

 [image: cover]

Grails in Action, Second Edition

 Glen Smith and Peter Ledbrook

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditors: Katie Petito, Lianna Wlasiuk
Proofreader: Elizabeth Martin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617290961

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Dedication

 To Kylie, who sacrifices daily to let me chase such crazy dreams. Love you so much, matie!

 G.S.

 To my parents, for always being there.

 P.L.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Introducing Grails

 Chapter 1. Grails in a hurry . . .

 Chapter 2. The Groovy essentials

 2. Core Grails

 Chapter 3. Modeling the domain

 Chapter 4. Creating the initial UI

 Chapter 5. Retrieving the data you need

 Chapter 6. Controlling application flow

 Chapter 7. Services and data binding

 Chapter 8. Developing tasty forms, views, and layouts

 3. Everyday Grails

 Chapter 9. Building reliable applications

 Chapter 10. Using plugins: just add water

 Chapter 11. Protecting your application

 Chapter 12. Exposing your app to other programs

 Chapter 13. Single-page web applications (and other UI stuff)

 Chapter 14. Understanding Spring and transactions

 4. Advanced Grails

 Chapter 15. Understanding events, messaging, and scheduling

 Chapter 16. NoSQL and Grails

 Chapter 17. Beyond compile, test, run

 Chapter 18. Grails in the cloud

 Appendix A. Groovy reference

 Appendix B. GORM query reference

 Appendix C. XML and Spring builders

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Introducing Grails

 Chapter 1. Grails in a hurry . . .

 1.1. Introducing Grails

 1.1.1. Why Grails changed the game

 1.1.2. Seven big ideas

 1.2. Getting set up

 1.3. QOTD: your sample program

 1.3.1. Writing a controller

 1.3.2. Generating an HTML page: the view

 1.3.3. Adding style with Grails layouts

 1.4. Creating the domain model

 1.4.1. Configuring the data source

 1.4.2. Exploring database operations

 1.5. Adding UI actions

 1.5.1. Scaffolding: adding rocket fuel

 1.5.2. Surviving the worst-case scenario

 1.6. Improving the architecture

 1.6.1. Your Grails test case

 1.6.2. Going Web 2.0: Ajaxing the view

 1.6.3. Bundling the final product: creating a WAR file

 1.6.4. And 80 lines of code later

 1.7. Summary and best practices

 Chapter 2. The Groovy essentials

 2.1. Writing your first script

 2.1.1. Using lists, loops, and methods

 2.1.2. Working with strings

 2.2. Creating a quote analyzer class

 2.2.1. Introducing Spock properly

 2.2.2. Creating the initial class

 2.2.3. Working with maps

 2.2.4. Taking the analyzer for a spin

 2.3. Going to the next level

 2.3.1. Discovering closures

 2.3.2. Programming dynamically

 2.3.3. To type or not to type

 2.4. Summary and best practices

 2. Core Grails

 Chapter 3. Modeling the domain

 3.1. Introducing the Hubbub sample application

 3.1.1. Domain-driven design

 3.1.2. Hubbub kick-start: from 0 to first hit

 3.1.3. Introducing GORM

 3.2. Your first domain class object

 3.2.1. Saving and retrieving users via tests

 3.2.2. Updating user properties

 3.2.3. Deleting users

 3.3. Validation: stopping garbage in and out

 3.3.1. Standard validators

 3.3.2. Custom validation with regular expressions

 3.3.3. Cross-field validation tricks

 3.3.4. Keeping validation DRY by importing constraints

 3.4. Defining the data model—1:1, 1:m, m:n

 3.4.1. One-to-one relationships

 3.4.2. One-to-many relationships

 3.4.3. Many-to-many relationships

 3.4.4. Self-referencing relationships

 3.5. Summary and best practices

 Chapter 4. Creating the initial UI

 4.1. Creating instant UIs with scaffolding

 4.1.1. Scaffolding Hubbub’s domain classes

 4.1.2. Improving the validation

 4.2. Restyling the scaffolding

 4.2.1. Changing the skin you’re in

 4.2.2. Branding your pages

 4.3. Working with the scaffolding code directly

 4.3.1. Customizing the dynamic scaffolding

 4.3.2. Scaffolding as a starting point

 4.4. Summary and best practices

 Chapter 5. Retrieving the data you need

 5.1. Setting up the data and search form

 5.1.1. Loading sample data

 5.1.2. Implementing the search

 5.2. Writing Where queries

 5.2.1. The query syntax

 5.2.2. Exploring Where queries

 5.3. When Where queries aren’t suitable

 5.3.1. Cheap and cheerful listing and counting

 5.3.2. Introducing Criteria queries

 5.3.3. Dynamic queries with criteria

 5.3.4. Creating a tag cloud using report-style query projections

 5.3.5. Using HQL directly

 5.4. Summary and best practices

 Chapter 6. Controlling application flow

 6.1. Controller essentials

 6.2. Implementing a timeline for Hubbub

 6.3. Testing controller actions: an introduction to mocking

 6.3.1. About unit tests

 6.3.2. @TestFor and @Mock mixins

 6.3.3. Applying @TestFor and @Mock

 6.4. From controller to view

 6.4.1. Creating the view

 6.4.2. Adding new posts

 6.5. Exploring scopes

 6.5.1. Request scope

 6.5.2. Flash scope

 6.5.3. Session scope

 6.5.4. servletContext (application) scope

 6.6. Handling default actions

 6.6.1. One test, two use cases

 6.6.2. Working with redirects

 6.7. Summary and best practices

 Chapter 7. Services and data binding

 7.1. Services: making apps robust and maintainable

 7.1.1. Implementing a PostService

 7.1.2. Wiring PostService to PostController

 7.2. Data binding

 7.2.1. Action argument binding

 7.2.2. Binding to an existing object

 7.2.3. Working with blacklist and whitelist bind params

 7.2.4. Complex forms: binding multiple objects

 7.2.5. Error handling

 7.3. Command objects

 7.3.1. Handling custom user registration forms

 7.3.2. Participating in injection

 7.4. Working with images

 7.4.1. Handling file uploads

 7.4.2. Uploading to the filesystem

 7.4.3. Rendering photos from the database

 7.5. Intercepting requests with filters

 7.5.1. Writing your first filter

 7.5.2. Testing filters

 7.5.3. Filter URL options

 7.6. Creating custom URL mappings

 7.6.1. myHubbub: rolling your own permalinks

 7.6.2. Optional variables and constraints

 7.6.3. Handling response codes and exceptions

 7.6.4. Mapping directly to the view

 7.6.5. Wildcard support

 7.6.6. Named URL mappings

 7.7. Summary and best practices

 Chapter 8. Developing tasty forms, views, and layouts

 8.1. Understanding the core form tags

 8.1.1. A handful of essential tags

 8.1.2. A pocketful of link tags

 8.1.3. A tour of the form tags

 8.1.4. Adding pagination to the timeline

 8.2. Extending views with your own tags

 8.2.1. Simple tags

 8.2.2. Testing taglibs

 8.2.3. Logical tags

 8.2.4. Iteration tags

 8.2.5. Calling one tag from another

 8.3. Adding delicious layouts

 8.3.1. Introducing SiteMesh

 8.3.2. Standardizing page layouts

 8.3.3. Markup fragments with templates

 8.3.4. Adding skinning

 8.3.5. Implementing navigation tabs

 8.4. Applying Ajax tags

 8.4.1. Choosing a JavaScript library

 8.4.2. Essential Ajax form remoting

 8.4.3. Adding sizzle: animation and effects

 8.5. Summary and best practices

 3. Everyday Grails

 Chapter 9. Building reliable applications

 9.1. Running tests

 9.1.1. Mastering test execution

 9.1.2. Choosing a test phase

 9.2. Understanding Grails unit tests and mocks

 9.2.1. Mocking core Grails artifacts

 9.2.2. Mocking normal collaborators with Spock

 9.3. Testing the application as a whole

 9.3.1. Introducing browser-based testing with Geb

 9.3.2. Understanding how Geb works

 9.3.3. Using page objects for maintainability

 9.4. Summary and best practices

 Chapter 10. Using plugins: just add water

 10.1. Taking advantage of others’ hard work

 10.1.1. Finding plugins

 10.1.2. Installing plugins via the (deprecated) install-plugin command

 10.1.3. Installing plugins via BuildConfig.groovy

 10.1.4. Plugin dependencies

 10.1.5. Applying your knowledge: the Hubbub extreme makeover begins

 10.2. Adding mail support

 10.2.1. Sending mail inline

 10.2.2. Using a view as your mail body

 10.2.3. Testing mail operation

 10.3. Caching for performance: making everything snappy

 10.3.1. The core caching annotations

 10.3.2. Working with the CacheManager API

 10.3.3. Leveraging other members of the Cache plugin family

 10.3.4. The cache taglibs: caching in the view

 10.4. Database migrations: evolving a schema

 10.4.1. Installing and configuring the plugin

 10.4.2. Establishing a baseline

 10.4.3. Implementing common migrations

 10.4.4. Groovy-based migrations

 10.5. Full-text search: rolling your own search

 10.5.1. Making objects searchable

 10.5.2. Highlighting hit terms

 10.5.3. Implementing pagination

 10.5.4. Customizing what gets indexed

 10.5.5. Query suggestions: did you mean “Grails”?

 10.5.6. Searching across relationships

 10.6. Summary and best practices

 Chapter 11. Protecting your application

 11.1. Dealing with untrusted data and networks

 11.1.1. Validating user input

 11.1.2. Data binding

 11.1.3. Escaping output

 11.1.4. CSRF and form tokens

 11.1.5. Protecting your data in transit

 11.2. Access control

 11.2.1. What is it and what can we use?

 11.2.2. Getting started with Spring Security

 11.2.3. Protecting URLs

 11.2.4. Getting hold of the current user

 11.2.5. Using a custom login page

 11.2.6. Testing access control

 11.3. Further exploration of Spring Security

 11.3.1. Tightening restrictions on access

 11.3.2. Social authentication

 11.4. Summary and best practices

 Chapter 12. Exposing your app to other programs

 12.1. Creating a REST interface

 12.1.1. What is REST?

 12.1.2. Implementing a quick API

 12.2. Improving the API

 12.2.1. Handling data representations

 12.2.2. Customizing the controller

 12.2.3. Reporting errors

 12.3. Securing and maintaining the API

 12.3.1. Configuring API security

 12.3.2. Versioning the API

 12.3.3. Implementing functional testing

 12.4. Summary and best practices

 Chapter 13. Single-page web applications (and other UI stuff)

