

 [image: cover]

 Entity Framework 4 in Action

 Stefano Mostarda, Marco De Sanctis & Daniele Bochicchio

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
 	Development editor:
 	Sebastian Stirling

	20 Baldwin Road
 	Copyeditor:
 	Andy Carroll

	PO Box 261
 	Typesetter:
 	Dottie Marsico

	Shelter Island, NY 11964
 	Cover designer:
 	Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Redefining your data-access strategy

 Chapter 1. Data access reloaded: Entity Framework

 Chapter 2. Getting started with Entity Framework

 2. Getting started

 Chapter 3. Querying the object model: the basics

 Chapter 4. Querying with LINQ to Entities

 Chapter 5. Domain model mapping

 Chapter 6. Understanding the entity lifecycle

 Chapter 7. Persisting objects into the database

 Chapter 8. Handling concurrency and transactions

 3. Mastering Entity Framework

 Chapter 9. An alternative way of querying: Entity SQL

 Chapter 10. Working with stored procedures

 Chapter 11. Working with functions and views

 Chapter 12. Exploring EDM metadata

 Chapter 13. Customizing code and the designer

 4. Applied Entity Framework

 Chapter 14. Designing the application around Entity Framework

 Chapter 15. Entity Framework and ASP.NET

 Chapter 16. Entity Framework and n-tier development

 Chapter 17. Entity Framework and Windows applications

 Chapter 18. Testing Entity Framework

 Chapter 19. Keeping an eye on performance

 Appendix A. Understanding LINQ

 Appendix B. Entity Framework tips and tricks

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Redefining your data-access strategy

