

 D3.js in Action, Second Edition: Data visualization with JavaScript

 Elijah Meeks

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Susanna Kline
Technical development editor: James Womack
Project editors: Kevin Sullivan and Janet Vail
Copyeditor: Katie Petito
Proofreader: Corbin Collins
Technical proofreader: Jon Borgman
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617294488

 Printed in Canada

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. D3.js fundamentals

 Chapter 1. An introduction to D3.js

 Chapter 2. Information visualization data flow

 Chapter 3. Data-driven design and interaction

 Chapter 4. Chart components

 Chapter 5. Layouts

 2. Complex data visualization

 Chapter 6. Hierarchical visualization

 Chapter 7. Network visualization

 Chapter 8. Geospatial information visualization

 3. Advanced techniques

 Chapter 9. Interactive applications with React and D3

 Chapter 10. Writing layouts and components

 Chapter 11. Mixed mode rendering

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. D3.js fundamentals

 Chapter 1. An introduction to D3.js

 1.1. What is D3.js?

 1.2. How D3 works

 1.2.1. Data visualization is more than charts

 1.2.2. D3 is about selecting and binding

 1.2.3. D3 is about deriving the appearance of web page elements from bound data

 1.2.4. Web page elements can now be divs, countries, and flowcharts

 1.3. The power of HTML5

 1.3.1. The DOM

 1.3.2. Coding in the console

 1.3.3. SVG

 1.3.4. CSS

 1.3.5. JavaScript

 1.3.6. ES2015 and Node

 1.4. Data standards

 1.4.1. Tabular data

 1.4.2. Nested data

 1.4.3. Network data

 1.4.4. Geographic data

 1.4.5. Raw data

 1.4.6. Objects

 1.5. Infoviz standards expressed in D3

 1.6. Your first D3 app

 1.6.1. Hello world with divs

 1.6.2. Hello World with circles

 1.6.3. A conversation with D3

 1.7. Summary

 Why learn D3?