 13.1. Revisiting Grails web resource management

 13.1.1. Defining your resources

 13.1.2. Using resource modules in your view tier

 13.2. RESTful clients with AngularJS

 13.2.1. Configuring your Grails app for AngularJS

 13.2.2. Your first AngularJS controller: pulling in a RESTful timeline

 13.2.3. Creating a new post via REST

 13.2.4. Communicating between controllers

 13.2.5. Better posting with live UI feedback

 13.3. Advanced RESTful CRUD: implementing in-place editing

 13.3.1. Implementing UI switching

 13.3.2. Introducing an update feature

 13.3.3. Finalizing lifecycles with delete

 13.4. Summary and best practices

 Chapter 14. Understanding Spring and transactions

 14.1. Spring fundamentals

 14.1.1. What is dependency injection?

 14.1.2. Beans by convention

 14.1.3. Customizing an application at runtime

 14.2. Using transactions with GORM

 14.2.1. Easy transactions with services

 14.2.2. Transactions, the session, and me

 14.2.3. Fine-grained transactions

 14.3. Summary and best practices

 4. Advanced Grails

 Chapter 15. Understanding events, messaging, and scheduling

 15.1. Lightweight messaging with Platform Core

 15.1.1. Installing Platform Core

 15.1.2. Sending off an event

 15.1.3. Listening for an event

 15.1.4. Using namespaces to integrate GORM and events

 15.1.5. Aggressive listening: using wildcards

 15.1.6. Integrating Spring Security using the grailsEvents bean

 15.2. A hitchhiker’s guide to JMS messaging

 15.2.1. Learning to think in async: identifying messaging candidates

 15.2.2. Messaging terminology: of producers, consumers, queues, and topics

 15.2.3. Installing and configuring the JMS plugin

 15.3. Using the Grails JMS plugin

 15.3.1. Our killer Hubbub feature: IM integration with Jabber

 15.3.2. Sending JMS messages

 15.3.3. Reading the queue

 15.4. Scheduling tasks with Grails

 15.4.1. Writing a daily digest job

 15.4.2. Fine-grained scheduling with cron

 15.5. Advanced scheduling

 15.5.1. Dealing with re-entrance and stateful jobs

 15.5.2. Pausing and resuming stateful jobs programmatically

 15.5.3. Job persistence with JDBS storage

 15.6. Summary and best practices

 Chapter 16. NoSQL and Grails

 16.1. The problem with PostgreSQL (or when to choose NoSQL)

 16.2. Types of NoSQL databases (and typical use cases table)

 16.3. Using Redis to work with key-value stores

 16.3.1. Installing your own Redis server

 16.3.2. Using Redis operations

 16.3.3. Installing the Redis plugin (including pooling configuration)

 16.3.4. Simple, expiring key/value caching: what is all this @Memoize stuff?

 16.3.5. Working with the Redis taglib

 16.3.6. Beyond the basics: working with the Redis service object directly

 16.3.7. Top posters with Redis sorted sets

 16.4. Using MongoDB to work with document-oriented data

 16.4.1. Learning MongoDB terminology

 16.4.2. Getting set up: installing a MongoDB server

 16.4.3. Creating your first database

 16.4.4. Installing the MongoDB plugin

 16.4.5. Polyglot persistence: Hibernate and MongoDB working together

 16.4.6. Stepping outside the schema with embeddables

 16.4.7. Dynamic attributes: making up properties as you go along

 16.4.8. Querying MongoDB via standard GORM

 16.4.9. Working with low-level MongoDB querying

 16.5. Using Neo4j to work with graph-oriented data

 16.5.1. Installing and configuring the Neo4j plugin

 16.5.2. Neo4j domain classes: combining with Hibernate

 16.5.3. Populating Hubbub’s social graph

 16.5.4. Walking and visualizing the graph with Cypher

 16.5.5. Walking the entire graph

 16.6. Summary and best practices

 Chapter 17. Beyond compile, test, run

 17.1. Getting to deployment

 17.1.1. Managing your dependencies

 17.1.2. Continuous integration and deployment

 17.2. Integrating Grails with Maven

 17.2.1. Creating a single-project POM

 17.2.2. Multiproject Maven builds

 17.3. Grails with Gradle

 17.3.1. Building a standalone app

 17.3.2. Building a multiproject app

 17.4. Summary and best practices

 Chapter 18. Grails in the cloud

 18.1. Getting to know the cloud

 18.1.1. What is the cloud?

 18.1.2. The new kids on the block—PaaS providers

 18.2. Running in the cloud

 18.2.1. Choosing a cloud provider and assessing Hubbub

 18.2.2. Getting familiar with the platform

 18.2.3. Adding cache support

 18.2.4. Sending emails

 18.2.5. Messaging in the cloud with RabbitMQ

 18.2.6. Other features to consider

 18.3. Summary and best practices

 Appendix A. Groovy reference

 A.1. Operator overloading

 A.2. Groovy JDK methods

 Appendix B. GORM query reference

 B.1. Where queries

 B.2. Criteria queries

 Appendix C. XML and Spring builders

 C.1. XML generation with MarkupBuilder

 C.2. Bean Builder

 Comparing Spring’s XML and Bean Builder formats

 Namespaces with Bean Builder

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 No matter how powerful your web framework, or how well-documented it may be, and independent of all of those tutorials, tips,
 and blog posts you find on the web, there is no replacement for a book that thoroughly introduces you to the topic. For many
 years Grails in Action has been the guide for the growing number of Grails developers.

 Whenever I visit a team that uses Grails I look around to see what books they have available, and I’m always delighted to
 see Grails in Action, since I can rely on the solid foundation they got from the book, and I can easily refer to it for best practices and background
 knowledge.

 But the world is ever-changing and the Groovy and Grails worlds particularly so. Web technologies rise and fall quickly these
 days and Grails adapts mostly through its immense plugin community, but also by carefully evolving the framework itself.

 All these changes called for a second edition of our beloved Grails book, and I am so glad to finally have it in my hands!

 Glen and Peter have managed to bring in all the new while retaining the characteristics of the first edition: it’s very approachable
 for the beginner, short and clear for the impatient, covers all bases for the practitioner, and drives the ball deep for the
 expert—all this with their special touch of humor for an enjoyable read.

 Have fun using Grails in action with Grails in Action, Second Edition!

 DIERK KÖNIG

 AUTHOR, GROOVY IN ACTION

Preface

 “Hey, Peter. I think we should throw together a second edition. What do you think?”

 “Are you serious? You know how much work we put into the first edition, it nearly killed us both.”

 “No, come on. Don’t be thinking major rewrite; be thinking a light-touch iteration just to refresh a few things. It’ll be
 a snap, done in a couple of months.”

 “I’m tired already.”

 And so began our journey toward this volume you now hold. It was as far from a light-touch rewrite as any second edition could
 be. Experts recommend a second edition should have at least 20% new content; I think ours is more like 50%, with a refresh
 of the rest. So we’re very tired right now!

 So much has happened since the first edition. Grails is now owned and backed by an industrial heavyweight, forms a core part
 of the Spring portfolio, and has seamlessly embraced diverse technologies such as single page web apps, NoSQL, and the Cloud
 (all of which get special chapters in this new edition). Various plugins have come and gone, having been embraced into the
 core—and excised from it. Through it all, Grails has remained on the cutting edge of all things web development, and has now
 developed a loyal following among the larger Java web crowd. This little hipster framework has now become relatively mainstream.
 And that’s exciting to see.

 I remember a military leadership guy once saying to me at a business function, “Glen, great things don’t just happen. They
 are brought about.” I think that’s probably true. And everything great about this second edition has been brought about by
 Peter Ledbrook. He carried this idea through to completion, rewrote vast sections of many chapters, and fixed so many source
 code errors he should have unlocked a special GitHub badge. He sustained this project on the days I was totally over it. And
 he carried the responsibility for this effort being a worthy second edition. Anything good here is his fault. So if you see
 him at a conference, make sure to buy him a drink!

 We really hope you enjoy this much expanded and updated second edition of Grails in Action. We’re confident you will find it even more pragmatic and brimming with the many best practices we’ve learned from a bunch
 more years of experience working in the field.

 GLEN SMITH

Acknowledgments

 Last time we were here, it was a new undertaking and we didn’t know what we were getting ourselves into. This time we were
 supposed to know better, and yet the support shown from the team at Manning was once again vital to this endeavor. We would
 like to thank everyone involved in the publication of this book. Particular thanks go to our development editor, Cynthia Kane,
 who put up with some rather sleepy authors during the conference calls and kept our motivation high. The production team also
 did a marvelous job of tightening up our prose and clearing up all those ambiguities and inconsistencies that inevitably appear
 even with just one author.

 No technical book is worth a penny unless it’s accurate. There is a lot of detail inside Grails in Action, Second Edition with plenty of scope for error. It is thanks to the persistence of our technical proofreader, Doug Warren, and his attention
 to detail, that the code we present in this book works. Many thanks to him.

 We’d also like to thank our reviewers for sending detailed feedback on the manuscript at various stages in its development:
 Aiden Mark Humphreys, Alvin Scudder, Antonio Mas Rodriguez, Cynthia Pepper, Daniel Miller, David Madouros, Debra Miller, Ivan
 Todorović, Jack Frosch, Jeffrey Yustman, Jerry Gaines, Koray Güclü, Marc Weidner, Michael A. Angelo, Mike Spencer, Phillip
 Warner, Pratap Chatterjee, Shiloh Morris, and Toby Hobson.

