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			To the builders and guardians of our society.

		

	
		
			Introduction

			Government agencies around the world have an unprecedented opportunity to increase their impact and serve their citizens. Artificial intelligence has evolved from experimental technology to mission-critical capability, and this shift has opened up space to radically reimagine how agencies fulfil their core missions. However, realizing this promise requires more than just a willingness to adopt this technology. It also demands comprehensive organizational transformation grounded in systematic frameworks, strategic partnerships, and an unwavering commitment to public service values.

			Drawing from extensive research, real-world implementations, and emerging best practices across federal, state, and local government, this book addresses the full spectrum of considerations that distinguish effective AI adoption from costly technological experimentation. It provides government leaders with the essential knowledge, frameworks, and practical guidance needed to navigate the AI transformation successfully.

			The foundation for successful AI transformation begins with technical literacy. Government leaders need not become AI engineers, but they must understand the capabilities and limitations of different AI systems. This knowledge is essential to making informed decisions about AI. However, technical knowledge alone is insufficient. Indeed, the most significant barriers to AI transformation are organizational rather than technological. Successful agencies invest as heavily in workforce development, cultural change, and leadership evolution as they do in computational infrastructure. They recognize that AI implementation fundamentally affects human work, requiring thoughtful attention to how technology enhances rather than replaces human judgment, creativity, and accountability.

			This book introduces two complementary frameworks designed for government AI implementation. The OPEN frame-work (Outline, Partner, Experiment, Navigate) provides a systematic methodology for identifying mission-aligned opportunities, building essential collaborations, testing solutions through iterative experiments, and scaling successful implementations. Simultaneously, the CARE framework (Catastrophize, Assess, Regulate, Exit) establishes comprehensive safeguards by systematically identifying potential failure modes, evaluating their likelihood and impact, implementing appropriate controls, and developing contingency plans.

			Innovation and risk are two sides of the same coin, and successful AI transformation depends on leaders managing both holistically. The book introduces the concept of strategic portfolio management as a critical discipline for helping leaders do exactly that. In the context of AI, strategic portfolio management means that, rather than evaluating AI initiatives in isolation, successful agencies manage their entire collection of AI investments as an integrated portfolio. In doing so, they balance quick wins with transformational capabilities, proven applications with experimental initiatives, and internal development with strategic partnerships.

			Leadership in the AI era requires a rapid evolution beyond traditional technology management roles. The most effective agencies develop leaders who combine technical understanding with strategic vision, ethical insight, and organizational transformation capabilities. These leaders navigate the complex intersection of technological possibility, public service values, and democratic accountability while building cultures that embrace innovation without compromising core governmental responsibilities.

			While this book focuses specifically on government AI transformation, its insights extend well beyond the public sector. Private businesses pursuing AI implementation face many of the same fundamental challenges: balancing innovation with risk, managing organizational change, developing effective human–AI partnerships, and maintaining ethical standards while pursuing technological advancement. The frameworks, methodologies, and lessons presented here can be readily adapted to commercial contexts. Moreover, for technology vendors, consultants, and contractors seeking to serve government clients, understanding the unique constraints, requirements, and opportunities of public sector AI implementation is essential. By grasping how government agencies approach AI transformation—their governance requirements, their emphasis on public accountability, and their mission-driven priorities—private sector partners can better align their offerings and build more effective collaborations. In this way, the book serves both as a guide for government leaders and as a window into government AI transformation for those who seek to support it.

			The path forward demands immediate action. Agencies cannot wait for perfect conditions or complete clarity about AI’s future evolution. Success requires that we begin today to build and deploy the workforce capabilities, cultural foundations, and leadership approaches that will harness AI’s potential in service of the public good. The agencies that embrace this transformation will be the first to realize the almost unimaginable potential of the AI revolution.

		

	
		
			Chapter 1

			Understanding the AI Tech Stack

			Introduction

			The artificial intelligence revolution will be the most profound technological transformation of our era. In the public sector, it has the potential to fundamentally reshape how government agencies operate, make decisions, and serve citizens. Public sector leaders do not need to become technical experts in the field of AI to guide this transformation. But a firm grasp of the foundations of this technology will be fundamental for deciding how to use it in a strategic and effective manner. This chapter seeks to demystify the AI tech stack, providing government decision-makers with the information they need to make informed choices about how, where, and in what form to deploy AI systems.

			To understand the AI tech stack, it will be useful to first understand the historical evolution of this technology. By tracing the development of AI from the historical imagination through early theoretical concepts to today’s sophisticated systems, we can better comprehend how this technology has evolved and where it might be heading. Following this initial survey, the chapter goes on to explore the different types of AI available to government agencies, from well-established analytical systems to the possibilities emerging from agentic capabilities. Once these foundations are in place, the chapter turns to examine the technical architecture of current AI systems, explaining how modern artificial intelligence works, including the foundations of neural networks, deep learning, and large language models. The chapter also covers critical implementation architectures and the technical infrastructure required for successful AI deployment in government contexts.