 Chapter 2. Information visualization data flow

 2.1. Working with data

 2.1.1. Loading data

 2.1.2. Formatting data

 2.1.3. Further modifying data

 2.1.4. Measuring data

 2.2. Data-binding

 2.2.1. Selections and binding

 2.2.2. Accessing data with inline functions

 2.2.3. Integrating scales

 2.3. Data presentation style, attributes, and content

 2.3.1. Visualization from loaded data

 2.3.2. Setting channels

 2.3.3. Enter, update, merge, and exit

 2.4. Summary

 Chapter 3. Data-driven design and interaction

 3.1. Project architecture

 3.1.1. Data

 3.1.2. Resources

 3.1.3. Images

 3.1.4. Style sheets

 3.1.5. External libraries

 3.2. Interactive style and DOM

 3.2.1. Events

 3.2.2. Graphical transitions

 3.2.3. DOM manipulation

 3.2.4. Using color wisely

 3.3. Pregenerated content

 3.3.1. Images

 3.3.2. HTML fragments

 3.3.3. Pregenerated SVG

 3.4. Summary

 D3.js in the real world

 Bocoup for Measurement Lab

 Chapter 4. Chart components

 4.1. General charting principles

 4.1.1. Generators

 4.1.2. Components

 4.1.3. Layouts

 4.2. Creating an axis

 4.2.1. Plotting data

 4.2.2. Styling axes

 4.3. Complex graphical objects

 4.4. Line charts and interpolations

 4.4.1. Drawing a line from points

 4.4.2. Drawing many lines with multiple generators

 4.4.3. Exploring line interpolation

 4.5. Complex accessor functions

 4.6. Using third-party D3 modules to create legends

 4.7. Summary

 Chapter 5. Layouts

 5.1. Histograms

 5.1.1. Drawing a histogram

 5.1.2. Interactivity

 5.1.3. Drawing violin plots

 5.2. Pie charts

 5.2.1. Drawing the pie layout

 5.2.2. Creating a ring chart

 5.2.3. Transitioning

 5.3. Stack layout

 5.4. Plugins to add new layouts

 5.4.1. Sankey diagram

 5.4.2. Word clouds

 5.5. Summary

 D3.js in the real world

 Adam Pearce Graphics Editor, New York Times

 2. Complex data visualization

 Chapter 6. Hierarchical visualization

 6.1. Hierarchical patterns

 6.2. Working with hierarchical data

 6.2.1. Hierarchical JSON and hierarchical objects

 6.2.2. D3.nest

 6.2.3. D3.stratify

 6.3. Pack layouts

 6.3.1. Drawing the circle pack

 6.3.2. When to use circle packing

 6.4. Trees

 6.4.1. Drawing a dendrogram

 6.4.2. Radial tree diagrams

 6.4.3. d3.cluster vs d3.tree

 6.4.4. When to use dendrograms

 6.5. Partition

 6.5.1. Drawing an icicle chart

 6.5.2. Sunburst: radial icicle chart

 6.5.3. Flame graph

 6.5.4. When to use the partition layout

 6.6. Treemaps

 6.6.1. Building

 6.6.2. Filtering

 6.6.3. Radial treemap

 6.6.4. When to use treemaps

 6.7. Summary

 D3.js in the real world

 Nadieh Bremer Data Visualization Consultant

 Chapter 7. Network visualization

 7.1. Static network diagrams

 7.1.1. Network data

 7.1.2. Adjacency matrix

 7.1.3. Arc diagram

 7.2. Force-directed layout

 7.2.1. Playing with forces

 7.2.2. Creating a force-directed network diagram

 7.2.3. SVG markers

 7.2.4. Network measures

 7.2.5. Force layout settings

 7.2.6. Updating the network

 7.2.7. Removing and adding nodes and links

 7.2.8. Manually positioning nodes

 7.2.9. Optimization

 7.3. Summary

 D3.js in the real world

 Shirley Wu Data Visualization Consultant

 Chapter 8. Geospatial information visualization

 8.1. Basic mapmaking

 8.1.1. Finding data

 8.1.2. Drawing points on a map

 8.1.3. Projections and areas

 8.1.4. Interactivity

 8.2. Better mapping

 8.2.1. Graticule

 8.2.2. Zoom

 8.3. Advanced mapping

 8.3.1. Creating and rotating globes

 8.3.2. Satellite projection

 8.4. TopoJSON data and functionality

 8.4.1. TopoJSON the file format

 8.4.2. Rendering TopoJSON

 8.4.3. Merging

 8.4.4. Neighbors

 8.5. Further reading for web mapping

 8.5.1. Tile mapping

 8.5.2. Transform zoom

 8.5.3. Canvas drawing

 8.5.4. Raster reprojection

 8.5.5. Hexbins

 8.5.6. Voronoi diagrams

 8.5.7. Cartograms

 8.6. Summary

 D3 in the real world

 Philippe Rivière journalist/programmer

 3. Advanced techniques

 Chapter 9. Interactive applications with React and D3

 9.1. One data source, many perspectives

 9.2. Getting started with React

 9.2.1. Why React, why not X?

 9.2.2. react-create-app: setting up your application

 9.2.3. JSX

 9.3. Traditional D3 rendering with React

 9.4. React for element creation, D3 as the visualization kernel

 9.5. Data dashboard basics

 9.6. Dashboard upgrades

 9.6.1. Responsiveness

 9.6.2. Legends

 9.6.3. Cross-highlighting

 9.7. Brushing

 9.7.1. Creating the brush

 9.7.2. Understanding brush events

 9.8. Show me the numbers

 9.9. Summary

 D3 in the real world

 Elijah Meeks Senior Data Visualization Engineer

 Chapter 10. Writing layouts and components

 10.1. Creating a layout

 10.1.1. Designing your layout

 10.1.2. Implementing your layout

 10.1.3. Testing your layout

 10.1.4. Extending your layout

 10.2. Writing your own components

 10.3. Loading sample data

 10.4. Linking components to scales

 10.5. Adding component labels

 10.6. Summary

 D3.js in the real world

 Susie Lu Senior Data Visualization Engineer

 Chapter 11. Mixed mode rendering

 11.1. Built-in canvas rendering with d3-shape generators

 11.2. Big geodata

 11.2.1. Creating random geodata

 11.2.2. Drawing geodata with canvas

 11.2.3. Mixed mode rendering techniques

 11.3. Big network data

 11.4. Optimizing xy data selection with quadtrees

 11.4.1. Generating random xy data

 11.4.2. xy brushing

 11.5. More optimization techniques

 11.5.1. Avoid general opacity

 11.5.2. Avoid general selections

 11.5.3. Precalculate positions

 11.6. Summary

 D3 in the real world

 Christophe Viau

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 Quickly gets you coding amazing visualizations.

 Ntino Krampis, PhD City University of New York

 A remarkable exploration of the world of dataviz possibilities with D3.

 Arun Noronha Directworks

 One of the most comprehensive books about data visualization I have ever read.

 Andrea Mostosi The Fool s.r.l.

 This book is required reading for anyone looking to get using D3. A mandatory introduction to a very complex and powerful library.

 Stephen Wakely Thomson Reuters

 Excellent guide which handholds the reader for fast-tracking D3.js expertise effectively.

 Prashanth Babu NTT DATA

 A remarkable exploration into the world of data viz possibilities with D3.

 Arun Noronha Directworks

 I found this book to be inspiring!

 M.B., Amazon reader

 A must-have book.

 Arif Shaikh Sony Pictures Entertainment

Preface

 When I wrote the first edition of D3.js in Action, I did it mostly as a way to learn the library. I knew D3 well enough to do cool things with it, but like many people, I didn’t know the breadth and depth of it, nor did I really understand the structure of layouts and generators and its other aspects. I agreed to write the book as a sort of graduate school in D3, to become an expert in the library, and to become better at data visualization more generally. I came at the second edition from a different perspective. I knew D3 as well as most anyone could, and the changes from V3 to V4, while significant, were straightforward enough to explain. But in the last two and a half years, I’ve been a professional software developer, and I better understand where D3 sits in an ecosystem of applications and libraries. This time I didn’t set out to write a book to learn D3; this time I set out to write a book to teach people how to use D3, not only on its own but in reference to other libraries and to JavaScript.

 One of the things I want to teach now is how to create impactful data visualization using D3 rather than pushing your limits on how to generate the most complex charts. That doesn’t mean I don’t get into the ambitious data visualization methods that D3 allows—I still explore how to create network data visualization and geospatial maps with D3—but it does mean the code and the text better reflect the needs of people who want to learn how to make effective data visualization more than they want to learn how to use D3.

 That’s why the second edition has sections on D3.js in the real world written by experts who’ve used D3 for analysis, storytelling, and journalism. That’s also why I pulled out the extraneous bits from the first edition that showed you how to use D3 like JQuery, and replaced those with more in-depth analysis of how to create hierarchical data visualization and how to integrate D3 with popular frameworks.

 The code is much cleaner in the second edition, which is as much a result of my own experience as it is a result of the advances in JavaScript in the last couple years. Because I’ve grown more professional in my practice doesn’t mean I’ve grown less ambitious in how I use D3 and how I think people should use D3. This is still a long book, and it has to be because it’s an exhaustive look at the ins and outs of an important library in an exciting and fast-growing field.

Acknowledgments

 I’d like to thank my wife, Hajra, who always inspires me.

 I’d also like to thank Manning Publications for a new opportunity to approach this topic. Everyone says you don’t make much money off technical books, but the success of the first edition of D3.js in Action was instrumental in advancing my career. Getting a chance to revisit my old code and my old text and update it for the new version of the library and the changes in the industry has been a boon. In the process, I was lucky enough to work with the same editor, Susanna Kline, who has been as sharp and insightful as she was before, and any success of this edition is in large part due to her. I’d also like to thank the rest of the team at Manning who made this process as smooth as it could possibly be.

 The following reviewers provided feedback on the manuscript at various stages of its development, and I thank them for their time and effort: Jonathan Rioux, Claudio Rodriguez, Felipe Vildoso-Castillo, Rohit Sharma, Scott McKissock, Iain Shigeoka, George Gaines, Michael Haller, Giancarlo Massari, Prashanth Babu, Piotr Kopszak, and Nat Luengnaruemitchai. Thanks also to technical editor James Womack and technical proofreader Jon Borgman for making me better at code and gently correcting me over and over again.

 Last, I’d like to thank Netflix, for its great culture, for the coworkers who have pushed me and made me better at the practical and professional aspects of software development, and specifically for letting me take off for a month to rewrite this book.

About this Book

 People come to data visualization, and D3 particularly, from three different areas. The first is traditional JavaScript development, where they assume D3 is a charting library or, less commonly, a mapping library. The second is more traditional software development, such as Java, where D3 is part of the transition into frontend or node development. The last area is a trajectory that involves statistical analysis using R, Python, or desktop apps.

 For all these folks, D3 represents a transition into two major new areas: web development and data visualization. I touch on aspects of both that may give readers more grounding in what I expect to be new and strange fields. Someone who’s intimately familiar with JavaScript may find that many of these subjects are already well understood, and others who know data visualization may well feel the same way about several of the general principles, such as graphical primitives.

 Although I do provide an introduction to D3, the focus of this book is on a more exhaustive explanation of key principles of the library. Whether you’re getting started with D3 or looking to develop more advanced skills, this book provides you with the tools you need to create whatever data visualization you can think of.

Roadmap

 This book is split into three parts. The first three chapters focus on the fundamentals of D3 and data visualization generally. You’ll see data-binding, loading data, and creating graphical elements from data in a variety of different ways. It also deals with scales, color, and other important aspects of data visualization. Some of the core technologies used by D3, such as JavaScript, CSS, and SVG, are explained throughout these chapters.

 The next four chapters use D3 in the ways we typically think of. Chapter 4 teaches you how to create simple graphics from data, such as line charts, axes, and boxplots. Chapter 5 gives an in-depth exploration of various traditional data visualization layouts such as pie charts, violin plots, and histograms as well as more exotic charts such as Sankey diagrams and word clouds. Chapter 6 is devoted to hierarchical data visualizations such as treemaps and dendrograms, suitable for nested data such as organizational charts or economic sectors of the stock market. Chapter 7 focuses on network data visualization, which might seem exotic, but is being used more and more in a variety of domains. Chapter 8 dives into the rich mapping capabilities in D3, and includes using TopoJSON to do interesting geodata manipulation in the browser.

 The last three chapters cover topics that can be considered deep dives into D3. Chapter 9 focuses on integrating D3 into another framework, in this case the popular React library. Chapter 10 teaches you about creating your own D3 layouts and components. Chapter 11 is all about optimizing data visualization for large datasets. Even if you don’t think you’ll ever use D3 in these ways, each of these chapters still touches on key aspects of using D3.