 The early MEAP subscribers also did a sterling job of pointing out typos, grammatical errors, confusing explanations, and
 other issues. If you’re interested, you can find much of that feedback on GitHub in the book’s repository there. Equally important
 for us was all the positive feedback we received. That was a great motivator to complete the book and ensure it was as good
 as we could make it.

 Thanks also to Dierk König for his encouragement and for agreeing to write the foreword to our book. And last, but not least,
 we would like to thank Graeme Rocher and the rest of the Grails team and contributors for producing such a wonderful framework
 that has made software development fun again.

Glen Smith

 When I was a kid, one of my mentors, Paul Le Lievre, said to me, “Glen, there’s no such thing as a free lunch. It’s only free
 because someone else pays.” That’s good advice. Someone always pays. And the main person who paid for this book to happen
 was my amazing and long-suffering wife, Kylie. This time, the project took more than 18 months, which is a long time to endure
 an absentee author husband. Thanks for putting up with my grumpy and stressed manner as Grails in Action, Second Edition was reworked, rewritten, reshaped, and endlessly edited into an almost completely different book. Matie, you are the best!
 Consider this book a voucher for unlimited childcare-free weekends redeemable at your leisure. Bubble bath will be supplied.

 My beautiful children, Isaac and Zoe, also paid a hefty price for this tome. Love you guys so much. Daddy is home, and months
 of extended bike rides and endless cuddles await!

 My parents, Alby and Jan Smith, and parents-in-law, Steve and Joy Salter, have been a great encouragement for this second
 edition project and a great help with childcare. Thanks again for your support!

 Once again, Peter Ledbrook, my coauthor, was a calm voice of encouragement when I was drowning in an ever-growing to-do list.
 He’s a very humble and low-profile guy who is always willing to help without any kind of bravado or drama. He knows more about
 Grails than any non-Graeme person and has written all the technically challenging stuff in this book. Our friendship has now
 survived two major book projects, and the books have been significantly better for his partnership.

Peter Ledbrook

 No one warned us how much work a second edition would involve. And yet once again, my coauthor, Glen Smith, brought energy
 and enthusiasm to the project despite getting up at 5 a.m. for our calls. Together, we somehow pulled through and the result
 lies before you. We hope you like it!

 I’d also like to thank Graeme Rocher, the Grails project lead, for responding quickly to my many questions about the framework’s
 internals, while continuing to push the boundaries on the project. The framework has changed a lot since the first edition,
 even while we were writing the book, so those insights were invaluable in keeping the content up to date.

 Last, but definitely not least, many thinks to all our early adopters who provided both valuable feedback and encouragement
 at all stages. They were vital to keeping our spirits up.

About this Book

 Grails in Action, Second Edition is a comprehensive introduction to the Grails framework covering the nuts and bolts of all core Grails components: controllers,
 views, services, taglibs, and plugins. But much more than an introduction, Grails in Action, Second Edition is jam-packed with skills, techniques, and insights from the trenches: solving the challenges you’re likely to face developing
 your next killer web app.

Roadmap

 Grails in Action, Second Edition gives you a fast-paced and accessible introduction to the world of agile web development.

 The book is divided into four parts:

 	
Part 1: Introducing Grails

 	
Part 2: Core Grails

 	
Part 3: Everyday Grails

 	
Part 4: Advanced Grails

 Part 1 will introduce you to Grails by taking you through building your first Grails application—a simple Quote of the Day application.
 You’ll get a taste for all the parts of the Grails ecosystem and for how all the parts hang together to create a complete
 application. But in order to make any sophisticated use of Grails, you’ll need an appreciation for Groovy—the dynamic language
 that forms the foundation of your Grails coding. So we’ll spend some time training you on all the basics in chapter 2.

 Part 2 begins our deeper exploration of the core Grails artifacts. You’ll learn how models, views, and controllers interact, and
 you’ll gain a deep understanding of all the core features that make up the heart of Grails applications. We’ll introduce you
 to Hubbub, our sample social-networking application, and implement all the features that you’ll commonly find in Grails applications:
 domain modeling, querying, skins and layout, form handling, and more. By the end of part 2, you’ll be confidently developing your own basic applications.

 Because real-world web applications involve a lot more than just forms and databases, part 3 will tackle the skills you’ll need to take your application to the world. We’ll explore testing strategies to ensure your
 code is implemented correctly, and we’ll show how to give your application that Web 2.0 feel through time-saving third-party
 plugins. Few applications can face the outside world without some kind of security model, so we’ll explore the security implications
 of taking your Grails application online. Finally, we’ll look at strategies for designing RESTful APIs and conclude with a
 survey of the asynchronous technologies that are becoming increasingly popular in developing scalable applications.

 In part 4, we conclude our tour of Grails with the most advanced features of the framework. We’ll look deep inside Grails’ underlying
 technologies, Spring and Hibernate. We’ll also show you how to integrate Grails with your existing build processes and run
 your applications in the cloud.

 Three appendixes address reference issues and XML and Spring builders. Two bonus chapters, “Advanced GORM kung fu” and “Developing
 plugins,” are available online from the publisher’s website at www.manning.com/gsmith2 or www.manning.com/GrailsinActionSecondEdition.

Who should read this book

 Whether you’re a seasoned Java developer ready to dip your toes in the waters of dynamic web frameworks, or a hardcore web
 developer making the switch to the latest Convention over Configuration paradigm, Grails in Action, Second Edition will give you the tools to get productive quickly and the deep knowledge to handle the corner cases when you get stuck.

 Some experience with web development (in particular CSS, HTML, and JavaScript) is assumed, along with a basic knowledge of
 programming. Previous experience with Java web development is an advantage, but we take the time to explain core Java web
 concepts in sidebars where applicable. If you’re coming from another language background (such as Ruby, Perl, or PHP), you
 should find the move to Grails quite natural.

Code conventions

 This book provides copious examples that show how you can make use of each of the topics covered. Source code in listings
 or in text appears in a fixed-width font like this to separate it from ordinary text. In addition, class and method names, object properties, and other code-related terms and
 content in text are presented using the same fixed-width font.

 Code and command-line input can be verbose. In many cases, the original source code (available online) has been reformatted;
 we’ve added line breaks and reworked indentation to accommodate the page space available in the book. In rare cases, when
 even this was not enough, line-continuation markers were added to show where longer lines had to be broken.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered cueballs link to
 additional explanations that follow the listing. We also use italics to highlight new code that has been added or changed from an earlier listing.

Getting the source code

 You can access the source code for all of the examples in the book from the publisher’s website at www.manning.com/GrailsinActionSecondEditon. All source code for the project is hosted at GitHub (github.com)—a commercial Git hosting firm. We will maintain the current
 URL via the publisher’s website. The source is maintained by chapter, so, for example, you can download /source-code/ch06
 and you will have a full copy of the source up to that point in the book.

Keeping up to date

 The Grails world moves very quickly. There have been substantial changes in Grails in the time it took us to develop Grails in Action, Second Edition. Even moving from Grails 2.2 to 2.3 caused us to make significant changes!

 Although the book targets Grails 2.3, a new version of Grails (2.4) is already available. Fortunately, everything in here
 is still valid for the new version. You may notice a difference in the initial state of files such as grails-app/conf/BuildConfig.groovy,
 but the code we add will still work.

 Speaking of Grails 2.4, you will find some interesting changes.

 	It now comes with Spring Framework 4 rather than 3.2.

 	Hibernate 4 is now the default, although you can switch to the older Hibernate 3 plugin, which has the dependency name hibernate.

 	You can enable static compilation of your controllers, services, and other artifacts via the new @GrailsCompileStatic annotation.

 	New Grails projects use the Asset Pipeline plugin instead of Resources, but you can easily switch back to Resources.

 	The Maven plugin now works much better for multiproject builds and you can use it with any 2.x Grails version.

 	Where queries (chapter 5) have improved support for subqueries and projections.

 Of these, the only one that has an immediate impact is the Asset Pipeline plugin. We recommend you remove those dependencies
 and replace them with the appropriate Resources plugins while you work through the book. That said, we recommend you use Asset
 Pipeline for real projects. The Grails user guide has good coverage of it.

 If there are portions of source code needing modification for a future release, you’ll be able to find information on the
 Grails in Action, Second Edition Author Online forum (www.manning.com/GrailsinActionSecondEdition).

Author Online

 Purchase of Grails in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/GrailsinActionSecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the Author Online remains voluntary (and unpaid). We suggest you try asking the authors some
 challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 GLEN SMITH started “stunt programming” the day his school took delivery of its first set of Hitachi Peach computers (in the early ‘80s)
 and has been doing it ever since. He’s worked as a Unix/C systems programmer, Perl hacker, and even Visual Basic dude (but
 he tells everyone it was just a phase). When Java came along, he lost interest in everything else. These days, he spends most
 of his time consulting in Java EE technologies to the Australian government.

 He has been involved in the Grails community since Grails 0.1 and launched the first public-facing Grails app (an SMS gateway)
 on Grails 0.2. He is a regular on the Groovy and Grails speaking circuit, the cohost of the Grails podcast (http://grailspodcast.com), and the man behind groovyblogs.org.

 Glen lives in Canberra, Australia, with his wife, two children, and an exuberant labradoodle. He blogs at http://blogs.bytecode.com.au/glen and twitters at http://twitter.com/glen_a_smith.

 PETER LEDBROOK started his software development career as a teenager learning to program in the comfort of his bedroom. After surviving
 the trials and tribulations of C and C++, he switched to Java during his first job and has stayed with it ever since.

 An avid fan of open source software since those early days, he has always looked to that community for innovative and useful
 solutions. He discovered Grails while investigating Ruby on Rails and was astonished at how easy it was to write web applications
 using the framework. The love affair began.

