

 [image:]

 The Well-Grounded Java Developer

 Second Edition

 Benjamin Evans, Jason Clark, and Martijn Verburg

 Foreword by Heinz Kabutz

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Jonathan Thoms

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Michael Haller

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 978161728875

 Praise for the First Edition

 At the cutting edge of Java development...learn to speak Java 7 and next-gen languages.

 —Paul Benedict, Corporate Personnel & Associates

 Buy this book for what's new in Java 7. Keep it open for lessons in expert Java.

 —Stephen Harrison, PhD, FirstFuel Software

 A great collection of knowledge on the JVM platform.

 —Rick Wagner, Red Hat

 How to become a well-grounded Java developer—and how to stay that way.

 —From the Foreword by Dr. Heinz Kabutz, The Java Specialists’ Newsletter

brief contents

 Part 1. From 8 to 11 and beyond!

 1 Introducing modern Java

 2 Java modules

 3 Java 17

 Part 2. Under the hood

 4 Class files and bytecode

 5 Java concurrency fundamentals

 6 JDK concurrency libraries

 7 Understanding Java performance

 Part 3. Non-Java languages on the JVM

 8 Alternative JVM languages

 9 Kotlin

 10 Clojure: A different view of programming

 Part 4. Build and deployment

 11 Building with Gradle and Maven

 12 Running Java in containers

 13 Testing fundamentals

 14 Testing beyond JUnit

 Part 5. Java frontiers

 15 Advanced functional programming

 16 Advanced concurrent programming

 17 Modern internals

 18 Future Java

 Appendix A. Selecting your Java

 Appendix B. Recap of streams in Java 8

contents

 Front matter

 foreword

 preface

 acknowledgements

 about this book

 about the authors

 about the cover illustration

 Part 1. From 8 to 11 and beyond!

 1 Introducing modern Java

 1.1 The language and the platform

 1.2 The new Java release model

 1.3 Enhanced type inference (var keyword)

 1.4 Changing the language and the platform

 Sprinkling some sugar

 Changing the language

 JSRs and JEPs

 Incubating and preview features

 1.5 Small changes in Java 11

 Collections factories (JEP 213)

 Remove enterprise modules (JEP 320)

 HTTP/2 (Java 11)

 Single-file source-code programs (JEP 330)

 2 Java modules

 2.1 Setting the scene

 Project Jigsaw

 The module graph

 Protecting the internals

 New access control semantics

 2.2 Basic modules syntax

 Exporting and requiring

 Transitivity

 2.3 Loading modules

 Platform modules

 Application modules

 Automatic modules

 Unnamed module

 2.4 Building a first modular app

 Command-line switches for modules

 Executing a modular app

 Modules and reflection

 2.5 Architecting for modules

 Split packages

 Java 8 Compact Profiles

 Multi-release JARs

 2.6 Beyond modules

 3 Java 17

 3.1 Text Blocks

 3.2 Switch Expressions

 3.3 Records

 Nominal typing

 Compact record constructors

 3.4 Sealed Types

 3.5 New form of instanceof

 3.6 Pattern Matching and preview features

 Part 2. Under the hood

 4 Class files and bytecode

 4.1 Class loading and class objects

 Loading and linking

 Class objects

 4.2 Class loaders

 Custom class loading

 Modules and class loading

 4.3 Examining class files

 Introducing javap

 Internal form for method signatures

 The constant pool

 4.4 Bytecode

 Disassembling a class

 The runtime environment

 Introduction to opcodes

 Load and store opcodes

 Arithmetic opcodes

 Execution flow control opcodes

 Invocation opcodes

 Platform operation opcodes

 Shortcut opcode forms

 4.5 Reflection

 Introducing reflection

 Combining class loading and reflection

 Problems with reflection

 5 Java concurrency fundamentals

 5.1 Concurrency theory primer

 But I already know about Thread

 Hardware

 Amdahl’s law

 Explaining Java’s threading model

 Lessons learned

 5.2 Design concepts

 Safety and concurrent type safety

 Liveness

 Performance

 Reusability

 How and why do the forces conflict?

 Sources of overhead

 5.3 Block-structured concurrency (pre-Java 5)

 Synchronization and locks

 The state model for a thread

 Fully synchronized objects

 Deadlocks

 Why synchronized?

 The volatile keyword

 Thread states and methods

 Immutability

 5.4 The Java Memory Model (JMM)

 5.5 Understanding concurrency through bytecode

 Lost Update

 Synchronization in bytecode

 Synchronized methods

 Unsynchronized reads

 Deadlock revisited

 Deadlock resolved, revisited

 Volatile access

 6 JDK concurrency libraries

 6.1 Building blocks for modern concurrent applications

 6.2 Atomic classes

 6.3 Lock classes

 Condition objects

 6.4 CountDownLatch

 6.5 ConcurrentHashMap

 Understanding a simplified HashMap

 Limitations of Dictionary

 Approaches to a concurrent Dictionary

 Using ConcurrentHashMap

 6.6 CopyOnWriteArrayList

 6.7 Blocking queues

 Using BlockingQueue APIs

 Using WorkUnit

 6.8 Futures

 CompletableFuture

 6.9 Tasks and execution

 Modeling tasks

 Executors

 Single-threaded executor

 Fixed-thread pool

 Cached thread pool

 ScheduledThreadPoolExecutor

 7 Understanding Java performance

 7.1 Performance terminology: Some basic definitions

 Latency

 Throughput

 Utilization

 Efficiency

 Capacity

 Scalability

 Degradation

 7.2 A pragmatic approach to performance analysis

 Know what you’re measuring

 Know how to take measurements

 Know what your performance goals are

 Know when to stop

 Know the cost of achieving higher performance

 Know the dangers of premature optimization

 7.3 What went wrong? Why do we have to care?

 Moore’s law

 Understanding the memory latency hierarchy

 7.4 Why is Java performance tuning hard?

 The role of time in performance tuning

 Understanding cache misses

 7.5 Garbage collection

 Basics

 Mark and sweep

 Areas of memory

 Young collections

 Full collections

 Safepoints

 G1: Java’s default collector

 The Parallel collector

 GC configuration parameters

 7.6 JIT compilation with HotSpot

 Why have dynamic compilation?

 Introduction to HotSpot

 Inlining methods

 Dynamic compilation and monomorphic calls

 Reading the compilation logs

 Deoptimization

 7.7 JDK Flight Recorder

 Flight Recorder

 Mission Control

 Part 3. Non-Java languages on the JVM

 8 Alternative JVM languages

 8.1 Language zoology

 Interpreted vs. compiled languages

 Dynamic vs. static typing

 Imperative vs. functional languages

 Reimplementation vs. original

 8.2 Polyglot programming on the JVM

 Why use a non-Java language?

 Up-and-coming languages

 Languages we could have picked but didn’t

 8.3 How to choose a non-Java language for your project

 Is the project area low-risk?

 Does the language interoperate well with Java?

 Is there good tooling and test support for the language?

 How hard is the language to learn?

 Are there lots of developers using this language?

 8.4 How the JVM supports alternative languages

 Performance

 Runtime environments for non-Java languages

 Compiler fictions

 9 Kotlin

 9.1 Why use Kotlin?

 Installing

 9.2 Convenience and conciseness

 Starting with less

 Variables

 Equality

 Functions

 Collections

 Express yourself

 9.3 A different view of classes and objects

 Data classes

 9.4 Safety

 Null safety

 Smart casting

 9.5 Concurrency

 9.6 Java interoperability

 10 Clojure: A different view of programming

 10.1 Introducing Clojure

 Hello World in Clojure

 Getting started with the REPL

 Making a mistake

 Learning to love the brackets

 10.2 Looking for Clojure: Syntax and semantics

 Special forms bootcamp

 Lists, vectors, maps, and sets

 Arithmetic, equality, and other operations

 Working with functions in Clojure

 Loops in Clojure

 Reader macros and dispatch

 10.3 Functional programming and closures

 10.4 Introducing Clojure sequences

 Sequences and variable-arity functions

 10.5 Interoperating between Clojure and Java

 Calling Java from Clojure

 The nature of Clojure calls

 The Java type of Clojure values

 Using Clojure proxies

 Exploratory programming with the REPL

 Using Clojure from Java

 10.6 Macros

 Part 4. Build and deployment

 11 Building with Gradle and Maven

 11.1 Why build tools matter for a well-grounded developer

 Automating tedious operations

 Managing dependencies

 Ensuring consistency between developers

 11.2 Maven

 The build lifecycle

 Commands/POM intro

 Building

 Controlling the manifest

 Adding another language

 Testing

 Dependency management

 Reviewing

 Moving beyond Java 8

 Multirelease JARs in Maven

 Maven and modules

 Authoring Maven plugins

 11.3 Gradle

 Installing Gradle

 Tasks

 What’s in a script?

 Using plugins

 Building

 Work avoidance

 Dependencies in Gradle

 Adding Kotlin

 Testing

 Automating static analysis

 Moving beyond Java

 Using Gradle with modules

 Customizing

 12 Running Java in containers

 12.1 Why containers matter for a well-grounded developer

 Host operating systems vs. virtual machines vs. containers

 Benefits of containers

 Drawbacks of containers

 12.2 Docker fundamentals

 Building Docker images

 Running Docker containers

 12.3 Developing Java applications with Docker

 Selecting your base image

 Building an image with Gradle

 Running the build in Docker

 Ports and hosts

 Local development with Docker Compose

 Debugging in Docker

 Logging with Docker

 12.4 Kubernetes

 12.5 Observability and performance

 Observability

 Performance in containers

 13 Testing fundamentals

 13.1 Why we test

 13.2 How we test

 13.3 Test-driven development

 TDD in a nutshell

 A TDD example with a single use case

 13.4 Test doubles

 Dummy object

 Stub object

 Fake object

 Mock object

 Problems with mocking

 13.5 From JUnit 4 to 5

 14 Testing beyond JUnit

 14.1 Integration testing with Testcontainers

 Installing testcontainers

 An example with Redis

 Gathering container logs

 An example with Postgres

 An example for end-to-end testing with Selenium

 14.2 Specification-style testing with Spek and Kotlin

 14.3 Property-based testing with Clojure

 clojure.test

 clojure.spec

 test.check

 clojure.spec and test.check

 Part 5. Java frontiers

 15 Advanced functional programming

 15.1 Introduction to functional programming concepts

 Pure functions

 Immutability

 Higher-order functions

 Recursion

 Closures

 Laziness

 Currying and partial application

 15.2 Limitations of Java as a FP language

 Pure functions

 Mutability

 Higher-order functions

 Recursion

 Closures

 Laziness

 Currying and partial application

 Java’s type system and collections

 15.3 Kotlin FP

 Pure and higher-order functions

 Closures

 Currying and partial application

 Immutability

 Tail recursion

 Lazy evaluation

 Sequences

 15.4 Clojure FP

 Comprehensions

 Lazy sequences

 Currying in Clojure

 16 Advanced concurrent programming

 16.1 The Fork/Join framework

 A simple F/J example

 Parallelizing problems for F/J

 Work-stealing algorithms

 16.2 Concurrency and functional programming

 CompletableFuture revisited

 Parallel streams

 16.3 Under the hood with Kotlin coroutines

 How coroutines work

 Coroutine scoping and dispatching

 16.4 Concurrent Clojure

 Persistent data structures

 Futures and pcalls

 Software transactional memory

 Agents

 17 Modern internals

 17.1 Introducing JVM internals: Method invocation

 Invoking virtual methods

 Invoking interface methods

 Invoking “special” methods

 Final methods

 17.2 Reflection internals

 17.3 Method handles

 MethodHandle

 MethodType

 Looking up method handles

 Reflection vs. proxies vs. method handles

 17.4 Invokedynamic

 Implementing lambda expressions

 17.5 Small internal changes

 String concatenation

 Compact strings

 Nestmates

 17.6 Unsafe

 17.7 Replacing Unsafe with supported APIs

 VarHandles

 Hidden classes

 18 Future Java

 18.1 Project Amber

 18.2 Project Panama

 Foreign Function and Memory API

 18.3 Project Loom

 Virtual threads

 Thread builders

 Programming with virtual threads

 When will Project Loom arrive?

 18.4 Project Valhalla

 Changing the language model

 Consequences of value objects

 Generics revisited

 18.5 Java 18

 Appendix A. Selecting your Java

 Appendix B. Recap of streams in Java 8

 index

 front matter

foreword

 Well-grounded? You mean, “well-rounded”? Two years of pandemic would do that without the need for a book.

 Merriam-Webster defines well-grounded as “having a firm foundation.” I like that. We want to have a firm foundation in Java—a practical knowledge of what we need to know to call ourselves Java experts. This book picks up where Effective Java stops.

 This is the second edition of a great book. The first taught us all that we needed to know for Java 7. That seems like eons ago. Java 7 belonged to another age, when features were added to the language at best every three years. Back then, it was easy to keep versions apart. Java 5? Generics and enums. Java 7? try-with-resource. Java 8? Streams and lambdas. Those comfortable easy days ended when Oracle introduced the six-month cycle. Records—were those Java 14, 15, or 17? Enhanced Switch? Was that already in Java 11?

 The fast release cycle is great for programmers who work for adventurous companies. Every six months, they get new toys to play with. They might even get to try out previews of what will come next. The myriad of new features is wonderful for programmers, but not so nice for authors. Before the ink has dried, a new feature release makes a bunch of things obsolete.

 Ben, Jason, and Martijn have done a fantastic job with this new Java book. The basic premise remains the same. In my words: “If you wanted to hire a professional Java programmer, what would you expect them to already know? What skills would they need to prove they are well grounded?”

 This new version of the book is as current as is possible with the six-month release cadence. At the same time, the authors don’t overwhelm us with new stuff. The stark reality is that most enterprises are still stuck on an older version of Java. Even with Java 18 released, a lot of banks, insurance companies, and government departments are still on Java 8.