 Chapter 1. Data access reloaded: Entity Framework

 1.1. Getting started with data access

 1.2. Developing applications using database-like structures

 1.2.1. Using datasets and data readers as data containers

 1.2.2. The strong coupling problem

 1.2.3. The loose typing problem

 1.2.4. The performance problem

 1.3. Using classes to organize data

 1.3.1. Using classes to represent data

 1.3.2. From a single class to the object model

 1.4. Delving deep into object/relational differences

 1.4.1. The datatype mismatch

 1.4.2. The association mismatch

 1.4.3. The granularity mismatch

 1.4.4. The inheritance mismatch

 1.4.5. The identity mismatch

 1.4.6. Handling the mismatches

 1.5. Letting Entity Framework ease your life

 1.5.1. What is O/RM?

 1.5.2. The benefits of using Entity Framework

 1.5.3. When isn’t O/RM needed?

 1.6. How Entity Framework performs data access

 1.6.1. The Entity Data Model

 1.6.2. Object Services

 1.6.3. Entity Client data provider

 1.6.4. LINQ to Entities

 1.6.5. Entity SQL

 1.7. Summary

 Chapter 2. Getting started with Entity Framework

 2.1. Introducing the OrderIT example

 2.2. Designing the OrderIT model and database

 2.2.1. Bottom-up vs. top-down design

 2.2.2. Customers and suppliers

 2.2.3. Products

 2.2.4. Orders

 2.3. Structuring the application

 2.3.1. Creating the assemblies

 2.3.2. Designing entities using the database-first approach

 2.3.3. Designing relationships

 2.3.4. Organizing the generated code

 2.3.5. The model-first approach in the designer

 2.4. A sneak peek at the code

 2.4.1. Querying the database

 2.4.2. Updating objects and reflecting changes into storage

 2.5. Summary

 2. Getting started

 Chapter 3. Querying the object model: the basics

 3.1. One engine, many querying methods

 3.2. The query engine entry point: Object Services

 3.2.1. Setting up the connection string

 3.2.2. Writing queries against classes

 3.2.3. LINQ to Entities queries vs. standard LINQ queries

 3.2.4. Retrieving data from the database

 3.2.5. Understanding Identity Map in the context

 3.2.6. Understanding interaction between Object Services and Entity Client

 3.2.7. Capturing the generated SQL

 3.2.8. Understanding which entities are returned by a query

 3.2.9. When is a query executed?

 3.2.10. Managing the database from the context

 3.3. Summary

 Chapter 4. Querying with LINQ to Entities

 4.1. Filtering data

 4.1.1. Filtering data based on associations

 4.1.2. Paging results

 4.1.3. Retrieving one entity

 4.1.4. Creating queries dynamically

 4.2. Projecting results

 4.2.1. Projecting with associations

 4.2.2. Projections and object tracking

 4.3. Grouping data

 4.3.1. Filtering aggregated data

 4.4. Sorting

 4.4.1. Sorting with associations

 4.5. Joining data

 4.6. Querying with inheritance

 4.7. Using functions

 4.7.1. Canonical functions

 4.7.2. Database functions

 4.8. Executing handmade queries

 4.8.1. Working with parameters

 4.9. Fetching

 4.9.1. Eager loading

 4.9.2. Lazy loading

 4.9.3. Manual deferred loading

 4.9.4. Choosing a loading approach

 4.10. Summary

 Chapter 5. Domain model mapping

 5.1. The Entity Data Model

 5.1.1. The Entity Data Model and Visual Studio designer

 5.2. Creating consumable entities

 5.2.1. Writing the entities

 5.2.2. Describing entities in the conceptual schema

 5.2.3. Describing the database in the storage schema

 5.2.4. Creating the mapping file

 5.3. Defining relationships in the model

 5.3.1. One-to-one relationships

 5.3.2. One-to-many relationships

 5.3.3. Many-to-many relationships

 5.3.4. Some tips about relationships

 5.4. Mapping inheritance

 5.4.1. Table per hierarchy inheritance

 5.4.2. Table per type inheritance

 5.5. Extending the EDM with custom annotations

 5.5.1. Customizing the EDM

 5.6. Summary

 Chapter 6. Understanding the entity lifecycle

 6.1. The entity lifecycle

 6.1.1. Understanding entity state

 6.1.2. How entity state affects the database

 6.1.3. State changes in the entity lifecycle

 6.2. Managing entity state

 6.2.1. The AddObject method

 6.2.2. The Attach method

 6.2.3. The ApplyCurrentValues and ApplyOriginalValues methods

 6.2.4. The DeleteObject method

 6.2.5. The AcceptAllChanges method

 6.2.6. The ChangeState and ChangeObjectState methods

 6.2.7. The Detach method

 6.3. Managing change tracking with ObjectStateManager

 6.3.1. The ObjectStateEntry class

 6.3.2. Retrieving entries

 6.3.3. Modifying entity state from the entry

 6.3.4. Understanding object tracking

 6.3.5. Understanding relationship tracking

 6.3.6. Change tracking and MergeOption

 6.4. Summary

 Chapter 7. Persisting objects into the database

 7.1. Persisting entities with SaveChanges

 7.1.1. Detecting dirty entities

 7.1.2. Starting database transactions

 7.1.3. SQL code generation and execution

 7.1.4. Database transaction commit or rollback

 7.1.5. Committing entities

 7.1.6. Overriding SaveChanges

 7.2. Persisting changed entities into the database

 7.2.1. Persisting an entity as a new row

 7.2.2. Persisting modifications made to an existing entity

 7.2.3. Persisting entity deletion

 7.3. Persisting entities graphs

 7.3.1. Persisting a graph of added entities

 7.3.2. Persisting modifications made to a graph

 7.3.3. Persisting deletions made to a graph

 7.3.4. Persisting many-to-many relationships

 7.4. A few tricks about persistence

 7.4.1. Handling persistence exceptions

 7.4.2. Executing custom SQL commands

 7.5. Summary

 Chapter 8. Handling concurrency and transactions

 8.1. Understanding the concurrency problem

 8.1.1. The concurrent updates scenario

 8.1.2. A first solution: pessimistic concurrency control

 8.1.3. A better solution: optimistic concurrency control

 8.1.4. The halfway solution: pessimistic/optimistic concurrency control

 8.2. Handling concurrency in Entity Framework

 8.2.1. Enabling optimistic concurrency checking

 8.2.2. Optimistic concurrency in action

 8.2.3. Catching concurrency exceptions

 8.2.4. Managing concurrency exceptions

 8.3. Managing transactions

 8.3.1. The transactional ObjectContext

 8.3.2. Transactions and queries

 8.4. Summary

 3. Mastering Entity Framework

 Chapter 9. An alternative way of querying: Entity SQL

 9.1. Query basics

 9.2. Filtering data

 9.2.1. Working with associations

 9.2.2. Paging results

 9.3. Projecting results

 9.3.1. Handling projection results

 9.3.2. Projecting with associations

 9.4. Grouping data

 9.5. Sorting data

 9.5.1. Sorting data based on associations

 9.6. Joining data

 9.7. Querying for inheritance

 9.8. Using query-builder methods

 9.8.1. Chaining methods

 9.8.2. Query-builder methods vs. LINQ to Entities methods

 9.8.3. Using parameters to prevent injection

 9.9. Working with the Entity Client data provider

 9.9.1. Connecting with EntityConnection

 9.9.2. Executing queries with EntityCommand

 9.9.3. Processing query results with EntityDataReader

 9.9.4. Going beyond querying with Entity Client

 9.10. Summary

 Chapter 10. Working with stored procedures

 10.1. Mapping stored procedures

 10.1.1. Importing a stored procedure using the designer

 10.1.2. Importing stored procedures manually

 10.2. Returning data with stored procedures

 10.2.1. Stored procedures whose results match an entity

 10.2.2. Stored procedures whose results don’t match an entity

 10.2.3. Stored procedures that return scalar values

 10.2.4. Stored procedures that return an inheritance hierarchy

 10.2.5. Stored procedures with output parameters

 10.3. Embedding functions in the storage model

 10.4. Updating data with stored procedures

 10.4.1. Using stored procedures to persist an entity

 10.4.2. Using stored procedures to update an entity with concurrency

 10.4.3. Persisting an entity that’s in an inheritance hierarchy

 10.4.4. Upgrading and downgrading an entity that’s in an inheritance hierarchy

 10.4.5. Executing stored procedures not connected to an entity

 10.5. Summary

 Chapter 11. Working with functions and views

 11.1. Views in the storage model: defining queries

 11.1.1. Creating a defining query

 11.1.2. Mapping stored procedures to classes with complex properties

 11.2. User-defined functions and scalar-valued functions

 11.2.1. Scalar-valued functions

 11.2.2. User-defined functions

 11.2.3. User-defined functions and collection results

 11.3. Summary

 Chapter 12. Exploring EDM metadata

 12.1. Metadata basics

 12.1.1. Accessing metadata

 12.1.2. How metadata is internally organized

 12.1.3. Understanding when metadata becomes available

 12.2. Retrieving metadata

 12.2.1. Understanding the metadata object model

 12.2.2. Extracting metadata from the EDM

 12.3. Building a metadata explorer

 12.3.1. Populating entities and complex types

 12.3.2. Populating functions

 12.3.3. Populating containers

 12.3.4. Populating storage nodes

 12.4. Writing generic code with metadata

 12.4.1. Adding or attaching an object based on custom annotations

 12.4.2. Building a generic GetById method

 12.5. Summary

 Chapter 13. Customizing code and the designer

 13.1. How Visual Studio generates classes

 13.1.1. Understanding template tags

 13.1.2. Understanding directives

 13.1.3. Writing code

 13.2. Customizing class generation

 13.2.1. Understanding the available POCO template

 13.2.2. Generating user-defined and scalar-valued functions

 13.2.3. Generating data-annotation attributes

 13.2.4. Extending classes through partial classes

 13.3. How Visual Studio generates database DDL

 13.3.1. Choosing the workflow

 13.3.2. Generating SSDL, MSL, and DDL

 13.4. Customizing DDL generation

 13.4.1. Understanding the conceptual-to-storage template

 13.4.2. Understanding the conceptual-to-mapping template

 13.4.3. Understanding the storage-to-database script template

 13.5. Creating designer extensions

 13.5.1. How the property-extension mechanism works

 13.5.2. Setting up the project containing the extension

 13.5.3. Creating the property class

 13.5.4. Creating the factory class

 13.5.5. Creating the manifest extension file

 13.5.6. Installing, debugging, and uninstalling the extension

 13.6. Summary

 4. Applied Entity Framework

 Chapter 14. Designing the application around Entity Framework

 14.1. The application design process

 14.2. A typical three-layer architecture

 14.2.1. Filling the product list

 14.2.2. Calculating order totals and saving them to the database

 14.2.3. Dealing with higher levels of complexity

 14.3. Principles of domain-driven design

 14.3.1. Entities

 14.3.2. Value objects

 14.3.3. Handling associations correctly: domain roots and aggregates

 14.3.4. Refining the model

 14.4. Retrieving references to a domain’s entities

 14.4.1. Repositories at a glance

 14.4.2. Implementing a repository

 14.4.3. Getting a reference to a brand new entity

 14.5. Summary

 Chapter 15. Entity Framework and ASP.NET

 15.1. EntityDataSource, a new approach to data binding

 15.1.1. A practical guide to data source controls

 15.1.2. The EntityDataSource control in depth

 15.2. Using Dynamic Data controls with Entity Framework

 15.2.1. Registering the model

 15.2.2. Working with data annotations

 15.3. The ObjectContext lifecycle in ASP.NET

 15.3.1. The Context-per-Request pattern

 15.3.2. Wrapping the context

 15.3.3. A module to handle the lifecycle

 15.3.4. Using the repository in a page

 15.4. Common scenarios involving ASP.NET and Entity Framework

 15.5. Summary

 Chapter 16. Entity Framework and n-tier development

 16.1. n-Tier problems and solutions

 16.1.1. Tracking changes made on the client

 16.1.2. Choosing data to be exchanged between server and client

 16.1.3. The serialization problem

 16.2. Developing a service using entities as contracts

 16.2.1. Persisting a complex graph

 16.2.2. Optimizing data exchanges between client and server

 16.2.3. Dealing with serialization in WCF

 16.3. Developing a service using DTOs

 16.3.1. Persisting a complex graph

 16.4. Developing a service using STEs

 16.4.1. Enabling STEs

 16.4.2. Inside an STE

 16.4.3. Inside the context

 16.4.4. Using STEs

 16.4.5. STE pros and cons

 16.5. Summary

 Chapter 17. Entity Framework and Windows applications

 17.1. An example application

 17.2. Designing model classes for binding

 17.2.1. Implementing INotifyPropertyChanged

 17.2.2. Implementing IEditableObject

 17.2.3. Implementing IDataErrorInfo

 17.2.4. Using a template to generate the binding code

 17.3. Binding in Windows Forms applications

 17.3.1. Showing orders

 17.3.2. Showing data for the selected order

 17.3.3. Showing details of the selected order

 17.3.4. Showing selected detail information

 17.3.5. Adding code to persist modifications

 17.3.6. Taking advantage of binding interfaces

 17.4. Binding in WPF applications

 17.4.1. Showing orders

 17.4.2. Showing data for the selected order

 17.4.3. Showing selected order details

 17.4.4. Showing selected detail information

 17.4.5. Adding code to persist modifications

 17.5. Summary

 Chapter 18. Testing Entity Framework

 18.1. Unit tests at a glance

 18.2. Writing a test suite in Visual Studio 2010

 18.2.1. Testing a simple method

 18.2.2. Advanced features of Microsoft’s Unit Testing Framework

 18.3. Isolating dependencies

 18.3.1. Refactoring for testability

 18.3.2. Using a mocking framework to fake dependencies

 18.4. Unit-testing the data access layer

 18.4.1. A test infrastructure for a repository

 18.4.2. Testing LINQ to Entities queries

 18.5. Testing the persistence and retrieval of an entity

 18.6. Summary

 Chapter 19. Keeping an eye on performance

 19.1. Testing configuration and environment

 19.1.1. The performance test visualizer

 19.1.2. Building the timer

 19.2. Database-writing comparison

 19.3. Query comparisons in the default environment

 19.4. Optimizing performance

 19.4.1. Pregenerating views

 19.4.2. Compiling LINQ to Entities queries

 19.4.3. Enabling plan caching for Entity SQL

 19.4.4. Disabling tracking when it’s not needed

 19.4.5. Optimizing stored procedures

 19.5. Summary

 Appendix A. Understanding LINQ

 A.1. Why was LINQ created?

 A.2. Type inference

 A.3. Extension methods

 A.3.1. Method chaining

 A.3.2. Method evaluation

 A.4. Lambda expressions

 A.4.1. Anonymous methods

 A.4.2. From anonymous methods to lambda expressions

 A.5. Object initializers

 A.6. Anonymous types

 A.7. Query syntax

 A.8. Deferred execution

 A.8.1. Runtime query composition

 Appendix B. Entity Framework tips and tricks

 B.1. A smart way of attaching entities

 B.1.1. Attaching an entity as Modified or Deleted

 B.1.2. Modifying only selected properties after attaching

 B.2. Building an auditing system

 B.2.1. Creating an attribute to mark auditable entities

 B.2.2. Customizing the designer

 B.2.3. Customizing the template that generates entities

 B.2.4. Overriding the persistence process with a custom context

 B.2.5. Customizing the context template

 B.2.6. Using the code

 B.3. Two tips for querying data

 B.3.1. Improving the Include method

 B.3.2. Enabling full text search in Entity Framework

 B.4. Working with special database types

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 I spend a lot of my time here at Microsoft thinking about complexity—and asking myself lots of questions. My guess is that
 you do the same.

