

 [image: cover]

Get Programming with JavaScript Next: New features of ECMAScript 2015, 2016, and beyond

 JD Isaacks

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Candace West, Dan Maharry
Tecchnical development editor: Nick Watts
Review editor: Aleksandar Dragosavljević
Project editor: David Novak
Copy editor: Benjamin Berg
Proofreader: Melody Dolab
Technical proofreader: Jon Borgman
Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

 ISBN 9781617294204

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 For my brother, Jon Potts

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Lesson 1. ECMAScript specification and the proposal process

 Lesson 2. Transpiling with Babel

 Lesson 3. Bundling modules with Browserify

 Unit 1. Variables and strings

 Lesson 4. Declaring variables with let

 Lesson 5. Declaring constants with const

 Lesson 6. New string methods

 Lesson 7. Template literals

 Lesson 8. Capstone: Building a domain-specific language

 Unit 2. Objects and arrays

 Lesson 9. New array methods

 Lesson 10. Object.assign

 Lesson 11. Destructuring

 Lesson 12. New object literal syntax

 Lesson 13. Symbol—a new primitive

 Lesson 14. Capstone: Simulating a lock and key

 Unit 3. Functions

 Lesson 15. Default parameters and rest

 Lesson 16. Destructuring parameters

 Lesson 17. Arrow functions

 Lesson 18. Generator functions

 Lesson 19. Capstone: The prisoner’s dilemma

 Unit 4. Modules

 Lesson 20. Creating modules

 Lesson 21. Using modules

 Lesson 22. Capstone: Hangman game

 Unit 5. Iterables

 Lesson 23. Iterables

 Lesson 24. Sets

 Lesson 25. Maps

 Lesson 26. Capstone: Blackjack

 Unit 6. Classes

 Lesson 27. Classes

 Lesson 28. Extending classes

 Lesson 29. Capstone: Comets

 Unit 7. Working asynchronously

 Lesson 30. Promises

 Lesson 31. Advanced promises

 Lesson 32. Async functions

 Lesson 33. Observables

 Lesson 34. Capstone: Canvas image gallery

 Exercise answers

 Here’s a preview of some of the new syntaxes you’ll learn in unit 2

 Here’s a preview of using promises and async functions from unit 7

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Lesson 1. ECMAScript specification and the proposal process