 This book is about 200 pages longer than the previous edition. The fonts are a bit larger—well, we have all aged by nine years, haven’t we? But the margins are smaller. Quite a few of the sections have completely new content. This is one case where the new edition does not make the old one obsolete. Both belong on a serious Java programmer’s bookshelf.

 Benjamin J. Evans, Jason R. Clark, and Martijn Verburg are Java experts. They hold senior Java positions at Red Hat, New Relic, and Microsoft. Let’s take advantage of their collective wisdom. This book will help us discover areas of weakness that we can then improve on. In the end, with enough work, we can call ourselves Well-Grounded Java programmers.

 Heinz Kabutz

 The Java Specialists’ Newsletter

preface

 The first edition of this book started life as a set of training notes written for new graduate developers in the foreign exchange department of a bank. One of us (Ben), looking at the existing books on the market, found a lack of up-to-date material aimed at Java developers who wanted to level up. Partway through writing that material, he found he was writing that missing book and enlisted Martijn to help.

 That was more than 10 years ago—we were writing as Java 7 was being developed—and the world is very different now. In response, the book has changed substantially since the first edition. So, although our original primary goals were to introduce topics like

 	
 Polyglot programming

 	
 Dependency injection

 	
 Multithreaded programming

 	
 Sound build and CI practices

 	
 What’s new in Java 7

 when we came to write the second edition, we found that we needed to make some changes, including

 	
 Trimming down polyglot a bit

 	
 Adding a new emphasis on functional programming

 	
 Enhancing the discussion of multithreading

 	
 Putting a different spin on build and deploy (including containers)

 	
 Talking about what’s new in Java 11 and 17

 One very important change was that the first edition included Scala as one of three non-Java languages discussed (the others being Groovy and Clojure—Kotlin didn’t really exist at the time we wrote it). At that time, many of the developers exploring Scala were looking for “Java, but a better mousetrap,” which is essentially the view of Scala that we presented in the first edition.

 However, since then, the world has moved on. Java 8 and 11 became hugely dominant, and the “better mousetrap” crew are mostly writing Kotlin (or just sticking with Java). Scala, in the meantime, has become a very powerful statically typed, FP-first JVM language. This is great for the folks who want that, but it has come with costs, such as an ever-more-complex runtime and a language that has less and less in common with Java as time goes by.

 This development is sometimes abbreviated to the phrase that “Scala wants to be Haskell on the JVM,” although this is not entirely accurate and is more a convenient conversational shorthand than anything else. So, after having made the decision to drop Groovy from the second edition, we thought long and hard about whether to keep Scala or replace it with Kotlin.

 Our eventual conclusion was basically that Scala is heading in its own, FP-heavy direction, and that we wanted to present a language that was more approachable to Java developers who were coming fresh to non-Java languages, such as Kotlin. This left us with a dilemma. The parts of Scala that are easily accessible to Java folks are very similar to Kotlin (with near-identical syntax in some cases), but the philosophy and direction of travel of the two languages are totally different. We felt that explaining what Scala is in sufficient depth—so that the coverage was distinct from Kotlin—would take up far too much space in the book.

 Therefore, our eventual decision was to drop from three to two additional languages to make space and give extra depth to the coverage of the remaining languages (Kotlin and Clojure). For this reason, although we make the occasional comment about Scala, we don’t devote entire sections (let alone chapters) to it.

 Clojure is a very different story—and, indeed, a very different language—than either Kotlin or Java. For example, in chapter 15 we struggle a bit because many of the concepts that we’re introducing in the other languages (e.g., higher-order functions and recursion) have already been introduced and are just “part of the landscape” in Clojure. Rather than follow the template used by Java and Kotlin, the discussion goes in a different direction. Clojure is, fundamentally, a much more functionally oriented language, and we would just end up repeating ourselves a lot if we were to follow the exact same structure as for the other languages.

 In this book, we hope that the theme of software development as a social activity rings out clearly. We believe that the technical aspects of the craft are important, but the more subtle concerns of communication and interaction between people are at least as important. It can be hard to explain these facets easily in a book, but that theme is present throughout.

 Developers are sustained throughout their careers by their engagement with technology and the passion to keep learning. In this book, we hope that we’ve been able to highlight some of the topics that will ignite that passion. It’s a sightseeing tour, rather than an encyclopedic study, but that’s the intention—to get you started and then leave you to follow up on those topics that capture your imagination.

 We take you from the new features of the recent versions of Java through to best practices of modern software development and the future of the platform. Along the way, we show you some of the highlights that have had relevance to us on our own journey as Java technologists.

 Concurrency, performance, bytecode, and class loading are some of the core techniques that fascinated us the most. We also talk about new, non-Java languages on the JVM for two reasons:

 	
 Non-Java languages continue to gain importance in the overall Java ecosystem.

 	
 Understanding the different perspectives that different languages bring makes you a better programmer in any language you write in.

 Above all, this is a journey that’s forward looking and puts you and your interests front and center. We feel that becoming a well-grounded Java developer will help to keep you engaged and in control of your own development and will help you learn more about the changing world of Java and the ecosystem that surrounds it. We hope that the distilled experience that you’re holding in your hands is useful and interesting to you and that reading it is thought provoking and fun. Writing it certainly was!

acknowledgements

 We would like to thank the following people for their contributions to the book:

 Elesha Hyde, for being a most excellent development editor; Jonathon Thoms, for his great work in the technical reviews; Alex Buckley, for a very detailed discussion of the class loading process; Heinz Kabutz, for excellent suggestions and discussions (and even PRs!) about the details of the concurrency chapters, as well as another wonderful foreword; Holly Cummins, not only for helping inspire the original edition but also for her consistently grounded and practical advice; Bruce Durling, for discussion of the Clojure material; Dan Heidinga, for detailed feedback on the current state of Project Valhalla; Piotr Jagielski, Louis Jacomet, József Bartók, and Tom Tresansky for corrections regarding some of the details about how Gradle really works; and Andrew Binstock, for a very meticulous close reading of several chapters and sound advice, as always.

 We would also like to thank the staff at Manning: Mihaela Batinić, our reviewing editor; Michael Haller, our technical reviewer; Deirdre Hiam, our project editor; Pamela Hunt, our copyeditor; and Jason Everett, our proofreader. To all the reviewers: Adam Koch, Alain Lompo, Alex Gout, Andres Sacco, Andy Keffalas, Anshuman Purohit, Ashley Eatly, Christian Thoudahl, Christopher Kardell, Claudia Maderthaner, Conor Redmond, Dr. Irfan Ullah, Eddú Meléndez Gonzales, Ezra Simeloff, George Thomas, Gilberto Taccari, Hugo da Silva Possani, Igor Karp, Jared Duncan, Javid Asgarov, Jean-François Morin, Jerome Meyer, Kent R. Spillner, Kimberly L Winston-Jackson, Konstantin Eremin, Matt Deimel, Michael Haller, Michael Wall, Mikhail Kovalev, Patricia Gee, Ramanan Natarajan, Raphael Villela, Satej Kumar Sahu, Sergio Edgar Martínez Pacheco, Simona Ruso, Steven K. Makunzva, Theofanis Despoudis, Troi Eisler, Yogesh Shetty, and William E. Wheeler, your suggestions helped make this a better book.

From Jason

 Thanks are due to many different people across many years.

 To Mrs. Nimmo, thank you for all the extra credit in middle school English for my silly little stories. It’s no exaggeration that your encouragement set me on a lifelong path of writing.

 To Mom, thank you for your infectious love of reading, which I’m so glad to have inherited.

 To Dad, thank you for sharing your love of computers. It has provided me not only with a career but the chance to write and share that joy with others.

 To Ben, thank you first and foremost for your friendship. It has been a blast to be drawn deeper into the JVM by your awesome curiosity and enthusiasm. And, of course, thanks for asking me along on this second edition. It was more work than any of us expected, but a better book in the end as well!

 And last but not least, thanks to my wife, Amber, and my kids, Coraline and Asher, for their continued love and support throughout the strange and wonderful process that is making a book.

From Martijn

 Firstly I’d like to thank Ben and Jason for inviting me to be part of this second edition. My contribution was very minimal in comparison to theirs, and they were most gracious in insisting my name still be on the cover!

 To Kerry, you’ve been a mountain of support during the whirlwind career moments of the past decade, not to mention reacting with a smile when I said, “It’s just a few edits this time around, I promise!”

 To Hunter, your enthusiasm for life reminds me why I got into the creative joy of programming in the first place. I hope you’ll find that same joy in life no matter what path you take.

 To the fine folks of the Java Engineering Group at Microsoft, the Eclipse Adoptium Community, the London Java Community, the Java Champions Community, and too many others to mention. You inspire me every day, and I always walk away each day having learned something new and added another five things on my list to read for the next day!

From Ben

 To my parents, Sue and Martin, for their unwavering faith that we would find, and make, our own way on the path less traveled.

 To my wife, Anna, for her illustrations, her artistic vision, and her tireless support and understanding through yet another book.

 In memory of Marianito, who, partway through the development of this book, discovered that laptops that have been left open make a marvelously warm spot upon which to sleep.

 To Joselito, who overcame some of his fear by being curious about why I would sit and be so fascinated by the screen that was so much less interesting than the one in the other room that has spaceships and explosions on it.

about this book

Who should read this book?

 Welcome to The Well-Grounded Java Developer. This book is aimed at turning you into a Java developer for the next decade, reigniting your passion for both the language and platform. Along the way, you’ll discover new Java features, ensure that you’re familiar with essential modern software techniques (such as test-driven development, and container-based deployments), and start to explore the world of non-Java languages on the JVM.

 To begin, let’s consider the description of the Java language provided by James Iry in a wonderful blog post, “A Brief, Incomplete, and Mostly Wrong History of Programming Languages” available at http://mng.bz/2rz9:

 1996—James Gosling invents Java. Java is a relatively verbose, garbage collected, class-based, statically typed, single dispatch, object-oriented language with single implementation inheritance and multiple interface inheritance. Sun loudly heralds Java’s novelty.

 Although the point of Java’s entry is mostly to set up a gag where C# is given the same writeup, this is not bad as descriptions of languages go. The full blog post contains a bunch of other gems, and it’s well worth a read in an idle moment.

 This does present a very real question: why are we still talking about a language that is now over 26 years old? Surely it’s stable, and not much new or interesting can be said about it?

 If that were the case, this would be a short book. We are still talking about it because one of Java’s greatest strengths has been its ability to build on a few core design decisions, which have proven to be very successful in the marketplace:

 	
 Automatic management of the runtime environment (e.g., garbage collection, just-in-time compilation)

 	
 A simple syntax and relatively few concepts in the core language

 	
 A conservative approach to evolving the language

 	
 Additional functionality and complexity in libraries

 	
 Broad, open ecosystem

 These design decisions have kept innovation moving in the Java world—the simple core has kept the barrier to joining the developer community low, and the broad ecosystem has made it easy for newcomers to find pre-existing components that fit their needs. These traits have kept the Java platform and language strong and vibrant—even if the language has had a historical tendency to change slowly. It turns out that the mix of strong consistency and evolutionary change has won quite a few fans among software developers.

How to use this book

 The material in this book is broadly designed to be read end-to-end, but we understand that some readers may want to dive straight into particular topics, so we have done our best to also accommodate that style of reading.

 We strongly believe in hands-on learning, so we recommend that readers try out the sample code that comes with the book as they read through the text. The rest of this section deals with how you can approach the book if you are more of a standalone chapter style of reader.

 The Well-Grounded Java Developer is split into the following five parts:

 	
 From 8 to 11, and beyond

 	
 Under the hood

 	
 Non-Java languages on the JVM

 	
 Build and deployment

 	
 Java frontiers

 Part 1 (chapters 1–3) contains three chapters on the most recent versions of Java. The book as a whole uses Java 11 syntax and semantics throughout and calls out specific uses of post-11 syntax.

 Part 2 (chapters 4–7) contains a first peek behind the curtain. It is a truism of art that one needs to know the rules before one can credibly break them. These chapters outline how one first bends, and then breaks, the rules of the Java programming language.

 Part 3 (chapters 8–10) covers polyglot programming on the JVM. Chapter 8 should be considered required reading because it sets the stage by discussing the categorization and use of alternative languages on the JVM.

 The following two language chapters cover a Java-like OO-functional language (Kotlin) and a truly functional one (Clojure). Those languages can be read standalone, although developers new to functional programming will probably want to read them in order.

 Part 4 (chapters 11–14) introduces build, deployment, and testing as they are done in modern projects, and they assume that the reader has at least a basic understanding of unit testing as showcased in, for example, JUnit.

 Part 5 (chapters 15–18) builds on topics that have been introduced earlier to delve deeper into functional programming, concurrency, and the internals of the platform. Although the chapters can be read standalone, in some sections, we assume that you’ve read the earlier chapters and/or already have familiarity with certain topics.

 This book is firmly aimed at Java developers who wants to modernize their knowledge base in both the language and the platform. If you want to get up to speed with what modern Java has to offer, this is the book for you.

 If you are looking to brush up on your techniques and understanding of topics such as functional programming, concurrency, and advanced testing, this book will give you a good grounding in those topics. This is also a book for those developers who are curious about what non-Java languages can teach them and how broadening their horizons will make them a better programmer.

About the code

 The initial download and installation you’ll need is Java 17 (or 11). Simply follow the download and installation instructions for the binary you need for the OS you use. You can find binaries and instructions online at your usual Java vendor, or at the vendor-neutral Adoptium project, run by the Eclipse Foundation, at https://adoptium.net/.

 Java 11 (and 17) runs on Mac, Windows, Linux, and pretty much any other modern OS and hardware platform.

 Note If you’re concerned about details of Java licensing and so on, you can head to appendix A where a full discussion can be found.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/the-well-grounded-java-developer-second-edition. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/the-well-grounded-java-developer-second-edition, and from GitHub at https://github.com/well-grounded-java/resources.