 When we design code, we ask ourselves questions such as these: Can I make this code more readable? Can I write this loop with
 fewer lines? Can I factor out behavior into a separate class? Can I architect this system so that it is more cohesive?

 When we design user interfaces, we ask similar questions: Are we asking the user to make too many decisions? Did we lay out
 this UI in the clearest possible way? Can we make error states clearer and easier to avoid?

 When we design systems, we ask other questions: How many concepts must the user learn? Do those concepts map to things the
 user knows and cares about? Does everything hang together in a clear, sensible, consistent way?

 I think about these things a lot. But first I’d like to answer another question that I often get asked: Just how complicated
 is the Entity Framework? The answer is, that it depends on what you want to do with it.

 To see how simple the Entity Framework is, let’s spend five minutes making it jump through a simple set of hoops. You’ll need
 Visual Studio 2010 (the Express editions will work) and SQL Server (again, the Express editions will work just fine). In SQL
 Server, create a database called “EntityFrameworkIsSimple.”

 1. Launch Visual Studio 2010.

 2. From the View menu, select Server Explorer.

 3. In Server Explorer, add a new connection to your EntityFrameworkIsSimple database.

 4. Create a new Console Application project, and call it EntityFrameworkIsSimple.

 5. Right-click the project and select Add > New Item. In the Add New Item dialog box, select ADO.NET Entity Data Model.

 6. Click Add.

 7. In the Entity Data Model Wizard that comes up, select Empty Model and click Finish.

 8. The entity designer will appear. Right-click in it and select Add > Entity.

 9. In the Add Entity dialog box, set the entity name to Person. This will automatically make the entity set People. (The set
 is the name of the collection to which you’ll add new instances of the Person class.)

 10. Click OK.

 11. A new entity will appear. Right-click on the Properties bar inside of it and select Add > Scalar Property. (Or just click
 on the Insert key.)

 12. Rename the new property to FirstName.

 13. Do this again, creating a new property called LastName.

 14. Add another entity and call it Book.

 15. To this new entity, add a property called Title.

 16. Right-click the “Person” text in the Person entity and select Add > Association.

 17. In the Add Association dialog box, change the Multiplicity on the Person end to * (Many), and change the Navigation Property value at right, from Person to Authors.

 18. Click OK.

 19. At this point, your model should look like this:

[image:]

 20. Now, right-click on an empty area of the designer and select Generate Database from Model.

 21. In the Generate Database Wizard that comes up, provide a connection to your database. Because we’ve added a connection
 to the database at the beginning of this walkthrough, it should show up in the drop-down list of available connections.

 22. Click Next.

 23. The DDL for a database to hold your model shows up. Click Finish.

 24. In the T-SQL editor that comes up, right-click and select Execute SQL. Provide your local database information when asked
 to connect.

 That’s it! We’ve got a model. We’ve got code. We’ve got a database. We’ve even got a connection string in App.Config that
 the designer creates and maintains for you.

 Let’s take this model for a test drive. Let’s name the model:

 1. In the designer, right-click in an empty area of the canvas and select Properties.

 2. In the Properties window, find the property called Entity Container Name and change its value to SimpleModel.

 3. In Program.cs, enter the following code into the body of the Main function:

//Create and write our sample data
using (var context = new SimpleModel()) {
 var person1 = new Person() { FirstName = "Stefano", LastName="Mostarda" };
 var person2 = new Person() { FirstName = "Marco", LastName="De Sanctis" };
 var person3 = new Person() { FirstName = "Daniele", LastName="Bochicchio" };
 var book = new Book() { Title = "Microsoft Entity Framework In Action"};
 book.Authors.Add(person1);
 book.Authors.Add(person2);
 book.Authors.Add(person3);
 context.People.AddObject(person1);
 context.People.AddObject(person2);
 context.People.AddObject(person3);
 context.Books.AddObject(book);
 context.SaveChanges();
}
//Query our sample data
using (var context = new SimpleModel()) {
 var book = context.Books.Include("Authors").First();
 Console.Out.WriteLine("The authors '{0}' are:", book.Title);
 foreach(Person author in book.Authors) {
 Console.Out.WriteLine(" - {0} {1}", author.FirstName, author.LastName);
 }
}
Console.Read();

 4. Compile and run this code. You should see the following output:

[image:]

 As you can see, we’ve created a system that issues queries and updates three different tables. And not a single join statement in sight!

 Of course, in the real world, we have many other concerns: How do we bind these types to UI elements? How do we send and update
 them across distributed application tiers? How do we handle concurrency, dynamic querying, and stored procedures? While the
 Entity Framework may be simple to get started with, the real world is not simple, and the Entity Framework has a host of features
 for dealing with real-world situations.

 Including an example like this may not be standard for a foreword to a book, but I did so to show how easy getting started
 with Entity Framework is and also to show you where this book comes in. Entity Framework 4 in Action will take you from handling transactions to understanding how to deal with performance problems and using ESQL to writing
 dynamic queries. And it will answer all of your questions along the way—even ones you did not know you had!

 I look forward to seeing what you will do with the Entity Framework and to hearing what you want us to work on next. The authors
 are as excited as I am to show you what is in store in the future!

 NOAM BEN-AMI
PROGRAM MANAGER
ENTITY FRAMEWORK TEAM, MICROSOFT

Preface

 Yatta, we did it! We wrote a book about Entity Framework! It’s not our first book, but it’s the first one written in English
 and distributed worldwide. It was a great challenge, but having the opportunity to spread the word about Entity Framework
 made it worth the effort. Entity Framework is a great tool that speeds up the development of data access code and that can
 save you days and days of coding. We know coding is our job, but wouldn’t you prefer to be more productive while writing less
 and better code?

 Entity Framework is a great O/RM tool that’s integrated into the .NET Framework, meaning not only is it free, it’s also maintained
 and improved in each .NET Framework release. The result is that it’s a great platform today, and tomorrow it will be an outstanding
 one that will likely rule over all other O/RM platforms.

 When we started planning this book, we had a clear idea in mind: we didn’t want to create a reference book; we wanted to create
 a practical one. We wanted you to read about real-world problems and learn real-world solutions. That’s why we developed an
 example and improved on it throughout the book, avoiding common pitfalls and solving problems that you’d face on the job.

 This is a book that we felt was missing among those that are available. You won’t find a detailed description of all classes
 and properties here, but you’ll learn the best way to use them and how to combine features to get the most out of Entity Framework.
 We’d love to hear what you think about the book—you can reach us online at the various addresses listed in the “About this
 book” section on page xxiv.

 It took a long time to write this book, but now that it’s in your hands we can stop spending endless nights in front of our
 monitors and finally sit down and spend more time with our families.

 Now it’s your turn. Enjoy the read, get your hands dirty, and have fun.

Acknowledgments

 We can’t begin to count all the individuals who contributed to this book, each one helping to improve the final product. All
 of them deserve a warm thank-you. While we can’t name everyone here, we would like to offer special thanks to the following
 individuals who were particularly helpful:

 Sebastian Stirling, our developmental editor at Manning—Sebastian worked with us from the beginning and masterfully transformed
 a bunch of words and images into an appealing book. Thank you.

 Elisa Flasko, Program Manager of the Entity Framework team at Microsoft—Elisa provided valuable information and routed our
 questions to the right person when she didn’t have the answers. Without her, this book wouldn’t be so thorough. Thank you.

 Noam Ben-Ami, Program Manager of the Entity Framework team at Microsoft—Noam pointed us to the right solutions to many problems,
 and was especially helpful when we were writing chapter 13. He also wrote the foreword to our book. Thank you.

 Alessandro Gallo, an ASP Insider, consultant, and lead author of Manning’s ASP.NET Ajax in Action—Alessandro didn’t contribute to the content of this book, but he was the spark that started everything. Thank you.

 Many individuals at Manning worked hard to make this book possible. First of all, special thanks to Michael Stephens and Marjan
 Bace for believing in us. Others who contributed are Karen Tegtmeyer, Mary Piergies, Maureen Spencer, Andy Carroll, Dottie
 Marsico, Tiffany Taylor, Susan Harkins, Janet Vail, and Cynthia Kane.

