

 [image: cover]

Enterprise OSGi in Action

 Holly Cummins and Tim Ward

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editors: Sebastian Stirling, Frank Pohlmann
Technical proofreader: Mark Nuttall
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN: 9781617290138

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Programming beyond Hello World

 Chapter 1. OSGi and the enterprise—why now?

 Chapter 2. Developing a simple OSGi-based web application

 Chapter 3. Persistence pays off

 Chapter 4. Packaging your enterprise OSGi applications

 2. Building better enterprise OSGi applications

 Chapter 5. Best practices for enterprise applications

 Chapter 6. Building dynamic applications with OSGi services

 Chapter 7. Provisioning and resolution

 Chapter 8. Tools for building and testing

 Chapter 9. IDE development tools

 3. Integrating enterprise OSGi with everything else

 Chapter 10. Hooking up remote systems with distributed OSGi

 Chapter 11. Migration and integration

 Chapter 12. Coping with the non-OSGi world

 Chapter 13. Choosing a stack

 Appendix A. OSGi—the basics

 Appendix B. The OSGi ecosystem

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Programming beyond Hello World

 Chapter 1. OSGi and the enterprise—why now?

 1.1. Java’s missing modularity

 1.1.1. Thinking about modularity

 1.1.2. Enterprise Java and modularity—even worse!

 1.2. OSGi to the rescue

 1.2.1. Modularity, versioning, and compatibility

 1.2.2. Dynamism and lifecycle management

 1.2.3. Why isn’t everyone using OSGi?

 1.2.4. Why OSGi and Java EE don’t work together

 1.3. Programming with enterprise OSGi

 1.3.1. Enterprise OSGi and OSGi in the enterprise

 1.3.2. Dependency injection

 1.3.3. Java EE integration

 1.4. Summary

 Chapter 2. Developing a simple OSGi-based web application

 2.1. The development sandbox

 2.1.1. Introducing Apache Aries

 2.1.2. My first enterprise OSGi runtime

 2.2. Writing an OSGi web application

 2.2.1. Building a simple OSGi web application bundle

 2.2.2. Deploying and testing

 2.2.3. A familiar feeling—and important differences

 2.2.4. Spicing things up with fragments

 2.3. Decoupling with dependency injection

 2.3.1. Inversion of control

 2.3.2. Introducing the Blueprint service

 2.3.3. Coupling two components with Blueprint

 2.4. Bridging JNDI and OSGi

 2.5. Summary

 Chapter 3. Persistence pays off

 3.1. Java and persistence

 3.1.1. Making persistence easy

 3.1.2. The problems with traditional persistence in OSGi

 3.2. Building a persistent application

 3.2.1. Setting up a datasource

 3.2.2. Creating a persistence bundle

 3.2.3. Making use of the data

 3.3. Transactions—the secret ingredient

 3.3.1. What is a transaction?

 3.3.2. Handling multipart transactions

 3.4. Summary

 Chapter 4. Packaging your enterprise OSGi applications

 4.1. The need for more than modules

 4.1.1. Java EE applications

 4.1.2. Enterprise OSGi applications

 4.2. Enterprise OSGi subsystems

 4.2.1. ESA structure

 4.2.2. Subsystem metadata

 4.2.3. Provisioning and resolution

 4.3. The Enterprise Bundle Archive (EBA)

 4.3.1. Sharing and isolation

 4.4. Alternative approaches

 4.4.1. Spring plan and PAR files

 4.4.2. Apache Karaf features

 4.5. Developing an enterprise OSGi application

 4.5.1. Building your metadata

 4.6. Summary

 2. Building better enterprise OSGi applications

 Chapter 5. Best practices for enterprise applications

 5.1. The benefits of sharing—and how to achieve them in your bundles

 5.1.1. Versioning bundles and packages

 5.1.2. Scoping your bundles

 5.1.3. Why isolation is important to sharing

 5.2. Structuring for flexibility

 5.2.1. Separate interfaces from implementation

 5.2.2. If you can’t separate out your API

 5.2.3. Avoid static factory classes

 5.2.4. Building a better listener with the whiteboard pattern

 5.3. A better enterprise application architecture

 5.3.1. Use small WABs

 5.3.2. Make a persistence bundle

 5.3.3. The rewards of well-written bundles

 5.4. Summary

 Chapter 6. Building dynamic applications with OSGi services

 6.1. OSGi dynamism

 6.2. Using OSGi services

 6.2.1. Registering and looking up services the old-fashioned way

 6.2.2. Blueprint

 6.2.3. Declarative Services

 6.2.4. iPojo

 6.2.5. Google Guice and Peaberry

 6.3. Getting the most out of Blueprint

 6.3.1. Using Blueprint for things other than services

 6.3.2. Values

 6.3.3. Understanding bean scopes

 6.3.4. Constructing beans

 6.3.5. Lifecycle callbacks

 6.3.6. Service ranking

 6.3.7. Registering services under multiple interfaces

 6.4. Blueprint and service dynamism

 6.4.1. The remarkable appearing and disappearing services

 6.4.2. Multiplicity and optionality

 6.4.3. Monitoring the lifecycle

 6.5. Summary

 Chapter 7. Provisioning and resolution

 7.1. Describing OSGi bundles

 7.1.1. Describing bundles as resources

 7.1.2. Requirements and capabilities

 7.1.3. Directives affecting the resolver

 7.1.4. Repositories

 7.2. Provisioning bundles

 7.2.1. Package-based provisioning

 7.2.2. Service-based provisioning

 7.3. Provisioning technologies

 7.3.1. Apache Felix OBR

 7.3.2. Equinox p2

 7.3.3. Apache ACE

 7.3.4. Standard OSGi repositories

 7.4. Bundle repositories

 7.4.1. Public bundle repositories

 7.4.2. Building your own repository

 7.4.3. Generating your repository

 7.5. Summary

 Chapter 8. Tools for building and testing

 8.1. Manifest-first or code-first?

 8.2. Building OSGi applications

 8.2.1. Bnd

 8.2.2. The Maven bundle plug-in

 8.2.3. Ant and Eclipse PDE

 8.2.4. Maven Tycho

 8.2.5. The Maven EBA plug-in

 8.3. Testing OSGi applications

 8.3.1. Unit testing OSGi

 8.3.2. Pax Exam

 8.3.3. Tycho test

 8.3.4. Rolling your own test framework

 8.4. Collecting coverage data

 8.4.1. Getting coverage tools onto the classpath

 8.5. Summary

 Chapter 9. IDE development tools

 9.1. Eclipse-based OSGi development

 9.1.1. Eclipse Plug-in Development Environment

 9.1.2. Extending bnd into the GUI world with bndtools

 9.2. OSGi support in other IDEs

 9.2.1. NetBeans

 9.2.2. Osmorc and IntelliJ IDEA

 9.2.3. Do you need OSGi support in your IDE?

 9.3. Tools for the enterprise OSGi extensions

 9.3.1. IBM Rational Development Tools for OSGi Applications

 9.3.2. Eclipse Libra

 9.4. Testing OSGi applications inside IDEs

 9.4.1. Testing with Eclipse PDE

 9.4.2. Testing with bndtools

 9.4.3. Pax Exam

 9.5. Summary

 3. Integrating enterprise OSGi with everything else

 Chapter 10. Hooking up remote systems with distributed OSGi

 10.1. The principles of remoting

 10.1.1. The benefits of remoting

 10.1.2. The drawbacks of remoting

 10.1.3. Good practices and the fallacies of remoting

 10.2. The Remote Services Specification

 10.2.1. Exposing endpoints

 10.2.2. Discovering endpoints

 10.3. Writing a remotable service

 10.3.1. Coding a special offer service

 10.4. Adding in your remote service using Apache CXF

 10.4.1. Making your service available