 However, most readers will probably want to try out the code samples in an IDE. Java 11/17 and the latest versions of Kotlin and Clojure are well supported by recent versions of the main IDEs:

 	
 Eclipse IDE

 	
 IntelliJ IDEA Community Edition (or Ultimate Edition)

 	
 Apache NetBeans

liveBook Discussion Forum

 Purchase of The Well-Grounded Java Developer, 2nd Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/the-well-grounded-java-developer-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 https://github.com/well-grounded-java/resources

about the authors

 [image:]

 Ben Evans is a Java Champion and Senior Principal Software Engineer at Red Hat. Previously he was Lead Architect for Instrumentation at New Relic, and co-founded jClarity, a performance tools startup acquired by Microsoft. He has also worked as Chief Architect for Listed Derivatives at Deutsche Bank and as Senior Technical Instructor for Morgan Stanley. He served for six years on the Java Community Process Executive Committee, helping define new Java standards.

 Ben is the author of six books, including Optimizing Java and the new editions of Java in a Nutshell and his technical articles are read by thousands of developers every month. Ben is a regular speaker and educator on topics such as the Java platform, systems architecture, performance and concurrency for companies and conferences all over the world.

 [image:]

 Jason Clark is a principal engineer and architect at New Relic where he has worked on everything from Ruby instrumentation libraries to container orchestration platforms. He was previously an architect at WebMD building .Net-based web services.

 A regular conference speaker, Jason contributes to the open-source project Shoes, aiming to make GUI programming easy and fun for beginners and students.

 [image:]

 Martijn Verburg is the Principal SWE Group Manager for the Java Engineering Group at Microsoft. He is the co-leader of the London Java User Group (aka the LJC) where he co-founded AdoptOpenJDK (now Eclipse Adoptium), the world's leading (non- Oracle) OpenJDK distribution. Martijn is the co-author of The Well-Grounded Java Developer, 1st edition, and sits on numerous Java standards bodies (JCP, Jakarta EE, et al).

about the cover illustration

 The figure on the cover of The Well-Grounded Java Developer, titled “A Posy Seller,” is taken from Sylvain Maréchal’s nineteenth-century compendium of regional dress customs, published in France.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. From 8 to 11 and beyond!

 These first three chapters are about ramping up to Java 17. You’ll ease in with an introductory chapter that covers some quality-of-life changes that came in with Java 11. You’ll see how the Java ecosystem and release cycle has changed since Java 8, including the following, and what that means to developers:

 	
 var keyword

 	
 Collections factories

 	
 New HTTP client with HTTP/2 support

 	
 Single-file source code programs

 From there, you’ll get a deep dive on one of the biggest changes in the Java landscape in many years—the addition of a full module system. You’ll see why this dramatic change was necessary. It’s been carefully designed for incremental adoption, and along with understanding the concepts, you’ll come away knowing how to start taking advantage of it in your applications and libraries.

 Under the new release cycle, Java 17 brings together a significant batch of new language features, including

 	
 Text blocks

 	
 Switch expressions

 	
 Records

 	
 Sealed types

 By the end of part 1, you’ll be thinking and writing naturally in Java 17, ready to use this new knowledge throughout the remainder of the book.

1 Introducing modern Java

 This chapter covers

 	
Java as a platform and a language

 	
The new Java release model

 	
Enhanced Type inference (var)

 	
Incubating and preview features

 	
Changing the language

 	
Small language changes in Java 11

 Welcome to Java in 2022. It is an exciting time. Java 17, the latest Long-Term-Support (LTS) release shipped in September 2021, and the first and most adventurous teams are starting to move to it.

 At the time of writing, apart from a few trailblazers, Java applications are more or less evenly split between running on Java 11 (released September 2018) and the much older Java 8 (2014). Java 11 offers a lot to recommend, especially for teams that are deploying in the cloud, but some have been a little slow to adopt it.

 So, in the first part of this book, we are going to spend some time introducing some of the new features that have arrived in Java 11 and 17. Hopefully, this discussion will help convince some teams and managers who may be reluctant to upgrade from Java 8 that things are better than ever in the newer versions.

 Our focus for this chapter is going to be Java 11 because a) it’s the LTS version with the largest market share and b) no noticeable adoption of Java 17 has occurred yet. However, in chapter 3, we will introduce the new features in Java 17 to bring you all the way up to date.

 Let’s get underway by discussing the language-versus-platform duality that lies at the heart of modern Java. This is a critically important point that we’ll come back to several times throughout the book, so it’s essential to grasp it right at the start.

1.1 The language and the platform

 Java as a term can refer to one of several related concepts. In particular, it could mean either the human-readable programming language or the much broader “Java platform.”

 Surprisingly, different authors sometimes give slightly different definitions of what constitutes a language and a platform. This can lead to a lack of clarity and some confusion about the differences between the two and about which provides the various programming features that application code uses.

 Let’s make that distinction clear right now, because it cuts to the heart of a lot of the topics in this book. Here are our definitions:

 	
 The Java language—The Java language is the statically typed, object-oriented language that we lightly lampooned in the “About this book” section. Hopefully, it’s already very familiar to you. One obvious point about source code written in the Java language is that it’s human-readable (or it should be!).

 	
 The Java platform—The platform is the software that provides a runtime environment. It’s the JVM that links and executes your code as provided to it in the form of (not human-readable) class files. It doesn’t directly interpret Java language source files but instead requires them to be converted to class files first.

 One of the big reasons for the success of Java as a software system is that it’s a standard. This means that it has specifications that describe how it’s supposed to work. Standardization allows different vendors and project groups to produce implementations that should all, in theory, work the same way. The specs don’t make guarantees about how well different implementations will perform when handling the same task, but they can provide assurances about the correctness of the results.

 Several separate specs govern the Java system—the most important are the Java Language Specification (JLS) and the JVM Specification (VMSpec). This separation is taken very seriously in modern Java; in fact, the VMSpec no longer makes any reference whatsoever to the JLS directly. We’ll have a bit more to say about the differences between these two specs later in the book.

 Note These days the JVM is actually quite a general-purpose and language-agnostic environment for running programs. This is one reason for the separation of the specs.

 One obvious question, when you’re faced with the described duality, is, “What’s the link between them?” If they’re now separate, how do they come together to make the Java system?

 The link between the language and platform is the shared definition of the class file format (the .class files). A serious study of the class file definition will reward you (and we provide one in chapter 4)—in fact, it’s one of the ways a good Java programmer can start to become a great one. In figure 1.1, you can see the full process by which Java code is produced and used.

 [image:]

 Figure 1.1 Java source code is transformed into .class files, then manipulated at load time before being JIT-compiled.

 As you can see in the figure, Java code starts life as human-readable Java source, and it’s then compiled by javac into a .class file and loaded into a JVM. It’s common for classes to be manipulated and altered during the loading process. Many of the most popular Java frameworks transform classes as they’re loaded to inject dynamic behavior such as instrumentation or alternative lookups for classes to load.

 Note Class loading is an essential feature of the Java platform, and we will learn a lot more about it in chapter 4.

 Is Java a compiled or interpreted language? The standard picture of Java is of a language that’s compiled into .class files before being run on a JVM. If pressed, many developers can also explain that bytecode starts off by being interpreted by the JVM but will undergo just-in-time (JIT) compilation at some later point. Here, however, many people’s understanding breaks down into a somewhat hazy conception of bytecode as basically being machine code for an imaginary or simplified CPU.

 In fact, JVM bytecode is more like a halfway house between human-readable source and machine code. In the technical terms of compiler theory, bytecode is really a form of intermediate language (IL) rather than actual machine code. This means that the process of turning Java source into bytecode isn’t really compilation in the sense that a C++ or a Go programmer would understand it, and javac isn’t a compiler in the same sense as gcc is—it’s really a class file generator for Java source code. The real compiler in the Java ecosystem is the JIT compiler, as you can see in figure 1.1.

 Some people describe the Java system as “dynamically compiled.” This emphasizes that the compilation that matters is the JIT compilation at runtime, not the creation of the class file during the build process.

 Note The existence of the source code compiler, javac, leads many developers to think of Java as a static, compiled language. One of the big secrets is that at runtime, the Java environment is actually very dynamic—it’s just hidden a bit below the surface.

 So, the real answer to “Is Java compiled or interpreted?” is “both.” With the distinction between language and platform now clearer, let’s move on to talk about the new Java release model.

1.2 The new Java release model

 Java was not always an open source language, but following an announcement at the JavaOne conference in 2006, the source code for Java itself (minus a few bits that Sun didn’t own the source for) was released under the GPLv2+CE license (https://openjdk.java.net/legal/gplv2+ce.html).

 This was around the time of the release of Java 6, so Java 7 was the first version of Java to be developed under an open source software (OSS) license. The primary focus for open source development of the Java platform since then has been the OpenJDK project (https://openjdk.java.net), and that continues to this day.

 A lot of the project discussion takes place on mailing lists that cover aspects of the overall codebase. There are “permanent” lists such as core-libs (core libraries), as well as more transient lists that are formed as part of specific OpenJDK projects such as lambda-dev (lambdas), which then become inactive when a particular project has been completed. In general, these lists have been the relevant forums for discussing possible future features, allowing developers from the wider community to participate in the process of producing new versions of Java.

 Note Sun Microsystems was acquired by Oracle shortly before Java 7 was released. Therefore, all of Oracle’s releases of Java have been based on the open source codebase.

 The open source releases of Java had settled into a feature-driven release cycle, where a single marquee feature effectively defines the release (e.g., lambdas in Java 8 or modules in Java 9).

 With the release of Java 9, however, the release model changed. From Java 10 onward, Oracle decided that Java would be released on a strict, time-based model. This means that OpenJDK now uses a mainline development model, which includes the following:

 	
 New features are developed on a branch and merged only when they are code complete.

 	
 Releases can occur on a strict time cadence.

 	
 Late features do not delay releases but are held over for the next release.

 	
 The current head of the trunk should always be releasable (in theory).

 	
 If necessary, an emergency fix can be prepared and pushed out at any point.

 	
 Separate OpenJDK projects are used to explore and research longer-term, future directions.

 A new version of Java is released every six months (“feature releases”). The various providers (Oracle, Eclipse Adoptium, Amazon, Azul, et al.) can choose to make any of those releases a Long-Term Support (LTS) release. However, in practice, all of the vendors follow having one release every three years being named as the LTS release.

 Note As of late 2021, discussions are underway to reduce the LTS gap from three years to two years. We may well see the next LTS version as Java 21 in 2023 as opposed to Java 23 in 2024.

 The first LTS release was Java 11, with Java 8 retrospectively included in the set of LTS releases. Oracle’s intention was for the Java community to upgrade regularly and to take up the feature releases as they emerge. However, in practice, the community (and enterprise customers in particular) have proved to be resistant to this model, preferring instead to upgrade from one LTS release to the next.

 This approach, of course, limits the uptake of new Java features and stifles innovation. However, the realities of enterprise software are what they are, and many people still view an upgrade of the Java version as a significant undertaking.

 [image:]

 Figure 1.2 The timescale of recent and future releases

 This means that whereas the release road map shown in figure 1.2 contains a major release every six months, the only releases that have significant usage are the LTS versions—Java 17 (which was just released in September 2021), Java 11 (which was released in September 2018), and the pre-modules release, Java 8, which is more than seven years old. Java 8 and Java 11 have roughly equal market share, with Java 11 recently having taken over 50% and rapidly accelerating. Java 17 adoption is expected to be much quicker than the move from Java 8 to Java 11 because the most difficult hurdles introduced by the module system and security restrictions will have already been overcome with the earlier migration.

 The other significant change in the new release model is that Oracle has changed the license for their distribution. Although Oracle’s JDK is built from the OpenJDK sources, the binary is not licensed under an OSS license. Instead, Oracle’s JDK is proprietary software, and as of JDK 11, Oracle provides support and updates for only six months for each version. This means that many people who relied on Oracle’s free updates are now faced with a choice:

 	
 Pay Oracle for support and updates, or

 	
 Use a different distribution that produces open source binaries.

 Alternative JDK vendors include Eclipse Adoptium (previously AdoptOpenJDK), Alibaba (Dragonwell), Amazon (Corretto), Azul Systems (Zulu), IBM, Microsoft, Red Hat, and SAP.

 Note Two of the authors (Martijn and Ben) helped found the AdoptOpenJDK project, which has evolved into the vendor-neutral Eclipse Adoptium community project to build and release a high-quality, free, and open source Java binary distribution. See adoptium.net for more details.

 With the licensing changes and with so many providers, picking the correct Java for you and your team is a choice that you should make with care. Thankfully, leaders in the Java ecosystem have written some very detailed guides, and appendix A distills them down for you.

 Although the Java release model has changed to use timed releases, the vast majority of teams are still running on either JDK 8 or 11. These LTS releases are being maintained by the community (including major vendors) and still receive regular security updates and bug fixes. The changes made to the LTS versions are deliberately small in scope and are “housekeeping updates.” Apart from security and small bug fixes, only a minimal set of changes are permitted. These include fixes needed to ensure that the LTS releases will continue to work correctly for their expected lifetime. This includes things like the following:

 	
 The addition of the new Japanese Era

 	
 Time zone database updates

 	
 TLS 1.3

 	
 Adding Shenandoah, a low-pause GC for large modern workloads

 One other necessary change is that the build scripts for macOS needed to be updated to work with a recent version of Apple’s Xcode tool so that they will continue to work on new releases of Apple’s operating system.

 Within the projects to maintain JDK 8 and 11 (sometimes called the “updates” projects), some potential scope still exists for new features to be backported, but it is minimal. As an example, one of the guiding rules is that newly ported features may not change program semantics. Examples of permissible changes could include the support for TLS 1.3 or the backport of Java Flight Recorder to Java 8u272.

 Now that we’ve set the scene by clarifying the difference between the language and platform and explaining the new release model, let’s meet our first technical feature of modern Java. The new feature we’re going to meet is something that developers have been asking for since almost the first release of Java—a way to reduce the amount of typing that writing Java programs seems to involve.