 He wrote several popular plugins (Remoting, Shiro, and GWT) and then became a core Grails committer when he joined G2One as
 a consultant at the end of 2007. He also has plenty of battle scars from actively working on several public-facing applications
 and helping teams make the most of Grails.

About the technical editor

 DOUG WARREN is a consultant, architect, and developer specializing in Java, Spring, Grails, Ruby, and open source technologies. He was
 leader of both a Java and a Web Services user group for many years. Over the past 14 years, he has also been a very active
 technical proofreader and reviewer for Manning Publications.

About the Title

 By combining introductions, overviews, and how-to examples, Manning’s In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent, it must pass
 through stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember
 new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part
 of an In Action guide is that it is example-driven. It encourages the reader to try things out, play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want, just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Grails in Action, Second Edition is a “Jeune Fille de Plouneour-Trez,” or a young woman from a town in the province of Bretagne in northern France. The illustration
 is taken from a French book of dress customs, Encyclopedie des Voyages, by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and illustrated
 guides such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of
 other countries of the world, as well as to the regional costumes of France.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and regions just 200 years ago. This was a time when
 the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other,
 and when members of a social class or trade or profession could be easily distinguished by what they were wearing.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a world of
 cultural and visual diversity for a more varied personal life...or a more varied and interesting intellectual and technical
 life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative—and
 the fun—of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought
 back to life by the pictures from this collection.

Part 1. Introducing Grails

 The field of Java-based web application frameworks has made great strides in usability, but creating an application with them
 is still hard work. Grails’s core strength is developing web applications quickly, so you’ll jump into writing your first
 application right away.

 In chapter 1, we expose you to the core parts of Grails by developing a simple Quote of the Day (QOTD) application from scratch. You’ll
 store to and query from the database, develop business logic, write tests, and add Ajax functionality. By the end of it, you’ll
 have a feel for the parts of Grails.

 To develop serious Grails applications, you need a firm grasp of Groovy—the underlying dynamic language that makes Grails
 tick. In chapter 2, we take you on a whirlwind tour of core Groovy concepts and introduce the syntax.

 By the end of part 1, you’ll understand the power of Groovy and Grails and be ready to take on the world. Feel free to do so—Grails encourages
 experimentation. But you might want to stick around for part 2, where we take you deeper into the core parts of Grails.

Chapter 1. Grails in a hurry . . .

 This chapter covers

 	What is Grails?

 	Core Grails philosophy

 	Grails installation

 	Key components of a Grails application

 	Your first Grails application—developing and deploying it

 “Help, I’ve lost my Mojo!” That statement is a concise summary of what developers feel when working with any of the plethora
 of Java web frameworks. Each change requires time spent editing configuration files, customizing web.xml files, writing injection
 definitions, tweaking build scripts, modifying page layouts, and restarting apps. Aaaahhhh! “Where has all the fun gone? Why
 is everything so tedious? I wanted to whip up a quick app to track our customer signups! There must be a better way . . .”
 We hear you.

 Grails is a next-generation Java web development framework that draws on best-of-breed web development tooling, techniques,
 and technologies from existing Java frameworks, and combines them with the power and innovation of dynamic language development.
 The result is a framework that offers the stability of technologies you know and love, but shields you from the noisy configuration, design complexity, and boilerplate code that make existing
 Java web development tedious. Grails allows you to spend your time implementing features, not editing XML.

 But Grails isn’t the first player to make such claims. You’re thinking, “Please don’t let this be YAJWF (Yet Another Java
 Web Framework)!” Because if the Java development world is famous for one thing, it’s having an unbelievably large number of
 web frameworks. Struts, WebWork, JavaServer Faces (JSF), Spring MVC, Seam, Wicket, Tapestry, Stripes, Google Web Toolkit (GWT),
 and the list goes on and on—all with their own config files, idioms, templating languages, and gotchas. And now we’re introducing
 a new one?

 The good news is that this ain’t your grandma’s web framework. We’re about to take you on a journey to a whole new level of
 getting stuff done—and getting it done painlessly. We’re excited about Grails because we think it’s time that Java web app
 development was fun again! It’s time for you to sit down for an afternoon and crank out something you’d be happy demoing to
 your boss, client, or the rest of the internet. Grails is that good.

 In this chapter, we take you through developing your first Grails app. Not a toy, either. Something you can deploy and show
 your friends. An app that’s data-driven and Ajax-powered that has full CRUD (create, read, update, delete) implementation,
 a template-driven layout, and even unit tests. All in the time it takes to eat your lunch, with less than 100 lines of code.
 Seriously.

 But before you fire up your IDE and get your hands dirty writing code, you may need more convincing about why Grails is such
 a game-changer and should be on your radar.

1.1. Introducing Grails

 Grails is a next-generation Java web development framework that generates developer productivity gains through the confluence
 of a dynamic language, a convention over configuration philosophy, powerfully pragmatic supporting tools, and an agile perspective
 drawn from the best emerging web development paradigms.

 1.1.1. Why Grails changed the game

 Grails entered the Java Web Application landscape in 2006 and has grown steadily in adoption since. Taking full advantage
 of Groovy as the underlying dynamic language, Grails made it possible to create a Book object and query it with dynamic methods such as Book.findByTitle("Grails in Action") or Book.findAllBy-DatePublished-GreaterThanAndTitleLike(myDate, "Grails"), even though none of those methods existed on the Book object.

 Even better, you could access any Java code or libraries you were already using, and the language syntax was similar enough
 to Java to make the learning curve painless. But best of all, at the end of the day you had a WAR file to deploy to your existing
 Java app server—no special infrastructure required, and no management awareness needed.

 The icing on the cake was that Grails was built on Spring, Hibernate, and other libraries already popular and used by enterprise
 Java developers. It was like turbocharging existing development practices without sacrificing reliability or proven technologies.

 Grails’s popularity exploded. Finally, Java web developers had a way to take all the cool ideas that Rails had brought to
 the table and apply them to robust enterprise-strength web application development, without leaving behind any of their existing
 skills, libraries, or infrastructure.

 1.1.2. Seven big ideas

 That’s enough history about how Grails came to be such a popular Java web framework. But if you (or your manager) need further
 convincing that Grails is an outstanding option for your next big web app project, the following subsections discuss seven
 of the big ideas (shown in figure 1.1) that drove Grails to such a dominant position in the emerging next-gen Java web frameworks market.

 Figure 1.1. The Grails ecosystem is a powerful confluence of people, ideas, and technology.

 [image:]

Big idea #1: convention over configuration

 One of the things you’ll notice about developing with Grails is how few configuration files exist. Grails makes most of its
 decisions based on sensible defaults drawn from your source code:

 	Add a controller class called ShopController with an action called order, and Grails will expose it as a URL of /yourapp/shop/order.

 	Place your view files in a directory called /views/shop/order, and Grails will link everything for you without a single line
 of configuration.

 	Create a new domain class called Customer, and Grails will automatically create a table called customer in your database.

 	Add fields to your Customer object, and Grails will automatically create the necessary fields in your customer table on the fly (including the right
 data types based on the validation constraints you place on them). No SQL required.

 Grails is about convention over configuration, not convention instead of configuration. If you need to tweak the defaults, the power is there. Grails makes overriding the defaults easy, and you
 won’t need any XML. But if you want to use your existing Hibernate configuration XML files in all their complex glory, Grails
 won’t stand in your way.

Big idea #2: agile philosophy

 Grails makes a big deal about being an agile web framework, and by the time you finish this chapter, you’ll understand why.
 By making use of a dynamic language (Groovy), Grails makes things that were a real pain in Java a complete joy. Whether it’s
 processing form posts, implementing tag libraries, or writing test cases, Grails offers a conciseness and expressiveness to
 the framework that make these operations easier and more maintainable at the same time.

 The Grails infrastructure adds to the pleasure by keeping you iterating without getting in the way. Imagine starting up a
 local copy of your application and adding controllers, views, and taglib features while it’s running—without restarting it!
 Then imagine testing those features, making tweaks, and clicking refresh in your browser to view the updates. It’s a joy.

 Grails brings a whole new level of agility to Java web application development, and when you’ve developed your first complete
 application, which you’ll do over the next 30 minutes or so, you’ll start to appreciate some of the unique power Grails provides.

Big idea #3: rock-solid foundations

 Even though Grails itself is full of innovation and cutting-edge ideas, the core is built on rock-solid proven technologies:
 Spring and Hibernate. These are the technologies that many Java shops use today, and for good reason: they’re reliable and
 battle-tested.

 Building on Spring and Hibernate also means there’s no new magic going on under the hood if you need to tweak things in the
 configuration (by customizing a Hibernate configuration class) or at runtime (by getting a handle to a Spring Application-Context). None of your learning time on Spring and Hibernate is wasted.

 It doesn’t matter if you’re new to Grails and don’t have a background in Spring or Hibernate. Few Grails development cases
 fall back to that level, but know it’s there if you need it.

 This same philosophy of using best-of-breed components has translated to other areas of the Grails ecosystem—particularly
 third-party plugins. The scheduling plugin is built on Quartz, the search plugin is built on Lucene and Compass, and the layout
 engine is built on SiteMesh. Wherever you go in the ecosystem, you see popular Java libraries wrapped in an easy-to-use instantly
 productive plugin. Peace of mind plus amazing productivity!

 Another important part of the foundation for enterprise developers is having the formal backing of a professional services,
 training, and support organization. When SpringSource acquired G2One in November 2008, Groovy and Grails inherited the backing
 of a large company with deep expertise in the entire Groovy and Grails stack. In recent times, SpringSource was acquired by
 VMware and spun off into a dedicated big data and Spring-related development and support organization called Pivotal (http://gopivotal.com/). This has also introduced a range of support options to the platform that are useful to organizations looking for 24/7 Groovy
 and Grails support backup.