			By providing this foundational knowledge, this chapter aims to equip government leaders to engage meaningfully with AI technology discussions, evaluate proposed solutions with greater confidence, and develop strategic approaches that align AI capabilities with their agencies’ missions. In an era in which AI literacy is becoming essential for effective governance, this understanding represents a critical capability for public sector leadership.

			The Evolution of AI

			AI has a rich and complex history. While humans have been thinking and dreaming about intelligent machines since at least the beginning of classical antiquity, it was only in the period following the Second World War that these ideas began to shift from fantasy to reality. The formal birth of the field is typically dated to 1950, when British mathematician Alan Turing published his seminal paper “Computing Machinery and Intelligence.”1 In this groundbreaking work, Turing explored what it might mean to say that a machine can “think,” proposing what came to be known as the Turing Test. Since there was no measurable criterion for defining human thinking, Turing suggested we should consider that machines are engaged in thinking, rather than merely calculating, once their output in a conversation becomes indistinguishable from that of a human. 

			Shortly after the publication of Turing’s paper came the historic Dartmouth Conference on AI. It was here that the term “artificial intelligence” was first coined.2 Many historians identify this as the point at which the study of AI became a formal academic discipline.

			These early decades were characterized by significant theoretical developments and a corresponding excitement about the trajectory of AI’s future development, with researchers predicting rapid advances toward machines with human-like intelligence. While progress quickly ran into technical obstacles, the work done during this period laid the foundations for today’s AI systems. Government support for AI research played a key role in this era, with agencies like ARPA (the Advanced Research Projects Agency, now the Defense Advanced Research Projects Agency or DARPA) providing substantial funding for foundational AI research at universities and research laboratories across the United States. 

			The theoretical advances made during this time were significant, but the computational power and data pools available were insufficient to create truly effective AI systems with a broad range of real-world applications. With early systems failing to deliver on ambitious promises, enthusiasm and funding began to wane. This first cycle of boom and bust set a pattern that has recurred several times in the story of AI’s development. Periods of excitement and rapid advancement have often been followed by so-called “AI winters,” times when funding is scaled back and interest declines. By the mid-1970s, the first of these winters was in full swing, as government funding decreased and many AI research projects were abandoned or cut back significantly.

			A renaissance began in the 1980s with the development of “neural network” techniques, which sparked a new wave of excitement and drew new investment to the field. But this period of optimism proved short-lived. Computers simply lacked the processing power needed to fulfill the promise of anything beyond the simplest neural networks and to turn these techniques into market-ready products. While AI continued to develop through the 1990s and early 2000s, progress remained frustratingly slow. It took more than a quarter of a century for incremental increases in processing power and the sophistication of algorithms to allow more complex neural networks—exploiting “deep learning” techniques—to leave the lab and scale effectively. 

			Another early AI technique that emerged in the late 1980s and early 1990s involved symbolic or logical AI approaches. These were implemented in the form of what were known at the time as “expert systems” and generally relied on sequences of if/then rules. A flurry of startups created such systems, usually drawing on interviews with human experts conducted by “knowledge engineers.” But expert systems became brittle and confusing as the number of rules increased. While many organizations still use rule-based approaches to decision-making—they are common, for example, in insurance underwriting, healthcare “clinical decision support,” and robotic process automation systems—these symbolic approaches have now been eclipsed by statistically based AI models. 

			The Current AI Revolution (2010–Present)

			The current AI revolution has been driven by the convergence of three critical factors:

			1.Exponential growth in available data: The digitization of society has created vast amounts of data that can be used to train AI systems. Government agencies, in particular, now manage enormous data resources that can fuel AI applications.

			2.Dramatic increases in computing power: Improve­ments in graphics processing units (GPUs) and specialized AI chips radically increased computing power. Simultaneously, the development of cloud computing has made this power much more accessible by allowing users to tap these resources without first making large capital investments.

			3.Revolutionary algorithmic improvements: Statis­tically based techniques like machine learning, deep learning, reinforcement learning, and transformer architecture have transformed AI capabilities, rendering systems capable of carrying out actions that have hitherto only been possible for human beings. 

			The convergence of these factors has transformed AI’s capabilities and has radically increased its range of potential applications across government operations. Analytical machine learning AI use cases began to proliferate in the mid-2010s for prediction-based decisions. In the years since 2022, the development of practical use cases has further accelerated with the emergence of foundation models and generative AI, which have made AI capabilities far more accessible, opening up many new possibilities for government applications.