1.3 Enhanced type inference (var keyword)

 Java has historically had a reputation as a verbose language. However, in recent versions, the language has evolved to make more and more use of type inference. This feature of the source code compiler enables the compiler to work out some of the type information in programs automatically. As a result, it doesn’t need to be told everything explicitly.

 Note The aim of type inference is to reduce boilerplate content, remove duplication, and allow for more concise and readable code.

 This trend started with Java 5, when generic methods were introduced. Generic methods permit a very limited form of type inference of generic type arguments, so that instead of having to explicitly provide the exact type that is needed, like this:

 List<Integer> empty = Collections.<Integer>emptyList();

 the generic type parameter can be omitted on the right-hand side, like so:

 List<Integer> empty = Collections.emptyList();

 This way of writing a call to a generic method is so familiar that many developers will struggle to remember the form with explicit type arguments. This is a good thing—it means the type inference is doing its job and removing the superfluous boilerplate content so that the meaning of the code is clear.

 The next significant enhancement to type inference in Java came with version 7, which introduced a change when dealing with generics. Before Java 7, it was common to see code like this:

 Map<Integer, Map<String, String>> usersLists =
 new HashMap<Integer, Map<String, String>>();

 That is a really verbose way to declare that you have some users, whom you identify by userid (which is an integer), and each user has a set of properties (modeled as a map of string to strings) specific to that user.

 In fact, almost half of the source is duplicated characters, and they don’t tell us anything. So, from Java 7 onward, we can write

 Map<Integer, Map<String, String>> usersLists = new HashMap<>();

 and have the compiler work out the type information on the right side. The compiler is working out the correct type for the expression on the right side— it isn’t just substituting the text that defines the full type.

 Note Because the shortened type declaration looks like a diamond, this form is called “diamond syntax.”

 In Java 8, more type inference was added to support the introduction of lambda expressions, like this example where the type inference algorithm can conclude that the type of s is a String:

 Function<String, Integer> lengthFn = s -> s.length();

 In modern Java, type inference has been taken one step further, with the arrival of Local Variable Type Inference (LVTI), otherwise known as var. This feature was added in Java 10 and allows the developer to infer the types of variables, instead of the types of values, like this:

 var names = new ArrayList<String>();

 This is implemented by making var a reserved, “magic” type name rather than a language keyword. Developers can still in theory use var as the name of a variable, method, or package.

 Note An important side effect of using var appropriately is that the domain of your code is once more front and center (as opposed to the type information). But with great power comes great responsibility! Make sure that you name your variables carefully to help future readers of your code.

 On the other hand, code that previously used var as the name of a type will have to be recompiled. However, virtually all Java developers follow the convention that type names should start with a capital letter, so the number of instances of preexisting types called var should be vanishing small. This means that it is entirely legal to write code like that shown in the next listing.

 Listing 1.1 Bad code

 package var;

public class Var {
 private static Var var = null;

 public static Var var() {
 return var;
 }

 public static void var(Var var) {
 Var.var = var;
 }
}

 And then call it like this:

 var var = var();
if (var == null) {
 var(new Var());
}

 However, just because something is legal, does not mean it is sensible. Writing code like the previous listing is not going to make you any friends and should not pass code reviews!

 The intention of var is to reduce verbosity in Java code and to be familiar to programmers coming to Java from other languages. It does not introduce dynamic typing, and all Java variables continue to have static types at all times—you just don’t need to write them down explicitly in all cases.

 Type inference in Java is local, and in the case of var, the algorithm examines only the declaration of the local variable. This means it cannot be used for fields, method arguments, or return types. The compiler applies a form of constraint solving to determine whether any type exists that could satisfy all the requirements of the code as written.

 Note var is implemented solely in the source code compiler (javac) and has no runtime or performance effect whatsoever.

 For example, in the declaration of lengthFn in the previous code sample, the constraint solver can deduce that the type of the method parameter s must be compatible with String which is explicitly provided as the type of the parameter to Function. In Java, of course, the string type is final, so the compiler can conclude that the type of s is exactly String.

 For the compiler to be able to infer types, enough information must be provided by the programmer to allow the constraint equations to be solved. For example, code like this

 var fn = s -> s.length();

 does not have enough type information for the compiler to deduce the type of fn, and so it will not compile. One important case of this is

 var n = null;

 which cannot be resolved by the compiler because the null value can be assigned to a variable of any reference type, so there is no information about what types n could conceivably be. We say that the type constraint equations that the inferencer needs to solve are “underdetermined” in this case—a mathematical term that connects the number of equations to be solved with the number of variables.

 You could imagine a scheme of type inference that goes beyond just the initial declaration of the local variable and examines more code to make inference decisions, like this:

 var n = null;
String.format(n);

 A more complex inference algorithm (or a human) might be able to conclude that the type of n is actually String, because the format() method takes a string as the first argument.

 This might seem appealing, but, as with everything else in software, it represents a trade-off. More complexity means longer compilation times and a wider variety of ways in which the inference can fail. This, in turn, means that the programmer must develop a more complicated intuition to use nonlocal type inference correctly.

 Other languages may choose to make different trade-offs, but Java is clear: only the declaration is used to infer types. Local variable type inference is intended to be a beneficial technique to reduce boilerplate text and verbosity. However, it should be used only where necessary to make the code clearer, not as a blunt instrument to be used whenever possible (the “Golden Hammer” antipattern).

 Some quick guidelines for when to use LVTI follow:

 	
 In simple initializers, if the right-hand side is a call to a constructor or static factory method

 	
 If removing the explicit type deletes repeated or redundant information

 	
 If variables have names that already indicate their types

 	
 If the scope and usage of the local variable is short and simple

 A complete set of applicable rules of thumb is provided by Stuart Marks, one of the core developers of the Java language, in his style guides for LVTI usage at http://mng.bz/RvPK.

 To conclude this section, let’s look at another, more advanced, usage of var—the so-called nondenotable types. These are types that are legal in Java, but they cannot appear as the type of a variable. Instead, they must be inferred as the type of the expression that is being assigned. Let’s look at a simple example using the jshell interactive environment, which arrived in Java 9:

 jshell> var duck = new Object() {
 ...> void quack() {
 ...> System.out.println("Quack!");
 ...> }
 ...> }
duck ==> $0@5910e440

jshell> duck.quack();
Quack!

 The variable duck has an unusual type—it is effectively Object but extended with a method called quack(). Although the object may quack like a duck, its type lacks a name, so we can’t use the type as either a method parameter or return type.

 With LVTI, we can use it as the inferred type of a local variable. This allows us to use the type within a method. Of course, the type can’t be used outside of this tight local scope, so the overall utility of this language feature is limited. It’s more of a curiosity than anything else.

 Despite these limitations, this does represent a glimpse at Java’s take on a feature that is present in some other languages—sometimes referred to as structural typing in statically typed languages and duck typing in dynamically typed languages (particularly Python).

1.4 Changing the language and the platform

 We think it’s essential to explain the “why” of language change as well as the “what.” During the development of new versions of Java, much interest around new language features often exists, but the community doesn’t always understand how much work is required to get changes fully engineered and ready for prime time.

 You may also have noticed that in a mature runtime such as Java, language features tend to evolve from other languages or libraries, make their way into popular frameworks, and only then get added to the language or runtime itself. We hope to shed a bit of light on this area and hopefully dispel a few myths along the way. But if you’re not very interested in how Java evolves, feel free to skip ahead to section 1.5 and jump right into the language changes.

 There is an effort curve involved in changing the Java language—some possible implementations require less engineering effort than others. In figure 1.3, we’ve tried to represent the different routes and show the relative effort required for each.

 [image:]

 Figure 1.3 The relative effort involved in implementing new functionality in different ways

 In general, it’s better to take the route that requires the least effort. This means that if it’s possible to implement a new feature as a library, you generally should. But not all features are easy, or even possible, to implement in a library or an IDE capability. Some features have to be implemented deeper inside the platform. Here’s how some recent features fit into our complexity scale for new language features:

 	
 Library change—Collections factory methods (Java 9)

 	
 Syntactic sugar—Underscores in numbers (Java 7)

 	
 Small new language feature—try-with-resources (Java 7)

 	
 Class file format change—Annotations (Java 5)

 	
 New JVM feature—Nestmates (Java 11)

 	
 Major new feature—Lambda Expressions (Java 8)

 Let’s take a close look at how changes across the complexity scale are made.

1.4.1 Sprinkling some sugar

 A phrase that’s sometimes used to describe a language feature is “syntactic sugar.” That is, the syntactic sugar form is provided because it’s easier for humans to work with despite the functionality already existing in the language.

 As a rule of thumb, a feature referred to as syntactic sugar is removed from the compiler’s representation of the program early in the compilation process—it’s said to have been “desugared” into the basic representation of the same feature.

 This makes syntactic sugar changes to a language easier to implement because they usually involve a relatively small amount of work and only involve changes to the compiler (javac in the case of Java).

 One question that might well be asked at this point is, “What constitutes a small change to the spec?” One of the most straightforward changes in Java 7 consisted of adding a single word—”String”—to section 14.11 of the JLS, which allowed strings in a switch statement. You can’t really get much smaller than that as a change, and yet even this change touches several other aspects of the spec. Any alteration produces consequences, and these have to be chased through the entire design of the language.

1.4.2 Changing the language

 The full set of actions that must be performed (or at least investigated) for any change follows:

 	
 Update the JLS.

 	
 Implement a prototype in the source compiler.

 	
 Add library support essential for the change.

 	
 Write tests and examples.

 	
 Update documentation.

 In addition, if the change touches the JVM or platform aspects, the following actions must occur:

 	
 Update the VMSpec.

 	
 Implement the JVM changes.

 	
 Add support in the class file and JVM tools.

 	
 Consider the impact on reflection.

 	
 Consider the impact on serialization.

 	
 Think about any effects on native code components, such as Java Native Interface (JNI).

 This isn’t a small amount of work, and that’s after the impact of the change across the whole language spec has been considered!

 An area of hairiness, when it comes to making changes, is the type system. That isn’t because Java’s type system is terrible. Instead, languages with rich static type systems are likely to have a lot of possible interaction points between different bits of those type systems. Making changes to them is prone to creating unexpected surprises.

1.4.3 JSRs and JEPs

 Two main mechanisms are used to make changes to the Java platform. The first is the Java Specification Request (JSR), which is specified by the Java Community Process (JCP). This is used to determine standard APIs—both external libraries and major internal platform APIs.

 This was historically the only way of making changes to the Java platform and was best used to codify a consensus of already mature technology. However, in recent years, a desire to implement change faster (and in smaller units) led to the development of the JDK Enhancement Proposal (JEP) as a lighter-weight alternative. Platform (aka umbrella) JSRs are now made up of JEPs targeted for the next version of Java. The JSR process is used to grant extra intellectual property protections for the whole ecosystem.

 When discussing new Java features, it is often useful to refer to an upcoming or recent feature by its JEP number. A complete list of all JEPs, including those that have been delivered or withdrawn, can be found at https://openjdk.java.net/jeps/0.

1.4.4 Incubating and preview features

 Within the new release model, Java has two mechanisms for trying out a proposed feature before finalizing it in a later release. The aim of these mechanisms is to provide better features by gathering feedback from a much wider pool of users and potentially changing or withdrawing the feature before it becomes a permanent part of Java.

 Incubating features are new APIs and their implementation, which in their simplest form are effectively just a new API shipped as a self-contained module (we will meet the details of Java modules in chapter 2). The name of the module is chosen so that it makes it clear that the API is temporary and will change when the feature is finalized.

 Note This means that any code that relies upon a nonfinalized version of an incubating feature will have to make changes when the feature becomes final.

 One very visible example of an incubating feature is the new support for version 2 of the HTTP protocol, usually referred to as HTTP/2. In Java 9, this was shipped as the incubator module jdk.incubator.http. The naming of this module, and the use of the jdk.incubator namespace rather than java clearly marked the feature as nonstandard and subject to change. The feature was standardized in Java 11 when it was moved to the java.net.http module in the java part of the namespace.

 Note We will meet another incubating feature in chapter 18 when we discuss the Foreign Access API, which is part of an OpenJDK project codenamed Panama.

 The main advantage of this approach is that an incubating feature can be isolated to a single namespace. Developers can quickly try out the feature and even use it in production code, providing they are happy to modify some code and recompile and relink when the feature becomes standardized.

 Preview features are the other mechanism that recent Java versions provide for shipping nonfinalized features. They are more intrusive than incubating features because they are implemented as part of the language itself, at a deeper level. These features potentially require support from the following:

 	
 The javac compiler

 	
 Bytecode format

 	
 Class file and class loading

 They are available only if specific flags are passed to the compiler and runtime. Trying to use preview features without the flags enabled is an error, both at compile time and at runtime.

 This makes them much more complex to handle (compared to incubating features). As a result, preview features can’t really be used in production. For one thing they are represented by a version of the classfile format that is not finalized and may never be supported by any production version of Java.

 This means that preview features are suitable only for experimentation, developer testing, and familiarization. Unfortunately, in almost all deployments, only fully finalized features can be used in code that is destined for production.

 Java 11 did not contain any preview features (although a first preview version of switch expressions arrived in Java 12), so it’s hard to give a good example of one in this section. We’ll dig more into preview versions in chapter 3 when we discuss Java 17, though.

1.5 Small changes in Java 11

 Since Java 8, a relatively large number of new small features have appeared in successive releases. Let’s take a quick tour through some of the most important ones—although this is by no means all the changes. You're most likely to see these features for the first time when moving to Java 11.

1.5.1 Collections factories (JEP 213)

 An often-requested enhancement is to extend Java to support a simple way to declare collection literals—a dumb collection of objects (such as a list or a map). This seems attractive because many other languages support some form of this, and Java itself has always had array literals, as shown here:

 jshell> int[] numbers = {1, 2, 3};
numbers ==> int[3] { 1, 2, 3 }

 However, although it seems superficially attractive, adding this feature at the language level has some significant drawbacks. For example, although ArrayList, HashMap, and HashSet are the implementations that are most familiar to developers, a primary design principle of the Java Collections are that they are represented as interfaces, not classes. Other implementations are available and are widely used.