 Our reviewers deserve special mention—their suggestions were invaluable. We thank Jonas Bandi, David Barkol, Timothy Binkley-Jones,
 Margriet Bruggeman, Nikander Bruggeman, Gustavo Cavalcanti, Dave Corun, Freedom Dumlao, Rob Eisenberg, Marc Gravell, Berndt
 Hamboeck, Jason Jung, Lester Lobo, Darren Neimke,

 Braj Panda, Christian Siegers, Andrew Seimer, Alex Thissen, Dennis van der Stelt, and Frank Wang. We’d also like to thank
 Deepak Vohra, our technical proofreader, for the outstanding job he did reviewing the final manuscript during production.

 Last, but not least, thank you, dear reader, for your trust in our book. We hope that it will help you in your everyday job
 and will encourage you to fall in love with the world of O/RMs.

 In addition to the people we’ve already mentioned, there are others who are important in our lives. Even if they didn’t contribute
 to the book, they contributed to keeping us on track during the writing process. We acknowledge them below.

Stefano Mostarda

 I’d like to thank my wife Sara for her support and patience, as well as my family (yes, the book is finally done!). Special
 thanks to my closest friends (in alphabetical order): Federico, Gabriele, Gianni, and Riccardo. Of course, I can’t help mentioning
 Filippo, who already bought a copy of the book. And a big thank-you to William and Annalisa for their friendship and invaluable
 support.

 My last words are for Marco and Daniele: thank you, guys!

Marco De Sanctis

 My thanks to Stefano and Daniele. It was a privilege to work with such smart and funny guys. And thanks to the whole ASPItalia.com team. I’m proud to be a part of it.

 Special thanks to my family, and to Barbara, for their support and their patience. You have all my love.

Daniele Bochicchio

 I would like to thank my wife Noemi for her support and patience, and for giving me our beautiful sons, Alessio and Matteo.
 A big thank-you to my parents for letting me play with computers when I was a kid, and to my family for supporting me.

 A special thank-you to Stefano for the opportunity to help with this book. And thanks to both Stefano and Marco for sharing
 their passion for Entity Framework. You guys rock!

About this Book

 Entity Framework is the Microsoft-recommended tool to read and persist data inside a relational database. With this software,
 Microsoft has entered the O/RM market with a reliable product that significantly eases data access development.

 This book will take you from the apprentice to the master level in the Entity Framework technology. You can think of this
 book as a guided tour through Entity Framework features and best practices. When you have finished reading Entity Framework 4 in Action, you’ll be able to confidently design, develop, and deliver applications that rely on Entity Framework to persist business
 data.

Who Should Read this Book?

 This book was written for all Entity Framework developers, whether you develop small home applications or the largest enterprise
 systems. Everything from home DVD library applications to e-commerce solutions that interact with many heterogeneous systems
 and store lots of information can benefit from Entity Framework, and this book will show you how.

Roadmap

 This book will walk you through the creation of an application from scratch, and will show you how to keep improving it with
 various Entity Framework features. This Entity Framework tour will cover all of Framework’s features over the course of nineteen
 chapters, grouped in four parts.

 In part 1 we introduce the basics of the O/RM pattern and show you the fundamentals of Entity Framework as we create the foundation
 for an application.

 Chapter 1 provides a high-level overview of the O/RM pattern and of the Entity Framework components. By the end of this chapter, you’ll
 understand why O/RM tools are so useful and how Entity Framework accomplishes its tasks.

 Chapter 2 shows how you can create an application from scratch and how to persist objects in the database. First, you’ll learn two
 ways of designing an application using Entity Framework. Then, after the application is created, you’ll learn how to read,
 manipulate, and persist data. By the end of this chapter, you’ll have a clear understanding of the advantages of adopting
 Entity Framework.

 In part 2 of the book, we discuss the main building blocks of Entity Framework in detail: mapping, querying, and persistence.

 Chapter 3 covers the basics of querying. Here you’ll learn about the main component that enables Entity Framework to work with objects.
 You’ll also discover how Entity Framework enables you to write queries against your model that will successfully hit the database.

 Chapter 4 focuses on querying with LINQ to Entities. In this chapter, you’ll learn how to filter, group, project, and join data using
 the main query language of Entity Framework. By the end of this chapter, you’ll be able to perform any type of query.

 Chapter 5 discusses mapping between entities in the model and the database. Here you’ll learn how to accomplish this visually with
 the designer, but you’ll also learn how to manually modify the mapping file. By the end of this chapter, you’ll have a full
 knowledge of the mapping mechanism in Entity Framework.

 Chapter 6 tours the entity lifecycle. You’ll learn how Entity Framework treats entities, what state an entity can be in, how to modify
 the state, and how state affects an entity’s persistence. By the end of the chapter, you’ll be able to write code that prepares
 your objects for persistence into the database.

 Chapter 7 discusses persisting objects into the database. In chapter 6 you learned how to prepare entities for persistence; here you’ll learn how to actually save them. This subject has many intricacies
 and pitfalls, especially where related entities are involved. This chapter focuses on these potential problems so that you
 can understand and avoid them. By the end of the chapter, you’ll be able to persist any entity in any way you need.

 Chapter 8 covers Entity Framework’s concurrency and transaction features. In the first part of the chapter, you’ll be introduced to
 the concept of concurrency and what problems it solves when data is saved to the database. Then you’ll learn how Entity Framework
 lets you easily manage concurrency. Finally, you’ll learn how Entity Framework manages transactions to persist multiple entities,
 and how you can extend a transaction’s lifetime to execute custom commands.

 Part 3 of the book will show you how to take advantage of Entity Framework’s most advanced features.

 Chapter 9 introduces Entity SQL. Entity SQL is Entity Framework’s other querying language, and it’s still the most powerful (although
 less appealing than LINQ to Entities).

 In this chapter, we’ll take the LINQ to Entities examples from chapter 4 and rewrite them in Entity SQL. You can see them side by side and choose the approach that is easier for you. By the end
 of this chapter, you’ll have a full knowledge of all the querying techniques Entity Framework offers.

 Chapter 10 covers stored procedures. Here you’ll learn how to have Entity Framework call stored procedures to query and update entities
 instead of having it generate SQL for you. By the end of this chapter, you’ll be able to create your own set of stored procedures
 and have Entity Framework invoke them, so that your DBA is happy.

 Chapter 11 discusses views and functions embedded in mapping. You’ll see how to create internal views that can be queried easily, and
 how to create functions that can be reused when querying with both LINQ to Entities and Entity SQL. By the end of this chapter,
 you’ll be able to write queries that are easy to maintain and reusable.

 Chapter 12 discusses how to retrieve mapping information. Chapter 5 explains how to map your model classes to database tables and views; in this chapter you’ll learn how to retrieve this mapping
 information. You’ll also see some real-world examples that will demonstrate why this technique is valuable. After finishing
 this chapter, you’ll be able to write powerful generic code that takes data from mapping files.

 Chapter 13 covers code generation. Here you’ll discover how Entity Framework is integrated with Visual Studio, and how this integration
 lets you create code and even generate database scripts starting with mapping information. You’ll also discover how to customize
 the Entity Framework designer inside Visual Studio. After you’ve finished this chapter, you’ll be able to fully customize
 the designer, adding behaviors that simplify development.

 In part 4 of the book, we’ll show you how to best use Entity Framework with different types of applications: Windows, web, and web
 services applications.

 Chapter 14 discusses application design. You’ll learn about the classic three-layer pattern and then go on to the Domain Model pattern.
 Finally, you’ll read about the famous Repository pattern, and learn why it’s a great choice for many applications. By the
 end of this chapter, you’ll be able to create a well-designed and layered application.

 Chapter 15 explains how to integrate Entity Framework into ASP.NET applications. In this chapter, you’ll read about ASP.NET controls
 and about best practices for handling objects. This will enable you to create web applications using the correct patterns.

 Chapter 16 discusses how to create web service applications. Here you’ll learn about specific features dedicated to the web service
 environment and how and when to use them instead of resorting to other techniques. By the end of this chapter, you’ll have
 a strong understanding of web services and Entity Framework integration.

 Chapter 17 explains how to integrate Entity Framework into Windows applications. Here you’ll discover how to let your model classes
 implement a specific interface so that they are integrated with the data-binding capabilities of Windows Form and WPF applications.
 By the end of this chapter, you’ll be able to face everyday problems involving these types of applications.

