature extraordinarily musical (and fun) to code with.

 Dan Trueman Professor of Music, Princeton University

 [...] when everything worked the way it was supposed to, when my spontaneous arrangement of computer lingo transformed into a musical composition, it was a truly amazing experience. The ability to control duration and pitch with loops, integers, and frequency notation sent me on a serious power trip. (On learning to program with ChucK)

 Anna Wittstruck Princeton University, class of 2008

 And so now here we are—and here you are—with a book on ChucK. But really it’s a book about learning to get the computer to help you express yourself, sonically, interactively, and musically. To this end, I will leave you with a bit of advice on learning ChucK.

 	
Don’t panic. When things don’t work as you expect, don’t be discouraged. ChucK is a language for experimenting with sounds, music, and interactions, and even the most seasoned programmer will make mistakes and introduce bugs in their code. Don’t think too much about the fact you are programming, and let your logic, curiosity, and creative vision drive you.

 	
Stick with it. It doesn’t matter what your experience with programming is (even if it’s zero; even if you think it’s less than zero)—as long as you have interest, then you can learn to ChucK. Also, coding to make sound is one of the best and fastest ways to learn programming; for one, you can immediately hear the results of your actions.

 	
Do the suggested exercises and examples found throughout the book and don’t be afraid to experiment. You might start by tweaking the numbers in related sample programs and listening to the result, and as you start to grok how the code works, incorporate your own logic and imagination into the code, or incorporate it into your own creations.

 	
Listen. It’s all about making sound, so use your ear and use it often!

 In closing, I feel a combination of happiness (that people are using ChucK to be creative, expressive, and making music) and perpetual dread/consternation (I know where all the “potholes” are in the implementation). That adds up to a great deal of gratitude to everyone who has bravely programmed a line of ChucK, who has created a new sound, interaction, or a new piece of music, and to anyone who wants to learn.

 So as we like to say in ChucK land (where you now find yourself): the time is now. There is no better time than the present. Have fun and make whimsical, wonderful music!

 On behalf of my coauthors,

 [image:]

 GE WANG

 ASSISTANT PROFESSOR

 CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS (CCRMA)

 STANFORD UNIVERSITY

 CREATOR OF CHUCK, COFOUNDER OF SMULE

Acknowledgments

 The authors thank the editors at Manning who worked closely with us to make this book better for introducing all kinds of people to ChucK, especially Susanna Kline, Bert Bates, and Jeff Bleiel, and the many others who worked with us on the production of the book.

 We also thank the following outside reviewers for all of their helpful comments and suggestions: Edward Borasky, Brent Boylan, Matthew Dickinson, Boyan Dzhorgov, Pierre Jolivet, Hector Lee, James Matlock, Ari Pappas, Patrick Regan, Gabriel ReyGoodlatte, Alvin Scudder, Sergiy Seletskyy, Nathan Smutz, David Sumberg, Danny Vinson, Dan Warren, and Stephen Wolff. Special thanks to Doug Sparling, who did a thorough technical review of the manuscript shortly before it went into production.

 As Ge mentioned in his preface, the people who went into creating, developing, and maturing ChucK are many, but we must thank particularly Ari Lazier, Philip Davidson, Dan Trueman, Scott Smallwood, Rebecca Fiebrink, Ananya Misra, Kassen Oud, and Chris Chafe.

 We also thank the now generations of LOrk (Laptop Orchestra) students, teaching assistants, and composers who used ChucK with us and made it a better language. These include the members of the Princeton Laptop Orchestra (PLOrk), Stanford Laptop Orchestra (SLOrk), Stanford CCRMA, and the ChucK user community.

 We also thank the CalArts students and TAs who helped us in debugging our ChucK curriculum, the code examples, this book, and our Massive Online ChucK course as well. These include Jordan Hochenbaum, Owen Vallis, Dimitri Diakopoulos, Ness Morris, Bruce Lott, and Rodrigo Sena.

 Special thanks to Casey Reas of UCLA, cocreator of the Processing programming language, for contributing the foreword to our book.

 This book was developed in part with support from the National Science Foundation under Grant No. 1140336. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 Finally, we thank all of the ChucK users over the years, all around the world, for hanging out on the ChucK developer and user forums, for joining our merry band of artist programmers, or programmer artists, suggesting, complaining, and praising the language, and for helping us to make it even better in the process.