 This means that it would run counter to the design intent to have a new syntax that directly couples to specific implementations, no matter how common. Instead, the design decision was to add simple factory methods to the relevant interfaces, exploiting the fact that Java 8 added the ability to have static methods on interfaces. The resulting code looks like this:

 Set<String> set = Set.of("a", "b", "c");

var list = List.of("x", "y");

 Although this method is a little more verbose than adding support at language level, the complexity cost in implementation terms is substantially less. These new methods are implemented as a set of overloads as follows:

 List<E> List<E>.<E>of()
List<E> List<E>.<E>of(E e1)
List<E> List<E>.<E>of(E e1, E e2)
List<E> List<E>.<E>of(E e1, E e2, E e3)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4, E e5)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4, E e5, E e6)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4, E e5, E e6, E e7)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9)
List<E> List<E>.<E>of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9,
 E e10)
List<E> List<E>.<E>of(E... elements)

 The common cases (up to 10 elements) are provided, along with a varargs form for the unlikely use case that more than 10 elements are required in the collection.

 For maps, the situation is a little more complicated, because maps have two generic parameters (the key type and the value type) and so, although the simple cases can be written like this:

 var m1 = Map.of(k1, v1);
var m2 = Map.of(k1, v1, k2, v2);

 there is no simple way of writing the equivalent of the varargs form for map. Instead, a different factory method, ofEntries(), is used in combination with a static helper method, entry(), to provide an equivalent of a varargs form, as shown next:

 Map.ofEntries(
 entry(k1, v1),
 entry(k2, v2),
 // ...
 entry(kn, vn));

 One final point that developers should be aware of: the factory methods produce instances of immutable types, as follows:

 jshell> var ints = List.of(2, 3, 5, 7);
ints ==> [2, 3, 5, 7]

jshell> ints.getClass();
$2 ==> class java.util.ImmutableCollections$ListN

 These class are new implementations of the Java Collections interfaces that are immutable—they are not the familiar, mutable classes (such as ArrayList and HashMap). Attempts to modify instances of these types will result in an exception being thrown.

1.5.2 Remove enterprise modules (JEP 320)

 Over time, Java Standard Edition (aka Java SE) had a few modules added to it that were really part of Java Enterprise Edition (Java EE) such as

 	
 JAXB

 	
 JAX-WS

 	
 CORBA

 	
 JTA

 In Java 9, the following packages that implemented these technologies were moved into noncore modules and deprecated for removal:

 	
 java.activation (JAF)

 	
 java.corba (CORBA)

 	
 java.transaction (JTA)

 	
 java.xml.bind (JAXB)

 	
 java.xml.ws (JAX-WS, plus some related technologies)

 	
 java.xml.ws.annotation (Common Annotations)

 As part of an effort to streamline the platform, in Java 11 these modules have been removed. The following three related modules used for tooling and aggregation have also been removed from the core SE distribution:

 	
 java.se.ee (aggregator module for the six modules above)

 	
 jdk.xml.ws (tools for JAX-WS)

 	
 jdk.xml.bind (tools for JAXB)

 Projects built on Java 11 and later that want to use these capabilities now require the inclusion of an explicit external dependency. This means that some programs that relied upon these APIs built cleanly under Java 8 but require modifications to their build script to build under Java 11. We will investigate this specific issue more fully in chapter 11.

1.5.3 HTTP/2 (Java 11)

 In modern times, a new version of the HTTP standard has been released—HTTP/2. We’re going to examine the reasons for finally updating the venerable HTTP 1.1 specification (dating from 1997!). Then we’ll see how Java 11 gives the well-grounded developer access to the new features and performance of HTTP/2.

 As you might expect for technology from 1997, HTTP 1.1 has been showing its age, particularly around performance in modern web applications. Limitations include problems such as:

 	
 Head-of-line blocking

 	
 Restricted connections to a single site

 	
 Performance overhead of HTTP control headers

 HTTP/2 is a transport-level update to the protocol focused on fixing these sorts of fundamental performance issues that don’t fit how the web really works today. With its performance focus on how bytes flow between client and server, HTTP/2 actually doesn’t alter many of the familiar HTTP concepts—request/response, headers, status codes, response bodies—all of these remain semantically the same in HTTP/2 vs. HTTP 1.1.

 Head-of-line blocking

 Communication in HTTP takes place over TCP sockets. Although HTTP 1.1 defaulted to reusing individual sockets to avoid repeating unnecessary setup costs, the protocol dictated that requests be returned in order, even when multiple requests shared a socket (known as pipelining; see figure 1.4). This means that a slow response from the server blocked subsequent requests, which theoretically could have been returned sooner. These effects are readily visible in places like browser rendering stalling on downloading assets. The same one-response-per-connection-at-a-time behavior can also limit JVM applications talking to HTTP-based services.

 [image:]

 Figure 1.4 HTTP 1.1 transfers

 HTTP/2 is designed from the ground up to multiplex requests over the same connection, as shown in figure 1.5. Multiple streams between the client and server are always supported. It even allows for separately receiving the headers and the body of a single request.

 [image:]

 Figure 1.5 HTTP/2 transfers

 This fundamentally changes assumptions that decades of HTTP 1.1 have made second nature to many developers. For instance, it’s long been accepted that returning lots of small assets on a website performed worse than making larger bundles. JavaScript, CSS, and images all have common techniques and tooling for smashing many smaller files together to return more efficiently. In HTTP/2, multiplexed responses mean your resources don’t get blocked behind other slow requests, and smaller responses may be more accurately cached, yielding a better experience overall.

 Restricted connections

 The HTTP 1.1 specification recommends limiting to two connections to a server at a time. This is listed as a should rather than a must, and modern web browsers often allow between six and eight connections per domain. This limit to concurrent downloads from a site has often led developers to serve sites from multiple domains or implement the sort of bundling mentioned before.

 HTTP/2 addresses this situation: each connection can effectively be used to make as many simultaneous requests as desired. Browsers open only one connection to a given domain but can perform many requests over that same connection at the same time.

 In our JVM applications, where we might have pooled HTTP 1.1 connections to allow for more concurrent activity, HTTP/2 gives us another built-in way to squeeze out more requests.

 HTTP header performance

 A significant feature of HTTP is the ability to send headers alongside requests. Headers are a critical part of how the HTTP protocol itself is stateless, but our applications can maintain state between requests (such as the fact your user is logged in).

 Although the body of HTTP 1.1 payloads may be compressed if the client and server can agree on the algorithm (typically gzip), headers don’t participate. As richer web applications make more and more requests, the repetition of increasingly large headers can be a problem, especially for larger websites.

 HTTP/2 addresses this problem with a new binary format for headers. As a user of the protocol, you don’t have to think much about this—it’s simply built in to how headers are transmitted between client and server.

 TLS all the things

 In 1997, HTTP 1.1 entered a very different internet than we see today. Commerce on the internet was only starting to take off, and security wasn’t always a top concern in early protocol designs. Computing systems were also slow enough to make practices like encryption often far too expensive.

 HTTP/2 was officially accepted in 2015 into a world that was far more security conscious. In addition, the computing needs for ubiquitous encryption of web requests through TLS (known in earlier versions as SSL) are low enough to have removed most arguments over whether or not to encrypt. As such, in practice, HTTP/2 is supported only with TLS encryption (the protocol does, in theory, allow for transmission in cleartext, but none of the major implementations provide it).

 This has an operational impact on deploying HTTP/2, because it requires a certificate with a lifecycle of expiration and renewal. For enterprises, this increases the need for certificate management. Let’s Encrypt (https://www.letsencrypt.org), and other private options have been growing in response to this need.

 Other considerations

 Although the future is trending toward the uptake of HTTP/2, deployment of it across the web hasn’t been fast. In addition to the encryption requirement, which even impacts local development, this delay may be attributable to the following rough edges and extra complexity:

 	
 HTTP/2 is binary-only; working with an opaque format is challenging.

 	
 HTTP layer products such as load balancers, firewalls, and debugging tools require updates to support HTTP/2.

 	
 Performance benefits are aimed mainly at the browser-based use of HTTP. Backend services working over HTTP may see less benefit to updating.

 HTTP/2 in Java 11

 The arrival of a new HTTP version after so many years motivated JEP 110 to introduce an entirely new API. Within the JDK, this replaces (but doesn’t remove) HttpURLConnection while aiming to put a usable HTTP API “in the box,” as it were, because many developers have reached for external libraries to fulfill their HTTP-related needs.

 The resulting HTTP/2- and web socket–compatible API came first to Java 9 as an Incubating feature. JEP 321 moved it to its permanent home in Java 11 under java.net.http. The new API supports HTTP 1.1 as well as HTTP/2 and can fall back to HTTP 1.1 when a server being called doesn’t support HTTP/2.

 Interactions with the new API start from the HttpRequest and HttpClient types. These are instantiated via builders, setting configurations before issuing the actual HTTP call, as shown next:

 var client = HttpClient.newBuilder().build(); ❶

var uri = new URI("https://google.com");
var request = HttpRequest.newBuilder(uri).build(); ❷

var response = client.send(❸
 request,
 HttpResponse.BodyHandlers.ofString(❹
 Charset.defaultCharset()));

System.out.println(response.body());

 ❶ Constructs an HttpClient instance we can use to make requests

 ❷ Constructs a specific request to Google with an HttpRequest instance

 ❸ Synchronously makes the HTTP request and saves its response. This line blocks until the entire request has completed.

 ❹ The send method needs a handler to tell it what to do with the response body. Here we use a standard handler to return the body as a String.

 This demonstrates the synchronous use of the API. After building our request and client, we issue the HTTP call with the send method. We won’t receive the response object back until the full HTTP call has completed, much like the older HTTP APIs in the JDK.

 The first parameter is the request we set up, but the second deserves a closer look. Rather than expecting to always return a single type, the send method expects us to provide an implementation of the HttpResponse.BodyHandler<T> interface to tell it how to handle the response. HttpResponse.BodyHandlers provides some useful basic handlers for receiving your response as a byte array, as a string, or as a file. But customizing this behavior is just an implementation of BodyHandler away. All of this plumbing is based on the java.util.concurrent.Flow publisher and subscriber mechanisms, a form of programming known as reactive streams.

 One of the most significant benefits of HTTP/2 is its built-in multiplexing. Only using a synchronous send doesn’t really gain those benefits, so it should come as no surprise that HttpClient also supports a sendAsync method. sendAsync returns a CompletableFuture wrapped around the HttpResponse, providing a rich set of capabilities that may be familiar from other parts of the platform, as shown here:

 var client = HttpClient.newBuilder().build();

var uri = new URI("https://google.com");
var request = HttpRequest.newBuilder(uri).build(); ❶

var handler = HttpResponse.BodyHandlers.ofString();
CompletableFuture.allOf(❷
 client.sendAsync(request, handler) ❸
 .thenAccept((resp) -> ❹
 System.out.println(resp.body()),
 client.sendAsync(request, handler) ❺
 .thenAccept((resp) -> ❺
 System.out.println(resp.body()), ❺
 client.sendAsync(request, handler) ❺
 .thenAccept((resp) ->
 System.out.println(resp.body())
).join();

 ❶ Creates the client and request as before

 ❷ Uses CompletableFuture.allOf to wait for all the requests to finish

 ❸ sendAsync starts an HTTP request but returns a future and does not block.

 ❹ When the future completes, we use thenAccept to receive the response.

 ❺ We can reuse the same client to make multiple requests simultaneously.

 Here we set up a request and client again, but then we asynchronously repeat the call three separate times. CompletableFuture.allOf combines these three futures, so we can wait on them all to finish with a single join.

 This only scratches the two main entry points to this API. It offers tons of features and customization, from the configuration of timeouts and TLS, all the way to advanced asynchronous features like receiving HTTP/2 server pushes via HttpResponse .PushPromiseHandler.

 Building off the futures and reactive streams, the new HTTP API in the JDK provides an attractive alternative to the large libraries that have dominated the ecosystem in the HTTP space. Designed with modern asynchronous programming at the forefront, java.net.http puts Java in an excellent place for wherever the web evolves to in the future.

1.5.4 Single-file source-code programs (JEP 330)

 The usual way that Java programs are executed is by compiling source code to a class file and then starting up a virtual machine process that acts as an execution container to interpret the bytecode of the class.

 This is very different from languages like Python, Ruby, and Perl, where the source code of a program is interpreted directly. The Unix environment has a long history of these types of scripting languages, but Java has not traditionally been counted among them.

 With the arrival of JEP 330, Java 11 offers a new way to execute programs. Source code can be compiled in memory and then executed by the interpreter without ever producing a .class file on disk, as shown in figure 1.6.

 [image:]

 Figure 1.6 Single file execution

 This gives a user experience that is like Python and other scripting languages.

 The feature has some limitations, including the following:

 	
 It is limited to code that lives in a single source file.

 	
 It cannot compile additional source files in the same run.

 	
 It may contain any number of classes in the source file.

 	
 It must have the first class declared in the source file as the entry point.

 	
 It must define the main method in the entry point class.

 The feature also uses a --source flag to indicate source code compatibility mode—essentially the language level of the script.

 Java file-naming conventions must be followed for execution, so the class name should match the filename. However, the .java extension should not be used because this can confuse the launcher.

 These types of Java scripts can also contain a shebang line, as shown next:

 #!/usr/bin/java --source 11

public final class HTTP2Check {
 public static void main(String[] args) {
 if (args.length < 1) {
 usage();
 }
 // implementation of our HTTP callers... ❶
 }
}

 ❶ Full code for HTTP2Check is provided in project resources.

 The shebang line provides the necessary parameters so that the file can be marked executable and directly invoked, like this:

 $./HTTP2Check https://www.google.com
https://www.google.com: HTTP_2

 Although this feature does not bring the full experience of scripting languages to Java, it can be a useful way of writing simple, useful tools in the Unix tradition without introducing another programming language into the mix.