 Chapter 18 covers testing. Here you’ll learn how to test the code that accesses the database and your repositories, and how to create
 batteries of tests to reveal if your modifications have broken something.

 Chapter 19 discusses performance. You’ll learn how Entity Framework performance compares to performance in the classic ADO.NET approach.
 You’ll also learn some tricks and tips to improve performance in various situations. By the end of the chapter, you’ll be
 able to boost the performance of your data access code to the edge.

 Appendix A introduces LINQ. LINQ to Entities is the most popular querying language for Entity Framework. It’s a dialect of LINQ, so
 to better understand it you should have a good knowledge of LINQ. That’s what this appendix offers.

 Appendix B presents some good Entity Framework tips. You won’t learn about new features here, but you’ll learn how to merge existing
 features to produce powerful behaviors. This is your ultimate resource in understanding how much power Entity Framework hands
 you.

Code Conventions

 All source code in listings or set off from the text is in a fixed-width font like this to separate it from ordinary text. The .NET code is provided in both C# and Visual Basic so that you should be comfortable
 with it, whatever your development language. For longer lines of code that won’t fit on the page, a code-continuation character
 ([image:]) is used to indicate lines that are broken on the page but shouldn’t be broken in the code. Code annotations accompany many
 of the listings, highlighting important concepts. In some cases, numbered bullets link to explanations that follow the listing.

Source Code Downloads

 All the examples in this book can be downloaded from http://www.entityframeworkinaction.com/download.aspx or from the publisher’s website at www.manning.com/EntityFramework4inAction. The code comes in both VB and C# versions.

 The code comes with a Visual Studio 2010 solution file so you only need Visual Studio 2010 to run the examples. We did not
 try to open the solution file with Visual Studio Express 2010 (that is the free version), but it’s likely to work.

Author Online

 The purchase of Entity Framework 4 in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at http://www.manning.com/EntityFramework4inAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray! The Author Online forum and the archives of previous discussions will be accessible
 from the publisher’s website as long as the book is in print.

 In addition to the Author Online forum available on Manning’s website, you may also contact us about this book, or anything
 else, through one of the following avenues:

	Stefano’s blog—http://blogs.5dlabs.it/author/mostarda.aspx

 	Daniele’s blog—http://blogs.5dlabs.it/author/bochicchio.aspx

 	Marco’s blog—http://blogs.aspitalia.com/cradle

All comments sent to these blogs are moderated. We post most of the comments, but if you include your email address or phone
 number, we won’t post the comment out of respect for your privacy.

About the Authors

 STEFANO MOSTARDA is a Microsoft MVP in the Data Platform category. He’s a software architect mainly focused on web applications, and is a
 cofounder of 5DLabs.it, a consulting agency specializing in ASP.NET, Silverlight, Windows Phone 7, and the .NET Framework.
 Stefano is a professional speaker at many Italian conferences on Microsoft technologies and he’s a well-known author. He has
 written many books for the Italian market and is a coauthor of Manning’s ASP.NET 4.0 in Practice. He’s one of the leaders of the ASPItalia.com Network and a content manager of the LINQNItalia.com website dedicated to LINQ and Entity Framework. You can read his technical deliriums both on his blog and on Twitter at http://twitter.com/sm15455/.

 MARCO DE SANCTIS has been designing and developing enterprise applications in distributed scenarios for the last seven years. He started developing
 with ASP.NET as soon as it came out, and since then has become an application architect. Through the years he specialized
 in building distributed services, widening his knowledge to encompass technologies like Workflow Foundation, Windows Communication
 Foundation, LINQ, and ADO.NET Entity Framework. Today he works as a senior software engineer for major Italian companies in
 the IT market. In his spare time, he’s a content manager at ASPItalia.com and has recently been named a Microsoft Most Valuable Professional in ASP.NET. You can read his thoughts on twitter at http://twitter.com/crad77.

 DANIELE BOCHICCHIO is a cofounder of 5DLabs.it, a consulting agency specializing in ASP.NET, Silverlight, Windows Phone 7, and the .NET Framework.
 He has worked on a lot of cool projects with many different technologies. Daniele is a well-known professional speaker and
 author, and you can find him at developer-focused events worldwide. He has written several books, both in Italian and English,
 including ASP.NET 4.0 in Practice, published by Manning. He is also the network manager of the ASPItalia.com Network, the largest Italian .NET Framework community. Daniele’s personal website is located at http://www.bochicchio.com/ and he shares his thoughts in 140 chars or less at http://twitter.com/dbochicchio/.

About the Cover Illustration

 The figure on the cover of Entity Framework 4.0 in Action is captioned “Limonaro,” or a vendor of lemons. The illustration is taken from a collection of Italian Fine Arts, Prints, and Photographs that includes hand-colored drawings of Italian regional dress costumes from the nineteenth century. Wearing a white linen
 shirt, blue breeches, and a wide-brimmed straw hat, and carrying a basket of lemons in one hand and a jug of lemonade in the
 other, the itinerant limonaro was a welcome figure in the streets of Italian towns and villages, especially in the hot summer
 weather.

 The diversity of the drawings in the collection speaks vividly of the uniqueness and individuality of the world’s towns and
 provinces just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in
 the countryside, it was easy to identify where they lived and what their trade or station in life was just by what they were
 wearing.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life of two centuries ago brought back to life by the pictures from collections such as this
 one.

Part 1. Redefining your data-access strategy

 Welcome to Entity Framework 4 in Action. Entity Framework is the O/RM tool that Microsoft introduced with .NET Framework 3.5 Service Pack 1 and has now updated to
 version 4.0. This book will enable you to use Entity Framework 4.0 to quickly build data-centric applications in a robust
 and model-driven way. If you’re an Entity Framework novice, you’ll learn how to create an application from scratch and build
 it correctly. If you’re an experienced Entity Framework developer, you’ll find lots of in-depth coverage that will improve
 your knowledge of this powerful tool.

 The book is divided into four parts, and part 1 dives right into the fundamentals of Entity Framework. In chapter 1, you’ll discover what an O/RM tool is, and when and why it should be used. You’ll then learn about the modules that make
 up the Entity Framework architecture and how they interact with each other and with you.

 Chapter 2 will show you how to build an application from scratch using Entity Framework. Here you’ll be introduced to the example application
 we’ll use throughout the book, and you’ll learn how to create its model and automatically generate code. In the last section,
 you’ll get an overview of how to read data from and persist data to a database.

Chapter 1. Data access reloaded: Entity Framework

	

 This chapter covers

	
DataSet and classic ADO.NET approach

 	Object model approach

 	Object/relational mismatch

 	Entity Framework as a solution

	

When you design an application, you have to decide how to access and represent data. This decision is likely the most important
 one you’ll make in terms of application performance and ease of development and maintainability. In every project we’ve worked
 on, the persistence mechanism was a relational database. Despite some attempts to introduce object databases, the relational
 database is still, and will be for many years, the main persistence mechanism.

 Nowadays, relational databases offer all the features you need to persist and retrieve data. You have tables to maintain data,
 views to logically organize them so that they’re easier to consume, stored procedures to abstract the application from the
 database structure and improve performance, foreign keys to relate records in different tables, security checks to avoid unauthorized
 access to sensitive data, the ability to transparently encrypt and decrypt data, and so on. There’s a lot more under the surface, but these features are
 ones most useful to developers.

 When you must store data persistently, relational databases are your best option. On the other hand, when you must temporarily represent data in an application, objects are the best way to go. Features like inheritance, encapsulation, and method overriding
 allow a better coding style that simplifies development compared with the legacy DataSet approach.

 Before we delve into the details of Entity Framework, we’ll take the first three sections of this chapter to discuss how moving
 from the DataSet approach to the object-based approach eases development, and how this different way of working leads to the adoption of an
 object/relational mapping (O/RM) tool like Entity Framework.

 When you opt for using objects, keep in mind that there are differences between the relational and object-oriented paradigms,
 and the role of Entity Framework is to deal with them. It lets the developer focus on the business problems and ignore, to
 a certain extent, the persistence side. Such object/relational differences are hard to overcome. In section 1.4, you’ll discover that there is a lot of work involved in accommodating them. Then, the last sections of the chapter will
 show how Entity Framework comes to our aid in solving the mismatch between the paradigms and offering a convenient way of
 accessing data.

 By the end of this chapter, you’ll have a good understanding of what an O/RM tool is, what it’s used for, and why you should
 always think about using one when creating an application that works with a database.