 10.4.2. Discovering remote services from your superstore

 10.5. Using your remote application

 10.5.1. Setting up your remote database connections

 10.6. Using SCA for remoting

 10.6.1. Apache Tuscany

 10.6.2. Importing a remote service

 10.6.3. Exporting remote services

 10.6.4. Interfaces and services

 10.7. Summary

 Chapter 11. Migration and integration

 11.1. Managing heterogeneous applications

 11.1.1. Using SCA to integrate heterogeneous systems

 11.1.2. Integrating using an ESB

 11.2. Migrating from Java EE

 11.2.1. Moving from WARs to WABs

 11.2.2. Using persistence bundles

 11.2.3. EJBs in OSGi

 11.2.4. Moving to Blueprint from the Spring Framework

 11.3. Summary

 Chapter 12. Coping with the non-OSGi world

 12.1. Turning normal JARs into OSGi bundles

 12.1.1. Finding bundled libraries

 12.1.2. Building your own bundles

 12.1.3. Generating bundles automatically

 12.2. Common problems for OSGi-unaware libraries

 12.2.1. Reflection in OSGi

 12.2.2. Using and abusing the thread context ClassLoader

 12.2.3. META-INF services

 12.2.4. Serialization and deserialization

 12.3. An example library conversion—logging frameworks in OSGi

 12.3.1. Common problems with loggers in OSGi

 12.3.2. Avoiding problems in OSGi

 12.3.3. DynamicImport-Package—a saving grace?

 12.3.4. Other problems that are more difficult to fix

 12.4. Summary

 Chapter 13. Choosing a stack

 13.1. What’s in what server?

 13.2. Apache Karaf

 13.2.1. Karaf features

 13.2.2. Installing Aries into Karaf

 13.2.3. Handling non-OSGi bundles

 13.2.4. Blueprint-aware console

 13.3. Apache Geronimo

 13.4. WebSphere Application Server

 13.4.1. Provisioning and bundle repositories

 13.4.2. Module granularity

 13.4.3. Managed application update and extension

 13.4.4. SCA

 13.5. Eclipse Virgo and Gemini

 13.5.1. Debug support

 13.5.2. Application isolation

 13.6. GlassFish

 13.6.1. Dependency injection

 13.6.2. EJBs

 13.6.3. Administration

 13.7. JBoss

 13.8. Paremus Nimble and Paremus Service Fabric

 13.8.1. Provisioning and deployment

 13.8.2. Remote services

 13.8.3. Console

 13.8.4. Installing Aries

 13.9. Summary

 Appendix A. OSGi—the basics

 A.1. Where did OSGi come from, and where is it going?

 A.2. Versions

 A.2.1. The semantic versioning scheme

 A.2.2. Guarantees of compatibility

 A.2.3. Coexistence of implementations

 A.2.4. Why everything has a version

 A.2.5. Consumers and providers, not clients and implementors

 A.2.6. Semantic versions and marketing versions

 A.3. Bundles

 A.3.1. Manifest headers

 A.3.2. The bundle context

 A.3.3. Dependency management

 A.3.4. Classloading

 A.3.5. Fragments

 A.4. Bundle lifecycles

 A.4.1. Activation policies

 A.4.2. Bundle activators

 A.4.3. Installation and resolution

 A.4.4. Starting and stopping bundles

 A.4.5. Uninstalling and updating bundles

 A.4.6. Managing dependencies in a dynamic system

 A.5. Services

 A.5.1. The Service Registry

 A.5.2. Accessing services

 A.5.3. Filters

 A.6. OSGi frameworks

 A.7. The OSGi console

 A.8. Summary

 Appendix B. The OSGi ecosystem

 B.1. The OSGi Alliance

 The Core Platform Expert Group

 The Enterprise Expert Group

 B.2. OSGi specifications

 B.2.1. The Core Specification

 B.2.2. The Compendium Specification

 B.2.3. The Enterprise Specification

 B.2.4. Other specifications

 B.3. OSGi—future frontiers

 B.3.1. OSGi and Jigsaw

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 I first used Java EE many years ago, in 2002. (Yes, Stateless Session Beans and Passivated Entity Beans, stop hiding at the
 back—I’m talking to you.) I can’t remember when I started using OSGi, but it was also a long time ago. Nonetheless, until
 recently, I’d never used the two technologies at the same time. If I was writing a desktop application or an application server
 (as one does), I used OSGi. If I was writing a web application, I used Java EE.

 But OSGi seemed the most natural way to develop a working system. When I was writing Java EE applications, the thought of
 leaving my dependencies to chance or exposing all the internals of my JARs made me pretty uneasy. It felt downright icky.
 What if classes I needed weren’t on the classpath when my application was deployed? What if the classes I needed were there,
 but the version was incompatible with the one I used when I was developing? What if a colleague coded against one of my internal
 classes, and then I refactored and deleted it? What if I accidentally coded against the internals of a library I was using?
 And wasn’t there a cleaner way to get hold of interface implementations than the reflective factory pattern? Applications
 might work in the short term, but it felt like an accident waiting to happen.

 For a long time, Java EE developers didn’t have much choice except to close their eyes, hold tight, and wait for the accident.
 It’s not that they didn’t want to use OSGi—they couldn’t. OSGi didn’t play well with the Java EE programming model. OSGi’s
 tightly modularized classpath wasn’t compatible with the discovery mechanism for Java EE services, which assumed global visibility.
 Similarly, many of the Java EE implementations relied on classloading tricks to do their work, and these tricks failed miserably
 in the more controlled OSGi environment.

 In 2009, I heard Zoe Slattery give a talk on a new Apache incubator, Apache Aries. Aries promised to allow Java EE technologies
 to work in an OSGi environment. It wasn’t reinventing the Java EE wheel, just allowing Java EE developers to take advantage
 of OSGi. I thought it was cool—and desperately needed. A few months later, I was signed up to help develop Aries and the IBM
 WebSphere feature pack built on top of it.

 As well as developing Aries itself, I was speaking at conferences about enterprise OSGi. Manning contacted me and asked me
 if I’d be interested in writing a book on the subject. I was excited by the idea, but scared—after all, there were lots of
 people who’d been working with enterprise OSGi for much longer than I had. What I did have was insight into what people learning
 enterprise OSGi needed to know. After all, I’d had lots of the same questions and made lots of the same mistakes myself pretty
 recently.

 But it was clear that reinforcements would be required. This is where Tim Ward came in. Tim is one of the brightest guys I
 know, and I was delighted when he said he was interested in the book. Tim was one of the first developers to prototype the
 early implementations of the OSGi Enterprise Specifications, and he’s been working with enterprise OSGi ever since. Even better,
 he’s coauthored some of the specifications. There isn’t much about enterprise OSGi that Tim doesn’t know. Although my name
 is first on the cover (thank you, alphabet!) this book is authored by both of us equally.

 Writing this book has been a great adventure. We hope you enjoy it and find it useful, and we’d love to hear from you on the
 Manning Author Online forum.