Summary

 	
 The Java language and platform are two separate (if strongly related) components of the Java ecosystem. The platform supports many languages beyond just Java.

 	
 After Java 8, the Java platform has adopted a new timed-release process. New versions arrive every six months and a Long-Term-Support (LTS) release comes out every two or three years.

 	
 The current LTS versions are 11 and 17, with Java 8 still being supported for now.

 	
 With its focus on backward compatibility, making changes to Java can often be difficult. Changes restricted to just the library or compiler are often much simpler than changes that also require updates in the virtual machine.

 	
 Java 11 introduced many useful features that are worth upgrading for:

 	
The var keyword to streamline variable definitions

 	
Factory methods to simplify creating lists, maps, and other collections

 	
A new HttpClient implementation with full HTTP/2 support

 	
Single-file programs that can be run directly without compiling to class files

2 Java modules

 This chapter covers

 	
Java’s platform modules

 	
Changes to access control semantics

 	
Writing modular applications

 	
Multi-release JARs

 As mentioned in chapter 1, versions of Java, up to and including Java 9, were delivered according to a feature-driven release plan, often with a major new capability that defined or was strongly associated with the release.

 For Java 9, this feature was Java Platform Modules (also known as JPMS, Jigsaw, or just “modules”). This is a major enhancement and change to the Java platform that had been discussed for many years—it was originally conceived of as potentially shipping as a part of Java 7, back in 2009/2010.

 In this chapter, we will explain the reasons modules are needed, as well as the new syntax used to articulate modularity concepts and how to use them in your applications. This will enable you to use JDK and third-party modules in your build as well as packaging apps or libraries as modules.

 Note Modules represent a new way of packaging and deploying your code, and adopting them will make your applications better. However, if you just want to start using modern Java features (11 or 17), there is no need for you to adopt modules immediately unless you want to.

 The arrival of modules has profound implications for the architecture of applications, and modules have many benefits to modern projects that are concerned about such aspects as process footprint, startup cost, and warmup time. Modules can also help to solve the so-called JAR Hell problem that can plague Java applications with complex dependencies. Let’s get to know them.

2.1 Setting the scene

 A module is a fundamentally new concept in the Java language (as of Java 9). It is a unit of application deployment and dependency that has semantic meaning to the runtime. This is different from existing concepts in Java for the following reasons:

 	
 JAR files are invisible to the runtime—they’re basically just zipped directories containing class files.

 	
 Packages are really just namespaces to group classes together for access control.

 	
 Dependencies are defined at the class level only.

 	
 Access control and reflection combine in a way that produces a fundamentally open system without clear deployment unit boundaries and with minimal enforcement.

 Modules, on the other hand

 	
 Define dependency information between modules, so all sorts of resolution and linkage problems can be detected at compile or application start time

 	
 Provide proper encapsulation, so internal packages and classes can be made safe from pesky users who might want to fiddle with them

 	
 Are a proper unit of deployment with metadata that can be understood and consumed by a modern Java runtime and are represented in the Java type system (e.g., reflectively)

 Note Before modules, within the core language and runtime environment, there was no aggregated dependency metadata. Instead, it was defined only in build systems like Maven or in third-party modules systems (such as OSGI or JBoss modules) that the JVM neither knows nor cares about.

 Java platform modules represent an implementation of a missing concept within the Java world as it existed at version 8.

 Note Java modules are often packaged as special JAR files, but they are not tied to that format (we will see other possible formats later).

 The aim of the modules system is to make the deployment units (modules) as independent of each other as possible. The idea is that modules are able to be separately loaded and linked, although in practice, real applications may well end up depending on a group of modules that provide related capabilities (such as security).

2.1.1 Project Jigsaw

 The project within OpenJDK to deliver the modules feature was known as Project Jigsaw. It aimed to deliver a full-featured modularity solution which included the following goals:

 	
 Modularizing the JDK platform source

 	
 Reducing the process footprint

 	
 Improving the application startup time

 	
 Having modules available to both the JDK and to application code

 	
 Allowing true strict encapsulation for the first time in Java

 	
 Adding new, previously impossible access control modes to the Java language

 These goals were, in turn, driven by the following other objectives that are more closely focused on the JDK and Java runtime:

 	
 Bringing the end of a single, monolithic runtime JAR (rt.jar)

 	
 Properly encapsulating and protecting JDK internals

 	
 Allowing major internal changes to be made (including changes that will break unauthorized non-JDK usage)

 	
 Introducing modules as “super packages”

 These secondary goals may require a bit more explanation because they are more closely connected to internal and implementation aspects of the platform.

 Modular, not monolithic Java runtime

 The legacy JAR format is essentially just a zip file that contains classes. It dates back to the earliest days of the platform and is in no way optimized for Java classes and applications. Abandoning the JAR format for the platform classes can help in several areas—for example, enabling much better startup performance.

 Modules provide two new formats—JMOD and JIMAGE—which are used at different times (compile/link time and runtime, respectively) in the program lifecycle.

 The JMOD format is somewhat similar to the existing JAR format, but it has been modified to allow the inclusion of native code as part of a single file (rather than having to ship a separate shared object file as is done in Java 8). For most developer needs, including publishing modules to Maven, it’s better to package your own modules as modular JARs rather than as JMODs.

 The JIMAGE format is used to represent a Java runtime image. Until Java 8, only two possible runtime images existed (JDK and JRE), but this was largely an accident of history. Oracle introduced the Server JRE with Java 8 (as well as Compact Profiles) as a stepping-stone toward full modularity. These images basically removed some capabilities (e.g., GUI frameworks) to provide a smaller footprint specifically geared toward the needs of server-side applications.

 A modular application has enough metadata that the exact set of dependencies can be known before program start. This leads to the possibility that only what is needed has to be loaded, which is much more efficient. It is possible to go even further and define a custom runtime image that can be shipped along with an application and that does not contain a full, general-purpose installation of Java but only what the application requires. We will encounter this last possibility at the end of this chapter when we meet the jlink tool.

 For now, let’s meet the jimage tool that’s available to show details about a Java runtime image. For example, for a Java 15 full runtime (i.e., what used to be contained in a JDK), see the following code sample:

 $ jimage info $JAVA_HOME/lib/modules
 Major Version: 1
 Minor Version: 0
 Flags: 0
 Resource Count: 32780
 Table Length: 32780
 Offsets Size: 131120
 Redirects Size: 131120
 Locations Size: 680101
 Strings Size: 746471
 Index Size: 1688840

 or

 $ jimage list $JAVA_HOME/lib/modules
jimage: /Library/Java/JavaVirtualMachines/java15/Contents/Home/lib/modules

Module: java.base
 META-INF/services/java.nio.file.spi.FileSystemProvider
 apple/security/AppleProvider$1.class
 apple/security/AppleProvider$ProviderService.class
 apple/security/AppleProvider.class
 apple/security/KeychainStore$CertKeychainItemPair.class
 apple/security/KeychainStore$KeyEntry.class
 apple/security/KeychainStore$TrustedCertEntry.class
 apple/security/KeychainStore.class
 com/sun/crypto/provider/AESCipher$AES128_CBC_NoPadding.class
 ... many, many lines of output

 Moving away from rt.jar allows for better startup performance and to optimize for only what is needed by an application. The new formats are designed to be opaque to the developer and are implementation-dependent. It is no longer possible to just unzip rt.jar and get back the JDK’s class library. This is just one step, however, in making the platform’s internals less accessible to Java programmers, which was one of the goals of the modules system.

 Encapsulate the internals

 The contract between the Java platform and its users was always intended to be an API contract—that backward compatibility would be maintained at the interface level, not in the details of the implementation.

 However, Java developers have not held up their end of the bargain and, instead, over time, have tended to use parts of the platform implementation that were never intended for public consumption.

 This is problematic, because the OpenJDK platform developers want the freedom to modify the implementation of the JVM and platform classes to future-proof and modernize them—to provide new features and better performance without worrying about breaking user applications.

 One major impediment to making breaking changes to the platform internals is Java’s approach to access control as it exists in Java 8. Java only defines public, private, protected, and package-private as access control levels, and these modifiers are applied only at the class level and finer.

 We can work around these restrictions in numerous ways (such as reflection or creating additional classes in relevant packages), and there is no foolproof (or expert-proof) way to fully protect the internals.

 The use of the workarounds to access the internals was historically often for valid reasons. As the platform has matured, however, an official way of accessing almost all of the desired functionality has been added. The unprotected internals, therefore, represent a liability for the platform going forward without a corresponding benefit—and modularity was one way to remove that legacy problem.

 To sum up, Project Jigsaw was a way to solve several problems at once—primarily to reduce runtime size, improve startup time, and tidy up dependencies between internal packages. These were problems that were hard (or impossible) to tackle incrementally. Opportunities for these types of “nonlocal” improvement do not come along very often, especially in mature software platforms, so the Jigsaw team wanted to take advantage of their circumstances.

 The JVM is modular now

 To see this, consider the next very simple program:

 public class StackTraceDemo {
 public static void main(String[] args) {
 var i = Integer.parseInt("Fail");
 }
}

 Compiling and running this code produces a runtime exception, shown next:

 $ java StackTraceDemo
Exception in thread "main" java.lang.NumberFormatException:
 For input string: "Fail"
 at java.base/java.lang.NumberFormatException.forInputString(
 NumberFormatException.java:65)
 at java.base/java.lang.Integer.parseInt(Integer.java:652)
 at java.base/java.lang.Integer.parseInt(Integer.java:770)
 at StackTraceDemo.main(StackTraceDemo.java:3)

 However, we can clearly see that the format of the stack trace has changed somewhat from the form that was used in Java 8. In particular, the stack frames are now qualified by a module name (java.base) as well as a package name, class name, and line number. This clearly shows that the modular nature of the platform is pervasive and is present for even the simplest program.

2.1.2 The module graph

 Key to all of modularity is the module graph, which is a representation of how modules depend on each other. Modules make their dependencies explicit via some new syntax, and those dependencies are hard guarantees that the compiler and runtime can rely upon. One very important concept is that the module graph must be a directed acyclic graph (DAG), so in mathematical terms, there cannot be any cyclic dependencies.

 Note It is important to realize that in modern Java environments, all applications run on top of the modular JRE; a “modular mode” and a “legacy classpath mode” don’t exist.

 Although not every developer needs to become an expert in the modules system, it makes sense that a well-grounded Java developer would benefit from a working knowledge of a new subsystem that has changed the way that all programs are executed on the JVM. Let’s take a look at a first view of the modules system, shown in figure 2.1, as most developers encounter it.

 [image:]

 Figure 2.1 JDK system modules (simplified view)

 In figure 2.1, we can see a simplified view of some of the main modules in the JDK. Note that the module java.base is always a dependency of every module. When drawing pictures of module graphs, the implicit dependency on java.base is often eliminated just to reduce visual clutter.

 The clean and relatively simple set of module boundaries that we can see in figure 2.1 needs to be contrasted with the state of the JDK in Java 8. Unfortunately, before modules, Java’s top-level unit of code was the package—and Java 8 had almost 1,000 of them in the standard runtime. This would be essentially impossible to draw, and the dependencies within the graph would be so complex that a human would not be able to make sense of it.

 Taking the premodular JDK and reshaping it into the well-defined form that we see today was not easy to achieve, and the path to delivering JDK modularity was long. Java 9 was released in September 2017, but development of the feature had begun several years before that with the Java 8 release train. In particular, there were several subgoals that were necessary first steps for the delivery of modules, including the following:

 	
 Modularizing the layout of source code in the JDK (JEP 201)

 	
 Modularizing the structure of runtime images (JEP 220)

 	
 Disentangling complex implementation dependencies between JDK packages

 Even though the finished modules feature did not ship until Java 9, much of the cleanup was undertaken as part of Java 8 and even allowed a feature known as compact profiles (which we will meet at the end of this chapter) to ship as part of that release.

2.1.3 Protecting the internals

 One of the major problems that modules needed to solve was overcoupling of user Java frameworks to internal implementation details. For example, this piece of Java 8 code extends an internal class to get access to a low-level URL canonicalizer.

 The following code is for demonstration purposes only, so we can have a concrete example to discuss modules and access control—your code should never access internal classes directly:

 import sun.net.URLCanonicalizer;

public class MyURLHandler extends URLCanonicalizer {

 public boolean isSimple(String url) {
 return isSimpleHostName(url);
 }
}

 A URL canonicalizer is a piece of code that takes a URL in one of the various forms permitted by the URL standard and converts it to a standard (canonical) form. The intent is that canonical URLs can act as a single source of truth for the location of content that can be accessed via multiple different possible URLs. If we try to compile it using Java 8, javac warns us that we’re accessing an internal API, as shown next:

 $ javac MyURLHandler.java
MyURLHandler.java:1: warning: URLCanonicalizer is internal proprietary API
 and may be removed in a future release

import sun.net.URLCanonicalizer;
 ^
MyURLHandler.java:3: warning: URLCanonicalizer is internal proprietary API
 and may be removed in a future release

public class MyURLHandler extends URLCanonicalizer {
 ^
2 warnings

 However, by default, the compiler still allows access, and the result is a user class that is tightly coupled to the internal implementation of the JDK. This connection is fragile and will break if the called code moves or is replaced.

 If enough developers abuse this openness, then this leads to a situation in which it is difficult or impossible to make changes to the internals, because to do so would break deployed libraries and applications.

 Note The URLCanonicalizer class needs to be called from several different packages, not just its own, so it has to be a public class—it can’t be package-private—meaning it’s accessible to anyone.

 The solution to this very general problem was to make a one-time change to Java’s model of access control. This change applies both to user code calling the JDK and to applications calling third-party libraries.

2.1.4 New access control semantics

 Modules add a new concept to Java’s access control model: the idea of exporting a package. In Java 8 and earlier, code in any package can call public methods on any public class in any package. This is sometimes called “shotgun privacy,” after a famous quote about another programming language:

 Perl doesn’t have an infatuation with enforced privacy. It would prefer that you stayed out of its living room because you weren’t invited, not because it has a shotgun.