How to use this book

 If you’re getting started with D3, I suggest going through chapters 1 through 4 in order. Each chapter builds on its predecessor and establishes the basic principles not only of D3 but also of data visualization. After that, it depends on what you plan to use D3 for. If your data is mostly geographic, then you can jump to chapter 8. If your data is mostly network data, you can jump to chapter 7. If you’re doing traditional data visualization, then I suggest going to chapters 5 and 6 and then on to chapter 9 to start thinking about dashboards, which are a key component of traditional data visualization.

 If you’ve been using D3 for a while and want to improve your skills, I suggest skimming the first three chapters. The parts that I think might be of particular interest are in chapter 3, and deal with color and loading external resources such as SVG icons or HTML content. You might also want to review generators and components in chapter 4 to fill in any gaps you might have dealing with these common, but often underexamined, parts of D3. After that, it depends on what you see as your strengths and goals for using D3. If you want to maximize traditional data visualization, look at chapters 5 and 6 to see the layouts, and then look at chapter 9 for dashboards in a modern JavaScript development environment. If you’re familiar with most of the content there, look at chapter 11 for optimization techniques you might want to bring into your data visualization, or look at chapter 10 and think about how you might use the D3 tricks you know to build new layouts or reusable components.

 Much of the value of this book comes in chapters 7 and 8, which go into great detail about using D3 for two major areas of data visualization: networks and maps. Along those lines, the use of HTML5 canvas in chapter 11 is an area that even experienced D3 developers might not be familiar with.

 Regardless of your level of experience with D3, I recommend you spend time with chapter 10, which deals with the structure of layouts and components while showing you how to build your own. Beginning to build modular, reusable components and layouts will allow you to create not only effective data visualization, but also an effective career in visualizing data.

Code conventions

 Initial code examples in chapters are complete, with later code examples that extend an initial example only showing the code that has changed. It’s best to use the source code and online examples alongside the text. The line lengths of some of the examples exceed the page width, and in cases like these, the [image:] marker is used to indicate that a line has been wrapped for formatting.

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

Source code downloads

 The source code for the examples in this book is available for download from www.manning.com/books/d3js-in-action-second-edition and is also online at https://github.com/emeeks/d3_in_action_2.

Software requirements

 D3.js requires a browser to run, and you should have a local web server installed on your computer to host your code. The environment I develop in is macOS, so several of the screenshots or commands may not apply in a Windows environment.

Book forum

 Purchase of D3.js in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/d3js-in-action-second-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the Cover Illustration

 The figure on the cover of D3.js in Action, Second Edition is captioned “Habit of a Moorish Pilgrim Returning from Mecca in 1586.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed and mapped, an interest that’s brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late eighteenth century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has faded away. It’s now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and visual diversity for a more varied personal life, or a more varied and interesting intellectual and technical life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.

 Part 1. D3.js fundamentals

 The first three chapters introduce you to the fundamental aspects of D3 and get you started with creating graphical elements in SVG using data. Chapter 1 lays out how D3 relates to the DOM, HTML, CSS, and JavaScript, and provides a few examples of how to use D3 to create elements on a web page. Chapter 2 focuses on loading, measuring, processing, and transforming your data in preparation for data visualization using the various functions D3 includes for data manipulation. Chapter 3 turns toward design and explains how you can use D3 color functions for more effective data visualization, as well as load external elements such as HTML for modal dialogs or icons in raster and vector formats. Chapter 4 deals with the fundamental usage of D3.js to create individual chart components with an emphasis on generating scatterplots and line charts. Chapter 5 shows off the basic data visualization layouts that you’ll need to create common data visualization products such as pie charts and bar charts. In all, part 1 shows you how to load, process, and visually represent data in SVG without relying on built-in layouts or components, which is critical for visualizing data.

 Chapter 1. An introduction to D3.js

 This chapter covers

 	The basics of HTML, CSS, and the Document Object Model (DOM)

 	The principles of Scalable Vector Graphics (SVG)

 	Node and ES2015 functionality

 	Data-binding and selections with D3

 	Different data types and their data visualization methods

 D3 is behind nearly all the most innovative and exciting information visualization on the web today. D3 stands for data-driven documents. It’s a brand name, but also a class of applications that have been offered on the web in one form or another for years. In my career, I’ve made many things that could be considered data-driven documents. These include everything from one-off dynamic maps or social network diagrams to robust visual explorations of time and place. You’ll be using D3 whether you’re building data visualization prototypes for research or big data dashboards at the top tech companies.

1.1. What is D3.js?

 D3.js was created to fill a pressing need for web-accessible, sophisticated data visualization. Let’s say your company has used Business Intelligence tools for a while, but they don’t show you the kind of patterns in the data that your team needs. You need to build a custom dashboard that shows exactly how your customers are behaving, tailored for your specific domain. That dashboard needs to be fast, interactive, and shareable around the organization. You’re going to use D3 for that.

 D3.js’s creator, Mike Bostock, originally created D3 to take advantage of emerging web standards, which, as he puts it, “avoids proprietary representation and affords extraordinary flexibility, exposing the full capabilities of web standards such as CSS3, HTML5, and SVG” (http://d3js.org). D3.js version 4, the latest iteration of this popular library, continues this trend by modularizing the various pieces of D3 to make it more useful in modern application development.

 D3 provides developers with the ability to create rich interactive and animated content based on data and tie that content to existing web page elements. It gives you the tools to create high-performance data dashboards and sophisticated data visualization, and to dynamically update traditional web content.

 You might have already experimented with D3 and found that it isn’t easy to get into. Maybe that’s because you expected it to be a simple charting library. A case in point is the pie chart layout, which you’ll see in chapter 5. D3 doesn’t have one single function to create a pie chart. Rather, it has a function that processes your dataset with the necessary angles so that if you pass the dataset to D3’s arc function, you get the drawing code necessary to represent those angles. And you need to use yet another function to create the paths necessary for that code. It’s a much longer process than using dedicated charting libraries, but the explicit manner in which D3 deals with data and graphics is also its strength. Although other charting libraries conveniently allow you to make line graphs and pie charts, they quickly break down when you want to make something different than that. Not D3, which allows you to build whatever data-driven graphics and interactivity you can imagine.

1.2. How D3 works

 Let’s look at the principles of data visualization, as well as how D3 works in general. In figure 1.1 you see a rough map of how you might start with data and use D3 to process and represent that data, as well as add interactivity and optimize the data visualization you’ve created. In this chapter, we’ll start by establishing the principles of how D3 selections and data-binding work and learning how D3 interacts with SVG and HTML in the DOM. Then we’ll look at data types that you’ll commonly encounter. Finally, we’ll use D3 to create simple DOM and SVG elements.

 Figure 1.1. A map of how to approach data visualization with D3.js that highlights the approach in this book. Start at the top with data and then follow the path depending on the type of data and the needs you’re addressing.

 [image:]

 1.2.1. Data visualization is more than charts

 You may think of data visualization as limited to pie charts, line charts, and the variety of charting methods popularized by Edward Tufte and deployed in research. It’s much more than that. One of the core strengths of D3.js is that it allows for the creation of vector graphics for traditional charting, but also the creation of geospatial and network visualizations, as well as rich animation and interactivity. This broad-based approach to data visualization, where a map or a network graph or a table is another kind of representation of data, is the core of the D3.js library’s appeal for application development.