 HOLLY CUMMINS

Acknowledgments

 Where do we even start in thanking all the people who made this book possible? You fed us, encouraged us, and taught us. Going
 back to the beginning, this project wouldn’t even have gotten off the ground without the good folks at Manning. Thanks to
 Marjan Bace, our publisher, Michael Stephens, our editor, and Sebastian Stirling and Frank Pohlmann, our development editors.
 You helped us figure out what makes a good book and guided, coaxed, and nudged us in the right direction. Thanks also to Christina
 Rudloff and Nick Chase.

 The quality of this book has been hugely improved by the detailed comments we received from our reviewers. We really appreciate
 you taking the time to read our efforts and tell us what we got right and wrong. Thanks to Alasdair Nottingham, Andrew Johnson,
 Charles Moulliard, David Bosschaert, Felix Meschberger, John W. Ross, Kevin Sheehan, Kin Chuen, Tang, Marcel Offermans, Mirko
 Jahn, Paul Flory, Pierre De Rop, Teemu Kanstrén, and Tim Diekmann.

 Thanks also to everyone who participated in the Manning Early Access Program. Special thanks to our technical proofer, Mark
 Nuttall, who went over the book several times with an eagle eye, and was patient with silly mistakes and last-minute improvements.

 We couldn’t have written this book without the help of our colleagues at IBM. Thank you, Ian Robinson. Without your vision
 and commitment, it’s likely that neither of us would have had the opportunity to work so closely with enterprise OSGi. Thanks
 to Andy Gatford and Nickie Hills for supporting us. We’d like to thank Jeremy Hughes, Alasdair Nottingham, Graham Charters,
 Zoe Slattery, Valentin Mahrwald, Emily Jiang, Tim Mitchell, Chris Wilkinson, Richard Ellis, Duane Appleby, and Erin Schnabel
 for the many valuable discussions we shared with them.

 We borrowed the phrase “bundle flake” from Alex Mulholland, who deserves credit for bringing the fun back into debugging OSGi
 fragments. We’d also like to give special mention to Sarah Burwood, who possibly didn’t realize what she’d signed up for when
 she offered to review the book as an OSGi beginner! We’ve learned loads from all of you, so thank you.

 In addition to our IBM colleagues, we thank the members of the OSGi Alliance Expert Groups and Apache Aries. You put up with
 our ideas and questions and built the enterprise OSGi programming model with us, many of you donating your time to do so.
 There are too many names to even begin to list here, but particular thanks are deserved by Peter Kriens and David Bosschaert,
 both for direct help with the book and for their years of support building the OSGi Enterprise Specifications.

 On a personal level, we’re indebted to our partners, Paul and Ruth, who picked up a great deal of domestic slack, as well
 as provided apparently limitless encouragement and support. At the times when this book didn’t seem possible, you persuaded
 us it was (and then fed us a snack). Holly would like to apologize to Paul for the six application servers and four IDEs now
 installed on his laptop; everyone knows not to let software engineers touch one’s computer! Tim would like to apologize to
 Ruth for all the times that “I just need to finish this paragraph” took rather longer than the implied five minutes; it turns
 out that writing prose is more like writing code than you might think...

 Tim would like to thank the rest of his immediate family, Pauline, Gareth, Ron, Eve, Sarah, and Maurice, for their interest
 and their unwavering belief that not only would the book eventually be finished, but that it would also be worth reading.
 He also thanks them for helping him “remember to bring the funny.” He’s sure many of the readers will want to thank them for
 that, too.

 Holly would also like to thank her mom, dad, John, Ioana, Heather, and Phil for helping her find the time and space for writing.
 Acknowledgment is also owed to Laurie Hodkinson, who has spent many hours helping write this book, and occasionally throwing
 up on the keyboard. Holly has every expectation that his first word will be “OSGi.”

 As with many books, some of the people and things that helped make it possible probably aren’t even aware of their contribution.
 The writing of this book was fueled by coffee—lots of coffee—and cheese. Holly would like to thank the makers of her Beco
 Gemini baby carrier, which is essentially a concurrency framework for infants. Tim would like to thank the makers of his Vi-Spring
 mattress, which is essentially the cure to hunching over a laptop all day.

 Finally, our thanks wouldn’t be complete without thanking you, the readers, for buying our book. We hope that you enjoy it,
 and that maybe you’ll end up liking OSGi just as much as we do.

About this Book

 This is a book about the enterprise OSGi programming model, and it’s also a book about using OSGi in the enterprise. It shows
 you how to combine OSGi’s elegant, modular, service-oriented approach with Java EE’s well-established persistence, transaction,
 and web technologies. It guides you through the cases when your project has lots of bits spread all over the network, some
 new, some old, some that you don’t even recognize, and many that you didn’t write yourself. It’s packed with tips on how to
 use OSGi in the messy real world, with guidance on tools, building, testing, and integrating with non-OSGi systems and libraries.

Audience

 Three groups of developers should find this book interesting. The first is developers who know Java EE, but who want to bring
 more modularity to their applications by learning OSGi. The second is those who know OSGi, but want to learn how to take advantage
 of some of Java EE’s higher-level programming models. The last is developers who are familiar with both Java EE and OSGi,
 but who never knew the two could be combined! We don’t assume knowledge of either Java EE or OSGi, but familiarity with at
 least one of them will help.

Roadmap

 This book is divided into three parts. Part 1 introduces the most important enterprise OSGi technologies: web applications, JNDI lookups of OSGi services, Blueprint dependency
 injection, JPA persistence, declarative transactions, and application packaging. Part 2 explains how to use these building blocks most effectively with best practices, tools, and a deeper understanding of some
 subtle areas. Part 3 considers how enterprise OSGi fits in with your existing applications and systems. It covers distribution technologies, migration
 tips and traps, and server options.

 The appendixes provide important OSGi background. If you’re new to OSGi, you may want to skip to the appendixes after reading
 chapter 1.

 Chapter 1 explains what OSGi is, why it’s such an exciting technology, and why it’s so relevant to the enterprise.

 Chapter 2 lets you get your hands dirty with real code. It introduces the OSGi sandbox you’ll use to run the samples. You’ll write
 an OSGi web application and hook it up to backend OSGi services. You’ll use JNDI to connect OSGi services to legacy code,
 and Blueprint dependency injection to wire together the services.

 Chapter 3 introduces JPA persistence and JTA transactions, and shows how to use them in an OSGi environment.

 Chapter 4 shows how to group OSGi bundles together into coarser-grained applications.

 In part 2, chapter 5 steps back from new technologies and discusses best practices for writing enterprise OSGi applications. It explains how to
 structure your applications, introduces some new OSGi-centric patterns, and discusses which familiar patterns may not be such
 a great idea in an OSGi environment.

 Chapter 6 investigates OSGi dynamism and Blueprint dependency injection in more depth.

 Chapter 7 discusses how to use OBR to dynamically provision application dependencies.

 Chapter 8 introduces a range of command-line tools for generating OSGi manifests and building bundles. It also considers how to test
 OSGi bundles.

 Chapter 9 continues the discussion of useful tools by comparing several IDEs that support OSGi.

 In part 3, chapter 10 explains how to use distributed OSGi to allow OSGi services to be published and consumed across remote systems.

 Chapter 11 discusses your options for migrating non-OSGi legacy code to OSGi. It also discusses technologies for integrating OSGi applications
 with the non-OSGi legacy code you haven’t yet migrated!