Big idea #4: scaffolding and templating

 If you’ve ever tried bootstrapping a Spring MVC application by hand, you know it isn’t pretty. You need a directory of JAR
 files, bean definition files, web.xml customizations, annotated POJOs (plain old Java objects), Hibernate configuration files,
 database-creation script, and a build system to turn it all into a running application. It’s hard work, and you may burn a
 day in the process.

 By contrast, building a running Grails application is a one-liner: grails create-app myapp, and you can follow it up with grails run-app to see it run in your browser. All the same stuff happens behind the scenes, but based on conventions and sensible defaults
 rather than on hand-coding and configuration.

 If you need a new controller class, grails create-controller will generate a skeleton for you (along with a skeleton test case). The same goes for views, services, domain classes, and
 all the other artifacts in your application. This template-driven approach bootstraps you into a fantastic level of productivity,
 where you spend your time solving problems, not writing boilerplate code.

 Grails also offers an amazing feature called scaffolding. Based on the fields in your database model classes, Grails can generate a set of views and controllers on the fly to handle
 CRUD operations without a single line of code.

Big idea #5: Java integration

 One of the unique aspects of the Groovy and Grails community is that, unlike some other Java virtual machine (JVM) languages,
 we love Java! We appreciate that problems and design solutions are better implemented in a statically typed language, so we
 have no problem writing our web form processing classes in Groovy and our high-performance payroll calculations in Java. It’s
 all about using the right tool for the job.

 We’re also in love with the Java ecosystem and don’t want to leave behind the amazing selection of Java libraries we know
 and love. Whether that’s in-house data transfer objects (DTO), JARs for the payroll system, or a great new Java library for
 interfacing with Facebook, moving to Grails means you don’t have to leave anything behind—except verbose XML configuration
 files. And as we’ve said before, you can reuse your Hibernate mappings and Spring resource files if you’re so inclined!

Big idea #6: incredible community

 One of the most compelling parts of the Grails ecosystem is the fantastic and helpful user community. The Groovy and Grails
 mailing list is a hive of activity where both diehard veterans and new users are equally welcome. The Grails.org site hosts
 a Grails-powered wiki full of Grails-related information and documentation.

 A wealth of third-party community websites has also sprung up around Grails:

 	Groovyblogs.org aggregates what’s happening in the Groovy and Grails blogosphere and is full of interesting articles.

 	Sites such as Facebook and LinkedIn host Grails social networking options.

 	
A Groovy podcast (search for groovypodcast on YouTube) runs every so often to keep you up to date with news, interviews, and
 discussions in the Groovy and Grails world.

 But one of the coolest parts of the community is the amazing ever-growing list of third-party plugins for Grails. Whether
 it’s a plugin to implement full-text search, Ajax widgets, reporting, instant messaging, or RSS feeds, or to manage log files,
 profile performance, or integrate with Twitter, there’s something for everyone. You’ll find literally hundreds of time-saving
 plugins. (We introduce you to the most popular ones in chapter 10.)

Big idea #7: productivity ethos

 Grails is about more than building web applications. It’s about executing your vision quickly so that you can get on to more
 important “life stuff”: hanging out with your family, walking your dog, learning rock guitar, or getting your veggie patch
 growing big zucchinis. Web apps come and go; zucchinis are forever. Grails productivity gives you that sort of sage-like perspective.

 For us, productivity is the new black, and developing in Grails is about getting your life back one feature at a time. When
 you realize that you can deliver in one day work that used to take two weeks, you start to feel good about going home early.
 Working with such a productive framework even makes your hobby time more fun. You can complete all those Web 2.0 startup website
 ideas you’ve dreamed about, but that ended up as half-written Struts or Spring MVC apps. Through the course of this chapter,
 we’ll give you a taste of the kind of productivity you can expect when moving to Grails.

 Most programmers we know are the impatient type, so in this chapter we’ll take 30 minutes to develop a data-driven, Ajax-powered,
 unit-tested, deployable Web 2.0 website. Along the way, you’ll get a taste of the core parts of a Grails application: models,
 views, controllers, taglibs, and services. Buckle up—it’s time to hack.

1.2. Getting set up

 To get Grails up and running, review the installation process shown in figure 1.2.

 Figure 1.2. The Grails installation process

 [image:]

 	Install a Java Development Kit (JDK) (version 1.6 or later).
 Run javac -version from your command prompt to verify the version you have. Most PCs come with Java preinstalled, so you may not need this step.

 	After your JDK is installed, download the latest Grails distro from grails.org and unzip it to your favorite installation
 area.

 	Set the GRAILS_HOME environment variable, which points to your Grails installation directory, and add GRAILS_HOME/bin to your path.
 On Mac OS X and Linux, edit the ~/.profile script to contain lines such as these:

 export GRAILS_HOME=/opt/grails
export PATH=$PATH:$GRAILS_HOME/bin

 On Windows, go into System Properties to define GRAILS_HOME and update your PATH setting.

 	
Set the JAVA_HOME environment variable to the location of your JDK, in the same way as you did for GRAILS_HOME in the previous step.

 	To verify that Grails is installed correctly, run grails help from the command line.

 This will give you a handy list of Grails commands and confirm that everything is running as expected.

 	

 Note on Grails versions

 The book is based on Grails 2.3.7, but the latest version of Grails may be different by the time you read this. The best way
 to ensure that you’re running the correct version of Grails with all our sample code is via the Grails wrapper:

 ./grailsw <command>

 You don’t need the starting ./ on Windows, it’s only for Unix-like systems. The wrapper is a script that downloads and caches
 the appropriate version of Grails for the current project. Projects based on the same version of Grails use the same cached
 version, so don’t worry about losing lots of disk space!

 New projects created by Grails 2.3 and above already contain the wrapper, but for Grails 2.1 and 2.2 you need to explicitly
 run grails wrapper if you want it for your own projects.

 	

 As your Grails applications become more sophisticated, you’ll want to take advantage of the fantastic IDE support available
 for Grails projects. You can find Grails plugin support for your preferred IDE—IntelliJ, NetBeans, or Eclipse—or you can use
 the dedicated Groovy/Grails Tool Suite[1] from Pivotal. We won’t develop much code in this chapter, so a text editor is all you need. Fire up your favorite editor, and let’s talk about your sample application.

 1 Download the tool suite from https://spring.io/tools/ggts.

1.3. QOTD: your sample program

 If you’re writing a small application, you may as well have fun. This example is a Quote-of-the-Day web application in which
 you’ll capture and display famous programming quotes from development rock stars throughout time. You’ll let the user add,
 edit, and cycle through programming quotes, and add a dash of Ajax sizzle to give it a modern feel. You’ll want a short URL
 for your application, so make qotd your application’s working title.

 	

 Note

 You can download the sample apps for this book, including CSS and associated graphics, from the book’s site (www.manning.com/gsmith2). To view the latest issues and check out the latest sources, see the GitHub project (https://github.com/GrailsInAction/graina2) for details.

 	

 It’s time to start your world-changing quotation app, and all Grails projects begin the same way. First, find a directory
 to work in. Then create the application:

 grails create-app qotd
cd qotd

 Well done. You’ve created your first Grails application. You’ll see that Grails created a qotd subdirectory to hold your application
 files. Change to that directory now, which is where you’ll stay for the rest of the chapter.

 Because you’ve done the hard work of building the application, it would be a shame not to enjoy the fruit of your labor. To
 run the app, enter:

 grails run-app

 Grails ships with a Tomcat plugin used to host your application during the development and testing lifecycle. When you run
 the grails run-app command, Grails compiles and starts your web application. When everything is ready to go, you’ll see a message like this
 on the console:

 Server running. Browse to http://localhost:8080/qotd

 This means it’s time to fire up your favorite browser and take your application for a spin: http://localhost:8080/qotd/. Figure 1.3 shows your QOTD application running in a browser.

 Figure 1.3. Your app is up and running.

 [image:]

 After you’ve taken in the home page, you can stop the application by pressing Ctrl-C or running grails stop-app from another terminal/command prompt. Alternatively, you can leave the application running and issue Grails commands from
 a separate terminal/command prompt in your OS.

 	

 Running on a custom port (not 8080)

 If port 8080 isn’t for you (because you have another process, such as Tomcat, running), you can customize the port that the
 Grails embedded application server runs on using the -Dserver.port command-line argument. If you want to run Grails on port 9090, for instance, you could run your application like this:

 grails -Dserver.port=9090 run-app

 If you decide to always run a particular application on a custom port, you can create a custom /grails-app/conf/BuildConfig.groovy
 file with an entry for grails.server. port.http=9090 to make your custom port the default. Or make a system-wide change by editing the global $HOME/.grails/settings.groovy file.
 You’ll learn more about these files in chapter 15.

 	

 1.3.1. Writing a controller

 You have your application built and deployed, but you’re short on an engaging user experience. Now is a good time to learn
 that Grails handles interaction with users via a controller.

 Controllers are at the heart of every Grails application. They take input from your user’s web browser, interact with your
 business logic and data model, and route the user to the correct page to display. Without controllers, your web app would
 be static pages.

 Like most parts of a Grails application, you can let Grails generate a skeleton controller by using the Grails command line.
 Let’s create a simple controller for handling quotes:

 grails create-controller quote

 Grails will respond with a list of the artifacts it generated:

 | Created file grails-app/controllers/qotd/QuoteController.groovy
| Created file grails-app/views/quote
| Created file test/unit/qotd/QuoteControllerSpec.groovy

 	

 A word on package naming

 If you omit the package name for a Grails artifact, it will default to the name of the app (in the previous example, if you
 do a grails create-controller quote, it creates an artifact called /grails-app/qotd/QuoteController.groovy).