 Figures 1.2 through 1.8 show data visualization pieces that I’ve created with D3. They include maps and networks, along with more traditional pie charts and completely custom data visualization layouts based on the specific needs of my clients.

 Figure 1.2. D3 can be used for simple charts, such as this donut chart (explained in chapter 5).

 [image:]

 Figure 1.3. D3 can also be used to create web maps (see chapter 8), such as this map showing the ethnic makeup of major metropolitan areas in the United States.

 [image:]

 Figure 1.4. Maps in D3 aren’t limited to traditional Mercator web maps. They can be interactive globes, like this map of undersea communication cables, or other, more

 [image:]

 Figure 1.5. D3 also provides robust capacities to create interactive network visualizations (see chapter 7). Here you see the social and coauthorship network of archaeologists working at the same dig for nearly 25 years.

 [image:]

 Figure 1.6. D3 includes a library of common data visualization layouts, such as the dendrogram (explained in chapter 6), that let you represent data, such as this word tree.

 [image:]

 Figure 1.7. D3 has SVG and canvas drawing functions (see chapter 4) so you can create your own custom visualizations, such as this representation of musical scores.

 [image:]

 Figure 1.8. You can combine these layouts and functions to create a data dashboard like we’ll do in chapter 9. You can also use the drawing functions to make your bar charts look distinctive, such as this “sketchy” style.

 [image:]

 Although the ability to create rich and varied graphics is one of D3’s strong points, more important for modern web development is the ability to embed the high level of interactivity that users expect. With D3, every element of every chart, from a spinning globe to a single, thin slice of a pie chart, is made interactive in the same way. And because D3 was written by someone well versed in data visualization practice, it includes interactive components and behaviors that are standard in data visualization and web development.

 You don’t invest your time learning D3 so that you can deploy Excel-style charts on the web. For that, easier, more convenient libraries exist. You learn D3 because it gives you the ability to implement almost every major data visualization technique. It also gives you the power to create your own data visualization techniques, something a more general library can’t do. To see the variety of possibilities available with D3, look at http://blockbuilder.org/search.

 D3.js affords developers the capacity to make not only richly interactive applications but also applications that are styled and served like traditional web content. This makes them more portable, more amenable to the growing, linked data web, and more easily maintained by large teams where other team members don’t know the specific syntax of D3 but, for instance, can use CSS to style the data visualization elements.

 The decision on Bostock’s part to deal broadly with data and to create a library capable of presenting maps as easily as charts, as easily as networks, as easily as ordered lists, also means that a developer doesn’t need to try to understand the abstractions and syntax of one library for maps, and another for dynamic text content, and another for data visualization. Instead, the code for running an interactive, force-directed network layout is close to pure JavaScript and also similar to the code representing dynamic points of interest (POIs) on a D3.js map. Not only are the methods the same, but the data also could be the same, formulated in one way for lists and paragraphs and spans, while formulated in another way for geospatial representation.

 1.2.2. D3 is about selecting and binding

 Throughout this chapter, you’ll see code snippets that you can run in your browser to make changes to the graphical appearance of elements on your website. At the end of the chapter is an application written in D3 that explains the basics of the code we’re running in JavaScript. But before that we’ll explore the principles of web development using D3, and you’ll see this pattern of code over and over again: selecting.

 Imagine we have a set of data, such as the price and size of a few houses, and a set of web page elements, whether graphics or <div> elements, and that we want to represent the dataset, whether with text or through size and color. A selection is the group of the data and elements together. We perform actions on the elements in the group, such as moving them or changing their color. We can likewise update the values in the data. Though we can work with the data and the web page elements separately, the real power of D3 comes from using selections to combine data and web page elements.

 Here’s a selection without any data:

 d3.selectAll("circle.a").style("fill", "red").attr("cx", 100);

 This takes each circle on our page with the CSS class of a, turns it red, and moves it so that its center is 100 pixels to the right of the left side of our <svg> canvas. Likewise, this code turns every div on our web page red and changes its class to b:

 d3.selectAll("div").style("background", "red").attr("class", "b");

 But before we can change our circles and divs, we’ll need to create them, and before we do that, it’s best to understand what’s happening in this pattern.

 	

 Is selecting necessary?

 Later in chapter 11 you’ll see how to use D3 with React, a view renderer. Typically, MVC libraries like Angular or view rendering libraries like React are responsible for creating and destroying HTML elements and associating them with certain data-points. In those cases, you might stop using D3 to create and update elements and use it purely as a visualization kernel for your application.

 	

 The first part of that line of code, d3.selectAll(), is part of the core functionality necessary for understanding D3: selections. Selections can be made with d3.select(), which selects the first single element found, but more often you’ll use d3.select-All(), which can be used to select multiple elements. Selections are groups of one or more web page elements that may be associated with a set of data, like the following code, which binds the elements in the array [1,5,11,3] to <div> elements with the class of market:

 d3.selectAll("div.market").data([1,5,11,3])

 This association is known in D3 as binding data, and you can think of a selection as a set of web page elements and a corresponding, associated set of data. Sometimes more data elements exist than DOM elements, or vice versa, in which case D3 has functions designed to create or remove elements that you can use to generate content. Chapter 2 covers selections and data binding in detail. Selections might not include any data binding, and won’t for most of the examples in this chapter, but the inclusion allows the powerful information visualization techniques of D3. You can make a selection on any elements in a web page, including items in a list, circles, or even regions on a map of Africa. The same way the elements can take a number of shapes, the data associated with those elements (where applicable) can take many forms.

 1.2.3. D3 is about deriving the appearance of web page elements from bound data

 After you have a selection, you can then use D3 to modify the appearance of web page elements to reflect differences in the data. You may want to make the length of a line equal to the value of the data, or change the color to one that corresponds to a class of data. You may want to hide or show elements as they correspond to a user’s navigation of a dataset. As you can see in figure 1.9, after the page has loaded, you use D3 to select elements and bind data for creating, removing, or changing DOM elements. You continue to use this process in response to user interaction.

 Figure 1.9. An application created with D3 can use selections and data binding over and over again, together and separately, to update the content of the data visualization based on interaction.

 [image:]

 You modify the appearance of elements by using selections to reference the data bound to an element in a selection. D3 iterates through the elements in your selection and performs the same action using the bound data, which results in different graphical effects. Although the action you perform is the same, the effect is different because it’s based on the variation in the data. You’ll see data binding first at the end of this chapter, and in much more detail throughout this book.

 1.2.4. Web page elements can now be divs, countries, and flowcharts

 We’ve grown accustomed to thinking of web pages as consisting of text elements with containers for pictures, videos, or embedded applications. But as you grow more familiar with D3, you’ll begin to recognize that every element on the page can be treated with the same high-level abstractions. The most basic element on a web page, a <div> that represents a rectangle into which you can drop paragraphs, lists, and tables, can be selected and modified in the same way you can select and modify a country on a web map, or individual circles and lines that make up a complex data visualization.

1.3. The power of HTML5

 We’ve come a long way from the days when animated GIFs and frames were the pinnacle of dynamic content on the web. In figure 1.10, you can see why GIFs never caught on for robust data visualization on the web. GIFs, like the infoviz libraries designed to use VML, were necessary for earlier browsers, but D3 is designed for the modern browsers that no longer need backward compatibility.