 1.1. A brief history of ECMAScript

 1.2. Why ES2015 adds so much

 1.3. Who decides what gets added?

 1.3.1. Specification stages

 1.3.2. Picking a stage

 1.4. What this book will cover

 Summary

 Lesson 2. Transpiling with Babel

 2.1. What is transpiling?

 2.1.1. Compiling to JavaScript languages

 2.1.2. Where Babel fits in

 2.2. Setting up Babel 6

 2.3. The Babel configuration needed for this book

 2.3.1. A note on source maps

 2.3.2. Set up Babel as NPM script

 Summary

 Lesson 3. Bundling modules with Browserify

 3.1. What’s a module?

 3.2. How modules work in Node.js

 3.3. What is Browserify?

 3.4. How does Browserify help with ES6 modules?

 3.5. Setting up Browserify with Babel

 3.5.1. Installing Browserify

 3.5.2. Setting up a project using babelify

 3.6. Alternatives to Browserify

 Summary

 Unit 1. Variables and strings

 Lesson 4. Declaring variables with let

 4.1. How scope works with let

 4.1.1. Why the block scope of let is preferred

 4.2. How hoisting works with let

 4.3. Should I use let instead of var from now on?

 Summary

 Lesson 5. Declaring constants with const

 5.1. How constants work

 5.2. When to use constants

 Summary

 Lesson 6. New string methods

 6.1. Searching strings

 6.2. Padding strings

 Summary

 Lesson 7. Template literals

 7.1. What are template literals?

 7.1.1. String interpolation with template literals

 7.1.2. Multiline strings with template literals

 7.2. Template literals are not reusable templates

 7.3. Custom processing with tagged template literals

 Summary

 Lesson 8. Capstone: Building a domain-specific language

 8.1. Creating some helper functions

 8.2. Create an HTML-escaping DSL

 8.3. Create a DSL for converting arrays into HTML

 Summary

 Unit 2. Objects and arrays

 Lesson 9. New array methods

 9.1. Constructing arrays with Array.from

 9.2. Constructing arrays with Array.of

 9.3. Constructing Arrays with Array.prototype.fill

 9.4. Searching in arrays with Array.prototype.includes

 9.5. Searching in arrays with Array.prototype.find

 Summary

 Lesson 10. Object.assign

 10.1. Setting default values with Object.assign

 10.2. Extending objects with Object.assign

 10.3. Preventing mutations when using Object.assign

 10.4. How Object.assign assigns values

 Summary

 Lesson 11. Destructuring

 11.1. Destructuring objects

 11.2. Destructuring arrays

 11.3. Combining array and object destructuring

 11.4. What types can be destructured

 Summary

 Lesson 12. New object literal syntax

 12.1. Shorthand property names

 12.2. Shorthand method names

 12.3. Computed property names

 Summary

 Lesson 13. Symbol—a new primitive

 13.1. Using symbols as constants

 13.2. Using symbols as object keys

 13.3. Creating behavior hooks with global symbols

 13.4. Modifying object behavior with well-known symbols

 13.5. Symbol gotchas

 Summary

 Lesson 14. Capstone: Simulating a lock and key

 14.1. Creating the lock and key system

 14.2. Creating a Choose the Door game

 Summary

 Unit 3. Functions

 Lesson 15. Default parameters and rest

 15.1. Default parameters

 15.2. Using default params to skip recalculating values

 15.3. Gathering parameters with the rest operator

 15.4. Using rest to pass arguments between functions

 Summary

 Lesson 16. Destructuring parameters

 16.1. Destructuring array parameters

 16.2. Destructuring object parameters

 16.3. Simulating named parameters

 16.4. Creating aliased parameters

 Summary

 Lesson 17. Arrow functions

 17.1. Succinct code with arrow functions

 17.2. Maintaining context with arrow functions

 17.3. Arrow function gotchas

 Summary

 Lesson 18. Generator functions

 18.1. Defining generator functions

 18.2. Using generator functions

 18.3. Creating infinite lists with generator functions

 Summary

 Lesson 19. Capstone: The prisoner’s dilemma

 19.1. Generating prisoners

 19.2. Getting prisoners to interact

 19.3. Getting and storing the results

 19.4. Putting the simulation together

 19.5. Which prisoner does best?

 Summary

 Unit 4. Modules

 Lesson 20. Creating modules

 20.1. Module rules

 20.2. Creating modules

 20.3. When does a JavaScript file become a module?

 Summary

 Lesson 21. Using modules

 21.1. Specifying a module’s location

 21.2. Importing values from modules

 21.3. How imported values are bound

 21.4. Importing side effects

 21.5. Breaking apart and organizing modules

 Summary

 Lesson 22. Capstone: Hangman game

 22.1. Planning

 22.2. The words module

 22.3. The status module

 22.4. The game’s interface modules

 22.5. The index

 Summary

 Unit 5. Iterables

 Lesson 23. Iterables

 23.1. Iterables—what are they?

 23.2. The for..of statement

 23.3. Spread

 23.3.1. Using spread as an immutable push

 23.4. Iterators—looking under the hood of iterables

 Summary