 —Larry Wall

 For Java, however, shotgun privacy represented a major problem. More and more libraries were using internal APIs to provide capabilities that were difficult or impossible to provide in another way, and this threatened to harm the long-term health of the platform.

 As of Java 8, there was no way to enforce access control across an entire package. This meant that the JDK team was unable to define a public API and know with certainty that clients of that API could not subvert it or directly link to the internal implementation.

 The convention that anything in a package that starts java or javax is a public API and everything else is internal only is just that—a convention. No VM or class loading mechanism enforces that, as we’ve already seen.

 With modules, however, this changes. The exports keyword has been introduced to indicate which packages are considered the public API of a module. In the modular JDK, the package sun.net is not exported, so the previous Java 8 URL canonicalizer code will not compile. Here’s what happens when we try with Java 11:

 $ javac src/ch02/MyURLHandler.java
src/ch02/MyURLHandler.java:3: error: package sun.net is not visible
import sun.net.URLCanonicalizer;
 ^
 (package sun.net is declared in module java.base, which does not export
 it to the unnamed module)
src/ch02/MyURLHandler.java:8: error: cannot find symbol
 return isSimpleHostName(url);
 ^
 symbol: method isSimpleHostName(String)
 location: class MyURLHandler
2 errors

 Note that the form of the error message explicitly says that the sun.net package is now not visible—the compiler cannot even see the symbol. This is a fundamental change in the way Java access control works. Only methods on exported packages are accessible. It is no longer the case that a public method on a public class is automatically visible to all code everywhere.

 However, this change may not be visible to many developers. If you’re a Java developer who plays by the rules, you will never have called an API in an internal package directly. However, you might use a library or a framework that does, so it’s good to understand what has actually changed and avoid the FUD.

 Note Proper encapsulation is not free, and premodular Java is actually a very open system. It is perhaps only natural that when confronted with the more structured system that modules provide, many Java developers find some of the extra protections constraining or frustrating. Let’s meet the syntax that encodes these new semantics of Java modules.

2.2 Basic modules syntax

 A Java platform module is defined as a conceptual unit, which is a collection of packages and classes that are declared and loaded as a single entity. Each module must declare a new file, called a module descriptor, represented as a module-info.java file, which contains the following:

 	
 Module name

 	
 Module dependencies

 	
 Public API (packages exported)

 	
 Reflective access permissions

 	
 Services provided

 	
 Services consumed

 This file must be placed in a suitable place within the source hierarchy. For example, within a Maven-style layout, the full module name wgjd.discovery appears directly after src/main/java and contains module-info.java and the package root, as shown here:

 src
 └── main
 └── java
 └── wgjd.discovery
 ├── wgjd
 │ └── discovery
 │ ├── internal
 │ │ ├── AttachOutput.java
 │ │ └── PlainAttachOutput.java
 │ ├── VMIntrospector.java
 │ └── Discovery.java
 └── module-info.java

 This is, of course, slightly different from nonmodular Java projects, which often nominate src/main/java as the root of the package directories. However, the familiar hierarchical structure of packages under the module root is still visible.

 Note When a modular project is built, the module descriptor will be compiled into a class file, module-info.class, but that file (despite its name) is actually quite different from the usual sort of class file that we see in the Java platform.

 In this chapter we will address the basic directives of the descriptor but will not be delving deeply into all of the capabilities that modules provide. In particular, we will not discuss the services aspects of modules.

 A simple example of a module descriptor looks like this:

 module wgjd.discovery {
 exports wgjd.discovery;

 requires java.instrument;
 requires jdk.attach;
 requires jdk.internal.jvmstat;
}

 This contains three new keywords—module, exports, and requires—in a syntax that should be suggestive to most Java programmers. The keyword module simply declares the opening scope of the declaration.

 Note The name module-info.java is reminiscent of package-info.java, and they are somewhat related. Because packages are not really visible to the runtime, a workaround (hack?) was needed to provide a hook for annotation metadata that was intended to apply to the whole package. This hack was package-info.java. In the modular world, much more metadata can be associated with a module, and so a similar name was chosen. The new syntax actually consists of restricted keywords, which are described in the Java Language Specification like this:

 A further ten character sequences are restricted keywords: open, module, requires, transitive, exports, opens, to, uses, provides, and with. These character sequences are tokenized as keywords solely where they appear as terminals in the ModuleDeclaration and ModuleDirective productions.

 In simpler language, this means these new keywords will appear only in the descriptor for the module metadata and are not treated as keywords in general Java source. However, it is good practice to avoid these words as Java identifiers, even if it is technically legal to use them. This is the same situation as we saw with var in chapter 1, and we will use looser language and refer to them as “keywords” throughout the rest of the book.

2.2.1 Exporting and requiring

 The exports keyword expects an argument, which is a package name. In our example

 exports wgjd.discovery;

 means that our example discovery module exports the package wgjd.discovery, but because the descriptor does not mention any other packages, wgjd.discovery .internal is not exported and is not normally available to code outside the discovery module.

 Multiple exports lines are possible in a module descriptor and, in fact, are quite usual. Fine-grained control is also possible with the exports ... to ... syntax that indicates only certain external modules may access a specified package from this module.

 Note A single module exports one or more packages that constitute the public API of the module and that are the only packages that code in other modules may access unless an override (e.g., command-line switch) is used.

 The requires keyword declares a dependency of the current module and always requires an argument, which is a module name, rather than a package name. The java.base module contains the most fundamental packages and classes of the Java runtime. We can use the jmod command to take a look, as follows:

 $ jmod describe $JAVA_HOME/jmods/java.base.jmod
java.base@11.0.3
exports java.io
exports java.lang
exports java.lang.annotation
exports java.lang.invoke
exports java.lang.module
exports java.lang.ref
exports java.lang.reflect
exports java.math
exports java.net
exports java.net.spi
exports java.nio
// ... many, many more lines of output

 These packages are used by every Java program, and so java.base is always an implicit dependency of every module, so does not need to be explicitly declared in module-info.java. This is in much the same way that java.lang is an implicit import into every Java class.

 Some of the basic rules and conventions for module names follow:

 	
 Modules live in a global namespace.

 	
 Module names must be unique.

 	
 Use the standard com.company.project convention if appropriate.

 One important basic modules concept is transitivity. Let’s take a closer look at this concept, because it occurs not only in the context of modules but also in Java’s more familiar library (i.e., JAR file) dependencies (which we will meet in chapter 11).

2.2.2 Transitivity

 Transitivity is a very general computing term, not specific to Java at all, which describes the situation that occurs when a code unit requires other units to function correctly, and those units can themselves require other units. Our original code may never even mention these “one step removed” code units, but they still need to be present or our application will not work.

 To understand why this is the case—and why it is important—consider two modules A and B where A requires B. There are two different possible cases:

 	
 A does not export any methods that mention types from B directly.

 	
 A includes types from B as part of its API.

 In the case where A exports methods that return types that are defined in B, this would have the effect that A is not usable unless clients of A (those modules that require A) also require B. This is quite an unnecessary overhead on clients of A.

 The modules system provides some simple syntax to solve this: requires transitive. If a module A requires another module transitively, then any code that depends on A will also, implicitly, pick up the transitive dependencies as well.

 Although usage of requires transitive is unavoidable in some use cases, in general, when writing modules, minimizing use of transitivity is considered a best practice. We will have more to say about transitive dependencies when we discuss build tools in chapter 11.

2.3 Loading modules

 If the first time you’ve encountered Java class loading is when we briefly mentioned it in chapter 1 and you have no other experience of it, don’t worry. The most important thing to know right now is that the following four types of modules exist, some of which have slightly different behaviors when loaded:

 	
 Platform modules

 	
 Application modules

 	
 Automatic modules

 	
 Unnamed module

 On the other hand, if you’re already familiar with class loading, you should know that the arrival of modules has changed some of the details of the way that class loading operates.

 A modern JVM has module-aware class loaders, and the way that the JRE classes are loaded is quite different than in Java 8. One key concept is the module path, which is a sequence of paths to modules (or directories that contain modules). This is similar to, but separate from, the traditional Java classpath.

 Note We will meet class loading properly in chapter 4 and introduce the modern way of doing things to both new and experienced readers.

 The fundamental principles of the modular approach to class loading follow:

 	
 Modules are resolved from the module path, not the old-school classpath.

 	
 At startup, the JVM resolves a graph of modules, which must be acyclic.

 	
 One module is the root of the graph and is where execution starts from. It contains the class with the main method that will be the entry point.

 Dependencies that have already been modularized are known as application modules and are placed on the module path. Unmodularized dependencies are placed on the familiar classpath, and are coopted into the modules system via a migration mechanism.

 Module resolution uses depth-first traversal, and because the graph must be acyclic, the resolution algorithm will terminate (and in linear time). Let’s delve a little more deeply into each of the four types of modules.

2.3.1 Platform modules

 These are modules from the modular JDK itself. They would have been part of the monolithic runtime (rt.jar) in Java 8 (or possibly ancillary JARs, such as tools.jar). We can get a list of the available platform modules from the --list-modules flag, as shown here:

 $ java --list-modules
java.base@11.0.6
java.compiler@11.0.6
...
java.xml@11.0.6
java.xml.crypto@11.0.6
jdk.accessibility@11.0.6
...
jdk.unsupported@11.0.6
...

 This code will provide an unabridged list, rather than the partial set that we saw in figure 2.1.

 Note The exact list of modules and their names will depend on the version of Java in use. For example, on Oracle’s GraalVM implementation, some additional modules like com.oracle.graal.graal_enterprise, org.graalvm.js .scriptengine and org.graalvm.sdk may be present.

 The platform modules make heavy use of the qualified exporting mechanism wherein some packages are exported only to a specified list of modules and are not made generally available.

 The most important module in the distribution is java.base, which is always an implicit dependency of every other module. It contains java.lang, java.util, java.io, and various other basic packages. The module basically corresponds to the smallest possible Java runtime that an application could require and still run.

 At the other end of the spectrum are the aggregator modules, which don’t contain any code but which serve as a shortcut mechanism to allow applications to bring in a very broad set of dependencies transitively. For example, the java.se module brings in the entire Java SE platform.

2.3.2 Application modules

 These types of modules are the modularized dependencies of an application, or the application itself. This type of module is also sometimes known as a library module.

 Note No technical distinction exists between platform and application modules—the difference is purely philosophical—and which class loader is used to load them, as we will discuss in chapter 4.

 The third-party libraries that an application depends on will be application modules. For example, the Jackson libraries for manipulating JSON have been modularized as of version 2.10 and count as application (aka library) modules.

 Application modules will typically depend upon both platform modules and other application modules. It is a good idea to try to constrain the dependencies of these modules as much as possible and to avoid requiring, for example, java.se as a dependency.

2.3.3 Automatic modules

 One deliberate design feature of the modules system is that you can’t reference the classpath from a module. This restriction seems to be potentially problematic—what happens if a module needs to depend on some code that has not yet been modularized?

 The solution is to move the nonmodular JAR file onto the module path (and remove it from the classpath). When this is done, the JAR becomes an automatic module. The modules system will automatically generate a name for your module, which is derived from the JAR’s name.

 An automatic module exports every package that it contains, and automatically depends upon all other modules in the module path. Automatic modules do not have proper module dependency information, because they neither explicitly declare their dependencies nor advertise their API. This means that they are not first-class citizens in the modules system and do not provide the same level of guarantees as genuine Java modules.

 It is possible to explicitly declare a name, by adding an entry for Automatic-Module-Name into the MANIFEST.MF file in the JAR. This is often done as an intermediate step when migrating to Java modules, because it allows developers to reserve a module name and start to gain some of the benefits of interoperating with modular code.

 For example, the Apache Commons Lang library is not yet fully modularized, but it provides org.apache.commons.lang3 as an automatic module name. Other modules can then declare that they depend upon this automatic module, even if the maintainers of it have not finished transitioning it to full modularity.

2.3.4 Unnamed module

 All classes and JARs on the classpath are added to a single module, which is the unnamed module, or UNNAMED. This is done for backward compatibility but at the cost that the modules system is not as effective as it might be all the time that some code remains in the unnamed module.

 For the case of completely nonmodular apps (e.g., Java 8 apps that are running on top of a Java 11 runtime), the contents of the classpath are dumped into the unnamed module, and the root module is taken to be java.se.

 Modular code cannot depend on the unnamed module, and so in practice, modules cannot depend upon anything in the classpath. Automatic modules are often used to help resolve this situation. Formally, the unnamed module depends upon all modules in JDK and on the module path because it is replicating the premodular behavior.

2.4 Building a first modular app

 Let’s build a first example of a modular application. To do this, we need to build a module graph (which is, of course, a DAG). The graph must have a root module, which in our case is the module containing the entry point class of the app. The module graph of the application is the transitive closure of all modular dependencies of the root module.

 For our example, we’re going to adapt the HTTP site-checking tool we created at the end of chapter 1 to become a modular app. The files will be laid out like this:

 .
└── wgjd.sitecheck
 ├── wgjd
 │ └── sitecheck
 │ ├── concurrent
 │ │ └── ParallelHTTPChecker.java
 │ ├── internal
 │ │ └── TrustEveryone.java
 │ ├── HTTPChecker.java
 │ └── SiteCheck.java
 └── module-info.java

 We’re breaking out certain concerns (e.g., the TrustEveryone provider) into their own classes rather than representing them as static inner classes, as we had to when all the code needed to live in a single file. We’ve also set up separate packages and will not be exporting all of them. The module file is very similar to the one we met earlier, shown here:

 module wgjd.sitecheck {
 requires java.net.http;
 exports wgjd.sitecheck;
 exports wgjd.sitecheck.concurrent;
}

 Note the dependency on the module java.net.http. To investigate what happens when a dependency is missed, let’s comment out the dependency on the HTTP module and try to compile the project using javac as follows:

 $ javac -d out wgjd.sitecheck/module-info.java \
 wgjd.sitecheck/wgjd/sitecheck/*.java \
 wgjd.sitecheck/wgjd/sitecheck/*/*.java
wgjd.sitecheck/wgjd/sitecheck/SiteCheck.java:8: error:
 package java.net.http is not visible
import java.net.http.*;
 ^
 (package java.net.http is declared in module java.net.http, but
 module wgjd.sitecheck does not read it)
wgjd.sitecheck/wgjd/sitecheck/concurrent/ParallelHTTPChecker.java:4:
 error: package java.net.http is not visible
import java.net.http.*;
 ^

// Several similar errors

 This failure shows that simple problems with modules can be very easy to solve. The modules system has detected the missing module and is trying to help by suggesting a solution: add the missing module as a dependency. If we make that change, then, as expected, the module builds without complaint. However, more complex problems may require changes to the compilation step or manual intervention via a switch to control the modules system.