			The U.S. government was quick to recognize this shift, with initiatives like the National AI Initiative Act of 20203 and the Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence issued in 2023.4 These frameworks established coordinated federal investment in AI research and development while emphasizing responsible implementation. Building on these foundations and pushing change forward more rapidly, a series of executive orders and Office of Management and Budget memoranda issued in 2025 now direct federal agencies to “use safe and secure artificial intelligence in innovative ways to improve government efficiency and mission effectiveness.”5 These new directives emphasize that agencies must “procure effective and trustworthy AI capabilities in a timely and cost effective manner” while leveraging existing IT accountability structures rather than creating additional approval layers. 

			Types of AI

			Analytical/Predictive AI

			Analytical AI systems excel at pattern recognition and prediction. These systems analyze vast amounts of structured numerical data to identify trends, make forecasts, and support decision making. Analytical AI has been successfully deployed in government for many years.

			In government contexts, analytical AI powers applications such as:

			•Fraud detection: Systems that identify suspicious patterns in tax filings, benefits claims, or procurement processes

			•Resource allocation: Models that predict service demands to optimize staffing and resource deployment

			•Intelligence analysis: Tools that process signals intelligence and identify potential threats

			•Economic forecasting: Systems that model economic scenarios to inform policy decisions

			The technical architecture of analytical AI typically involves statistical models, traditional machine learning algorithms, and, increasingly, deep learning approaches. One significant advantage of these systems is that they can process data at scales beyond human capacity, which allows them to identify patterns that would otherwise remain hidden.

			For example, FEMA’s Incident Management Workforce Deployment Model analyzes large historical datasets using machine learning. This analytical AI application helps the agency place the right resources in the right locations during emergencies, significantly improving response effectiveness.6 Another example of analytical AI in disaster response is the machine learning-based weather forecasting models created by the National Oceanic and Atmospheric Administration (NOAA).7 

			Deterministic AI

			Deterministic AI systems use predefined rules and logic to automate processes and decision-making. They are the primary decision approach used in robotic process automation (RPA) applications, which are common in the federal government. Unlike more probabilistic approaches to AI, deterministic systems produce consistent, predictable outputs for given inputs, making them well-suited for applications requiring reliability and auditability.

			In government operations, deterministic AI powers workflow automation across various domains:

			•Regulatory compliance checking: Systems that verify submissions against established rules

			•Eligibility determination: Applications that assess whether individuals qualify for benefits

			•Document processing: Tools that extract and categorize information from standardized forms

			•Case routing: Systems that direct inquiries or applications to appropriate departments

			Deterministic AI often works in tandem with analytical AI, with the analytical component generating insights or predictions and the deterministic component applying rules to act on those outputs. For example, an analytical model might identify patterns suggesting potential fraud, while a deterministic system applies predefined rules to flag specific cases for human review. This combination is sometimes referred to as “intelligent process automation.” The U.S. Department of Agriculture has formed an Intelligent Automation Center of Excellence to create workflows combining RPA with machine learning-based decision approaches.8

			Generative AI

			Generative AI represents one of the most significant recent advances in artificial intelligence. These systems can produce human-quality content (text, images, code, etc.) in response to prompts in natural human language.

			Government applications for generative AI include:

			•Document drafting: Creating reports, correspondence, and regulatory text

			•Content creation: Producing public information materials in multiple formats

			•Code generation: Developing software and applications more efficiently

			•Simulation and scenario planning: Generating potential scenarios for planning exercises

			•Employee and customer service chatbots: Using generative AI to answer employee and (in the future) constituent questions.

			While generative AI has captured the public imagination, government applications remain largely in the pilot phase as of late 2025, although some agencies, such as Homeland Security, have implemented generative AI for employee chatbots.9 Before rolling out generative AI capabilities at scale, agencies must carefully address challenges relating to data security, potential biases, and the need for human verification of AI-generated content, which can sometimes generate false textual information called “hallucinations.”

			Despite these challenges, generative AI holds enormous potential for government transformation. The Department of Defense, for instance, is exploring generative AI for mission planning and simulations,10 while intelligence agencies are testing applications for pattern recognition and translation.11 As implementation frameworks mature, generative AI will become an essential tool across government operations.

			Agentic AI

			Agentic AI represents the next frontier of artificial intelligence, marking a shift from AI as a sophisticated tool to AI as an autonomous partner in operations. While still emerging, agentic AI systems possess the ability to pursue defined objectives with increasing levels of autonomy. This means systems that can make decisions and take actions with limited human oversight, adapt to changing circumstances based on real-time information, and coordinate with other systems and human teammates.

			This evolution from tool to agent represents a fundamental shift in human–AI relationships. Unlike current systems that typically require explicit human direction for each task, agentic AI can operate more independently within defined parameters.