 Chapter 12 sets out strategies for handling non-OSGi libraries. It shows how to turn ordinary JARs into bundles and explains how to
 deal with common problems, such as classloading and logging issues.

 Finally, chapter 13 compares the various commercial and open source OSGi runtimes and gives guidance on how you should choose a stack that’s
 right for you.

 Appendix A covers the basics of OSGi. It explains why OSGi is such a necessary technology, and provides grounding in versioning, bundles,
 bundle lifecycles, and OSGi services. It includes some practical hints on OSGi frameworks and consoles.

 Appendix B describes the broader OSGi ecosystem. It explains how the OSGi alliance works and what’s in the various OSGi specifications.

Code downloads

 You can download the sample code for this book via a link found on the book’s homepage on the Manning website, www.manning.com/EnterpriseOSGiinAction. The SourceCodeEnterpriseOSGiinAction.zip archive includes source code for an application with a web frontend and a JPA backend,
 as well as distributed variations. There’s a Maven build that produces bundles and a .eba application that can be installed
 into an OSGi framework. See section 2.1.2 for instructions on how to assemble a runtime environment in which to run the application.

Author Online

 The purchase of Enterprise OSGi in Action includes free access to a forum run by Manning Publications where you can make comments about the book, ask technical questions,
 and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/EnterpriseOSGiinAction. This page provides information on how to get on the forum once you’ve registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers, and between
 readers and the authors, can take place. It isn’t a commitment to any specific amount of participation on the part of the
 authors, whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some
 challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 HOLLY CUMMINS has been developing Java applications for a decade. She is an advisory software engineer with IBM, where she has worked on
 the development of the WebSphere Application Server and on Java performance. She is also a committer on the Apache Aries project
 and speaks widely at conferences.

 TIM WARD is a senior software engineer at Zühlke Engineering. Previously, he was a design and development lead for IBM’s OSGi Applications
 support in WebSphere. He’s on the OSGi Alliance Core Platform and Enterprise Expert Groups and is a member of the Project
 Management Committee for the Apache Aries project.

About the Cover Illustration

 The figure on the cover of Enterprise OSGi in Action is captioned a “Man from Slovania.” This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs, published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist
 who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto,
 the Julian Alps, and the western Balkans, inhabited in the past by peoples of many different tribes and nationalities. Hand-drawn
 illustrations accompany the many scientific papers and books that Hacquet published.

 Slavonia is a historical region in eastern Croatia. Part of the Roman Empire until the fifth century, then part of Pannonian
 Croatia, subsequently ruled by Hungary, the Ottomans, and the Hapsburgs, Slavonia was briefly an independent entity until
 it became a part of Yugoslavia after World War II. Today Slavonia encompasses five counties in inland Croatia with a population
 of almost one million inhabitants.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of Alpine
 and Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified
 people uniquely as belonging to one or the other, and when members of an ethnic tribe, social class, or trade could be easily
 distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time,
 has faded away. It is now often hard to tell the inhabitant of one continent from another and the residents of the picturesque
 towns and villages in the Balkans are not readily distinguishable from people who live in other parts of the world.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 costumes from two centuries ago brought back to life by illustrations such as this one.

Part 1. Programming beyond Hello World

 Welcome to enterprise OSGi! In this first part, you’ll get a feel for the modularity of OSGi bundles, programming web applications,
 accessing data in a database, controlling the flow of transactions, and packaging bundles into a single unit.

 Chapter 1 starts off gently by introducing OSGi and explaining why modularity—which is what OSGi provides—is so important.

 If you’re itching to get coding, don’t worry. Chapter 2 shows you how to develop your first enterprise OSGi application. You’ll write a modular web application and connect it to
 OSGi services using JNDI and Blueprint dependency injection.

 Having mastered the frontend, what about the backend? Chapter 3 shows you how to use JPA persistence and JTA transactions in an OSGi environment.

 Chapter 4 discusses how to package OSGi bundles together into OSGi applications.

 By the time you’ve finished reading this part, you’ll be able to write your own enterprise OSGi application, with a web frontend
 and a transactional database backend. It will be loosely coupled and nicely modularized. And best of all—writing it will be
 easy!

Chapter 1. OSGi and the enterprise—why now?

 This chapter covers

 	Why modularity is important, and how Java stacks up

 	How OSGi enforces some simple rules to make Java better at modularity

 	Why enterprise Java and OSGi traditionally don’t play well together

 	How enterprise OSGi fixes this, and what the enterprise OSGi programming model looks like

 Enterprise OSGi combines two of Java’s most enduringly popular programming models: enterprise Java and OSGi. Enterprise Java
 is a loosely defined set of libraries, APIs, and frameworks built on top of core Java that turn it into a powerful platform
 for distributed, transactional, interactive, and persistent applications. Enterprise Java has been hugely successful, but
 as the scale and complexity of enterprise Java applications have grown, they’ve started to look creaky, bloated, and monolithic.
 OSGi applications, on the other hand, tend to be compact, modular, and maintainable. But the OSGi programming model is pretty
 low-level. It doesn’t have much to say about transactions, persistence, or web pages, all of which are essential underpinnings
 for many modern Java programs. What about a combination, something with the best features of both enterprise Java and OSGi?
 Such a programming model would enable applications that are modular, maintainable, and take advantage of industry standard
 enterprise Java libraries. Until recently, this combination was almost impossible, because enterprise Java and OSGi didn’t
 work together. Now they do, and we hope you’ll agree with us that the merger is pretty exciting.

 We’ll start by taking a look at what modularity is, and why it’s so important in software engineering.

1.1. Java’s missing modularity

 When it was first introduced, in 1995, Java technology represented an enormous leap forward in software engineering. Compared
 to what had gone before, Java allowed more encapsulation, more abstraction, more modularity, and more dynamism.

 A decade later, some gaps were beginning to show. In particular, the development community was desperate for more encapsulation,
 more abstraction, more modularity, and more dynamism. Java’s flat classpath structure wasn’t scaling well for the massive applications it was now being used for. Developers found that, when deployed,
 their applications picked up a bunch of classes from the classpath that they didn’t want, but were missing some classes that
 they needed. In figure 1.1, you can see an example of a typical Java classpath.

 Figure 1.1. Conventional Java has a flat classpath which is searched in a linear order. For large applications, this classpath can be
 long, and searches can be time consuming. If a class occurs more than once on the classpath, only the first instance is used—even
 if the second copy is better.

 [image:]

 It was impossible to keep component internals private, which led to constant arguments between developers (angry that the
 function they relied on had been changed) and their counterparts, who were annoyed that developers had been coding against
 things that were intended to be private. After 10 years of continuous development, there was an urgent need to be able to
 label the many iterations of Java code that were out there with some sort of versioning scheme. Core Java was starting to
 feel pretty tightly coupled and undynamic.

 Doesn’t Java’s object orientation enable modularity? Well, yes and no. Java does a great job of providing modularity at the
 class and package level. Methods and class variables can be declared public, or access can be restricted to the owning class,
 its descendants, or members of its package. Beyond this, there’s little facility for modularity. Classes may be packaged together
 in a Java Archive (JAR), but the JAR provides no encapsulation. Every class inside the JAR is externally accessible, no matter
 how internal its intended use.