 Lesson 24. Sets

 24.1. Creating sets

 24.2. Using sets

 24.3. What about the WeakSet?

 Summary

 Lesson 25. Maps

 25.1. Creating maps

 25.2. Using maps

 25.3. When to use maps

 25.4. What about the WeakMap?

 Summary

 Lesson 26. Capstone: Blackjack

 26.1. The cards and the deck

 26.2. Making the CPU’s turn slow enough to see

 26.3. Putting the pieces together

 Summary

 Unit 6. Classes

 Lesson 27. Classes

 27.1. Class declarations

 27.2. Instantiating classes

 27.3. Exporting classes

 27.4. Class methods are not bound

 27.5. Setting instance properties in class definitions

 27.6. Static properties

 Summary

 Lesson 28. Extending classes

 28.1. Extends

 28.2. Super

 28.3. A common gotcha when extending classes

 Summary

 Lesson 29. Capstone: Comets

 29.1. Creating a controllable sprite

 29.2. Adding comets

 29.3. Shooting rockets

 29.4. When things collide

 29.5. Adding explosions

 Summary

 Unit 7. Working asynchronously

 Lesson 30. Promises

 30.1. Using promises

 30.2. Error handling

 30.3. Promise helpers

 Summary

 Lesson 31. Advanced promises

 31.1. Creating promises

 31.2. Nested promises

 31.3. Catching errors

 Summary

 Lesson 32. Async functions

 32.1. Asynchronous code with generators

 32.2. Async functions

 32.3. Error handling in async functions

 Summary

 Lesson 33. Observables

 33.1. Creating observables

 33.2. Composing observables

 33.3. Creating observable combinators

 Summary

 Lesson 34. Capstone: Canvas image gallery

 34.1. Fetching images

 34.2. Painting the images on the canvas

 34.3. Repeating the process

 Summary

 Exercise answers

 Lesson 4

 Lesson 5

 Lesson 6

 Lesson 7

 Lesson 9

 Lesson 10

 Lesson 11

 Lesson 12

 Lesson 13

 Lesson 15

 Lesson 16

 Lesson 17

 Lesson 18

 Lesson 20

 Lesson 21

 Lesson 23

 Lesson 24

 Lesson 25

 Lesson 27

 Lesson 28

 Lesson 30

 Lesson 31

 Lesson 32

 Lesson 33

 Here’s a preview of some of the new syntaxes you’ll learn in unit 2

 Here’s a preview of using promises and async functions from unit 7

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 I’ve been using ECMAScript-based languages for about 15 years. In fact, the first programming language I ever learned, ActionScript,
 was based on ECMAScript. I kind of fell into programming, but I’m so glad that I did. Originally I wanted to be a graphic
 designer. I was always drawing, and by middle school, I was making complex drawings pixel by pixel using Microsoft Paint.
 In high school, I took a class on interactive multimedia, and was introduced to Adobe Photoshop and Macromedia Flash. Once
 I discovered the power of Photoshop, I never wanted to go back and draw pixel by pixel ever again. With Flash, I could take
 it even further: no longer confined to creating still images, I could create rich animations.

 This was the time of eBaum’s World and Newgrounds—websites that showcased the communities’ Flash games. I would visit these
 sites and wonder how these games were created. I tried to teach myself ActionScript (Flash’s internal language) purely by
 experimentation, but it wasn’t until I bought my first programming book that I really learned. After that, I was hooked. Being
 able to add interaction was a whole new dimension over creating animations, just as creating animations was a whole new dimension
 over creating still images. But this was just the start of my journey.

 Sometimes in my career, I learn something new that’s so much more powerful than how I’ve been doing things that I never want
 to go back. Most recently, after learning the power of all the new features packed into ES2015 and later, I never want to
 go back to how I did things before—and I hope you agree.

Acknowledgments

 I would like to thank my wife Christina and our children, Talan and Jonathan “Jam,” for all the time they sacrificed spending
 with me as I worked hard on writing this book. I love you all.

 I would also like to thank Manning, especially my editors Dan Maharry, Nick Watts, and Candace West. I would like to extend
 a special thank you to all the reviewers that made this book even better: Aïmen Saïhi, Ali Naqvi, Brian Norquist, Casey Childers,
 Ethien Daniel Salinas Domínguez, Fasih Khatib, Francesco Strazzullo, Giancarlo Massari, Laurence Giglio, Matteo Gildone, Michael
 J. Haller, Michael Jensen, Miguel Paraz, Pierfrancesco D’Orsogna, Richard Ward, Sean Lindsay, and Ticean Bennett.

About this book

 Get Programming with JavaScript Next was written for JavaScript programmers looking to learn the modern features introduced in 2015 and later. Instead of focusing
 on a specific version such as ES2015 or ES2016, I wanted to focus on the best new features that a developer would run into
 and be expected to understand when thrown into a modern JavaScript development environment.