 For production code, the Grails community has settled on the standard Java-based convention where your artifacts should be
 created with your org domain name. Grails lets you change the default package name for your app in /grails-app/conf/Config.groovy.
 For this chapter’s example, you might choose to change the setting in that file to read:

 grails.project.groupId = "com.grailsinaction.qotd"

 With such a setting in play, when you do grails create-controller quote it will create the class in /grails-app/controller/com/grailsinaction/qotd/QuoteController.groovy. It’s a great key saver
 change to make at the start of a new Grails project. To prevent surprises for people picking up this chapter halfway through,
 we’re going to stick with the default package name of qotd for now.

 	

 Grails creates this skeleton controller in /grails-app/controllers/qotd/Quote-Controller.groovy. You’ll notice that Grails
 sorted out the capitalization for you. Here is the skeleton:

 package qotd

class QuoteController {
 def index() { }
}

 Not so exciting, is it? The previous index entry is a Grails action, which we’ll return to in a moment. For now, let’s add a home action that sends text back to the browser:

 package qotd

class QuoteController {
 def index() { }

 def home() {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

 Grails provides the render() method to send content directly back to the browser. This will become more important when you dip your toes into Ajax waters,
 but for now let’s use it to deliver your “Real Programmers” heading.

 How do you invoke your action in a browser? If this were a Java web application, the URL to get to it would be declared in
 a configuration file, but not in Grails. This is where the convention over configuration pattern comes in.

 Ruby on Rails introduced the idea that XML configuration (or configuration of any sort) can be avoided if the framework makes
 opinionated choices for you about how things fit together. Grails embraces the same philosophy. Because your controller is
 called QuoteController, Grails will expose its actions over the URL /qotd/quote/your-action. Figure 1.4 gives a visual breakdown of how URLs translate to Grails objects.

 Figure 1.4. How URLs translate to Grails objects

 [image:]

 In the case of our hello action, we need to navigate to: http://localhost:8080/qotd/quote/home.

 Figure 1.5 shows your brand-new application running without a single line of XML.

 Figure 1.5. Adding your functionality

 [image:]

 If you’re wondering about that index() routine in the skeleton controller code, that’s the method called when the user omits the action name. If you decide all
 references to /qotd/quote/ should end up at /qotd/quote/home, you need to tell Grails about that with a default action such
 as the one in the following listing.

 Listing 1.1. Handling redirects

 package qotd

class QuoteController {

 static defaultAction = "home"

 def home() {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

 The app looks good so far, but having that HTML embedded in your source is nasty. Now that you’ve learned about controllers,
 it’s time to get acquainted with views.

 1.3.2. Generating an HTML page: the view

 Embedding HTML inside your code is always a bad idea. Not only is it difficult to read and maintain, but your graphic designer
 will need access to your source code to design the pages. The solution is to move your display logic to a separate file known
 as the view. Grails makes it simple.

 If you’ve done any work with Java web applications, you’ll be familiar with Java-Server Pages (JSP). JSPs render HTML to the
 user of your web application. Grails applications make use of Groovy Server Pages (GSP). The concepts are similar.

 We’ve already discussed the convention over configuration pattern, and views take advantage of the same stylistic mindset.
 If you create your view files in the right place, everything will hook up without a single line of configuration.

 Begin by implementing your random action as shown in the following code. We’ll handle the view next.

 def random() {
 def staticAuthor = "Anonymous"
 def staticContent = "Real Programmers don't eat much quiche"
 [author: staticAuthor, content: staticContent]
}

 What’s with those square brackets? That’s how the controller action passes information to the view. If you’re an old-school
 servlet programmer, think of it as request-scoped data. The [:] operator in Groovy creates a Map, so you’re passing a series of key/value pairs through to your view.

 Where does your view fit into this, and where will you put your GSP file so that Grails can find it? Use the naming conventions
 you used for the controller, coupled with the name of your action, and place the GSP in /grails-app/views/quote/random.gsp. If you follow that pattern, no configuration is required.

 Let’s create a GSP file that references your Map data, as shown in the following code:

 <html>
<head>
 <title>Random Quote</title>
</head>
<body>
 <q>${content}</q>
 <p>${author}</p>
</body>
</html>

 The ${content} and ${author} format is known as the GSP expression language, and if you’ve worked with JSPs, it will be old news to you. If you haven’t
 worked with JSPs, you can think of those ${} tags as a way of displaying the contents of a variable. Let’s fire up the browser and give it a whirl. Figure 1.6 shows your new markup in action.

 Figure 1.6. Your view in action

 [image:]

 1.3.3. Adding style with Grails layouts

 You’ve now written your piece of backend functionality, but the output isn’t engaging—no gradients, no giant text, no rounded
 corners. Everything looks mid-90s.

 You think it’s time for CSS, but let’s plan ahead. If you mark up random.gsp with CSS, you’re going to have to add those links
 to the header of every page in the app. Grails has a better way: layouts.

 Layouts give you a way to specify layout templates for certain parts of your application. For example, you may want all of
 the quote pages (random, by author, by date) styled with a common masthead and navigation links; only the body content should
 change. To do this, let’s mark up your target page with IDs you can use for your CSS:

 <html>
<head>
 <title>Random Quote</title>
</head>
<body>
 <div id="quote">
 <q>${content}</q>
 <p>${author}</p>
 </div>
</body>
</html>

 Now, how do you apply those layout templates (masthead and navigation) we discussed earlier? Like everything else in Grails,
 layouts follow a convention over configuration style. To have all your QuoteController actions share the same layout, create a file called /grails-app/views/layouts/quote.gsp. Grails doesn’t have shortcuts for
 layout creation, so you’ve got to roll this one by hand. The following listing shows your attempt at writing a layout.

 Listing 1.2. Adding a layout

 [image:]

 Let’s break down the use of angle brackets. Because this is a template page, the contents of your target page (random.gsp)
 will be merged with this template before you send any content back to the browser. Under the hood, Grails uses SiteMesh, the
 popular Java layout engine, to do the merging for you. Figure 1.7 shows the merge process.

 Figure 1.7. SiteMesh decorates a raw GSP file with a standard set of titles and sidebars.

 [image:]

 To make your layout template in listing 1.2 work, it needs a way to access elements of the target page (when you merge the title of the target page with the template,
 for example). It’s time to introduce you to taglibs because access is achieved through Grails’s template taglibs.

 If you’ve never seen a tag library (taglib) before, think of them as groups of custom HTML tags that can execute code. In
 listing 1.2, you took advantage of the <g:external>, <g:layoutHead>, and <g:layoutBody> tags. When the client’s browser requests the page, Grails replaces those tag calls with real HTML, and the contents of the
 HTML will depend on what the individual tag generates. For instance, that <g:external> tag [image:] will generate an HTML <link> element that points to the URL for snazzy.css.

 In the title block of the page, you include your QOTD title and follow it with chevrons (>>) represented by the HTML character code », and add the title of the target page itself [image:].

 After the rest of the head tags, you use a <g:layoutHead> tag to merge the contents of the HEAD section of any target page [image:]. This can be important for search engine optimization (SEO) techniques, where individual target pages might contain their
 own META tags to increase their Google-ability.

 With your head metadata in place, it’s time to lay out any other HEAD-bound resources that your page might need in the head section with a <g:layoutResources> tag [image:]. This is any other CSS or JavaScript that the Grails resources infrastructure requires in the HEAD section of this page. More on this magic in the Advanced UI chapter!

 Finally, you get to the body of the page. You output your common masthead <div> to get your Web 2.0 gradient and cute icons, and then you call <g:layoutBody> to render the BODY section of the target page [image:].

 Refresh your browser to see how you’re doing. Figure 1.8 shows your styled page.

 Figure 1.8. QOTD with some funky CSS skinning

 [image:]

 	

 Getting the CSS and artwork

 If you’re following along step-by-step at your workstation, you’ll be keen to grab the CSS and image files that go along with
 the styling shown previously (so your local app can look the same). You can grab the few files you need (/web-app/css/snazzy.css
 and /web-app/images/) directly from the chapter 1 source code available for download from www.manning.com/gsmith2 or directly from the current source code on GitHub (https://github.com/GrailsInAction/graina2).

 	

 Your app is looking good. Notice how you’ve made no changes to your relatively bland random.gsp file. Keeping view pages free
 of cosmetic markup significantly reduces your maintenance overhead. And if you need to change your masthead, add more JavaScript
 includes, or incorporate a few additional CSS files, do it all in one place: the template.

 Fantastic. You’re up and running with a controller, view, and template. But things are still static in the data department.
 You’re overdue to learn how Grails handles information in the database. When you have that under your belt, you can circle back and implement a real random action.

1.4. Creating the domain model

 You’ve begun your application, and you can deploy it to your testing web container. But let’s not overstate your progress—Google
 isn’t about to buy you yet. Your app lacks a certain pizzazz. It’s time to add interactivity allowing users to add new quotations
 to the database. To store those quotations, you’ll need to learn how Grails handles the data model.

 Grails uses the term “domain class” to describe objects that can be persisted to the database. In your QOTD app, you’re going
 to need a few domain classes, but let’s start with the absolute minimum: a domain class to hold your quotations.

 Let’s create a Quote domain class:

 grails create-domain-class quote

 You’ll see that Grails responds by creating a fresh domain class. Here’s a matching unit test to get you started:

 | Created file grails-app/domain/qotd/Quote.groovy
| Created file test/unit/qotd/QuoteSpec.groovy

 In your Grails application, domain classes always appear under the /grails-app/domain. Look at the skeleton class Grails created
 in /grails-app/domain/qotd/Quote.groovy:

 package qotd

class Quote {

 static constraints = {
 }
}

 That’s uninspiring as it appears now. You’ll need fields in your data model to hold the various elements for each quote. Let’s
 beef up your class to hold the content of the quote, the name of the author, and the date the entry was added:

 package qotd

class Quote {
 String content
 String author
 Date created = new Date()

 static constraints = {
 }
}

 Now that you’ve got your data model, you need to create your database schema, right? Wrong. Grails does all that hard work
 for you behind the scenes. Based on the definitions of the types in the previous code sample, and by applying simple conventions,
 Grails creates a quote table, with varchar fields for the strings, and Date fields for the date. The next time you run grails run-app, your data model will be created on the fly.