About this Book

 We wrote this book to teach novice programmers how to code in ChucK. Thus, we start at the very beginning, so don’t be afraid. We will teach programming through musical examples. We believe that being able to “hear” what your code is doing will aid you in learning the key concepts, as well as make the process enjoyable. If you are an experienced programmer, you may be able to skip a couple of the beginning chapters depending on your level, but note that ChucK is quite different from other languages. We promise that there is something to learn here for everyone.

 If you’re an advanced programmer who is already familiar with another language, “What’s different about ChucK?,” later in this front matter, gives a strategy for approaching ChucK from your vantage point.

How the book is organized

 Throughout the chapters there are suggested composition exercises to expand what you have learned. In a way, you can view each chapter as “unlocking” new parts of the language you can use in your compositions.

 In chapter 0 (computer scientists almost always number from zero), we tell you why ChucK is different from other languages, and how we, and many others have used it in myriad music and art projects.

 The next two chapters are for the beginning programmer, introducing key concepts needed to be able to begin coding. Chapter 1 begins with the basics of computer science, languages, and ChucK, including variables, types, conditional statements, and looping structures. Of course, we also make sound and music using ChucK. Chapter 2 introduces the libraries (tools) built into ChucK, and shows how random numbers and mathematical calculations can be used to make more expressive programs and songs.

 In chapter 3 we introduce arrays, and show how to more easily make, store, and play melodies, and control other parameters in ChucK.

 In chapter 4 we introduce how to use sound files in ChucK and how you can use them to create soundscapes and even a cool electronic dance piece.

 Chapter 5 introduces the concept of functions and how they can be used in modularizing and organizing your code, which can result in even more expressive compositions and more orderly programs.

 Chapter 6 dives deeper into Unit Generators (UGens), ChucK’s built-in audio processing and synthesis objects. Here you will learn about more oscillators, envelope generators, FM synthesis, physical modeling synthesis, and audio effects. Chapter 7 continues this, introducing many physical, modal (resonant), and particle synthesis UGens.

 Chapter 8 introduces multithreading and concurrency and you will learn how to make your programs “juggle” multiple things at the same time, all in perfect synchrony.

 Chapter 9 introduces object-oriented programming (OOP) and how you can create your own Objects and Classes to use in your code.

 Chapter 10 covers Events, which allow ChucK programs to signal each other. Events also allow ChucK to respond to signals and data from the “outside world.” This lets us begin to think of ChucK as a live performance tool, by introducing how you can use your keyboard and mouse for real-time control over your compositions.

 Chapter 11 goes into ways that ChucK can communicate with other programs, computers, and control devices. We briefly cover how MIDI can be used with ChucK, both using an external MIDI device (such as a keyboard) to play ChucK as a synthesizer, and how ChucK can control other synthesizers, both software and external hardware synths. We also introduce Open Sound Control (OSC), which is another standard way for music programs and devices to communicate. We then look at Serial Input/Output, which allows us to talk to even more devices.

 The appendixes cover lots of details and include more examples of ChucK’s features and capabilities. Appendix A covers installing and running the miniAudicle Integrated Development Environment (IDE), and Appendix G covers how to use ChucK in the command line (text-only interface).

 Appendix B documents all of the library functions built into ChucK. Appendix C documents all of the built-in UGens. Appendix G covers ChucK on the command line. Appendix D covers OSC. Appendix E covers File I/O, and Appendix F covers Serial I/O. Appendix H discusses ways to extend the ChucK language itself with new UGens.

For those Interested in Instant Gratification

 If you’re impatient and want to see the power of what ChucK can do (even without understanding exactly how), once you’ve installed the miniAudicle (appendix A) and run your first two programs (“Hello World” and “Hello Sine”, section 1.2), you could type in and run the end-of-chapter example of listing 6.15. Inspired by this powerful ChucK flourish, you can then go back and systematically work through the book.

For Programmers Familiar with other Languages

 Appendix A talks about how to install and run the miniAudicle IDE (Integrated Development Environment), and how to install and run ChucK for the command line (Terminal, Command, etc.). If you haven’t already installed ChucK and/or miniAudicle on your machine, you should begin at appendix A.

 Section 1.2 (“Your first ChucK programs”) shows the miniAudicle, and introduces you to the ChucK operator and ChucK’s way of dealing with time. If you’re a command-line type, consult appendix G (“ChucK on the command line”) for instructions.

What’s Different About Chuck?