 Figure 1.10. Before GIFs were weaponized to share cute animal behavior, they were your only hope for animated data visualization on the web. Few examples from the 1990s like dpgraph.com still exist, but this page has more than enough GIFs to remind us of their dangers.

 [image:]

 	

 Note

 SVG knowledge is foundational to understanding D3.js, but if you’re already experienced with the DOM, SVG, and CSS, you can skim this section to refresh your memory, or skip ahead to section 1.3.6 or 1.4.

 	

 A modern browser typically can not only display SVG graphics and obey CSS3 rules, but also has great performance. Along with Cascading Style Sheets (CSS) and Scalable Vector Graphics (SVG), the other elements you need to know about for web development are the DOM (Document Object Model) and JavaScript. The following sections deal with each of them broadly and include code you can run to see how D3 uses their functionality to create interactive and dynamic web content.

 1.3.1. The DOM

 A web page is structured according to the DOM. You need a passing familiarity with the DOM to do web development, so we’ll take a quick look at DOM elements and structure in a simple web page in your browser and touch on the basics of the DOM. To get started, you’ll need a web server that you can access from the computer that you’re using to code. With that in place, you can download the D3 library from d3js.org (d3.js or d3.min.js for the minified version) and place that in the directory where you’ll make your web page. You’ll create a page called d3ia.html in the text editor with the contents in the following listing.

 Listing 1.1. A simple web page demonstrating the DOM

 <!doctype html>
<html>
<head>
 <script src="d3.v4.min.js"></script> 1
</head> 1
<body> 1
 <div id="someDiv" style="width:200px;height:100px;border:black 1px solid;"> 2
<input id="someCheckbox" type="checkbox" /> 3
 </div>
</body>
</html>

 	
1 A child element of <html>

 	2 A child element of <body>

 	3 A child element of <div>

 Basic HTML like this follows the DOM. It defines a set of nested elements, starting with an <html> element with all its child elements and their child elements and so on. In this example, the <script> and <body> elements are children of the <html> element, and the <div> element is a child of the <body> element. The <script> element loads the D3 library here, or it can have inline JavaScript code, whereas any content in the <body> element shows up onscreen when you navigate to this page.

 Three categories of information about each element determine its behavior and appearance: styles, attributes, and properties. Styles can determine transparency, color, size, borders, and so on. Attributes include classes, IDs, and interactive behavior, though certain attributes can also determine appearance, depending on which type of element you’re dealing with. Properties typically refer to states, such as the “checked” property of a check box, which is true if the box is checked and false if the box is unchecked. D3 has three corresponding functions to modify these values. If we wanted to modify the HTML elements in the previous example, we could use D3 functions that abstract this process:

 d3.select("#someDiv").style("border", "5px darkgray dashed");
d3.select("#someDiv").attr("id", "newID");
d3.select("#someCheckbox").property("checked", true);

 Like many D3 functions of this kind, if you don’t signify a new value, then the function returns the existing value. This way of exposing getter/setter behavior in JavaScript was popularized in JQuery and shows up in most of the D3 examples. You’ll see this in action throughout this book, and later in the chapter as you write more code, but for now remember that these three functions allow you to change how an element appears and interacts.

 The DOM also determines the onscreen drawing order of elements, with child elements drawn after and inside parent elements. Although you have partial control over drawing elements above or below each other with traditional HTML using z-index, this won’t be available with SVG elements until the SVG2 spec is implemented.

Examining the DOM in the console

 Navigate to d3ia.html, and you can get exposure to how D3 works. The page isn’t too impressive, with only a single, black-outlined rectangle. You could modify the look and feel of this web page by updating d3ia.html, but you’ll find that it’s easy to modify the page by using your web browser’s developer console. This is useful for testing changes to classes or elements before implementing them in your code. Open the developer console, and you’ll have two useful screens, shown in figures 1.11 and 1.12, which we’ll go back to again and again.

 Figure 1.11. The developer tools in Chrome place the JavaScript console on the rightmost tab, labeled Console, with the element inspector available using the arrow in a rectangle (circled above) on the top left or by browsing the DOM in the Elements tab.

 [image:]

 Figure 1.12. You can run JavaScript code in the console and call global variables or declare new ones as necessary. Any code you write in the console and changes made to the web page are lost as soon as you reload the page.

 [image:]

 	

 Note

 You’ll see the console in this first chapter, but in chapter 2, once you’re familiar with it, I’ll show only the output.

 	

 The element inspector allows you to look at the elements that make up your web page by navigating through the DOM (represented as nested text, where each child element is shown indented). You can also select an element onscreen graphically, typically represented as a magnifying glass or cursor icon.

 The other screen you’ll want to use quite often is the console (figure 1.12), which allows you to write and run JavaScript code right on your web page. The developer tools have other valuable features, such as setting breakpoints and the ability to inspect network calls, but we’re going to focus on using the console to change elements and run code.

 The examples in this book use Google Chrome and its developer console, but you could use Safari’s or Firefox’s developer tools with the same functionality and slightly different look-and-feel, or use your code editor and refresh the page. You can see and manipulate DOM elements such as <div> or <body> by clicking the element inspector or looking at the DOM as represented in HTML. You can click one of these elements and change its appearance by modifying it in the console.

 You can even delete elements in the console. Give it a try: select the div either in the DOM or visually and press Delete. Now your web page is lonely. Press Refresh so your page reloads the HTML and your div comes back. You can adjust the size and color of your div by adding new styles or changing the existing one, so you can increase the width of the border and make it dashed by changing the border style to Black 5px Dashed. You can add content to the div in the form of other elements, or you can add text by right-clicking on the element and selecting Edit as HTML, as shown in figures 1.13 and 1.14.

 Figure 1.13. Rather than adding or modifying individual styles and attributes, you can rewrite the HTML code as you would in a text editor. As with any changes, these only last until you reload the page.

 [image:]

 Figure 1.14. Changing the content of a DOM element is as simple as adding text between the opening and ending brackets of the element.

 [image:]

 You can then write whatever you like in between the opening and closing HTML.

 Any changes you make, regardless of whether they’re well structured or not, will be reflected on the web page. In figure 1.15 you see the results of modifying the HTML, which is rendered immediately on your page.

 Figure 1.15. The page is updated as soon as you finish making your changes. Writing HTML manually in this way is only useful for planning how you might want to dynamically update the content.

 [image:]

 In this way, you could slowly and painstakingly create a web page in the console. We’re not going to do that. Instead, we’ll use D3 to create elements on the fly with size, position, shape, and content based on our data.

 1.3.2. Coding in the console

 You’ll do most your coding in the IDE or text editor of your choice, but one of the great things about web development is that you can test JavaScript code changes by using your console. Later you’ll focus on writing JavaScript, but for now, to demonstrate how the console works, copy the following code into your console and press Enter:

 d3.select("div").style("background", "lightblue").style("border", "solid
black 1px").html("You have now dynamically changed the content of a web page
element");

 You should see the effect shown in figure 1.16.

 Figure 1.16. The D3 select syntax modifies style using the .style() function, and traditional HTML content using the .html() function.

 [image:]

 You’ll see a few more uses of traditional HTML elements in this chapter, and then again in chapter 3, but then you won’t see traditional DOM elements again in great detail. You can use D3 to create complex, data-driven spreadsheets and galleries using <div>, <table>, and <select> elements, but that’s not a common use case in the real world. If all D3 could do was select HTML elements and change their style and content like this, then it wouldn’t be that useful for data visualization. To do more, we have to move away from traditional HTML and focus on a special type of element in the DOM: SVG.