			Early government applications of agentic AI include:

			•Cybersecurity systems that independently detect and respond to threats

			•Supply chain management tools that autonomously adjust to disruptions

			•Environmental monitoring systems that detect problems and initiate responses

			The true power of agentic AI will emerge as these systems begin to operate in coordinated networks. For example, in disaster response scenarios, multiple AI agents could simultaneously monitor weather conditions, analyze population movements, coordinate emergency services, and manage resource distribution—all while continuously communicating with each other and with human operators.

			As agentic AI develops, government agencies will need to establish appropriate governance frameworks that balance the benefits of autonomous operation with the need for appropriate human oversight and accountability. While fully autonomous agentic AI systems remain some way off, agencies should prepare now for this evolution by developing governance structures and ethical frameworks appropriate for increasing AI autonomy.

			How AI Works

			Machine Learning

			Most contemporary AI systems are based on machine learning, a statistical approach for predicting future outcomes based on past data. The most common approach to machine learning involves the use of a training dataset to create a model to predict a known outcome. Called “supervised learning,” this approach may require human labeling of the outcome variable or feature. For example, a model to predict diabetes onset would require a training dataset in which the outcome variable—whether the patient was diagnosed with diabetes—was known, and various prediction variables such as exercise levels, genetic history, and body mass index were used to predict the outcome. After the model is created, it is often tested for accuracy on a dataset in which the outcome variable is also known. It can then be employed to predict unknown outcomes. 

			This supervised learning approach has been used for several decades in analytical AI. Assuming that an organization can get hold of the necessary data, systems trained in this way can often make very accurate predictions. “Unsupervised learning” approaches also exist—typically used to identify similar cases or clusters in a dataset—but they are far less common in business and government contexts.

			Supervised machine learning is one of the most widely used forms of this type of statistical or probabilistic AI. But more complex approaches—neural networks, deep learning, and even generative AI—are all forms of machine learning. They all use statistical models to predict unknown outcomes after being trained and tested on known outcomes. 

			Neural Networks and Deep Learning

			Some modern AI systems are based on learning models that attempt to mimic the structure of the human brain. Inspired by the way signals are transmitted in the brain across clusters of neurons, early AI researchers attempted to build machine learning models that processed information in the same way. 

			In a machine-learning neural network, information flows through many connected units called “neurons.” Each neuron performs the same simple computation but with its own adjustable weights and bias, producing an output that becomes the input to the next layer.12 The structure and parameters of the network determine how the input is transformed, allowing the network to convert the input into a different output, such as a classification, prediction, or generated text. What is special about these networks is that the settings used to transform the data are not fixed, so the network can learn—or be trained—to alter these values in various ways to improve the accuracy and relevance of the data the model outputs. 

			The simplest neural networks have just two layers: the input layer and the output layer. But models like this can only transform the input data in very simple ways. Adding complexity to the transformation requires the addition of so-called “hidden layers” between the input and the output layers, where additional dimensions of transformation take place. When a network has just one hidden layer, it is capable of “shallow learning.” Some modern AI models rely on dozens, hundreds, or even thousands of hidden layers to allow the model to process information in increasingly complex ways. When there is more than one hidden layer between the input and output layers in a model, it is capable of “deep learning.” This AI technique has proven very effective at making complex predictions and classifying images and sounds. However, the complexity of deep learning models often makes it difficult for humans—including highly competent data scientists—to understand and interpret them. As a result, they are sometimes avoided in highly regulated environments like banking and healthcare. 

			What makes neural networks in general, and deep learning networks in particular, so powerful is their ability to increase their capabilities from experience—by “learning.” As with conventional machine learning, during the training process the model processes example inputs such as a question or image for which the desired output is already known. At the beginning of the process, the biases and weights that determine how the inputs are processed have random values. The outputs the network produces are then compared to the correct result and the difference is measured using a mathematical formula. The model then undertakes a process called “backpropagation” that starts with the incorrect result and works backward, adjusting the settings of the weights and biases of the network to reduce the difference between the original incorrect output and the correct one. This process is repeated many thousands, or even millions, of times until the network is able to produce accurate results for new inputs. As is the case with simpler machine learning models, if the network can reliably produce accurate results for inputs with known outputs, it can then be used to answer queries for which the output is not known in advance. This training process takes time and resources that drive most of the total costs of modern AI systems.
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			Figure 1. The layers in a deep learning neural network.