2.4.1 Command-line switches for modules

 When compiling a module, a number of command-line switches can be used to control the modular aspects of the compile (and, later, execution). The most commonly encountered of these switches follow:

 	
 list-modules—Prints a list of all modules

 	
 module-path—Specifies one or more directories that contain your modules

 	
 add-reads—Adds an additional requires to the resolution

 	
 add-exports—Adds an additional exports to the compilation

 	
 add-opens—Enables reflective access to all types at runtime

 	
 add-modules—Adds the list of modules to the default set

 	
 illegal-access=permit|warn|deny—Changes the reflective access rule

 We have already met the majority of these concepts already—with the exception of the qualifiers related to reflection, which we will discuss in detail in section 2.4.3

 Let’s see one of these switches in action. This will demonstrate a common issue with module packaging and serves as an example of a real-world issue that many developers may encounter when starting to use modules with their own code.

 When starting to work with modules, we sometimes find that we need to break encapsulation. For example, an application that has been ported from Java 8 may be expecting to access an internal package that is no longer exported.

 For example, let’s consider a project with a simple structure that uses the Attach API to dynamically connect to other JVMs running on a host and report some basic information about them. It’s laid out on disc like this, just as we saw in an earlier example:

 .
└── wgjd.discovery
 ├── wgjd
 │ └── discovery
 │ ├── internal
 │ │ └── AttachOutput.java
 │ ├── Discovery.java
 │ └── VMIntrospector.java
 └── module-info.java

 Compiling the project gives the following series of errors:

 $ javac -d out/wgjd.discovery wgjd.discovery/module-info.java \
 wgjd.discovery/wgjd/discovery/*.java \
 wgjd.discovery/wgjd/discovery/internal/*

wgjd.discovery/wgjd/discovery/VMIntrospector.java:4: error: package
 sun.jvmstat.monitor is not visible
import sun.jvmstat.monitor.MonitorException;
 ^
 (package sun.jvmstat.monitor is declared in module jdk.internal.jvmstat,
 which does not export it to module wgjd.discovery)
wgjd.discovery/wgjd/discovery/VMIntrospector.java:5: error: package
 sun.jvmstat.monitor is not visible
import sun.jvmstat.monitor.MonitoredHost;
 ^
 (package sun.jvmstat.monitor is declared in module jdk.internal.jvmstat,
 which does not export it to module wgjd.discovery)

 These problems are being caused by some code in the project that makes use of internal APIs, as shown next:

 public class VMIntrospector implements Consumer<VirtualMachineDescriptor> {

 @Override
 public void accept(VirtualMachineDescriptor vmd) {
 var isAttachable = false;
 var vmVersion = "";
 try {
 var vmId = new VmIdentifier(vmd.id());
 var monitoredHost = MonitoredHost.getMonitoredHost(vmId);
 var monitoredVm = monitoredHost.getMonitoredVm(vmId, -1);
 try {
 isAttachable = MonitoredVmUtil.isAttachable(monitoredVm);
 vmVersion = MonitoredVmUtil.vmVersion(monitoredVm);
 } finally {
 monitoredHost.detach(monitoredVm);
 }
 } catch (URISyntaxException | MonitorException e) {
 e.printStackTrace();
 }

 System.out.println(
 vmd.id() + '\t' + vmd.displayName() + '\t' + vmVersion +
 '\t' + isAttachable);
 }
}

 Although classes like VirtualMachineDescriptor are part of the exported interface of the jdk.attach module (because the class is in the exported package com.sun .tools.attach), other classes that we depend on (such as MonitoredVmUtil in sun .jvmstat.monitor) are not accessible. Fortunately, the tools provide a way to soften the module boundaries and provide access to a nonexported package.

 To achieve this, we need to add a switch—--add-exports—to force access to the internals of the jdk.internal.jvmstat module, which means we are definitely breaking encapsulation by doing this. The resulting compilation command line looks like this:

 $ javac -d out/wgjd.discovery \
 --add-exports=jdk.internal.jvmstat/sun.jvmstat.monitor=wgjd.discovery \
 wgjd.discovery/module-info.java \
 wgjd.discovery/wgjd/discovery/*.java \
 wgjd.discovery/wgjd/discovery/internal/*

 The syntax of --add-exports is that we must provide the module and package name that we require access to and which module is being granted the access.

2.4.2 Executing a modular app

 Until the arrival of modules, only the following two methods existed to start a Java application:

 java -cp classes wgjd.Hello
java -jar my-app.jar

 These should both be familiar to Java programmers as launching a class and the main class from within a JAR file. In modern Java, two more methods of launching programs have been added. We met a new way of launching single-source-file programs in section 1.5.4, and now we’re going to meet the fourth mode: launching the main class of a module. The syntax follows:

 java --module-path mods -m my.module/my.module.Main

 However, just as for compilation, we may need additional command-line switches. For example, from our earlier example of introspection:

 $ java --module-path out -m wgjd.discovery/wgjd.discovery.Discovery
Exception in thread "main" java.lang.IllegalAccessError:
 class wgjd.discovery.VMIntrospector (in module wgjd.discovery) cannot
 access class sun.jvmstat.monitor.MonitorException (in module
 jdk.internal.jvmstat) because module jdk.internal.jvmstat does not
 export sun.jvmstat.monitor to module wgjd.discovery
 at wgjd.discovery/wgjd.discovery.VMIntrospector.accept(
 VMIntrospector.java:19)
 at wgjd.discovery/wgjd.discovery.Discovery.main(Discovery.java:26)

 To prevent this error, we must also provide the encapsulation-breaking switch to the actual program execution as follows:

 $ java --module-path out \
 --add-exports=jdk.internal.jvmstat/sun.jvmstat.monitor=wgjd.discovery \
 -m wgjd.discovery/wgjd.discovery.Discovery

Java processes:
PID Display Name VM Version Attachable
53407 wgjd.discovery/wgjd.discovery.Discovery 15-ea+24-1168 true

 If the runtime system can’t find the root module we asked for, then we expect to see an exception like this:

 $ java --module-path mods -m wgjd.hello/wgjd.hello.HelloWorld
Error occurred during initialization of boot layer
java.lang.module.FindException: Module wgjd.hello not found

 Even this simple error message is showing us that we have new aspects to the JDK, including

 	
 Packages, including java.lang.module

 	
 Exceptions, including FindException

 This shows once again that the modules system really has become an integral part of the execution of every Java program, even if it is not always immediately obvious.

 In the next section, we’ll briefly introduce the interaction of modules with reflection. We assume that you’re already familiar with reflection, but if you’re not, feel free to skip this section for now and come back to it after you’ve read chapter 4, which contains an introduction to class loading and reflection.

2.4.3 Modules and reflection

 In Java 8, developers can use reflection to access almost anything in the runtime. There’s even a way to bypass the access control checks in Java and, for example, call private methods on other classes via the so-called setAccessible() hack.

 As we’ve already seen, modules change the rules for access control. This also applies to reflection—the intent is that by default, only exported packages should be accessed reflectively.

 However, the creators of the modules system realized that sometimes developers want to give reflective access (but not direct access) to certain packages. This requires an explicit permission and can be achieved by using the opens keyword to provide reflective-only access to an otherwise internal package. Developers can also specify fine-grained access by using the syntax opens ... to ... to allow a named set of packages to be opened reflectively to specific modules, but not more generally.

 The previous discussion seems to imply that these types of reflective tricks are now ruled out. The truth is a little more complicated and is best explained via a discussion of the command-line switch --illegal-access. This switch comes with three settings—permit|warn|deny—and is used to control the strictness of checks on reflection.

 The intent of the modules system has always been that over time, the entire Java ecosystem should move toward proper encapsulation, including reflection, and that at some point, the switch will default to deny (and will ultimately be removed). This change obviously could not happen overnight—if the reflection switch was suddenly set to deny, huge swathes of the Java ecosystem would break and no one would upgrade.

 However, with the release of Java 17, it is now four years since Java 9 was released and this warning first started to appear. This is, surely, time enough and fair warning. Accordingly, the decision was made in Java 16 to change the default option of --illegal -access to deny and to remove the option’s effect completely in Java 17.

 Note This change to reflective encapsulation semantics is one reason an application migrating directly from 8 to 17 may see more headaches than one that performs two upgrade hops (8 to 11 and then 11 to 17).

 It is still possible to use the --add-opens command-line option, or the Add-Opens JAR manifest attribute, to open specific packages. This usage may be required for specific libraries or frameworks that have always used reflection and have not yet fully modularized. However, the brute force option to globally reenable access has been removed in Java 17.

 One additional useful concept to help this transition is open modules. This simple declaration is used to allow for completely open reflective access—it opens all the module’s packages for reflection but not compile-time access. This provides simple compatibility with existing code and frameworks but is a looser form of encapsulation. For this reason, open modules are best avoided or used only as a transitional form when migrating to a modular build. In chapter 17, we will discuss the specific case of Unsafe, which is a great example to indicate some of the problems with reflection in a modular world.

2.5 Architecting for modules

 Modules represent a fundamentally new way of packaging and deploying code. Teams do need to adopt some new practices to get the most out of the new functionality and the architectural benefits. However, the good news is there’s no need to start doing that straightaway just to start using modern Java. The traditional, old-school methods using the classpath and JAR files will continue to work until such time as teams are ready to adopt modules wholeheartedly.

 In fact, Mark Reinhold (chief architect for Java at Oracle) had this to say about the “need” for applications to adopt modularity.

 There is no need to switch to modules.

 There has never been a need to switch to modules.

 Java 9 and later releases support traditional JAR files on the traditional class path, via the concept of the unnamed module, and will likely do so until the heat death of the universe.

 Whether to start using modules is entirely up to you.

 If you maintain a large legacy project that isn’t changing very much, then it’s probably not worth the effort.

 —Mark Reinhold, https://stackoverflow.com/a/62959016

 In an ideal world, modules would be the default for all greenfield apps, but this is proving to be complex in practice, so as an alternative, when migrating, follow a process like this:

 	
 Upgrade to Java 11 (classpath only).

 	
 Set an automatic module name.

 	
 Introduce a monolithic module consisting of all code.

 	
 Break out into individual modules as needed.

 Typically, at step 3, way too much implementation code is exposed. This means that quite often, part of the work of step 4 is to create additional packages to house internal and implementation code and to refactor code into them.

 If you are still using Java 8 and you aren’t ready yet to migrate to a modular build, you can still do the following things to prepare your code for the migration:

 	
 Introduce an automatic module name in MANIFEST.MF.

 	
 Remove split packages from your deployment artifacts.

 	
 Use jdeps and Compact Profiles to reduce your footprint of unnecessary dependencies.

 To take the first of these, the use of an explicit automatic module name (as we discussed earlier in the chapter) will ease the transition. The automatic module name will be ignored by all versions of Java that do not support modules but will still allow you to reserve a stable name for your library and to move some code out of the unnamed module. It also has the advantage that consumers of your library are prepared for the transition to modules, because you have already advertised the name the module will be using. Let’s take a closer look at the other two concrete recommendations.

2.5.1 Split packages

 One common problem that developers encounter when they start to use modules is split packages—when two or more separate JARs contain classes belonging to the same package. In a nonmodular application, there is no problem with split packages because neither JAR files nor packages have any particular significance to the runtime. However, in the modular world, a package must belong to only one module and cannot be split.

 If an existing application is upgraded to use modules and has dependencies that contain split packages, this will have to be remediated—there just is no way around it. For code that the team controls, this is additional work but not too difficult. One technique is to have a specific artifact (often using a -all suffix) that is generated by the build system alongside the nonmodular versions, with a single JAR containing all parts of the split package.

 For external dependencies, remediation can be more complicated. It may be necessary to repackage third-party open source code into a JAR that can be consumed as an automatic module.

2.5.2 Java 8 Compact Profiles

 Compact Profiles are a Java 8 feature. They are runtime environments that are reduced in size that must implement both the JVM and Java language specifications. They were introduced in Java 8 as a useful stepping-stone to the modularity story that would arrive in Java 9.

 A Compact Profile must include all classes and packages that are explicitly mentioned in the Java language specification. Profiles are lists of packages, and they are usually identical to the package of the same name in the full Java SE platform. Very few exceptions exist, but they are explicitly called out.

 One of the main use cases of profiles is as the basis for a server application or other environment, where deploying unnecessary capabilities is undesirable. For example, historically, a large number of security vulnerabilities were connected to Java’s GUI features, especially in Swing and AWT. By choosing not to deploy the packages that implement those features in applications where they are not needed, we can gain a modest amount of additional security, especially for, for example, server applications.

 Note At one time, Oracle shipped a cut-down JRE (the “Server JRE”) that played a very similar role to Compact 1.

 Compact 1 is the smallest set of packages on which it is feasible to deploy an application. It contains 50 packages, from the very familiar

 	
 java.io

 	
 java.lang

 	
 java.math

 	
 java.net

 	
 java.text

 	
 java.util

 to some perhaps more unexpected packages that nonetheless provide essential classes to modern applications:

 	
 java.util.concurrent.atomic

 	
 java.util.function

 	
 javax.crypto.interfaces

 	
 javax.net.ssl

 	
 javax.security.auth.x500