 One of the reasons modularity has become increasingly necessary is the scale of modern computer programs. They’re developed
 by globally dispersed teams and can occupy several gigabytes of disk space. In this kind of environment, it’s critical that
 code can be grouped into distinct modules, with clearly delineated areas of responsibility and well-defined interfaces between
 modules.

 Another significant change to software engineering within the last decade is the emergence of open source. Almost every software need can now be satisfied by open source. There are large-scale products, such as application servers,
 IDEs, databases, and messaging engines. A bewildering range of open source projects that address particular development needs,
 from Java bytecode generation to web presentation layers, is also available. Because the projects are open source, they can
 easily be reused by other software. As a result, most programs now rely on some open source libraries. Even commercial software
 often uses open source componentry; numerous GUI applications, for example, are based on the Eclipse Rich Client Platform,
 and many application servers incorporate the Apache Web Server.

 The increasing scale of software engineering projects and the increasing availability of tempting open source libraries have
 made modularization essential. Stepping back, what exactly do we mean by modularity, and what problems does it fix?

 1.1.1. Thinking about modularity

 Modularity is one of the most important design goals in modern software engineering. It reduces effort spent duplicating function and
 improves the stability of software over time.

Spaghetti Code

 We’ve all heard code that’s too coupled and interdependent described as spaghetti code (figure 1.2).

 Figure 1.2. A highly interconnected spaghetti application with little structure. The solid lines represent dependencies that are identifiable
 at both compile-time and runtime, whereas the dotted lines are runtime-only dependencies. This sort of dependency graph is
 typical of procedural languages.

 [image:]

 This sort of code is unfortunately common—both in open and closed source projects—and is universally despised. Not only is
 code like this hard to read and even harder to maintain, it’s also difficult to make even slight changes to its structure
 or move it to a new system. Even a slight breeze can be enough to cause problems! Given how strongly people dislike this sort
 of code, it should be a lot less common than it is, but, sadly, in a world where nothing stops you from calling any other
 function, it’s easy to write spaghetti by accident. The other problem with spaghetti is that, as soon as you have some, it
 tends to generate more quickly. . .

 Object orientation marked a big shift in the development of programming languages, providing a strong level of encapsulation in them. Objects
 were responsible for maintaining their internal, private state, and could have internal, private methods. It was believed
 that this would mark the end of spaghetti code, and to an extent it did.

 Extending the spaghetti metaphor, conventional Java programs (or any other object-oriented language, for that matter) can
 be thought of as object minestrone (figure 1.3)—although there’s a distinct object structure (the chunks of vegetable and pasta), there’s no structure beyond the individual objects.
 The objects are thrown together in a soup and every vegetable can see every other vegetable.

 Figure 1.3. An application with no structure beyond individual well-encapsulated objects (connections between objects aren’t shown). This
 sort of structure is typical of object-oriented languages. Although the objects themselves are highly modular, there’s no
 more granular modularity.

 [image:]

Classpath Hell

 Insufficient encapsulation isn’t the only problem with Java’s existing modularity. Few Java JARs are entirely freestanding;
 most will have dependencies on some other libraries or frameworks. Unfortunately, determining what these dependencies are
 is often a matter of trial and error. Inevitably, some dependencies may get left off the classpath when it’s run. In the best
 case, this omission will be discovered early when a ClassNotFoundException is thrown. In the worst case, the code path will be rarely traveled and the problem won’t be discovered until weeks later
 when a ClassNotFoundException interrupts some particularly business-critical operation. Good documentation of dependencies can help here, but the only
 reliable way of ensuring every dependency is present is to package them all up in a single archive with the original JAR.
 This is inefficient and it’s extra frustrating to have to do it for common dependencies.

 What’s worse, even packaging JARs with all the other JARs they depend on isn’t guaranteed to make running an application a
 happy experience. What if a dependency is one of the common ones—so common that other applications running in the same JVM
 (Java Virtual Machine) depend on it? This is fine, as long as the required versions are the same. One copy will come first
 on the classpath and be loaded, and the other copy will be ignored. What happens when the required versions are different?
 One copy will still be loaded, and the other will still be ignored. One application will run with the version it expects,
 and the other won’t. In some cases, the “losing” application may terminate with a NoSuchMethodError because it invokes methods that no longer exist. In other, worse cases, there will be no obvious exceptions but the application
 won’t behave correctly. These issues are incredibly unpleasant and in Java have been given the rather self-explanatory name
 classpath hell.

 Although classpath hell is a bad problem in core Java, it’s even more pernicious in the enterprise Java domain.

 1.1.2. Enterprise Java and modularity—even worse!

 Enterprise Java and the Java EE programming model are used by a large number of developers; however, there are many Java developers
 who have no experience with either. Before we can explain why enterprise Java suffers even more greatly than standard Java,
 we need to make sure that we have a common understanding of what the enterprise is.

What Distinguishes Enterprise Java from Normal Everyday Java?

 Part of the distinction is the involvement of the enterprise—enterprise Java is used to produce applications used by businesses.
 But then businesses use many other applications, like word processors and spreadsheets. You certainly wouldn’t say that a
 word processor, no matter how business-oriented, had been produced to an enterprise programming model. Similarly, many “enterprise programmers” don’t work for particularly large corporations.

 What’s different about enterprise applications? In general, they’re designed to support multiple simultaneous users. With
 multiple users, some sort of remote access is usually required—having 50 users crammed into a single room isn’t going to make
 anyone happy! Nowadays, remote access almost always means a web frontend.

 To store the information associated with these users, enterprise applications usually persist data. Writing database access
 code isn’t much fun, so persistence providers supply a nicer set of interfaces to manage the interaction between the application
 code and the database.

 This is a business application, and so transactions are usually involved—either buying and selling of goods and services,
 or some other business agreements. To ensure these “real” transactions proceed smoothly and consistently, even in the event
 of a communications problem, software transactions are used.

 With all this going on, these enterprise applications are starting to get pretty complex. They’re not going to fit into a
 single Java class, or a single JAR file. It may not even be practical to run every part on a single server. Distribution allows
 the code, and therefore the work, to be spread across multiple servers on a network. Some people argue that distribution is
 the key feature of what’s known as enterprise computing, and the other elements, like transactions and the web, are merely there
 to facilitate distribution (like the web) or to handle some of the consequences of distribution on networks which aren’t necessarily
 reliable (such as transactions).

 Java EE provides a fairly comprehensive set of standards designed to fit the scaling and distribution requirements of these
 enterprise applications, and is widely used throughout enterprise application development.

Modular Java EE—Bigger Isn’t Better

 Our enterprise application is now running across multiple servers, with a web frontend, a persistence component, and a transaction
 component. How all the pieces fit together may not be known by individual developers when they’re writing their code. Which
 persistence provider will be used? What about the transaction provider? What if they change vendors next year? Java EE needs
 modularity for its applications even more than base Java does. Running on different servers means that the classpath, available
 dependencies, and technology implementations are likely to diverge. This becomes even more likely as the application is spread
 over more and more systems.

 With these interconnected applications, it’s much better for developers to avoid specifying where all their dependencies come
 from and how they’re constructed. Otherwise the parts of the application become so closely coupled to one another that changing
 any of them becomes difficult. In the case of a little program, this close coupling would be called spaghetti code (see figure 1.2 again). In large applications, it’s sometimes known as the big ball of mud. In any case, the pattern is equally awkward and the consequences can be just as severe.