			Generative AI Models and Natural Language Processing

			Historically, most AI models were trained to perform one specific task, like identifying specific cancers from medical imaging or recognizing speech. Many of the recent dramatic advances in AI capabilities have come from the emergence of a new type of AI: the generative model. Instead of predicting a quantitative outcome variable, they predict the next word in a sentence or the next pixel in an image. While traditional AI models are trained on narrow sets of quantitative data for narrow tasks, generative models are trained instead on broad, large data sets of text, images, or other sequential phenomena, and they can be adapted to a wide variety of tasks. Generative models that have broad capabilities and can perform many language or image related tasks—or sometimes both—are known as “foundation models.” Once a foundation model has been trained, it can then be fine-tuned for specific purposes. This customization process means that specialized models can be developed without needing to build a new system from the ground up in each case.

			 

			Foundation models…

			•learn through self-supervised methods, requiring minimal human input

			•develop emergent capabilities that are not explicitly programmed by their creators

			•can be adapted to new tasks with relatively small amounts of additional training

			 

			Another key differentiator that separates generative AI models from previous generations of AI is that their training requires less human supervision. Where early AI models had to be trained on carefully curated and labeled sets of data, foundation models can learn from the messy, unlabeled data of the real world, sorting through and categorizing information with minimal oversight. Vendors of foundation models, however, do often need to employ what is called “reinforcement learning with human feedback” to minimize objectionable responses to prompts and otherwise tune their systems before broad release. 

			The significance of foundation models for government agencies lies in both their efficiency and their versatility. Rather than developing specialized AI systems for each application, agencies can leverage foundation models as the starting point for multiple use cases, reducing development time and resource requirements while improving performance. The foundation models can handle basic language and reasoning capabilities, and agencies can then customize them with their own content. 

			One of the most transformative applications of foundation models has been in the field of natural language processing, or NLP—the branch of AI concerned with understanding inputs and generating outputs in human languages. At the heart of recent progress in NLP are large language models (LLMs), a subcategory of foundation models that are trained on huge bodies of text drawn from books, articles, and online resources. These models are capable of both analyzing language-based content and generating fluent text that is contextually appropriate to a wide range of styles and domains. An LLM can summarize documents, draft emails, answer questions, translate text, and even write computer code—all using the same underlying foundation model. Because they are trained to predict and generate language one word at a time, they can generalize across a remarkable variety of tasks without being explicitly programmed for each one. Their flexibility has made LLMs the most visible and widely used form of AI today, powering everything from search engines to virtual assistants.

			Size Matters

			Foundation models can vary significantly in size, with important implications for their capabilities, deployment flexibility, and resource requirements. One key measure of size is the number of parameters a model has, the internal weights and biases that the model learns during training, which determine how it processes and generates language. The more parameters a model has, the more nuanced and flexible it tends to be, but the more computationally demanding it becomes.

			While larger models tend to offer broader generalization and more sophisticated language abilities, smaller models can be more efficient, more secure, and easier to tailor for specific purposes. Selecting the appropriate model size involves balancing performance needs against factors like compute availability, data sensitivity, latency requirements, and infrastructure constraints.

			Large Models (100+ Billion Parameters)

			Large language models (LLMs), such as OpenAI’s GPT-4 or Google’s Gemini, are trained on vast and diverse datasets and can have hundreds of billions of parameters, with some estimates setting the number of parameters in the largest models at over 1.5 trillion. These models can generate high-quality text, answer questions with nuance, and perform tasks they were never explicitly trained on. However, these capabilities come at a cost. Large models require significant computational resources and energy to run, typically depend on access to advanced cloud infrastructure, and can be difficult to audit or explain. For government agencies, using such models typically requires the use of third-party platforms or partnerships, raising concerns around data privacy, latency, and control. Still, for highly complex reasoning, multilingual tasks, or general-purpose applications, large models remain unmatched.

			Medium Models (10–100 Billion Parameters)

			Medium-sized language models retain many of the strengths of larger models, such as fluency and task flexibility, while being less demanding in terms of infrastructure. These models can often be deployed on premises with high-performance servers or private cloud environments, allowing organizations to maintain greater control over their data. For agencies looking to deploy language models across departments or regions, medium models provide a workable compromise between scale and manageability, and they can still be fine-tuned for domain-specific performance. Medium-scale models and small models are also more likely to be open-source, which means that technically capable agencies can adopt and customize them at lower usage costs and with fewer concerns about content leakage. 

			Small Models (<10 Billion Parameters)

			Small language models (SLMs) represent a rapidly evolving frontier in AI, emphasizing efficiency, specialization, and modularity. Unlike larger models that aim for general purpose use, SLMs are often tailored for narrow tasks and domains, such as medical diagnostics, legal review, or financial analysis. The transformer-based architecture common to foundation models is retained but heavily optimized using techniques like reduced attention windows (the model will consider each word only in the context of nearby words instead of every word in the context window) and pruned or quantized layers (a smaller neural network) to minimize resource demands. Many can run on standard consumer hardware, mobile devices, or secure local servers, making them ideal for edge computing, air-gapped systems, or privacy-sensitive use cases.