 1.3.3. SVG

 A major value of HTML5 is the integrated support for Scalable Vector Graphics (SVG). SVG allows for simple mathematical representation of images that scale and are amenable to animation and interaction. Part of the attractiveness of D3 is that it provides an abstraction layer for drawing SVG, because SVG drawing can be a little confusing. SVG drawing instructions for complex shapes, known as <path> elements, are written a bit like the old LOGO programming language. You start at a point on a canvas and draw a line from that point to another. If you want it to curve, you can give the SVG drawing code coordinates on which to make that curve. If you want to draw the line on the left, you’d create a <path> element in an <svg> canvas element in your web page, and all those drawing instructions (that’s what they look like on the left of figure 1.17) go into the d attribute of that <path> element.

 Figure 1.17. The commands to draw an SVG path (right) and the resulting graphic (left)

 [image:]

 But you’d almost never want to create SVG by manually writing drawing instructions like this. Instead, you’ll want to use D3 to do the drawing with a variety of helper functions, or rely on other SVG elements that represent simple shapes (known as geometric or graphical primitives) using more readable attributes. You’ll start doing that in chapter 4, where you’ll use d3.svg.line and d3.svg.area to create line and area charts. For now, you’ll update d3ia.html to look like the following listing, which includes the necessary code for displaying SVG, as well as examples of the various shapes you might use.

 Listing 1.2. A sample web page with SVG elements

 <!doctype html>
<html>
 <script src="d3.v4.min.js">
</script>
<body>
 <div id="infovizDiv">
 <svg style="width:500px;height:500px;border:1px lightgray solid;">
 <path d="M 10,60 40,30 50,50 60,30 70,80"
 style="fill:black;stroke:gray;stroke-width:4px;" />
 <polygon style="fill:gray;"
 points="80,400 120,400 160,440 120,480 60,460" />
 <g>
 <line x1="200" y1="100" x2="450" y2="225"
 style="stroke:black;stroke-width:2px;"/>
 <circle cy="100" cx="200" r="30"/>
 <rect x="410" y="200" width="100" height="50"
 style="fill:pink;stroke:black;stroke-width:1px;" />
 </g>
 </svg>
 </div>
</body>
</html>

 You can inspect the elements like you would the traditional elements we looked at earlier, as you can see in figure 1.18, and you can manipulate these elements using traditional JavaScript selectors like document.getElementById or with D3, removing them or changing the style like so.

 d3.select("circle").remove() 1
d3.select("rect").style("fill", "purple") 2

 	1 Deletes the circle

 	2 Changes the rectangle color to purple

 Figure 1.18. Inspecting the DOM of a web page with an SVG canvas reveals the nested graphical elements as well as the style and attributes that determine their position. Notice that the circle and rectangle exist as child elements of a group.

 [image:]

 Now refresh your page and let’s look at the new elements. You’re familiar with divs, and it’s useful to put an SVG canvas in a div so you can access the parent container for layout and styling. Let’s look at each of the elements we’ve added.

<svg> container

 This is your canvas on which everything is drawn. The top-left corner is 0,0, and the canvas clips anything drawn beyond its defined height and width of 500,500 (the rectangle in our example). An <svg> element can be styled with CSS to have different borders and backgrounds. The <svg> element can also be dynamically resized using the viewBox attribute, which is more complex and beyond the scope of the overview here.

 You can use CSS (which we’ll touch on later in this chapter) to style your SVG canvas or use D3 to add inline styles like this:

 d3.select("svg").style("background", "darkgray"); 1

 	1 Infoviz is always cooler on a dark background

 	

 Note

 The x-axis is drawn left to right, but the y-axis is drawn top-to-bottom, so you’ll see that the circle is set 200 pixels to the right and 100 pixels down.

 	

 	

 <canvas>

 There’s a second mode of drawing available with HTML5 using <canvas> elements to draw bitmaps. We won’t go into detail here, but you’ll see this method used in chapter 11 for its rendering performance. The <canvas> element creates static graphics drawn in a manner similar to SVG that can then be saved as images. Here are three main reasons to use canvas:

 	
Creating static images— You can draw your data visualization with canvas to save views as snapshots for thumbnail and gallery views.

 	
Large amounts of data— SVG creates individual elements in the DOM, and although this is great for attaching events and styling, it can overwhelm a browser and cause significant slowdown (this is what we’ll use canvas for in chapter 11).

 WebGL—The <canvas> element allows you to use WebGL to draw, so that you can create 3D objects. You can also create 3D objects like globes and polyhedrons using SVG, which we’ll get into a bit in chapter 8 as we examine geospatial information visualization.

 	

<circle>, <rect>, <line>, <polygon> shape primitives

 SVG provides a set of common shapes, each of which has attributes that determine their size and position to make them easier to deal with than the generic d attribute you saw earlier. These attributes vary depending on the element you’re dealing with, so that <rect> has x and y attributes that determine the shape’s top-left corner, as well as height and width attributes that determine its overall form. In comparison, the <circle> element has cx and cy attributes that determine the center of the circle, and an r attribute that determines the radius of the circle. The <line> element has x1 and y1 attributes that determine the starting point of the line and x2 and y2 attributes that determine its end point. Other simple shapes are similar to these, such as the <ellipse>, and other more complex shapes, like the <polygon> with a points attribute that holds a set of comma-separated xy coordinates, in clockwise order, determine the area bounded by the polygon.

 	

 Infoviz term: geometric primitive

 Accomplished artists can draw anything with vector graphics, but you’re probably not looking at D3 because you’re an artist. Instead, you’re dealing with graphics and have more pragmatic goals in mind. From that perspective, it’s important to understand the concept of geometric primitives (also known as graphical primitives). Geometric primitives are simple shapes such as points, lines, circles, and rectangles. These shapes, which can be combined to make more complex graphics, are particularly useful for visually displaying information.

 Primitives are also useful for understanding complex information visualizations that you see out in the real world. Dendrograms, like the one shown in figure 1.20, are far less intimidating when you realize they’re only circles and lines. Interactive timelines are easier to understand and create when you think of them as collections of rectangles and points. Even geographic data, which primarily comes in the form of polygons, points, and lines, is less confusing when you break it down into its most basic graphical structures.

 	

 Each of these attributes can be hand-edited in HTML to adjust its size, form, and position. Open your element inspector and click the <rect>. Change its width to 25 and its height to 25, as shown in figure 1.19.

 Figure 1.19. Modifying the height and width attributes of a <rect> element changes the appearance of that element. Inspecting the element also shows how the stroke adds to the computed size of the element.

 [image:]

 Now you’ve learned why there’s no SVG <square>. The color, stroke, and transparency of any shape can be changed by adjusting the style of the shape, with fill determining the color of the area of the shape and stroke, stroke-width, stroke-dasharray determining its outline.

 Notice, though, that the inspected element has a measurement of 27 px x 27 px. That’s because the 1-px stroke is drawn on the outside of the shape. That makes sense, once you know the rule, but if you change the stroke-width to 2px it will still be 27 px x 27 px. That’s because the stroke is drawn evenly over the inside and outside borders, as seen in figure 1.20. This may not seem too big a deal, but it’s something to remember when you’re trying to line up your shapes later.