1.1. Getting started with data access

 Data in tables is stored as a list of rows, and every row is made of columns. This efficient tabular format has driven how
 developers represent data in applications for many years. Classic ASP and VB6 developers use recordsets to retrieve data from
 data-bases—the recordset is a generic container that organizes the data retrieved in the same way it’s physically stored: in rows and columns. When
 .NET made its appearance, developers had a brand new object to maintain in-memory data: the dataset. Although this control is completely different from the recordset we used before the .NET age, it has similar purposes and,
 more important, has data organized in the same manner: in rows and columns.

 Although this representation is efficient in some scenarios, it lacks a lot of features like type safety, performance, and
 manageability. We’ll discuss this in more detail when we talk about datasets in the next section.

 In the Java world, a structure like the dataset has always existed, but its use is now discouraged except for the simplest applications. In the .NET world, we’re facing
 the beginning of this trend too. You may be wondering, “If I don’t use general-purpose containers, what do I use to represent
 data?” The answer is easy: objects.

 Objects are superior to datasets in every situation because they don’t suffer from the limitations that general-purpose structures
 do. They offer type safety, autocompletion in Visual Studio, compile-time checking, better performance, and more. We’ll talk more about objects in section 1.2.

 The benefits you gain from using objects come at a cost, resulting from the differences between the object-oriented paradigm
 and the relational model used by databases. There are three notable differences:

	
Relationships— In a tabular structure, you use foreign keys on columns; with classes, you use references to other classes.

 	
Equality— In a database, the data always distinguishes one row from another, whereas in the object world you may have two objects of
 the same type with the same data that are still different.

 	
Inheritance— The use of inheritance is common in object-oriented languages, but in the database world it isn’t supported.

This just touches the surface of a problem known as the object/relational mismatch, which will be covered in section 1.4.

 In this big picture, O/RM takes care of object persistence. The O/RM tool sits between the application code and the database and takes care of retrieving data and transforming it into
 objects efficiently, tracks objects’ changes, and reflects them to the database. This ensures that you don’t have to write
 almost 80 percent of the data-access code (that’s a rough estimate based on our experience).

1.2. Developing applications using database-like structures

 Over the last decade, we have been developing applications using VB6, Classic ASP, Delphi, and .NET, and all of these technologies
 use external components or objects to access databases and maintain data internally. Both tasks are similar in each language,
 but they’re especially similar for internal data representation: data is organized in structures built on the concept of rows
 and columns. The result is that applications manage data the same way it’s organized in the database.

 Why do different vendors offer developers the same programming model? The answer is simple: developers are accustomed to tabular
 representation, and they don’t need to learn anything else to be productive. Furthermore, these generic structures can contain
 any data as long as it can be represented in rows and columns. Potentially, even data coming from XML files, web services,
 or rest calls can be organized this way.

 As a result, vendors have developed a subset of objects that can represent any information without us having to write a single
 line of code. These objects are called data containers.

 1.2.1. Using datasets and data readers as data containers

 At the beginning of our .NET experience, many of us used datasets and data readers. With a few lines of code, we had an object that could be bound to any data-driven control and that, in case of the data
 reader, provided impressive performance. By using a data adapter in combination with a dataset, we had a fully featured framework
 for reading and updating data. We had never been so productive. Visual Studio played its role, too. Its wizards and tight integration with these objects gave us the feeling that everything could be created by dragging
 and dropping and writing a few lines of code.

 Let’s look at an example. Suppose you have a database with Order and Order-Detail tables (as shown in figure 1.1), and you have to create a simple web page where all orders are shown.

 Figure 1.1. The Order table has a related OrderDetail table that contains its details.

 [image:]

 The first step is creating a connection to the database. Then, you need to create an adapter and finally execute the query,
 pouring data into a data table that you bind to a list control. These steps are shown in the following listing.

 Listing 1.1. Displaying a list of orders

 C#

 using (SqlConnection conn = new SqlConnection(connString))
{
 using (SqlDataAdapter da = new SqlDataAdapter("Select * from order",
 conn))
 {
 DataTable dt = new DataTable();
 da.Fill(dt);
 ListView1.DataSource = dt;
 ListView1.DataBind();
 }
}

 VB

 Using conn As New SqlConnection(connString)
 Using da As New SqlDataAdapter("Select * from order", conn)
 Dim dt As New DataTable()
 da.Fill(dt)
 ListView1.DataSource = dt
 ListView1.DataBind()
 End Using
End Using

 By doing a bit of refactoring, you get the connection and the adapter in a single method call, so the amount of code is further
 reduced. That’s all you need to do to display the orders.

 After playing with the prototype, your customer changes the specifications and wants to see the details under each order in
 the list. The solution becomes more challenging, because you can choose different approaches:

	
Retrieve data from the Order table and then query the details for each order. This approach is by far the easiest to code. By intercepting when an order is bound to the ListView, you can query its details and show them.

 	
Retrieve data joining the Order and OrderDetail tables. The result is a Cartesian product of the join between the tables, and it contains as many rows as are in the OrderDetail table.
 This means the resultset can’t be passed to a control as is, but must be processed locally first.

 	
Retrieve all orders and all details in two distinct queries. This is by far the best approach, because it performs only two queries against the database. You can bind orders to a control,
 intercept when each order is bound, and filter the in-memory details to show only those related to the current order.

Whichever path you choose, there is an important point to consider: you’re bound to the database structure. Your code is determined by the database structure and the way you retrieve data; each choice leads to different code, and
 changing tactics would be painful.

 Let’s move on. Your customer now needs a page to display data about a single order so it can be printed. The page must contain
 labels for the order data and a ListView for the details. Supposing you retrieve the data in two distinct commands, the code would look like this.

 Listing 1.2. Displaying data for a single order

 C#

 using (SqlConnection conn = new SqlConnection(connString))
{
 using (SqlCommand cm = new SqlCommand("Select * from order where orderid = 1", conn))
 {
 conn.Open();
 using (SqlDataReader rd = cm.ExecuteReader())
 {
 rd.Read();
 date.Text = ((DateTime)rd["OrderDate"]).ToString();
 shippingAddress.Text = rd["ShippingAddress"].ToString();
 shippingCity.Text = rd["ShippingCity"].ToString();
 }
 using (SqlDataReader rd = cm.ExecuteReader())
 {
 details.DataSource = rd;
 details.DataBind();
 }
 }
}

 VB

 Using conn As New SqlConnection(connString)
 Using cm As New SqlCommand("Select * from order where orderid = 1", conn)
 conn.Open()
 Using rd As SqlDataReader = cm.ExecuteReader()
 rd.Read()
 [date].Text = DirectCast(rd("OrderDate"), DateTime).ToString()
 shippingAddress.Text = rd("ShippingAddress").ToString()
 shippingCity.Text = rd("ShippingCity").ToString()
 End Using
 Using rd As SqlDataReader = cm.ExecuteReader()
 details.DataSource = rd
 details.DataBind()
 End Using
 End Using
End Using

 The way you access data is completely unsafe and generic. On the one hand, you have great flexibility, because you can easily
 write generic code to implement functions that are unaware of the table field names and rely on configuration. On the other
 hand, you lose type safety. You identify a field specifying its name using a string; if the name isn’t correct, you get an exception only at runtime.

 You lose control not only on field names, but even on datatypes. Data readers and data tables (which are the items that contain
 data in a dataset) return column values as Object types (the .NET base type), so you need to cast them to the correct type (or invoke the ToString method as well). This is an example of the object/relational mismatch we mentioned before.

 Now that you’ve seen the big picture of the generic data-container world, let’s investigate its limitations and look at why
 this approach is gradually being discontinued in enterprise applications.

 1.2.2. The strong coupling problem

 In the previous example, you were asked to determine the best way to display orders and details in a grid. What you need is
 a list of orders, where every order has a list of details associated with it.

 Data readers and data tables don’t allow you to transparently retrieve data without affecting the user interface code. This
 means your application is strongly coupled to the database structure, and any change to that structure requires your code
 to do some heavy lifting. This is likely the most important reason why the use of these objects is discouraged. Even if you
 have the same data in memory, how it’s retrieved affects how it’s internally represented. This is clearly a fetching problem,
 and it’s something that should be handled in the data-access code, and not in the user interface.

 In many projects we have worked on, the database serves just one application, so the data is organized so the code can consume
 it easily. This isn’t always the case. Sometimes applications are built on top of an existing database, and nothing can be
 modified because other applications are using the database. In such situations, you’re even more coupled to the database and
 its data organization, which might be extremely different from how you would expect. For instance, orders might be stored
 in one table and shipping addresses in another. The data access code could reduce the impact, but the fetching problem would
 remain.