			Additionally, SLMs support a modular AI paradigm, where small, specialized models are combined into orchestration layers. This enables powerful systems to be assembled from light-weight components, much like microservices in software design. Techniques like knowledge distillation and quantization allow small models to retain surprising levels of capability, especially when optimized for a specific task. These types of modular systems can also be precursors to AI agents. 
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			Figure 2. Language model size comparison.

			Training Methodologies

			The development of generative models involves different types of training, each suited to different developmental phases of the model:

			•Training: The initial training on massive datasets of text or images that builds the model’s core capabilities

			•Fine-tuning: Adapting a trained model’s parameters and weights to specific tasks or domains using smaller, specialized datasets

			•Prompt engineering: Using carefully crafted inputs to guide the model’s output without modifying its internal parameters

			Training

			Generative model training creates a foundation of general knowledge and capabilities by teaching models to predict what comes after a given piece of text or image. The resulting knowledge is distributed across billions of parameters, which encode statistical associations between words, phrases, concepts, or images. This enables models to generate appropriate responses to a wide range of inputs but also creates challenges for ensuring accuracy and eliminating biases present in training data. That is why most large models from vendors are trained further using reinforcement learning with human feedback.

			 

			Potential Pitfalls

			Modern AI systems—whether they are designed to sort benefit applications, flag suspicious transactions, recognize images, or generate text—operate by learning statistical patterns, not by reasoning the way humans do. This means that AI outputs can make confident assertions that are simply wrong, can embed hidden social biases, or can drift out of step with a changing world. Public-sector teams need to anticipate and plan around these potential pitfalls.

			•Hallucination: When a model cannot find a clear answer in its training data, it may invent plausible‐sounding facts, such as citing a regulation that does not exist or creating the kind of statistic that it has learned is likely to appear in a given context. These “hallucinations” arise because generation is statistical, not evidentiary. 

			•Bias: If the data that shaped the model under- or over-represents certain groups or viewpoints, the model can reproduce or even amplify those inequities. For instance, a model might assign higher fraud-risk scores to identical applications from different zip codes or might make hiring decisions based on historical patterns that discriminated against a particular gender. 

			•Drift: Agency policies evolve over time and states of affairs in the world change. Data or concept drift occurs when the distribution of 	inputs or the relationship between inputs and outcomes in production no longer matches the training data, so the model’s predictions become stale even though its parameters have not changed. Without intervention, model accuracy degrades, leading to out-of-date advice or misaligned decisions. 

			Fortunately, RAG-based approaches (using Retrieval-Augmented Generation), disciplined prompt design, and continuous monitoring can provide concrete safeguards that fit existing government workflows.

			 

			Fine-Tuning Approaches

			Fine-tuning offers government agencies a method for customizing foundation models for specific applications. This process involves taking an already-trained model and then providing additional training on domain-specific data, adjusting the model’s parameters to better serve agency-specific needs.

			When considering fine-tuning, government agencies should evaluate several important dimensions. First, agencies should evaluate data requirements, because fine-tuning requires large, high-quality datasets that reflect the intended domain and use cases. Second, the process demands specialized knowledge in machine learning and model training, which means agencies need to assess the technical expertise needed. Third, while far less intensive than the original training, fine-tuning still needs significant computational capacity, requiring agencies to appraise computing resource demands in any given case. Finally, agencies must weigh development costs against expected performance improvements. Some organizations have found that publicly available foundation models are as, or even more, accurate on some specialized tasks as fine-tune trained models on those same tasks. 

			Although technically difficult, fine-tuning can be particularly valuable for:

			•Specialized terminology: Adapting models to understand agency-specific jargon and acronyms

			•Domain-specific tasks: Enhancing performance for particular functions like regulatory compliance analysis

			•Security enhancement: Reducing vulnerabilities or unwanted behaviors present in the base model, including through the implementation of ethical guardrails

			For government agencies with adequate data resources and technical capabilities, fine-tuning offers a pathway to AI systems that better align with specific mission requirements. However, agencies should carefully assess whether the performance improvements justify the required investment compared to alternative approaches like RAG or prompt engineering, which are far more common.

			Retrieval-Augmented Generation (RAG)

			Retrieval-Augmented Generation (RAG) has emerged as a particularly valuable implementation architecture for government agencies and a much easier route to customized generative models than fine-tuning. This approach combines the powerful capabilities of foundation models with agency-specific knowledge bases, addressing several critical challenges in government AI implementation.