 Figure 1.20. The same 25 x 25 <rect> with no, 1-px, 2-px, 3-px, 4-px, and 5-px strokes. Though these are drawn on a retina screen using half-pixels, the second and third report the same width and height (27 px x 27 px) as the fourth and fifth (29 px x 29 px).

 [image:]

 Change the style parameters of the rectangle to the following:

 "fill:purple;stroke-width:5px;stroke:cornflowerblue;"

 Congratulations! You’ve now successfully visualized the complex and ambiguous phenomenon known as “ugly.”

<text>

 SVG provides the capacity to write text as well as shapes. SVG text, though, doesn’t have the formatting support found in HTML elements, so it’s primarily used for labels. If you do want to do basic formatting, you can nest <tspan> elements in <text>

<g> grouping element

 The <g> or group element is distinct from the SVG elements we’ve discussed in that it has no graphical representation and doesn’t exist as a bounded space. Instead, it’s a logical grouping of elements. You’ll want to use <g> elements extensively when creating graphical objects that are made up of several shapes and text. For instance, if you wanted to have a circle with a label above it and move the label and the circle at the same time, then you’d place them inside a <g> element:

 <g>
<circle r="2"/>
<text>This circle's Label</text>
</g>

 Moving a <g> around your canvas requires you to adjust the transform attribute of the <g> element. The transform attribute is more intimidating than the various xy attributes of shapes because it accepts a structured description in text of how you want to transform a shape. One of those structures is translate(), which accepts a pair of coordinates that move the element to the xy position defined by the values in translate (x,y). If you want to move a <g> element 100 pixels to the right and 50 pixels down, then you need to set its transform attribute to transform="translate (100,50)". The transform attribute also accepts a scale() setting so you can change the rendered scale of the shape as you can see in the example in listing 1.3. You can see these settings in action by modifying the previous example with the results shown in figure 1.21.

 Figure 1.21. All SVG elements can be affected by the transform attribute, but this is particularly salient when working with <g> elements, which require this approach to adjust their position. The child elements are drawn by using the position of their parent <g> as their relative 0,0 position. The scale() setting in the transform attribute then affects the scale of any of the size and position attributes of the child elements.

 [image:]

 Listing 1.3. Grouping SVG elements

 <g>
 <circle r="2"/>
 <text>This circle's Label</text>
</g>
<g transform="translate(100,50)">
 <circle r="2" />
 <text>This circle's Label</text>
</g>
<g transform="translate(100,400) scale(2.5)">
 <circle r="2"/>
 <text>This circle's Label</text>
</g>

<path>

 A path is an area determined by its d attribute. Paths can be open or closed, meaning the last point connects to the first if closed and doesn’t if open. The open or closed nature of a path is determined by the absence or presence of the letter Z at the end of the text string in the d attribute. It can still be filled either way. You can see the difference in figure 1.22 (the code for which is shown in the following listing).

 Figure 1.22. Each path shown here uses the same coordinates in its d attribute, with the only differences between them being the presence or absence of the letter Z at the end of the text string defining the d attribute, the settings for fill and stroke, and the position via the transform attribute.

 [image:]

 Listing 1.4. SVG path fill and closing

 <path style="fill:none;stroke:gray;stroke-width:4px;"
 d="M 10,60 40,30 50,50 60,30 70,80" transform="translate(0,0)" />
<path style="fill:black;stroke:gray;stroke-width:4px;"
 d="M 10,60 40,30 50,50 60,30 70,80" transform="translate(0,100)" />
<path style="fill:none;stroke:gray;stroke-width:4px;"
 d="M 10,60 40,30 50,50 60,30 70,80Z" transform="translate(0,200)" />
<path style="fill:black;stroke:gray;stroke-width:4px;"
 d="M 10,60 40,30 50,50 60,30 70,80Z" transform="translate(0,300)" />

 Although sometimes you may want to write that d attribute yourself, it’s more likely that your experience crafting SVG will come in one of three ways: using geometric primitives such as circles, rectangles, or polygons, drawing SVG using a vector graphics editor like Adobe Illustrator or Inkscape, or drawing SVG parametrically using handwritten constructors or built-in constructors in D3. Most of this book focuses on using D3 to create SVG, but don’t overlook the possibility of creating SVG using an external application or another library and then manipulating them using D3, like we’ll do using d3.html in chapter 3.

 1.3.4. CSS

 CSS are used to style the elements in the DOM. A style sheet can exist as a separate .css file that you include in your HTML page or can be embedded directly in the HTML page. Style sheets refer to an ID, class, or type of element and determine the appearance of that element. The terminology used to define the style is a CSS selector and is the same type of selector used in the d3.select() syntax. You can set inline styles (that are applied to only a single element) by using d3.select(#someElement).style(opacity, .5) to set the opacity of an element to 50%. Let’s update your d3ia.html to include a style sheet, as shown in the following listing.

 Listing 1.5. A sample web page with a style sheet

 <!doctype html>
<html>
<script src="d3.v4.min.js"></script> 1
<style>
.inactive, .tentative { 2
 stroke: darkgray;
 stroke-width: 2px;
 stroke-dasharray: 5 5;
}
.tentative {
 opacity: .5;
}
.active {
 stroke: black;
 stroke-width: 4px;
 stroke-dasharray: 1;
}
circle {
 fill: red;
}
rect {
 fill: darkgray;
}
</style>
<body> 3
 <div id="infovizDiv">
 <svg style="width:500px;height:500px;border:1px lightgray solid;">
 <path d="M 10,60 40,30 50,50 60,30 70,80" />
 <polygon class="inactive" points="80,400 120,400 160,440 120,480 60,460" />
 <g>
 <circle class="active tentative" cy="100" cx="200" r="30"/>
 <rect class="active" x="410" y="200" width="100" height="50" />
 </g>
 </svg>
 </div>
</body>
</html>

 	1 The reference to the D3 library so we can use that code in our app

 	2 CSS rules for our elements

 	3 The fixed content of our page (we’ll work on adding more content dynamically later)

 The results stack on each other, so when you examine the rectangle element, as shown in figure 1.23, you see that its style is set by the reference to rect in the style sheet as well as the class attribute of active.

 Figure 1.23. Examining an SVG rectangle in the console shows that it inherits its fill style from the CSS style applied to <rect> types and its stroke style from the .active class.

 [image:]

 Style sheets can also refer to a state of the element, so with :hover you can change the way an element looks when the user mouses over that element. You can learn about other complex CSS selectors in more detail in a book devoted to that subject. For this book, we’ll focus mostly on using CSS classes and IDs for selection and to change style. The most useful way to do this is to have CSS classes associated with particular stylistic changes and then change the class of an element. You can change the class of an element, which is an attribute of an element, by selecting and modifying the class attribute. The circle shown in figure 1.24 is affected by two overlapping classes: .active and .tentative.

 Figure 1.24. The SVG circle has its fill value set by its type in the style sheet, with its opacity set by its membership in the .tentative class and its stroke set by its membership in the .active class. Notice that the stroke settings from the .tentative class are overwritten by the stroke settings in the later declared .active class.