 Unfortunately for Java EE, there’s no basic Java modularity to fall back on; the modules within a Java application often spaghettify
 between one another, and inevitably their open source library dependencies have to be packaged within the applications. To
 improve cost effectiveness, each server in a Java EE environment typically hosts multiple applications, each of which packages
 its own dependencies, and potentially requires a different implementation of a particular enterprise service. This is a clear
 recipe for classpath hell, but the situation is even worse than it first appears. The Java EE application servers themselves
 are large, complicated pieces of software, and even the best of them contain a little spaghetti. To reliably provide basic
 functions at low development cost, they also depend on open source libraries, many of the same libraries used by the applications
 that run on the application server! This is a serious problem, because now developers and systems administrators have no way
 to avoid the conflict. Even if all applications are written to use the same version of an open source library, they can still
 be broken by the different version (typically undocumented) in the underlying application server.

1.2. OSGi to the rescue

 It turned out that a number of core Java’s modularity problems had already quietly been solved by a nonprofit industry consortium
 known as the OSGi Alliance. The OSGi Alliance’s original mission was to allow Java to be used in embedded and networked devices.
 It used core Java constructs such as classloaders and manifests to create a system with far more modularity than the core
 Java it’s built on.

 OSGi is a big subject. Entire books are dedicated to it—including this one! This section reviews the basics of OSGi at a high
 level, showing how OSGi solves some of the fundamental modularity problems in Java. We also delve into greater detail into
 some aspects of OSGi which may not be familiar to most readers, but which will be important to understand when we start writing
 enterprise OSGi applications. We explain the syntax we use for the diagrams later in the book. This section covers all the
 important facts for writing enterprise OSGi applications, but if you’re new to OSGi, or if after reading it you’re bursting
 to know even more about the core OSGi platform, you should read appendixes A and B. We can’t cover all of OSGi in two appendixes,
 so we’d also definitely recommend you get hold of OSGi in Action by Richard Hall, Karl Pauls, Stuart McCulloch, and David Savage (Manning Publications, 2011).

 In a sense, OSGi takes the Java programming model closer to an “ideal” programming model—one that’s robust, powerful, and
 elegant. The way it does this is by encouraging good software engineering practice through higher levels of modularity. These,
 along with versioning, are the driving principles behind OSGi. OSGi enables abstraction, encapsulation, decomposition, loose coupling, and reuse.

 1.2.1. Modularity, versioning, and compatibility

 OSGi solves the problems of sections and in one fell swoop using an incredibly simple, but equally powerful, approach centered
 around declarative dependency management and strict versioning.

OSGI Bundles—Modular Building Blocks

 Bundles are Java modules. On one level, a bundle is an ordinary JAR file, with some extra headers and metadata in its JAR manifest. The OSGi runtime
 is usually referred to as the “OSGi framework,” or sometimes “the framework,” and is a container that manages the lifecycle
 and operation of OSGi bundles. Outside of an OSGi framework, a bundle behaves like any other JAR, with all the same disadvantages
 and no improvement to modularity. Inside an OSGi framework, a bundle behaves differently. The classes inside an OSGi bundle
 are able to use one another like any other JAR in standard Java, but the OSGi framework prevents classes inside a bundle from
 being able to access classes inside any other bundle unless they’re explicitly allowed to do so. One way of thinking about
 this is that it acts like a new visibility modifier for classes, with a scope between protected and public, allowing the classes
 to be accessed only by other code packaged in the same JAR file.

 Obviously, if JAR files weren’t able to load any classes from one another they would be fairly useless, which is why in OSGi
 a bundle has the ability to deliberately expose packages outside itself for use by other bundles. The other half of the modularity
 statement is that, in order to make use of an “exported” package, a bundle must define an “import” for it. In combination,
 these imports and exports provide a strict definition of the classes that can be shared between OSGi bundles, but express
 it in an extremely simple way.

 Listing 1.1. A simple bundle manifest that imports and exports packages

 Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: fancyfoods.example
Bundle-Version: 1.0.0
Bundle-Name: Fancy Foods example manifest
Import-Package: fancyfoods.api.pkg;version="[1.0.0,2.0.0)"
Export-Package: fancyfoods.example.pkg;version="1.0.0"

 Many more possible headers can be used in OSGi, a number of which are described in later chapters.

 By strictly describing the links between modules, OSGi allows Java programs to be less like minestrone and more like a tray
 of cupcakes (figure 1.4). Each cupcake has an internal structure (cake, paper case, icing, and perhaps decorations), but is completely separate from
 the other cupcakes. Importantly, a chocolate cupcake can be removed and replaced with a lemon cupcake without affecting the
 whole tray. As you build relationships between OSGi bundles, this becomes like stacking the cupcakes on top of one another.
 Exporting a package provides a platform onto which an import can be added. As you build up a stack of cupcakes, the cupcakes in the higher layers will be resting on other cupcakes in
 lower levels, but these dependencies can be easily identified. This prevents you from accidentally removing the cupcake on
 the bottom and causing an avalanche!

 Figure 1.4. A well-structured application with objects grouped inside modules. Dependencies between modules are clearly identified. This
 is typical of the application structure that can be achieved with OSGi.

 [image:]

 By enforcing a higher level granular structure on Java application code, OSGi bundles strongly encourage good software engineering
 practice. Rather than spaghetti code being easy to produce accidentally, it’s only possible to load and use other classes
 that are explicitly intended for you to use. The only way to write spaghetti in OSGi is to deliberately expose the guts of
 your OSGi bundle to the world, and even then the other bundles still have to choose to use your packages. In addition to making
 it harder to write spaghetti, OSGi also makes it easier to spot spaghetti. A bundle that exports a hundred packages and imports
 a thousand is obviously not cohesive or modular!

 In addition to defining the API that they expose, OSGi bundles also completely define the packages that are needed for them
 to be used. By enforcing this constraint, OSGi makes it abundantly clear what dependencies are needed for a given bundle to
 run, and also transparent as to which bundles can supply those dependencies. Importing and exporting packages goes a long
 way to solving the issues described in this section, because you no longer have to guess which JAR file is missing from your
 classpath. In order to completely eradicate classpath hell, OSGi has another trick up its sleeve—versioning.

Versioning in OSGI

 Versioning is a necessary complement to modularity. It doesn’t sound as enticing as modularity—if we’re being perfectly honest, it sounds
 dull—but it’s essential if modularity is to work at all in anything but the simplest scenarios. Why?

 Let’s imagine you’ve achieved perfect modularity in your software project. All your components are broken out into modules,
 which are being developed by different teams, perhaps even different organizations. They’re being widely reused in different
 contexts. What happens when a module implements a new piece of functionality that breaks existing behavior, either by design
 or as an unhappy accident? Some consuming modules will want to pick up the new function, but others will need to stick with
 the old behaviors. Coordinating this requires the module changes to be accompanied by a version change.

 Let’s go a step further. What if the updated module is consumed by several modules within the same system, some of which want
 the new version, and some the old version? This kind of coexistence of versions is important in a complex environment, and
 it can only be achieved by having versions as first-class properties of modules and compartmentalizing the class space.

 	

 Versions, versions everywhere!
 Versioning is incredibly important in OSGi. It’s so important that if you don’t supply a version in your metadata, then you’ll
 still have version 0.0.0! Another important point is that versioning doesn’t only apply to packages; OSGi bundles are also
 versioned. This means that in a running framework you might have not only multiple versions of the same package, but multiple
 versions of the same bundle as well!