Who should read this book

 Any programmer, no matter their skill level, should get a lot out of this book. This book doesn’t teach “how to program.”
 Readers are expected to be somewhat comfortable programming with classic JavaScript, but you don’t need to be an expert in
 JavaScript to follow along.

How this book is organized

 This book is broken into cohesive units. Each unit follows a specific theme such as functions or asynchronous coding. Each
 unit is broken into lessons on a specific topic, and each lesson starts with a priming question designed to get your gears
 spinning in the right way before we start the lesson. Throughout each lesson, there will be quick checks to make sure you
 understand the core idea of a section before moving on. At the end of each lesson is an exercise to help you take what you’ve
 learned and apply it. At the end of each unit is a capstone project that you’ll build using everything you’ve learned throughout
 the unit.

About the code

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps
 in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 The code used in this book may be accessed at the publisher’s website (https://www.manning.com/books/get-programming-with-javascript-next) or GitHub (https://github.com/jisaacks/get-programming-jsnext).

Book forum

 Purchase of Get Programming with JavaScript Next includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/get-programming-with-javascript-next. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions,
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

Online resources

 You can keep up to date with the features of JavaScript at https://github.com/tc39/ecma262. Here you can see what features are at what stage in the proposal process. We talk about how these stages and proposals work
 later in this book.

About the author

 [image:]

 JD ISAACKS has been programming for 15 years; his focus has primarily been on ECMAScript-based languages. He was previously a JavaScript
 instructor for The Iron Yard coding academy. He loves open source and has contributed to many popular projects such as React,
 Backbone, and D3. He is also a member of both the Bower.js and Moment.js teams, and the creator of GitGutter, one of the most
 popular Sublime Text packages.

Lesson 1. ECMAScript specification and the proposal process

 In this lesson you will learn about the origins of JavaScript and the difference between JavaScript and ECMAScript. Since
 this book is about the new features introduced starting with ES2015 and later, in this lesson you’ll learn about how those
 new features get proposed for the language and the process of how those proposals become part of the language specification.

1.1. A brief history of ECMAScript

 JavaScript was originally created at Netscape in 1995. Later the language was submitted to Ecma International for standardization,
 and ECMAScript First Edition was published in 1997. Ecma International used to be known as The European Computer Manufacturers
 Association (ECMA), but changed its name to “Ecma International” to reflect its global position. Even though Ecma is no longer
 an acronym, ECMAScript still uses the uppercase ECMA. After ECMAScript was published, the following two years each saw an
 updated addition, with ECMAScript Third Edition, commonly referred to as ES3, being published in December of 1999.

 ECMAScript Fourth Edition (ES4) was intended to be a radical change. It introduced many new concepts, including classes and interfaces, and was statically
 typed. It also wasn’t backwards-compatible with ES3. This meant that if implemented, it had the potential to break existing
 JavaScript applications in the wild. Needless to say, ES4 was controversial and split the Ecma technical committee, resulting
 in a subcommittee formed to work on a much smaller update dubbed ECMAScript 3.1. ECMAScript Fourth Edition was eventually abandoned and ECMAScript 3.1 was renamed to ES5 (Fifth Edition) and published in 2009.

 If you’ve been keeping score, that was 10 years, a full decade before a new version of the language was published—and even
 though the version number jumped by two, the update was really rather small.

1.2. Why ES2015 adds so much

 ECMAScript Sixth Edition was finalized in June of 2015. The Sixth Edition was the first major update to the language in over 15 years. The landscape
 of the web and the way websites and web applications were built had changed drastically, so naturally there were many new
 ideas, leading to new syntax, operators, primitives, and objects with enhancements to existing ones, as well as a treasure
 trove of new concepts. All of this equates to the Sixth Edition being a major revision.

 Initially (and commonly still) referred to as ES6, the Sixth Edition was renamed to ES2015 to coincide with the original strategy of releasing a new version each year. As such, ECMAScript Seventh Edition, originally dubbed ES7 and then renamed ES2016, was finalized in June 2016.