 On the surface, ChucK looks like a lot of other languages such as Java and Objective C, with a few main differences. First and most important, the ChucK operator (=>) is used for assignment, connecting audio Unit Generators (UGens) together, and other things. Designed to look like an arrow indicating direction, the ChucK operator encourages left to right flow of audio connections, assignment and time, among others. There is no use of the single equals (=) sign in ChucK, so if you’re familiar with languages that use a syntax like:

 float temp = 0.0; in ChucK you’ll need to get used to 0.0 => float temp;

 Another thing about ChucK that will likely be new to you is how ChucK deals with time. You as the programmer have to explicitly control time in your code, so we’d recommend you look over section 1.4 (“Time in ChucK: It’s about now”) carefully. The time and dur datatypes are fundamental to, and what’s so different about, ChucK, and you won’t be able to program successfully (or hear any sound) unless you learn about them.

 From there, you could motivate yourself with a couple of examples of the power of ChucK by typing in and running examples, such as listing 3.8 and/or listing 6.15.

 You should then go back and work through chapter 4 to learn about how ChucK deals with sound files. You’ll finish that chapter with the drum machines of listing 4.11.

 If you’re satisfied you have a grasp of the examples so far, you’re probably ready to jump directly into part 2 (beginning with chapter 6), learning about all of the powerful UGens available in ChucK. From there on it’s all new, so keep reading and running the examples. The next fundamentally new ChucK thing you’ll encounter will be covered in chapter 8 where you’ll learn about sporking (like forking) shreds (like threads, but ChucK-ian). Objects and classes (chapter 9) might look pretty familiar to you, as might events (chapter 10), but ChucK is unique in that events can be generated by lots of external devices (Joysticks, MIDI, Open Sound Control), so that should look quite different to you. Chapter 11 finishes up with MIDI, OSC, and Serial, for advanced users/programmers.

 There are quite comprehensive appendixes at the end with references to pretty much everything in ChucK, so remember that you can look some things up there as well as in the index.

About the code

 All source code in the book is in a typeface like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and numbered bullets are sometimes used in the text to provide additional information about the code.

 In the ebook, certain terms in text and code appear in color, just as they would as you type into the miniAudicle editor window. This is the miniAudicle recognizing those reserved words and coloring them by type.

 Just about all of the code shown in the book can be found in various forms in the sample source code that accompanies this book. The sample code can be downloaded free of charge from the Manning website at www.manning.com/ProgrammingforMusicians andDigitalArtists.

 The accompanying sample code (including related audio files) is installed automatically when you install ChucK. On a Mac it can be found in /Library/ChucK/ examples/book/digital-artists/, while on Windows it is located at C:\Program Files\ChucK\examples\book\digital-artists\. On Linux, if you follow the installation procedure described in appendix A, the sample code can be found in /usr/local/ share/doc/chuck/examples/book/digital-artists/.

 All of the sample code from this book can be accessed directly in miniAudicle by navigating to File > Open Example and locating book/digital-artists in the Example Browser.

 	

 Note

 ChucK works on Mac OS X 10.5+ or later, Windows XP or later, or a suitable Linux system.

 	

Author Online

 Purchase of Programming for Musicians and Digital Artists includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/ProgrammingforMusiciansandDigitalArtists. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contributions to the AO remain voluntary (and unpaid). We suggest you ask the authors challenging questions lest their interest stray!

About the Authors

 [image:]

 AJAY KAPUR is currently the Director of the Music Technology program (MTIID) at the California Institute of the Arts, as well as the Associate Dean for Research and Development in Digital Arts. He is also a Senior Lecturer of Sonic Arts at the New Zealand School of Music at Victoria University of Wellington. Ajay is also co-founder (with Perry and others) of Kadenze, an online arts/technology education startup company. He received an Interdisciplinary PhD in 2007 from University of Victoria combining computer science, electrical engineering, mechanical engineering, music, and psychology with a focus on intelligent music systems and media technology. Ajay graduated with a Bachelor of Science in Engineering and Computer Science from Princeton University in 2002.

 [image:]

 PERRY R. COOK received a BA in music in 1985 and a BS in Electrical Engineering in 1986 from the University of Missouri, Kansas City, graduating Magna Cum Laude. He received a Masters and PhD in Electrical Engineering from Stanford in 1990. Along with working for companies such as NeXT Inc., Media Vision, Xenon/Chromatic, and Interval Research, he continued at Stanford as Technical/Acting Director of the Center for Computer Research in Music and Acoustics, until joining the faculty of Princeton University in 1996 as a Professor of Computer Science, with a joint appointment in Music. Cook is also the author of the Synthesis Toolkit in C++ (STK), which he comaintains with Gary Scavone. Perry is also coauthor (with Ge Wang) of the ChucK audio programming language. He is now Emeritus Professor at Princeton, and holds faculty/ arts fellowships at the California Institute of the Arts, Arizona State University, and other institutions. Perry is also a founding adviser/consultant to the mobile music startup Smule, and cofounder (with Ajay and others) of Kadenze, an online arts/technology education startup.