 	

The semantic versioning scheme

 Versioning is a way of communicating about what’s changing (or not changing) in software, and so it’s essential that the language
 used be shared. How should modules and packages be versioned? When should the version number change? What’s most important
 is being able to distinguish between changes that will break consumers of a class by changing an API, and changes that are
 internal only.

 The OSGi alliance recommends a scheme called semantic versioning. The details are available at http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf. Semantic versioning is a simple scheme, but it conveys much more meaning about what’s changing than normal versions do.
 Every version consists of four parts: major, minor, micro, and qualifier. A change to the major part of a version number (for
 example, changing 2.0.0 to 3.0.0) indicates that the code change isn’t backwards compatible. Removing a method or changing
 its argument types is an example of this kind of breaking change. A change to the minor part indicates a change that is backwards
 compatible for consumers of an API, but not for implementation providers. For example, the minor version should be incremented
 if a method is added to an interface in the API, because this will require changes to implementations. If a change doesn’t
 affect the externals at all, it should be indicated by a change to the micro version. Such a change could be a bug fix, or
 a performance improvement, or even some internal changes that remove a private method from an API class. Having a strong division
 between bundle internals and bundle externals means the internals can be changed dramatically without anything other than
 the micro version of the bundle needing to change. Finally, the qualifier is used to add extra information, such as a build
 date.

 Although our explanation focuses on the API, it isn’t only packages that should be semantically versioned. The versions of
 bundles also represent a promise of functional and API compatibility. It’s particularly important to remember that semantic
 versions are different from marketing versions. Even if a great deal of work has gone into a new release of a product, if it’s backwards compatible the version would only
 change from, for example, 2.3 to 2.4, rather than from version 5 to version 6. This can be depressing for the release team,
 but it’s helpful for users of the product who need to understand the nature of the changes. Also, think of it this way—a low
 major version number means you don’t make a habit of breaking your customers!

Guarantees of compatibility

 One of the benefits provided by the semantic versioning scheme is a guarantee of compatibility. A module will be bytecode
 compatible with any versions of its dependencies where the major version is the same, and the minor version is the same or
 higher. One warning about importing packages is that modules should not try to import and run with dependencies with lower
 minor versions than the ones they were compiled against.

 	

 Forward compatibility
 Version ranges are important when importing packages in OSGi because they define what the expected future compatibility of
 your bundle is. If you don’t specify a range, then your import runs to infinity, meaning that your bundle expects to be able
 to use any version of the package, regardless of how it changes! It’s good practice to always specify a range, using square brackets for inclusive or parentheses for exclusive versions. For example, [1.1,2) for an API client compiled against a package at version 1.1 would be compatible up to, but not including, version 2.

 	

Coexistence of implementations

 The most significant benefit provided by versioning is that it allows different versions of the same module or package to
 coexist in the same system. If the modules weren’t versioned, there would be no way of knowing that they’re different and
 should be isolated from one another. With versioned modules (and some classloading magic courtesy of OSGi), each module can
 use the version of its dependencies that’s most appropriate (figure 1.5).

 Figure 1.5. The transitive dependencies of a module (the dependencies of its dependencies) may have incompatible versions. In a flat classpath,
 this can be disastrous, but OSGi allows the implementations to coexist by isolating them.

 [image:]

 As you can see, being explicit about dependencies, API, and versioning allows OSGi to completely obliterate classpath hell,
 but OSGi on its own doesn’t guarantee well-structured applications. What it does do is give developers the tools they need
 to define a proper application structure. It also makes it easier to identify when application structures have slid in the
 direction of highly coupled soupishness. This is a pretty big improvement over standard Java, and OSGi is worth considering
 on the basis of these functions alone. OSGi has a few more tricks up its sleeve. Curiously enough, modularity was only one
 of the aims when creating OSGi: another focus was dynamic runtimes.

 1.2.2. Dynamism and lifecycle management

 Dynamism isn’t new to software engineering, but it’s fundamental to OSGi. Just as versioning is part of OSGi to support proper modularity,
 modularity is arguably an OSGi feature because it’s required to support full dynamism. Many people are unaware that OSGi was
 originally designed to operate in small, embedded systems where the systems could physically change. A static classpath wasn’t
 good enough in this kind of environment!

 Why did OSGi need a new model for dynamism? After all, in some ways, Java is pretty dynamic. For example, reflection allows fields to be accessed and methods to be invoked on any class by name. A related feature, proxies, allows classes to be generated on the fly that implement a set of interfaces. These can be used to stub out classes, or
 to create wrappers dynamically. Arguably another even more powerful dynamic feature of Java is URL classloaders. Classes may be loaded from a given URL at any point in time, rather than all being loaded at JVM initialization from a static
 classpath. Furthermore, anyone can write a classloader.

 Java’s ability to write custom classloaders and add classes dynamically to a running system isn’t to be sniffed at. It’s this
 feature that makes much of OSGi possible. But Java’s classloading APIs are too low-level to be widely useful on their own.
 What OSGi provides is a layer that harnesses this dynamism and makes it generally available to developers who aren’t interested
 in writing their own classloaders or hand-loading all the classes they need.

Bundle Lifecycles

 Unlike most JAR files on the standard Java classpath, OSGi bundles aren’t static entities that live on the classpath indefinitely.
 Dividing classloading responsibility among multiple classloaders enables the entire system to be highly dynamic. Bundles can
 be stopped and started on demand, with their classloaders and classes appearing and disappearing from the system as required.
 Bundles that have been started are guaranteed to have their requirements met; if a bundle’s dependencies can’t be satisfied,
 it won’t be able to start. The complete state machine for bundle lifecycles is sufficiently simple to display in a single
 picture (see figure 1.6).

 Figure 1.6. Bundles may move between the installed, resolved, starting, active, and stopping states. A starting bundle can be lazily activated,
 and if so it won’t move to the active state (crossing the dashed line) until it’s needed by another bundle. A bundle is resolved
 if it’s installed and all its dependencies are also resolved or started. When a bundle is uninstalled, it’s no longer able
 to start, nor can it provide packages to any new bundles.

 [image:]

 The most interesting states are installed, resolved, and active. An installed bundle doesn’t expose any classes until it’s
 resolved. After it’s resolved by having its dependencies satisfied, it can provide classes to other bundles. An active bundle
 can interact directly with the OSGi framework and change the behavior of the system by automatically executing nominated code.

 Giving bundles a lifecycle has a few implications. The ability to execute code on bundle activation allows the system to dynamically
 update its behavior. Classes need not be loaded until required, reducing the memory footprint of the system. Because classes
 have the possibility of not being loaded, the system is able to ensure loaded classes have their dependencies satisfied. Overall, the system is both
 flexible and robust, which we think is pretty appealing!

Classloading

 OSGi’s classloading is at the heart of what makes it different from standard Java. It’s an elegant and scalable system. Unfortunately,
 it’s also one of the greatest sources of problems when adapting applications that weren’t designed with modularity in mind
 to run in an OSGi environment.

 Instead of every class in the virtual machine being loaded by a single monolithic classloader, classloading responsibilities
 are divided among a number of classloaders (see figure 1.7). Each bundle has an associated classloader, which loads classes contained within the bundle itself. If a bundle has a package
 import wired to a second bundle by the framework resolver, then its classloader will delegate to the other bundle’s classloader
 when attempting to load any class or resource in that package. In addition to the bundle classloaders, there are environment
 classloaders which handle core JVM classes.