			In a RAG system, a foundation LLM is supplemented by curated content—often in document form—that is useful for addressing specific topics on which the agency has expertise. After creating a RAG system by converting the desired content to numbers (“embeddings”) and storing them in a vector database, a user can access the content through a prompt. The usage process begins when the prompt is encoded and passed to a retrieval component. The system then conducts a search through the knowledge base, identifying documents or chunks of documents that are semantically similar to the user’s inquiry. These retrieved documents are then added to the prompt as contextual background. Finally, the language model leverages this enriched context—combining the original query with the retrieved information—to generate a response that is grounded in the enlarged context. 

			This architecture offers several significant advantages for government applications:

			•Enhanced accuracy: By grounding responses in verified agency documents, RAG systems reduce the occurrence of “hallucinations,” the generation by an AI model of plausible but incorrect information.

			•Up-to-date knowledge: The system can access the latest regulations, policies, and procedures without requiring model retraining.

			•Domain specialization: Agencies can incorporate specialized knowledge without extensive AI development expertise.

			•Controlled information sources: All responses can be traced to specific, authorized documents, and in some cases, data may not be exposed directly to the commercial AI model with which the user interacts.

			While highly promising, RAG systems do have limitations. As always with AI systems, the quality of the output depends on the quality of the input, which in this case is the knowledge base of the RAG system. Most agencies, and most private-sector organizations as well, have traditionally focused on data curation and management for structured numerical data and have devoted less attention to unstructured data like text and images. For successful RAG implementations, unstructured data needs to be the focus of data quality initiatives, and ongoing data curation processes must be established. Further, information retrieval can also add latency to response times compared to pure generation approaches. Despite these challenges, RAG represents one of the most practical and immediately valuable AI architectures for government implementation.

			Prompt Engineering

			Prompt engineering has emerged as a strategic discipline for effectively guiding AI systems without modifying their underlying parameters. This approach allows agencies to shape AI outputs through carefully designed inputs rather than technical modifications to the models themselves.

			For government contexts, prompt engineering offers several advantages. This approach features a low technical barrier, making it accessible to staff without specialized expertise in model development or fine-tuning processes. It also allows government agencies to rapidly iterate on their AI systems by quickly refining interactions rather than engaging in lengthy retraining cycles. Further, prompt engineering enhances transparency, as the guidance provided to AI systems is explicit and auditable. Finally, this approach offers great flexibility because it permits different interaction patterns for various user groups or contexts.

			Effective prompt engineering for government applications involves:

			•Developing frameworks for consistent prompt structures across applications

			•Creating prompt libraries for common agency-specific tasks and queries

			•Establishing governance mechanisms to ensure prompts align with agency policies

			•Testing and refining prompts to improve performance and reduce biases

			While prompt engineering cannot solve all the limitations of foundation models, it provides a pragmatic approach for government agencies to leverage AI capabilities with minimal technical overhead. When combined with other implementation architectures like RAG, prompt engineering creates powerful systems that balance performance, efficiency, and governance requirements.

			Long Context Windows

			Large-language-model “context windows” define the maximum number of tokens (roughly ¾ of a word each) that the model can look at when generating a response. Early transformer models were limited to just a few thousand tokens, forcing developers to trim inputs aggressively or rely on auxiliary techniques such as RAG and prompt engineering. Recent advances, however, have pushed back the context window frontier dramatically. At the time of writing, Anthropic’s Claude models can hold 200,000 tokens in their context windows, while the core commercial AI models released by OpenAI and Google offer one- or two-million-token context windows. 

			These leaps make it feasible to paste an entire book, a moderate size codebase, or a multi-year project archive directly into the model and then interact with it without prior indexing or careful prompt planning. For government teams, this simplicity of approach offers clear advantages, from lower dataset preparation requirements to a more natural prompting experience. With room to spare in the context window, agency employees can include original queries, additional sources, and formatting instructions without having to worry about hitting token limits.

			However, longer context windows do not solve all the problems that approaches like RAG and careful prompt engineering are designed to tackle. Information in the middle of a long context window can get lost,13 and some experiments have found that responses tend to deteriorate in quality once the context window contains more than 64,000 tokens.14 Filling the context window to its limits for each query can also add significantly to compute costs, which are often calculated on a per token basis and will thus be less efficient than an approach like RAG. While it is possible that all these issues may be resolved at some point, longer context windows do not currently offer a silver bullet for interacting with large datasets.  

			Technical Infrastructure Requirements

			Government agencies are custodians of enormous volumes of mission-critical data distributed across multiple systems. This data, if leveraged effectively through AI-driven automation and analytics, can substantially boost operational efficiency and decision-making processes.15 However, the implementation of AI solutions in government environments is far from straightforward due to the complex web of security controls and compliance requirements that govern these systems.

			The primary challenge lies in protecting Controlled Unclassified Information (CUI), which encompasses a wide range of sensitive data types. Some examples include:

			•Sensitive Personally Identifiable Information (SPII/PII): This includes data such as Social Security numbers, biometric records, or financial information that could be used to identify, contact, or locate specific individuals.