 [image:]

 SPENCER SALAZAR is a doctoral student at the Stanford Center for Computer Research in Music and Acoustics (CCRMA), researching computer-based forms of music performance and experience. Previously he created new software and hardware interfaces for the ChucK audio programming language, developed prototype consumer electronics for top technology companies, architected large-scale social music interactions for mobile application company Smule, composed for laptop and mobile phone ensembles, and taught numerous workshops on computer music topics. He received a BSE in Computer Science from Princeton University in 2006.

 [image:]

 GE WANG is an Assistant Professor at Stanford University’s Center for Computer Research in Music and Acoustics (CCRMA). He received his BS in Computer Science in 2000 from Duke University, and his PhD in Computer Science in 2008 from Princeton University (adviser Perry Cook). Ge is the creator (with Perry) and chief architect of the ChucK audio programming language. He is the founding director of the Stanford Laptop Orchestra (SLOrk) and Stanford Mobile Phone Orchestra (MoPhO). Ge is the cofounder of the mobile music startup Smule, and the designer of the iPhone’s Ocarina and Magic Piano, reaching more than 80 million users.

 Chapter 0. Introduction: ChucK programming for artists

 This chapter covers

 	Why do artists need to program?

 	What is ChucK?

 	Why program in ChucK?

 	Why do we and others use ChucK?

 	Some of our own computer-mediated artworks

 For many years, the words musician and artist have been changing meaning, rapidly, almost daily, largely due to the introduction of computer technology. Artists perform live with computer technology all the time. The ones who interact directly with computers as part of their performances might call themselves DJs, laptop artists, controllerists, live coders, and a host of other names. Many of these musicians don’t program or write software, but an increasing number want more direct control over their process and the results. Learning to program is one way to get that extra level of control.

 Other artists want to make new instruments or controllers or to configure existing controllers such as drum pads, DJ control decks, and the like to use in new ways for their live performances. Still others want to produce songs and albums (.wav and/or .mp3 files) as the final result but would like more control in the process than off-the-shelf music software provides. Some others like (or want) to program as the basis of their creative process and workflow.

 Nonmusical artists also use computers in their art making, such as graphic designers, animators, film editors, set designers, sculptors, and others who use computer graphics and design software. Many of these software tool users also want more control over their creations than their commercial software packages provide.

 Increasingly, many multimedia artists create installation art, public art, sound sculptures, or soundscapes. These new works involve using combinations of sound, sensors, graphics, video, and displays to create interactive environments. These pieces can make the audience part of the performance or experience. In some cases, members of the public witnessing these pieces don’t know exactly what the artists/performers are doing or controlling, but the discovery, learning, and interacting are much of the point and of the reward. Although this book doesn’t specifically teach you to make all kinds of artworks, many forms of new media involve computerized sound and music, and learning specific tools to create and manipulate sound in the computer is precisely what this book is about.

 Many people call these new types of art and performance opportunities computer-mediated art systems. In all cases, the musician or artist either needed to know how to program or collaborated with someone who could. You’ll learn to program through the chapters, examples, and exercises in this book.

 This increasingly popular movement of computers as a new medium for creativity motivated our team to write this book to make it easier and more fun for everyone to learn to write their own programs. Specifically, we want to teach you how to program through making code that translates into music and sound, and we accomplish this via a programming language called ChucK, which is specially designed for sound and music.

 We begin with a discussion on why we think musicians and artists need to learn how to program. We explain why we believe ChucK is a great first language to learn. We conclude by describing how programming has allowed the authors and others to create new works using ChucK and its predecessor languages.

0.1. Why do musicians and artists need to program?

 As we mentioned earlier, many artists are happy with over-the-counter software systems and controllers for real-time performance work. And there are many who only want to use computers to produce static final products in the form of .wav/.mp3 files, CDs or collections of songs, sound tracks for videos, and more. A large number of those artists are happy to learn and use the packages and tools from commercial or free sources.

 But there are many, and we’re betting you’re one, who want more. Maybe you’re coming to this book with a big idea (or many big ideas) and want the tools to help you realize it/them. Maybe you’re looking to shift directions in your art making. Or perhaps you already know how to program in a language such as Java, but you find it doesn’t do what you want.