 Figure 1.7. The JVM contains many active classloaders in an OSGi environment. Each bundle has its own classloader. These classloaders
 delegate to the classloaders of other bundles for imported packages, and to the environment’s classloader for core classes.

 [image:]

 Each classloader has well-defined responsibilities. If a classload request isn’t delegated to another bundle, then the request
 is passed up the normal classloader delegation chain. Somewhat surprisingly, this means that being included in a bundle doesn’t
 guarantee that a package will be loaded by that bundle. If that bundle also has an import for the package that’s wired by
 the framework resolver, then all class loads for that package will be delegated elsewhere! This is a principle known as substitutability. It allows bundles to maintain a consistent class space between them by standardizing on one variant of a package, even when
 multiple variants are exported. Figure 1.8 shows the class space for a bundle that exports a substitutable package.

 Figure 1.8. The class space for a bundle includes all of its private classes, and the public classes of any bundle it’s wired to. It doesn’t
 necessarily include all the bundle’s public classes, because some might be imported from other bundles instead.

 [image:]

Services and the Service Registry

 Bundles and bundle lifecycles are as far as many OSGi developers go with OSGi. Enterprise OSGi makes heavy use of another
 fundamental OSGi feature—services. OSGi services are much more dynamic than their Java Enterprise Edition (Java EE) alternatives.
 OSGi services are like META-INF services without all the messy files, or like Java Naming and Directory Interface (JNDI) with
 more power and less ... JNDI. Although OSGi services fill the same basic requirement as these two technologies, they have
 important extra features such as dynamism, versioning, and property-based filtering. They’re a simple and powerful way for
 bundles to transparently share object instances without having to expose any internal implementation—even the name of the
 class implementing the API. By hiding the service implementation and promoting truly decoupled modules, OSGi services effectively
 enable a single-JVM service-oriented architecture. Services also enable a number of other useful architectural patterns.

 Figure 1.9 shows a simple OSGi service, represented by a triangle. The pointy end faces toward the provider of the service. One way
 of thinking of this is that the arrow points in the direction of invocation when a client calls the service. Another way to
 think of it is that the provider of a particular service is unique, whereas there may be many clients for it; as a result,
 the triangle must point at the only “special” bundle. Alternatively, if you squint really hard the service might look to you
 like the spout of an old-fashioned watering can, spreading water—or a service—out from a single source to many potential recipients.

 Figure 1.9. A service that’s provided by one bundle and used by another bundle. The narrow end of the triangle points toward the service
 provider.

 [image:]

Providing services

 Services are registered by a bundle using one or more class names that mark the API of the service, and the service object
 itself. Optional properties can provide extra information about the service and can be used by clients to filter which services
 get returned when they’re looking for one. Service properties aren’t intended for use by the service itself.

 [image:]

 As you can see, providing a service is easy. Of course providing a service isn’t useful unless people have a way of finding
 and using it.

Accessing services

 Services can be looked up using a simple API. Enterprise OSGi also allows services to be accessed declaratively and injected
 as a dependency. We’ll make use of service dependency injection throughout this book, starting in section 2.3.8. Before we
 get there, let’s have a peek at what a service lookup looks like without dependency injection:

 String interfaceName = InventoryLister.class.getName();
ServiceReference ref = ctx.getServiceReference(interfaceName);
InventoryLister lister = (InventoryLister) ctx.getService(ref);

 What happens when multiple providers of the service have been registered? Service consumers have a choice between getting
 one, or a list containing all of them. If the service is something like a credit card processing service, it’s only necessary
 to take a payment once. In this situation one service provider is sufficient, and it probably doesn’t matter too much which
 provider is chosen. In the case of a logging service, on the other hand, logged messages should probably be sent to all the
 available loggers, rather than one of them. Fortunately, OSGi also allows you to find all of the services that match a particular
 request:

 ServiceReference[] refs = ctx.getServiceReferences(Logger.class
 .getName());
if (refs != null) {
 for (ServiceReference ref : refs) {
 Logger logger = (Logger) ctx.getService(ref);
 logger.doSomeLogging();
 }
}

 As you can see, in addition to its modular, versioned runtime and flexible lifecycle management, OSGi provides an elegant
 services infrastructure and a lightweight dynamic framework. All of these encourage good engineering practice, but, as with
 most things, using OSGi doesn’t guarantee that your application will be well structured. What OSGi does is give developers
 the tools they need to be able to define a proper application structure. It also makes it easier to identify when application
 structures have slid in the direction of highly coupled soupishness. Given its obvious advantages, why isn’t everyone using
 OSGi already?

 1.2.3. Why isn’t everyone using OSGi?

 As we’ve mentioned previously, OSGi isn’t a new technology; the ideas have been around for more than a decade now. But OSGi
 adoption within the Java community isn’t as ubiquitous as you would expect, given its obvious advantages. There are several
 reasons for this.

The Origins of OSGI

 The OSGi Alliance’s original mission was to allow Java to be used in embedded and networked devices. In addition to Sun, IBM,
 and Oracle, its original members were, for the most part, mobile phone manufacturers like Motorola and Ericsson, and networking
 companies like Lucent and Nortel. There were also energy companies involved, such as Électricité de France and the late Enron
 Communications. Within a few years, OSGi was being used inside set-top boxes, Siemens medical devices, Bombardier locomotives,
 and the entertainment system of the BMW 5 Series. The main reason for this is that the advantages of OSGi are particularly
 useful in constrained devices, or in applications where the system must remain running for long periods, including through
 maintenance updates.

 The next wave of OSGi adoption happened in large-scale software projects, particularly IDEs, application servers, and other
 middleware. It’s initially surprising that a technology designed for the tiniest Java installations should be such a good fit for the largest ones. Do the software running
 a car stereo and the software in an enterprise application server have much in common? As it happens, yes. What embedded devices
 needed was modularity and dynamism; software with large codebases has the same requirements. Despite the huge increase in
 processing power and memory available to modern devices, OSGi is, if anything, even more useful in these big systems. The
 increasing complexity of software projects is a key driver for OSGi adoption in Java applications.

 	

 The meaning of OSGi
 Because of its embedded origins, the acronym OSGi used to stand for Open Services Gateway initiative. Now, if you didn’t already know what OSGi was about, the phrase “Open Services Gateway initiative” doesn’t shout “dynamic
 module system for Java.” The name is so divorced from what OSGi is used for today that the original expansion of the acronym
 has been abandoned, and OSGi now stands for, well, OSGi.

OEBPS/01fig04.jpg

OEBPS/01fig05_alt.jpg
Bundiex
val

OEBPS/01fig02.jpg

OEBPS/01fig03.jpg

OEBPS/common-02.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common-01.jpg

OEBPS/01fig06_alt.jpg

OEBPS/01fig08_alt.jpg
Private

Package X

Public

5

Package Z

Class space of bundle A

|

PackageY

Private

&

OEBPS/01fig07_alt.jpg
Bundle C

wiring

wiring

Classloader C

delegation

Classloader B

delegation

Classloader A

delegation

delegation

classloader

OEBPS/cover.jpg

OEBPS/018fig01_alt.jpg
Dictionary<string, Strings props = new HashtablesString, Strings(); | Can beusedto
props. put (~check. type", "slow™ ; - refine lookups
igpit i b Ml ARDTRBR——

OEBPS/01fig09.jpg
Service Service

provider consumer