 And what happens when the name of a column changes? This happens frequently when an application is under development. The
 result is that interface code needs to be adapted to reflect this change; your code is very fragile because a search and replace
 is the only way to achieve this goal. You can mitigate the problem by modifying the SQL and adding an alias to maintain the
 old name in the resultset, but this causes more confusion and soon turns into a new problem.

 1.2.3. The loose typing problem

 To retrieve the value of a column stored in a data reader or a data table, you usually refer to it using a constant string.
 Code that uses a data table typically looks something like this:

 C#

 object shippingAddress = orders.Rows[0]["ShippingAddress"];

 VB

 Dim shippingAddress As Object = orders.Rows(0)("ShippingAddress")

 The variable shippingAddress is of type System.Object, so it can contain potentially any type of data. You may know it contains a string value, but to use it like a string, you
 have to explicitly perform a casting or conversion operation:

 C#

 string shippingAddress = (string)orders.Rows[0]["ShippingAddress"];
string shippingAddress = orders.Rows[0]["ShippingAddress"].ToString();

 VB

 Dim shippingAddress As String = _
 DirectCast(orders.Rows(0)("ShippingAddress"), String)
Dim shippingAddress As String = _
 orders.Rows(0)("ShippingAddress").ToString()

 Casting and converting cost, both in terms of performance and memory usage, because casting from a value type to a reference
 type and vice versa causes boxing and unboxing to occur. In some cases, conversion can require the use of the IConvertible interface, which causes an internal cast.

 Data readers have an advantage over data tables. They offer typed methods to access fields without needing explicit casts.
 Such methods accept an integer parameter that stands for the index of the column in the row. Data readers also have a method
 that returns the index of a column, given its name, but its use tends to clutter the code and is subject to typing errors:

 C#

 string address = rd.GetString(rd.GetOrdinal("ShippingAddress"));
string address = rd.GetString(rd.GetOrdinal("ShipingAdres")); //exception

 VB

 Dim address As String = _
 rd.GetString(rd.GetOrdinal("ShippingAddress"))
Dim address As String = _
 rd.GetString(rd.GetOrdinal("ShipingAdres")) 'exception

 The problem resulting from column name changes, discussed in the previous section, involves even the loss of control at compile
 time. It’s not desirable to discover at runtime that a column name has changed or that you have mistyped a column name. Compilers
 can’t help avoid such problems because they have no knowledge of what the name of the column is.

 1.2.4. The performance problem

 DataSet is likely one of the most complex structures in the .NET class library. It contains one or more DataTable instances, and each of these has a list of DataRow objects made of a set of DataColumn objects. A DataTable can have a primary key consisting of one or more columns and can declare that certain columns have a foreign key relationship
 with columns in another DataTable. Columns support versioning, meaning that if you change the value, both the old and the new value are stored in the column
 to perform concurrency checks. To send updates to the database, you have to use a DbDataAdapter class (or, more precisely, one of its derived classes), which is yet another object.

 Although these features are often completely useless and are ignored by developers, DataSet internally creates an empty collection of these objects. This might be a negligible waste of resources for a standalone application,
 but in a multiuser environment with thousands of requests, like a web application, this becomes unacceptable. It’s useless
 to optimize database performance, tweaking indexes, modifying SQL, adding hints, and so on, if you waste resources creating
 structures you don’t need.

 In contrast, DataReader is built for different scenarios. A DataTable downloads all data read from the database into memory, but often you don’t need all the data in memory and could instead
 fetch it record by record from the database. Another situation is in data updates; you often need to read data but don’t need
 to update it. In such cases, some features, like row versioning, are useless. DataReader is the best choice in such situations, because it retrieves data in a read-only (faster) way. Although it boosts performance,
 DataReader can still suffer from the casting and conversion problems of DataSet, but this loss of time is less than the gain you get from its use.

 All of these problems may seem overwhelming, but many applications out there benefit from the use of database-like structures.
 Even more will be developed in the future using these objects without problems. Nonetheless, in enterprise-class projects,
 where the code base is large and you need more control and flexibility, you can leverage the power of object-oriented programming
 and use classes to organize your data.

1.3. Using classes to organize data

 We’re living in the object-oriented era. Procedural languages still exist, but they’re restricted to particular environments.
 For instance, COBOL is still required for applications that run on mainframe architectures.

 Using classes is a natural choice for most applications today. Classes are the foundation of object-oriented programming.
 They easily represent data, perform actions, publish events, and so on. From a data organization point of view, classes express data through methods and properties (which,
 in the end, are special methods).

 By using classes, you can choose your internal representation of data without worrying about how it’s persisted—you need to
 know nothing about the storage mechanism. It could be a database, a web service, an XML file, or something else. Representing
 data without having any knowledge of the storage mechanism is referred to as persistence ignorance, and the classes used in this scenario are called POCOs (plain old CLR objects).

 The use of classes offers several benefits that are particularly important in enterprise applications:

	
Strong typing— You no longer need to cast or convert every column in a row to get its value in the correct type (or, at least, you don’t
 have to do it in the interface code).

 	
Compile-time checking— Classes expose properties to access data; they don’t use a generic method or indexer. If you incorrectly enter the name of
 a property, you immediately get a compilation error. You no longer need to run the application to find typos.

 	
Ease of development— Editors like Visual Studio offer IntelliSense to speed up development. IntelliSense offers the developer hints about the properties,
 events, and methods exposed by a class. But if you use DataSet, editors can’t help you in any way, because columns are retrieved using strings, which aren’t subject to IntelliSense.

 	
Storage-agnostic interface— You don’t have to shape classes to accommodate the structure of the database, which gives you maximum flexibility. Classes
 have their own structure, and although it’s often similar to that of the table they’re related to, it doesn’t need to be.
 You no longer have to worry about database organization and data retrieval, because you code against classes. Data-retrieval
 details are delegated to a specific part of the application, and the interface code always remains the same.

To get a look at these concepts in practice, let’s refactor the example from the previous section.

 1.3.1. Using classes to represent data

 Let’s start from scratch again. The customer wants to display orders in a grid. The first step is to create an Order class to contain order data, as shown in figure 1.2.

 Figure 1.2. The Order class contains data from the Order table.

 [image:]

 The Order class has the same structure as the related database table. The only obvious difference here is that you have .NET types
 (String, Int32, DateTime) instead of database types (int, varchar, date).

 The second step is to create a class with a method that reads data from the database and transforms it into objects, as in
 the following listing. The container class is often in a separate assembly, known as data layer.

 Listing 1.3. Creating a list of orders

 C#

 public List<Order> GetOrders()
{
 using (SqlConnection conn = new SqlConnection(connString))
 {
 using (SqlCommand comm = new SqlCommand("select * from orders", conn))
 {
 conn.Open();
 using(SqlDataReader r = comm.ExecuteReader())
 {
 List<Order> orders = new List<Order>();
 while (rd.Read())
 {
 orders.Add(
 new Order
 {
 CustomerCode = (string)rd["CustomerCode"],
 OrderDate = (DateTime)rd["OrderDate"],
 OrderCode = (string)rd["OrderCode"],
 ShippingAddress = (string)rd["ShippingAddress"],
 ShippingCity = (string)rd["ShippingCity"],
 ShippingZipCode = (string)rd["ShippingZipCode"],
 ShippingCountry = (string)rd["ShippingCountry"]
 }
);
 }
 return orders;
 }
 }
 }
}
...
ListView1.DataSource = new OrderManager().GetOrders();
ListView1.DataBind();

 VB

 Public Function GetOrders() As List(Of Order)
 Using conn As New SqlConnection(connString)
 Using comm As New SqlCommand("select * from orders", conn)
 conn.Open()
 Using r As SqlDataReader = comm.ExecuteReader()
 Dim orders As New List(Of Order)()
 While rd.Read()
 orders.Add(New Order() With {
 .CustomerCode = DirectCast(rd("CustomerCode"), String),
 .OrderDate = DirectCast(rd("OrderDate"), DateTime),
 .OrderCode = DirectCast(rd("OrderCode"), String),
 .ShippingAddress = DirectCast(rd("ShippingAddress"), String),
 .ShippingCity = DirectCast(rd("ShippingCity"), String),
 .ShippingZipCode = DirectCast(rd("ShippingZipCode"), String),
 .ShippingCountry = DirectCast(rd("ShippingCountry"), String)
 })
 End While
 Return orders
 End Using
 End Using
 End Using
End Function
...
ListView1.DataSource = New OrderManager().GetOrders()
ListView1.DataBind()

 “What a huge amount of code!” That’s often people’s first reaction to the code in listing 1.3. And they’re right; that’s a lot of code, particularly if you compare it with listing 1.1, which uses a dataset. If your application has to show simple data like this, the data-set approach is more desirable. But
 when things get complex, classes help a lot more.