 [image:]

 In listing 1.5 we see a couple of possibly overlapping classes, with tentative, active, and inactive all applying different style changes to your shape (such as the highlighted circle in figure 1.23). When an element needs only be assigned to one of these classes, you can overwrite the class attribute entirely:

OEBPS/OEBPS/Images/01fig03.jpg

OEBPS/OEBPS/Images/01fig04.jpg

OEBPS/OEBPS/Images/01fig01_alt.jpg
o LORAC
1101011 ————— (chapters 2and 3)

Coo1101

o0

oo Froewss del
ARteg (chapter2)

| ! o

Generste ———————— Binddata 2

4 dataset (chapter2)
(crapter 11)
Charts =
Design Basc Hierarchical Networks. Maps.
(chapter3) charting layouts (chapter 7) (chapter 8)
(chepters2-5) (chaplor &)

!

Interactivty basics.
cnagter 2)

Interactiviy =1 D -
« ooma €Y | IR

Nouse events Brush flering p ot iy
(Ghoplro212) (cbaplora Oand 1) Eheiier o] | el
Zoom 0 map
(naptors5 and 7) Optmaator

(chapter 11)

OEBPS/OEBPS/Images/01fig02.jpg

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/enter.jpg

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/01fig05.jpg

OEBPS/OEBPS/Images/01fig07.jpg

OEBPS/OEBPS/Images/01fig06_alt.jpg
AP T -

PRv——

O iemncs o s o d ol e Gl

g clecions schss e

© wher eyt

© o s

Obtone

O dube, o et st isypeof el

© e b s s o digin bk

PSPPI a——

OEBPS/OEBPS/Images/01fig20_alt.jpg

OEBPS/OEBPS/Images/cover.jpeg
Elijah Meeks

\
Data visualization with JavaScript

SECOND EDITION

L | YT

OEBPS/OEBPS/Images/01fig19_alt.jpg
Q O Eements | Network Sources Timelin
Saheots </resss :
aoan

T soeneszantainers

fressiniy
SPolygon stylectritigears”
Tao,480 63, s60'></jotyoms

Zeiccte cyenion o
et

<Thoiy
<nea

R |
e Sia sy

OEBPS/OEBPS/Images/01fig22_alt.jpg
Open — uniNied:
Path elements are by default

illed with no stroke. You need

t0 set the fillstyle to “none” and
stroke and stroke-width style

you want to draw it as a fine.

Open - filled:
An cpen path can be filled just
ke a closed path, with the fill
ares defined by the same arex
that would be bounded if the
path were closed.

Closed — unfilled:
A path will aiways close by ——
drawing a lne from the end
point to the start point.

Closed flled:
Notice the stroke overlaps
the fill area slightly.

ranstorm="translate(0,0)' />

<pathstyle="Tl black;s{roko gray,sUroko-widh 4pe;”
€="M10,60 40,30 50,50 60,30 70,80"
ransbm="transiate(0, 100" />

<path style="fl non;siroke:gray:stroke widihidpx”
110,60 40,30 50,50 60,30 70,80Z"
ranstorm="transiate(0. 200"

<path style="fl black strokegray:stroke-widh 4pe;”
=106 40,30 50,50 60,30 70, 802"
ranstorm=-"trarsiate(0,300}" />

OEBPS/OEBPS/Images/01fig21_alt.jpg
No transform:
Like all SVG elements, the <g> is by default
drawn at the 0,0 position. The result in this case
is that the graphics are drawn such that you only.
seea tiny piece of the bottom right corner of the
cirde, and none of the label text.

Translate(100,50)
The entire <g> element is

moved 100 pixels to the right 1
(along the x-axis) and 50 pixels —
down (along the y-axis). The

child elements are drawn

from this position.

Translate(100,400)Scale(3 5):
The <g> clement is moved

to XY position 100,400, lining

it up along the y-axis with the —

above <g>, and the child) & Label
elements are drawn from

there at 3.5 times their size.

OEBPS/OEBPS/Images/01fig24_alt.jpg
Q[|Bements| Network Saurces Tinelin
v <henl duta-enber-extemsi
> <ieotn.<jnenis
Soa
Vel sovizeantaer's

St et
5,400 120,400 150,44
07500 00 400 petyaon

e e e
e

»Hooters.</tocters
<ibody

oo

Console Search _Emulation_Rendering

OEBPS/OEBPS/Images/01fig23_alt.jpg
Q0 | Bements | Network Sources Timelin

o

v <ntal deta-erber-axters ion
» <readn</heads
" soays
Vil saevizcantainerts

“path e
830 90, matopatns
<polyson’ classetinactive’
1OIntI="00,480 120,400 150,440
0,480 66,460°</potysor

0 heigies

St ot

PP
</iver
it
»<toaters.focters
<ibodp
<snems’

i voty_dvvzconain [
Conole Search Emuaton Rendeing

OEBPS/OEBPS/Images/01fig18_alt.jpg
«

E&i!ﬂ'u' oo 1

OEBPS/OEBPS/Images/01fig17_alt.jpg
™ 25,447534.104,50879 ¢ 35.89856.7.45849 74,730166.45,01366
108.571425,11.42857 28 09984,-27.887135 47.81916,92.985425
111,42857,74.285715 31.98127,9.40176 26.13586,71.972365
€2,85714.71.428565 55.39866.-0.62115 101.36764.-112.52070547
160,-45.714275 44.69105,50.921525 55.38932,45.730385
£1.42358,37.14285%

OEBPS/OEBPS/Images/01fig09_alt.jpg
1. Fage loads with styles, data,
and content as defined in
traditional HTML development.
(This step only hzppens once.)

3. Changes in page structure
prompt user interaction, which
causes new selections with and

2. Display uses D3 selections
of HTML elements, with or

without data-binding to further
aler the page (multiple times,

without data-binding, to
modily the structure and

depending on user interaction).

\

appearance of the page.

User ntoraction

(o)

Croatelupdateiremove clemens

OEBPS/OEBPS/Images/01fig08.jpg
)

vy

vy

OEBPS/OEBPS/Images/01fig11_alt.jpg
it 16 someChecioax type-checkon'>
it
»Serlae typetert/sascriptinlscrists

ity
P

LalE] oo]

Stes v swsrs DOw e opees
. v s+

ctementstyte |
s dowprs
Reiant: inep
orhariv S daenec Masrkaray:

OEBPS/OEBPS/Images/01fig10.jpg

OEBPS/OEBPS/Images/01fig13.jpg
Developer Tools - http:/ /-

'Add Atribute
Edit Attribute

/M Force Element State

Copy CSS Path
Copy XPath
Copy

Cut

Paste

Delete Node

>

Scroll into View

Break on...

OEBPS/OEBPS/Images/01fig12_alt.jpg
> . select{“rsomstiv®) sty le"bacigrovi, o)
Careayta) 1
>l

Corsole seartr Enuiaten Rendering

OEBPS/OEBPS/Images/01fig15_alt.jpg
Here's some text to put into
my div

@00 Developer Tools - http://
Q [] |Elements | Network Sources Timeline Prof

v <htnl data-enber-extension-"1'
» <head>..</head>

omeDiv" style="width:200px;
height:109px;border:1px solid
black;>Here's some text to put into my
dive/div>
</body>
</html

Console | Search Emulation Rendering

OEBPS/OEBPS/Images/01fig14.jpg
» <head>..</head>
v <body>

div id="someDiv"

style="width: 200px; height : 100px; border
+1px solid black;">Here's some text to
put into my dive/div>

</Body>
</html>

OEBPS/OEBPS/Images/01fig16_alt.jpg
@ Developer Tools - hit:/121.0.0.11d3 i action. 2fchapter 16,4l

‘ou have now dynamically
hanged the contentofaweb | o - . - =
age element

i setnarar,