 Others think that learning programming will help them get a job. Although we can’t promise immediate outplacement after you finish this book, we can say that we have nice jobs, and our students have nice jobs (those who want them [image:]), due in no small part to their ability to program and solve problems with computers.

 We, in our individual projects, art works, and teaching, have used ChucK and other computer music/art languages for years. Some of us have programmed, and still do, in multiple languages. Whether or not you’re already a programmer, you’ll think differently after working through the examples and exercises presented here. Few painters ever suffered because they knew more about the chemistry and physics of their paints, canvases, brushes, and solvents. Even self-taught artists have developed and used natural knowledge of the processes underlying their art making. Knowing programming is similar for the digital artist. Any artist who knows one or more computer languages, even one who doesn’t write computer code daily, still has a better sense of what’s going on when they drag down a menu, select an item, and watch the progress bar move.

 We’re certain that by the end of this book you’ll be able to do lots of what you want and likely much more than you might have thought possible. The power available in ChucK will suggest new things to do, and you’ll know how to do them—or how to figure out how. And, even if you use commercial software a lot, we’re going to show you new ways to control and interact with it using ChucK. It’s like being able to put a new engine in your car.

0.2. What is ChucK? How is it different?

 If you’re used to working with popular sound tools on computers, you might be used to connecting sound synthesis and processing boxes, managing tracks and instruments, cut/copy/paste sound editing, moving virtual dials and sliders on digital audio workstation (DAW) programs, and so on. In this book, you’ll be learning an actual programming language, ChucK, which will let you do essentially anything, but you’ll need to type in some lines of computer code (text) in order to accomplish your goals. The first few examples might make it seem like it’s harder than the tools you’re used to for making sound and music, but soon you’ll be doing things that you’d have never thought of or known possible. In this sense you can consider ChucK a power tool. There’s a little to learn up front, but soon your results will make you wonder how you lived without it.

 ChucK is a programming language designed specifically for real-time sound synthesis and music creation. Real time means that ChucK synthesizes the sound as you’re hearing it (rather than playing back a sound file), often in response to signals and gestures from the outside world. Gestures to control sound might include your typing on the keyboard, moving the computer mouse, manipulating a joystick or other game controller, or playing the keys on a musical keyboard connected to your computer.

 ChucK is also good for controlling and/or interacting with almost any type of real-time computer media and art, such as graphics, robots, or whatever can communicate with your computer.

 ChucK was designed specifically to allow and encourage on-the-fly programming, which means you can add, remove, modify, edit, and layer segments of code at any and all times, hearing the results instantly, without interrupting other sounds being synthesized and heard. This is one of the primary ways ChucK differs from all other languages, which makes it extremely fun to learn and use, because you can try things and immediately hear the results. Most other languages require you to compile, run, and debug code in a way that doesn’t let you hear immediately what you’re doing. Most computer languages, such as C, C++, or Java, weren’t designed specifically from the ground up for sound, music, and other real-time tasks. ChucK makes immediate, real-time sound a priority.

 If you know other computer languages such as Java or C++, or even other music/ sound languages and systems such as Csound, SuperCollider, JSyn, Max/MSP, or PD (Pure Data), you’ll soon see that ChucK is really different. It’s more expressive and powerful at manipulating time and sound than the graphical interfaces of Max/MSP and PD, giving you greater under-the-hood access than these other languages and systems. Compared to other text-based music/sound languages such as SuperCollider or Csound, ChucK is generally more succinct, requiring much less code (lines of typed text) than these other languages in order to accomplish any particular task.

 If you don’t know any computer languages, when you’ve finished this book, it will be easier for you to learn Java, C, C++, and any other language you desire to learn. ChucK is different from other languages for sure, but it shares many things that will be similar and recognizable to programmers of nearly any language.

 Another great feature of ChucK is that it’s open source (not secret or protected by licenses, passwords, keys, and so on), and it’s freely available on all major computer platforms, including Mac OS X, Windows, and Linux. Open source means that the community of ChucK users can have direct input into the process of making ChucK better in the future. It also means that ChucK doesn’t cost anything to get and use.

0.3. Why program in ChucK?

 A tool, which is one way to look at a programming language, can’t help but shape its user’s mindset, and it naturally suggests ways of achieving various tasks. And like any tool, a programming language should change the way you think and go about doing things. ChucK definitely presents a different way to program sound and music. Although there are tradeoffs that make certain things straightforward and other things more difficult, our sincere hope is that for the programmer, the language design choices help more than they hinder a particular task.