 But how will it know which database to create the tables in? It’s time to configure a data source.

 1.4.1. Configuring the data source

 Grails ships with an in-memory database out of the box, so if you do nothing, your data will be safe and sound in volatile
 RAM. The idea of that makes most programmers a little nervous, so let’s look at how to set up a more persistent database.

 In your /grails-app/conf/ directory, you’ll find a file named DataSource.groovy. This is where you define the data source
 (database) that your application will use. You can define different databases for your development, test, and production environments.
 When you run grails run-app to start the local web server, it uses your development data source. The following code shows an extract from the standard
 DataSource.groovy file, which shows the default data source.

 [image:]

 You have two issues here. The dbCreate strategy tells Grails to drop and recreate your database on each run. This is probably not what you want, so let’s change
 that to update. This change lets Grails know to leave your database table contents alone between runs (but we give it permission to add columns
 if it needs to).

 The second issue relates to the URL—it’s using an H2[2] in-memory database. That’s fine for test scripts, but not for product development. Let’s change it to a file-based version
 of H2 so that you have real persistence.

 2 H2 (the Java SQL database) database engine, www.h2database.com.

 The updated code is shown here:

 [image:]

 Now that you have a database that persists your data, let’s populate it with sample data.

 1.4.2. Exploring database operations

 You haven’t done any work on your UI yet, but it would be great to save and query entries in your quotes table. To do this
 for now you’ll use the Grails console—a small GUI application that starts your application outside a web server and gives
 you a console to issue Groovy commands.

 You can use the grails console command to tinker with your data model before your app is ready to roll. When you issue this command, your QOTD Grails application
 is bootstrapped, and the console GUI appears, waiting for you to enter code. Figure 1.9 shows the process of saving a new quote to the database via the console.

 Figure 1.9. The Grails console lets you run commands from a GUI.

 [image:]

 For your exploration of the data model, it would be nice to create and save those Quote objects. Type the following into the console window, then click the Run button (at the far right of the toolbar):

 new qotd.Quote(author: 'Larry Wall',
 content: 'There is more than one method to our madness.').save()

 The bottom half of the console will let you know you’re on track:

 Result: qotd.Quote : 1

 Where did that save() routine come from? Grails automatically endows domains with certain methods. Let’s add two more entries to get a taste of
 querying:

 new qotd.Quote(author: 'Chuck Norris Facts',
[image:] content: 'Chuck Norris always uses his own design patterns,
[image:] and his favorite is the Roundhouse Kick.').save()

new qotd.Quote(author: 'Eric Raymond',
[image:] content: 'Being a social outcast helps you stay concentrated
[image:] on the really important things, like thinking and hacking.').save()

 Let’s use another dynamic method, count(), to make sure that your data was saved to the database correctly (we show the script output after >>>):

 println qotd.Quote.count()
>>> 3

 Looks good so far. It’s getting tedious typing in that qotd package name before each command, so let’s put an import into your script to cut down on the boilerplate and get on with
 business:

 import qotd.*
println Quote.count()
>>> 3

 Much clearer. Next it’s time to roll up your sleeves and query your Quote database. To simplify database searches, Grails introduces special query methods on your domain class called dynamic finders. These special methods use the names of fields in your domain model to make querying as simple as this:

 import qotd.*
def quote = Quote.findByAuthor("Larry Wall")
println quote.content
>>> There is more than one method to our madness.

 Now that you know how to save and query, it’s time to get your web application running. Exit the Grails console, and you’ll
 learn how to get those quotes onto the web.

1.5. Adding UI actions

 Let’s get something on the web. To begin, you’ll need an action on your Quote-Controller to return a random quote from our database. You’ll work out the random selection later—for now, let’s cut corners and fudge
 your sample data:

 def random() {
 def staticQuote = new Quote(author: "Anonymous",
 content: "Real Programmers don't eat much Quiche")
 [quote : staticQuote]
}

 You’ll also need to update your /grails-app/views/quote/random.gsp file to use your new Quote object:

 <q>${quote.content}</q>
<p>${quote.author}</p>

 You’ve got a nicer data model, but nothing else is new. This is a good time to refresh your browser and see your static quote
 passing through to the view. Give it a try to convince yourself it’s working.

 Now that you have a feel for passing model objects to the view, and now that you know enough querying to be dangerous, let’s
 rework your action in the following listing to implement a real random database query.

 Listing 1.3. A database-driven random

 [image:]

 With your reworked random action, you’re starting to take advantage of real database data. The list() method [image:] returns the complete set of Quote objects from the quote table in the database and populates your allQuotes collection. If the collection has entries, select a random one [image:] based on an index into the collection; otherwise, use a static quote [image:]. With the heavy lifting done, return a randomQuote object to the view in a variable called quote [image:], which you can access in the GSP file.

 Now that you’ve got your QOTD random feature implemented, let’s head back to http://localhost:8080/qotd/quote/random to see
 it in action. Figure 1.10 shows your random feature in action.

 Figure 1.10. Your random quote feature in action

 [image:]

 1.5.1. Scaffolding: adding rocket fuel

 You’ve done all the hard work of creating your data model. Now you need to enhance your controller to handle all the CRUD
 actions to let users put their own quotes in the database.

 That’s if you want to do a slick job of it. If you want to get up and running quickly, Grails offers a fantastic shortcut
 called scaffolding. Scaffolds dynamically implement controller actions and views for the common things you’ll want to do when adding CRUD actions
 to your data model.

 How do you scaffold your screens for adding and updating quote-related data? It’s a one-liner for the QuoteController, as shown in following code.

 class QuoteController {
 static scaffold = true
 // our other stuff here...
}

 That’s it. When Grails sees a controller marked as scaffold = true, it creates controller actions and GSP views on the fly. If you’d like to see it in action, head to http://localhost:8080/qotd/quote/index
 and you’ll find something like the edit page shown in figure 1.11. (Note that this used to be called in the list() action if you come across code written in Grails 2.2 and earlier.)

 Figure 1.11. The index() scaffold in action

 [image:]

 Click the New Quote button, and you’re up and running. You can add your new quote as shown in figure 1.12.

 Figure 1.12. Adding a quote has never been easier.

 [image:]

 See how much power you get for free? The generated scaffolds aren’t tidy enough for your public-facing sites, but they’re
 absolutely fantastic for your admin screens and perfect for tinkering with your database during development (where you don’t want the overhead of mocking together multiple
 CRUD screens).

 1.5.2. Surviving the worst-case scenario

 Your model looks good and your scaffolds are great, but you’re still missing pieces to make things more robust. You don’t
 want users putting dodgy stuff in your database, so let’s explore validation.

 Validation is declared in your Quote object, so you need to populate the constraints closure with all the rules you’d like to apply. For starters, make sure that users always provide a value for the author
 and content fields, as shown in the following code:

 [image:]

 These constraints tell Grails that neither author nor content can be blank (neither null nor 0 length). If you don’t specify a size for String fields, they’ll be defined VARCHAR(255) in your database. That’s probably fine for author fields, but your content may expand on that. That’s why you added a maxSize constraint.

 Entries in the constraints closure also affect the generated scaffolds. (The ordering of entries in the constraints closure also affects the order of the fields in generated pages.) Fields with constraint sizes greater than 255 characters
 are rendered as HTML <textarea> elements rather than <input> fields. Figure 1.13 shows how error messages display when constraints are violated.

 Figure 1.13. When constraints are violated, error messages appear in red.

 [image:]

1.6. Improving the architecture

 Spreading logic across your controller actions is all well and good. It’s easy to track down what goes where in your small
 app, and maintenance isn’t a concern right now. But as your quotation app grows, you’ll find that your structure gets more
 complex. You’ll want to reuse logic in different controller actions and even across controllers. It’s time to tidy up your
 business logic, and the best way to do that in Grails is via a service.

 Let’s create your service and learn by doing:

 grails create-service quote

 which echoes back the familiar Grails artifact creation messages to let you know it’s done:

 | Created file grails-app/services/qotd/QuoteService.groovy
| Created file test/unit/qotd/QuoteServiceSpec.groovy

 This command creates a skeleton quote service in /grails-app/services/qotd/Quote-Service.groovy:

 package qotd

import grails.transaction.Transactional

@Transactional
class QuoteService {
 def serviceMethod() {
 }
}

 With your service created, let’s rehome your random quote business logic into its own service method, as shown in the following
 listing.

 Listing 1.4. Beefing up service

 package qotd

import grails.transaction.Transactional

@Transactional
class QuoteService {

 def getStaticQuote() {
 return new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat much quicheQuiche")
 }

 def getRandomQuote() {
 def allQuotes = Quote.list()
 def randomQuote = null
 if (allQuotes.size() > 0) {
 def randomIdx = new Random().nextInt(allQuotes.size())
 randomQuote = allQuotes[randomIdx]
 } else {
 randomQuote = getStaticQuote()
 }
 return randomQuote
 }
}

 Now that your service is implemented, how do you use it in your controller? Again, conventions come into play. You’ll add
 a new field to your controller called quote-Service, and Grails will inject the service into the controller:

 class QuoteController {
 static scaffold = true
 def quoteService
 // other code omitted
 def random = {
 def randomQuote = quoteService.getRandomQuote()
 [quote : randomQuote]
 }
}

 Doesn’t that feel much tidier? Your QuoteService looks after all the business logic related to quotes, and your QuoteController helps itself to the methods it needs. If you have experience with Inversion of Control (IoC) containers, such as Spring or
 Google Guice, you’ll recognize this pattern of application design as dependency injection (DI). Grails takes DI to a new level
 by using the convention of variable names to determine what gets injected. But you have yet to write a test for your business
 logic, so now’s the time to explore Grails’s support for testing.

 	

 Services pre-Grails 2.3

 The @Transactional annotation is new to Grails 2.3. In earlier versions, services were transactional by default. Don’t try
 to add the annotation to your services if you are using one of those earlier versions.