			•Acquisition Sensitive Data: Information related to government procurement processes, contract negotiations, and proprietary vendor information.

			•Law Enforcement Sensitive Information: Data pertaining to ongoing investigations, confidential informants, or tactical operations.

			The complexity of managing this data is further compounded by several factors:

			•Varying Data Classification Levels: The challenge becomes more complex for national security, homeland defense, and law enforcement agencies in particular because the data will be categorized under multiple classification levels. The requirement that AI models maintain data boundaries and classification levels represents a significant technical challenge.

			•Data Sensitivity Granularity: Different pieces of information within the same system may have different sensitivity levels, requiring granular access controls and data-handling procedures.

			•Cross-System Dependencies: Many government processes involve data flow between multiple systems, each potentially with its own security protocols and compliance requirements.

			•Data Spillage Prevention: Agencies must implement robust measures to prevent the unauthorized transfer of sensitive information between systems or to unauthorized personnel.

			•Maintaining System Boundaries: Clear delineation of system boundaries is crucial for security and compliance but can pose challenges for integrated AI solutions that may need to access data across multiple systems.

			While commercial AI solutions offer promising capabilities for improving government operations, their implementation within federal constraints requires careful navigation of several key areas:

			•Security Protocols: AI systems must be designed and deployed in a manner that adheres to federal cybersecurity standards, including FISMA, NIST guidelines, and agency-specific security policies.

			•Data Handling Requirements: AI models must be trained and operated in compliance with data protection regulations such as the Privacy Act, HIPAA (for health-related data), and agency-specific data handling policies.

			•System Integration Challenges: Integrating AI solutions with legacy government systems often requires custom development work to ensure compatibility and maintain security controls.

			•Explainability and Transparency: Government use of AI must be transparent and explainable, particularly when it impacts decision-making processes that affect citizens or policy.

			•Continuous Monitoring and Auditing: AI systems in government environments require ongoing monitoring for performance, security, and compliance, with regular audits to ensure adherence to federal standards.

			•Ethical Considerations: Agencies must carefully consider the ethical implications of AI use, particularly in areas such as law enforcement, immigration, or benefits distribution.

			•Data Quality and Bias Mitigation: Government agencies must ensure that the data used to train AI models is representative and free from biases that could lead to unfair or discriminatory outcomes.

			•Procurement and Vendor Management: Acquiring AI solutions for government use involves navigating complex federal procurement processes and ensuring vendors meet stringent security and compliance requirements.

			Realizing the potential benefits of AI in government requires a carefully orchestrated approach that balances innovation with the stringent security and compliance requirements of federal systems. The following sections offer guidance on key components of this approach.

			Computing Resources

			Implementing AI in government contexts requires carefully planned infrastructure that balances performance needs with security, compliance, and budget constraints. The computing resources required vary significantly based on the type and scale of AI implementation.

			Hardware demands differ substantially depending on how AI is deployed. Inference-only applications—where trained models, both analytical and generative AI, are used without additional fine-tuning—typically require far less computational power and can often be run on standard server infrastructure. In contrast, training large language models at scale demands high-performance GPU clusters to ensure responsiveness and efficiency. Meanwhile, edge AI applications—such as those running on mobile devices or field-deployed sensors—require low-power, specialized hardware capable of operating in constrained or remote environments. It is increasingly common for systems to exploit both sets of capabilities, using small models for on-device tasks while offloading to cloud-based models for more challenging work.

			For most use cases, government agencies will primarily use AI for inference rather than training. Inference-only usage significantly reduces hardware requirements, as the computationally intensive process of training or fine-tuning models has often already been completed by model providers or specialized teams. For example, while training a large language model might require hundreds or thousands of GPUs over weeks, months, or even a year or more, using that same model to answer questions or analyze documents can often be done with standard cloud compute resources like EC2, or on premises with just a few GPUs, or even powerful CPUs. This makes AI adoption more feasible from an infrastructure perspective, as agencies can leverage trained models from external vendors and focus their resources on effective deployment rather than assembling the massive computing clusters needed for model development.

			[image: ]

			Figure 3. Deployment model comparison table.

			Government agencies must also make strategic decisions about deployment approaches for AI. On-premises deployments provide the highest levels of control over data, systems, and compliance but come with steep requirements for capital investment and specialized personnel. Cloud-based deployments on services such as Amazon Bedrock offer scalability and access to state-of-the-art hardware (and AI software tools, including foundation generative AI models), but often raise concerns around data security, vendor lock-in, and compliance with federal data sovereignty requirements. Hybrid models attempt to reconcile these tensions by retaining sensitive processes on premises while outsourcing other workloads to cloud infrastructure, offering a flexible middle ground.
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