 Let’s take a look at the next required feature: displaying a single order in a form. After the order is retrieved, displaying
 its properties using classes is far more straightforward:

 C#

 shippingAddress.Text = order.ShippingAddress;
shippingCity.Text = order.ShippingCity;

 VB

 shippingAddress.Text = order.ShippingAddress
shippingCity.Text = order.ShippingCity

 The final step is showing the orders and related details in a grid. Doing this requires in-depth knowledge because it introduces
 the concept of models. You can’t represent orders and details in a single class—you have to use two separate classes the same way you do with tables.
 In the next section, we’ll discuss this technique.

 1.3.2. From a single class to the object model

 You have now seen how to develop a single standalone class and how to instantiate it using data from a database, but the real
 power comes when you create more classes and begin to link them to each other (for instance, when you create an OrderDetail class that contains data from the OrderDetail table).

 In a database, the relationship between an order and its detail lines is described using a foreign key constraint between
 the OrderId column in the Order table and the OrderId column in the OrderDetail table. From a database design point of view,
 this is the correct approach.

 In the object-oriented world, you have to follow another path. There’s no point in creating an OrderDetail class and giving it an OrderId property. The best solution is to take advantage of a peculiar feature of classes: they can have properties whose type is a user-defined class. This means the Order class can hold a reference to a list of OrderDetail objects, and the OrderDetail class can have a reference to Order.

 When you create these relationships, you’re beginning to create an object model. An object model is a set of classes related to each other that describe the data consumed by an application.

 The real power of the object model emerges when you need to show orders and their related details in a single grid. In section 1.2.1, there was a fetching problem with a spectrum of solutions. Every one was different, but what’s worse is that every one required
 a different coding style on the interface.

 Using classes, your interface code is completely isolated from fetching problems because it no longer cares about the database.
 A specific part of the application will fetch data and return objects. This is where the storage-agnostic interface feature
 of using classes comes into play.

	

 The Object Model and Domain Model patterns
 The Object Model and Domain Model patterns are often considered to refer to the same thing. They may initially look exactly the same, because both carry data
 extracted from storage. But after digging a bit, you’ll find that they have differences: the object model contains only the
 data, whereas the domain model contains data and exposes behavior.

 The Order class that we’ve been looking at is a perfect expression of an object model. It has properties that hold data and nothing
 more. You could add a computed property that reports the full address by combining the values of other properties, but this
 would be a helper method. It wouldn’t add any behavior to the class.

 If you want to move on from an object model to a domain model, you have to add behavior to the class. To better understand
 the concept of behavior, suppose you need to know if an order exceeds the allowed total amount. With an object model, you
 have to build a method on another class. In this method, you call the database to retrieve the maximum amount allowed, and
 then compare it with the amount of the order. If you opt for a domain model, on the other hand, you can add an IsCorrect method to the Order class and perform the check there. This way you’re adding behavior and expressiveness to the Order class.

 Creating and maintaining a domain model isn’t at all easy. It forces the software architect to make choices about the design
 of the application. In particular, classes must be responsible for their own validation and must always be in a valid state.
 (For instance, an order must always have a related customer.) These checks may contribute to code bloating in the classes;
 so, to avoid confusion, you may have to create other classes that are responsible for validation, and keep those classes in
 the domain model.

 The details of the Object Model and Domain Model patterns are beyond the scope of this book and won’t be covered, but plenty
 of books focus on this subject and all its implications. We recommend Domain Driven Design by Eric Evans (Addison-Wesley Professional, 2004). We’ll discuss the Domain Model pattern and Entity Framework in chapter 14.

	

The example we’ve looked at so far is oversimplified. You’ll have noticed that the Order class has a CustomerId property and the OrderDetail class has a ProductId property. In a complete design, you’d have Customer and Product classes too. Likely, a customer has a list of applicable discounts based on some condition, and a product belongs to one
 or more categories. Creating a strong object model requires a high degree of knowledge, discipline, and a good amount of practice.

 At first sight, it may seem that a one-to-one mapping between classes and database tables is enough. Going deeper, though,
 the object-oriented paradigm has much more expressiveness and a different set of features compared with the database structure.
 Inheritance, many-to-many-relationships, and logical groups of data are all features that influence how you design a model.
 More importantly, such features create a mismatch between the relational representation and the model; in literature, this
 problem is known as the object/relational mismatch, and it’s discussed in the next section.

1.4. Delving deep into object/relational differences

 Understanding the differences between the object-oriented and relational worlds is important, because they affect the way
 you design an object or domain model and the database.

 The mismatch can be broken down into different parts relating to datatypes, associations, granularity, inheritance, and identity,
 and in the following sections we’ll look at them in turn. To better illustrate this mismatch, we’ll make use of the example
 introduced in previous sections.

 1.4.1. The datatype mismatch

 The datatype mismatch refers to the different data representations and constraints that are used in the object and relational worlds. When you
 add a column to a table in a database, you have to decide what datatype to assign to it. Any modern database supports char, varchar, int, decimal, date, and so on. When it comes to classes, the situation is different. Database int and bigint types fit naturally into .NET Int32 and Int64 types, but other database types don’t have an exact match in .NET.

 In the database, when you know that the value of a column has a maximum length, you set this constraint into the column to
 enforce the business rule. This is particularly desirable when the database serves several applications, and yours isn’t the
 only one that updates data. In .NET, varchar doesn’t exist. The nearest type to varchar is String, but it doesn’t support any declarative limitations on its length (it can contain 2 GB of data). If you want to check that
 the value of the String isn’t longer than expected, you have to implement this check in the setter of the property, or call a check method before
 sending the data back to the database.

 Another example of this mismatch involves binary data. Every database accepts binary data, but the column that contains the
 data doesn’t know anything about what the data represents. It might be a text or PDF file, an image, and so on. In .NET, you
 could represent such a column using an Object, but it would be nonsense, because you know perfectly well what kind of data you have stored in the binary column. If the value is a file, you can use a Stream property, whereas the Image type is your best choice for images.

 One last example of the datatype difference emerges when you use dates. Depending on the database vendor and version, you
 have lots of datatypes you can use to store a date. For instance, until version 2005 of SQL Server, you had DateTime and Small-DateTime. SQL Server 2008 has introduced two more datatypes: Date and Time. As you can imagine, the first contains only a date and the second only a time. In .NET, you have only a DateTime class that represents both date and time. Handling this mismatch isn’t difficult, but it requires a bit of discipline when
 instantiating the object from database data and vice versa.

 As you can see, the datatype mismatch is trivial and doesn’t cause developers to lose sleep at night. But it does exist, and
 it’s something you must take care of.

 The second difference, which already emerged in section 1.2, is the association between classes. Databases use foreign keys to represent relationships, whereas object-oriented applications
 use references to other objects. In the next section, we’ll go deeper into this subject.

 1.4.2. The association mismatch

 When talking about associations, the biggest mismatch between the relational and object worlds is how relationships are maintained.
 Database tables are related using a mechanism that is different from the one used by classes. Let’s examine how the cardinality
 of relationships is handled in both worlds.

One-to-One Relationships

 The Order table contains all the data about orders. But suppose the application needs to be improved, and an additional column
 has to be added to the Order table. This may initially seem like a minor improvement, because adding a column isn’t too dangerous.
 But it’s more serious than that. There may be lots of applications that rely on that table, and you don’t want to risk introducing
 bugs. The alternative is to create a new table that has OrderId as the primary key and contains the new columns.

 On the database side, that’s a reasonable tradeoff, but repeating such a design in the object model would be nonsense. The
 best way to go is to add properties to the Order class, as shown in figure 1.3.

 Figure 1.3. The Order2 table contains columns for the new data and is related to the Order table. In the object model, there’s no new
 class—just a new property on the Order

OEBPS/01fig01.jpg

OEBPS/01fig02.jpg

OEBPS/fm_02.jpg

OEBPS/arrow.jpg

OEBPS/manning.jpg

OEBPS/fm_01.jpg

OEBPS/logo.jpg

OEBPS/icon.jpg

OEBPS/cover.jpg