 	

 1.6.1. Your Grails test case

 Testing is a core part of today’s agile approach to development, and Grails’s support for testing is wired right into the
 framework. Grails is so insistent about testing that when you created your QuoteService, Grails automatically created a skeleton unit-test case in /test/unit/qotd/QuoteServiceSpec.groovy to encourage you to test.

 Grails tests are written in a testing framework called Spock. You’ll learn the basics of Spock testing in chapter 2, where we give you a proper introduction to the framework. For now, just consider Spock a “JUnit-like” testing framework
 where tests follow a more formal given/when/then structure.

 	

 Tests pre-Grails 2.3

 Versions of Grails prior to 2.3 created standard JUnit tests rather than Spock ones. Chapter 2 shows you how to use Spock with those earlier versions.

 	

 Let’s look at the skeleton test case that Grails generated.

 package qotd

import grails.test.mixin.TestFor
import spock.lang.Specification

/**
 * See the API for {@link grails.test.mixin.services.ServiceUnitTestMixin} for usage instructions
 */
@TestFor(QuoteService)
class QuoteServiceSpec extends Specification {

 def setup() {
 }

 def cleanup() {
 }

 void "test something"() {
 }
}

 It’s not much, but it’s enough to get started. The same convention over configuration rules apply to tests, so let’s beef
 up your QuoteServiceSpec case to inject the service that’s under test as shown in the following listing.

 Listing 1.5. Adding real tests

 [image:]

 Not much can go wrong with the getStaticQuote() routine, but let’s give it a workout for completeness.

 The Grails testing framework makes heavy use of Groovy Mixins at runtime (you’ll learn about these in chapter 2) to decorate your test class with magic handles. In this example we’ve declared this test a @TestFor(QuoteService) [image:]. This [image:] tells Grails to automatically inject a service object to the test scope that points to an instance of a real QuoteService object.

 To run your tests, execute grails test-app QuoteServiceSpec. If you omit the test name, test-app runs all the tests, but in this case you’re after only your newly minted test case.
 You should see something like the following results:

 | Tests PASSED - view reports in target\test-reports

 This code shows that your tests run fine. Grails also generates an HTML version of your test results, which you can view by
 opening /target/test-reports/html/index.html in a web browser. From there you can visually browse the entire project’s test
 results and drill down to individual tests to see what failed and why, as shown in figure 1.14.

 Figure 1.14. HTML reports from the unit test run

 [image:]

 You’ll learn how to amp up your test coverage in chapter 9, but for now you have a test up and running, and you know how to view the output.

 1.6.2. Going Web 2.0: Ajaxing the view

 Our sample application wouldn’t be complete without adding a little Ajax (Asynchronous JavaScript and XML) secret sauce to
 spice things up. If you don’t know Ajax, it’s a way of updating portions of a web page using JavaScript. Use Ajax to make
 your web application more responsive by updating the quote without having to reload the masthead banners and other page content.
 It also gives you a chance to look at Grails tag libraries.

 Let’s Ajaxify your random.gsp view:

 	Add the Ajax library to the <head> element.
 You’ll use jQuery, but Grails also lets you use Yahoo! Interface Library (YUI), Dojo, or others:

 <head>
 <title>Random Quote</title>
 <g:javascript library="jquery" />
</head>

 	In the page body of random.gsp, add a menu section that allows the user to display a new quote or navigate to the admin screens.
 You’ll use Grails’s taglibs to create both your Ajax link for refreshing quotes and your standard link for the admin interface.
 The following code shows your new menu HTML. Add this snippet before the <div> tag that hosts the body of the page:

 <ul id="menu">

 <g:remoteLink action="ajaxRandom" update="quote">
 Next Quote
 </g:remoteLink>

 <g:link action="index">
 Admin
 </g:link>

OEBPS/01fig04.jpg
/gotd/quote/home

FAURARN

Application Controller Action
iy e ey

OEBPS/01fig05_alt.jpg
€ - € [© localhost3080/qotd/quote/nome.

Real Programmers do not eat Quiche

OEBPS/01fig02.jpg
Install JDK

http://www.oracle.com/technetwork/javaljavase/downloads/

¢

http://www.grails.org/

Customize environment

GRAILS_HOME-=/opt/grails

Add Grails to your PATH
PATH=$GRAILS_HOME/bin;$PATH

Test your installation

grails help

OEBPS/01fig03_alt.jpg
Wekcome to Grais
oy s st 0 it b A e s
P S s ——
oty o St 1 f st ity S 0
ekt kot e i i

v Consonars:
[rrvrnes———

OEBPS/0ivfig02.jpg

OEBPS/01fig01_alt.jpg
Agile
philosophy

Conventions
over

configuration

Rock-solid
foundations

Scaffoding
and

templating

Java
integration

Incredible
community

Productivity

ethos

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/0ivfig01.jpg

OEBPS/01fig06_alt.jpg
() Random Quote
€ - C | ® localhost8080/qotd/quote/random

“Real Programmers don't eat much quiche”
Anonymous

OEBPS/01fig07_alt.jpg
Render
age in
rowser

p:
bl

wopuey/ajonb/ddeAw;/.diy

A

‘” APP'Y
decorator

ajonbjnoAey/smain/dde-sjieit;

Raw .gsp

file

ds
B

&

wiopuey/ajonb/smai/dde-siieiby

OEBPS/015fig01_alt.jpg
SUENE o
S Merges ttle from

<title>QOTD » <g:layoutTitle/></title> target page
<gsexternal dir=tcss® file="snazzy.css"/> s

<g:layouttead /> < link to CSS file
<r:layoutResources />
</head> Merges i JavaScript, €SS, Merges head elements

<body> and other resources from target page
<div id=rheader">
<g:ing dir-"images® file="logo.png" alt="logo"/>
</aivs
<g:layoutBody /> 1 Merges body elements
</body> © from target page

o

OEBPS/01fig11_alt.jpg
€ 5 C A0 loabessosnorsereine %

Author Content Crestea

2140213000000
Est

Laniias Threismorehan nemaodio s macoess.

2140213000000
est

Gkl Ghick Mo aays s s own desin patens, and s et s o Runchouse
Facs o

EocRaming Bonga socalodcastheps oty concertaledon e ealy mporant g, e 2014021300000
kg andackrg est

OEBPS/cover.jpg
SECOND EDITION

Glen Smith
Peter Ledbrook

Forewomos Dierk Konig

| | FTITHN

OEBPS/01fig10_alt.jpg
Q010

Quotes for Real Programmers

"Chuck Norris always uses his own design
patterns, and his favorite is the Roundhouse
Kick"

Chuck Norris Facts

OEBPS/024fig01_alt.jpg
package qotd

class Quote {
String content
String author
Date created = new Date()

static comstraints - {
author (blan} alse)
content (maxSize:1000,

blank:false)

Enforces data
validation

OEBPS/01fig12_alt.jpg
© crete Qute
€ 5 C O localnosta0c

€YGRAILS

£ Home 21 Quote List

Create Quote

Autnor | Glen Smith

. Yes!dolove nul poiters

3 My 5] 2012

& Create

OEBPS/028fig01_alt.jpg
!

package gotd

import grails.test.mixin.TestFor
import spock.lang.Specification

Type of service
@TestFor (QuoteService) oonjeet
class QuoteServiceSpec extends Specification {
void "static quote service always returns quiche quote®() {
when:
Quote staticQuote - service.getStaticQuote() —
then: dynamically at runtime

staticQuote.author
staticQuote.content

"Anonymous
"Real Programmers Don't eat much quicheQuiche"

OEBPS/01fig13_alt.jpg
€ > C (O localnosta0s0/aote/auote/create

2 Home 9 Quotelist

Create Quote

Author + | Glen Smith

Gontent * []

Greated * | I Please il outthisfied. 2[2]

OEBPS/01fig14_alt.jpg
Y I S\eigni

A singl est executd wibouta sl e or i

@ Unit Test Results - Summary i et

OEBPS/022fig01_alt.jpg
def random() { Obtains list
def allQuotes = Quote.list () of quotes

def randomQuote Selects

if (allQuotes.size() > 0) { random

def randomldx = new Random() .nextInt(allQuotes.size()) Auate

randonQuote = allguotes [randonid
het heeet ! Generates

} else {
randonQuote = new Quote (author: "Anonymous*, default quot

content: "Real Programmers Don't eat much Quiche)

}

{ quote : randonQuote] Passes quote
b o ey

OEBPS/enter.jpg

OEBPS/r-1.jpg

OEBPS/r-2.jpg
2

OEBPS/r-4.jpg
(4]

OEBPS/r-3.jpg

OEBPS/01fig08_alt.jpg
Q010 Random Quste
€ = € Olocahost

Q010

Quotes for Real Programmers

"Real Programmers don't eat much quiche"

Anonymous

OEBPS/r-5.jpg

OEBPS/019fig02_alt.jpg
environments {
development Preserves tables
datasource { between runs

dbCreate = "update"
url = "jdbc:h2:devDb; MVCC=TRUE; LOCK_TIMEOU

= DB_CLOSE_ON_EXIT-FALSE"
) T Specifies fle-based

0000;

i database

OEBPS/019fig01_alt.jpg
environments {

development { Recreates database

aatasource { on every run
dbCreate = "create-drop" <
= url = " jdbc:h2:mem:devDb;NVCC=TRUE; LOCK_TIMEOUT=10000;
iDB_CLOSE_ON_EXIT=FALSE"
) T Specifies an in-memory
) database

OEBPS/01fig09_alt.jpg
'Elbiﬂll)ll'l History Script Help.
| EEEIEEIR

1 new qotd.Quote(author: ‘Larry Wall',
2 content: 'There is more than one method to our madness.').save()
3

groovy> new qotd.Quote(autnor: ‘Larry Wall’,
sroovy> content: There is more than one method to our madness.').save()

Result: GotdiQuote 1