 The idea behind releasing a new version each year is that the language can gradually and continuously mature without going
 through a stagnant phase like it did in the early 2000s. This should also make new editions easier and faster to adopt for
 developers.

1.3. Who decides what gets added?

 A task group within Ecma International known as TC39 (http://www.ecma-international.org/memento/TC39.htm) is responsible for developing and maintaining the ECMAScript specification. The members of the group are mostly from companies
 that build web browsers, such as Mozilla, Google, Microsoft, and Apple, as they have a vested interest in and must implement,
 the specification. You can see a full list of the TC39 members at http://tc39wiki.calculist.org/about/people/. Additions to the ECMAScript specification go through a five-stage process ranging from stages 0 through 4.

 1.3.1. Specification stages

 	
Stage 0: Strawman—This stage is informal and can be in any form; it allows anyone to add their input into the further development of the language.
 To add your input, you must be either a member of TC39 or registered with Ecma International. You can register at https://tc39.github.io/agreements/contributor/. Once registered you can propose your idea via the esdiscuss mailing list. You can also view these discussions at https://esdiscuss.org/.

 	
Stage 1: Proposal—After a strawman has been made, a member of TC39 must champion the addition to advance it to the next stage. This means the
 TC39 member must explain why the addition is useful and describe how the addition will behave and look once implemented.

 	
Stage 2: Draft—In this stage, the addition gets fully spec’d out and is considered experimental. If the addition reaches this stage, it
 means the committee expects the feature to eventually make it into the language.

 	
Stage 3: Candidate—At this stage, the solution is considered complete and is signed off on. Changes after this stage are rare, and are generally
 for critical discoveries after implementation and significant usage. After a suitable period of deployment, the addition may
 be safely bumped to stage 4.

 	
Stage 4: Finished—This is the final stage; if an addition reaches this stage it is ready to be included in the formal ECMAScript standard specification.

 For further reading about these specific stages and other information about the TC39 process, see https://tc39.github.io/process-document/.

 1.3.2. Picking a stage

 There are projects such as Babel (see lesson 2) that allow you to use future JavaScript features today. If you’re going to use a tool like this, it’s probably a good idea
 to pick an appropriate stage at the beginning of your project. If you only want features that are guaranteed to be in the
 next release, stage 4 would be appropriate. Choosing stage 3 is also considered safe because most likely any features included
 in stage 3 will end up staying, and with few changes. Choose a stage lower than that and you run the risk of having features
 changed or even revoked in the future. You may find a particular feature helpful enough to make that risk worth taking.

 You can also decide what stage to choose based on what features you want to use. Of course, you may not want to use any features
 that aren’t officially included in the ECMAScript specification yet, and that is fine. If you do want to pick a stage, you
 can review what features are in what stages at the following URLs:

 	Stage 0—https://github.com/tc39/ecma262/blob/master/stage0.md

 	Stages 1–3—https://github.com/tc39/proposals/blob/master/README.md

 	Stage 4—https://github.com/tc39/proposals/blob/master/finished-proposals.md

1.4. What this book will cover

 This book is intended for existing JavaScript developers looking to get up to speed and become productive with the newest
 editions of JavaScript, including ES2015, ES2016, and later. This book focuses on the most important and widely used features
 of these editions and proposals. This book is not intended to teach JavaScript or programming fundamentals. But you don’t
 need to be an expert JavaScript programmer to benefit from this book, either.

 Because this book covers a mixture of ES2015, ES2016, and proposed/staged features, I’ll define some terms to make keeping
 track of all this easier. Going forward, I may refer to ES2015 interchangeably with ES6, and when I do, I’m always referring
 to the same thing: the Sixth Edition to ECMAScript. Likewise, I may refer to ES7 and ES2016 interchangeably. I may use the
 term ESNext as a blanket term to refer to ES2015 and later—basically everything that’s new to JavaScript after ES5.

Summary

 In this lesson you learned that ECMAScript is the official specification for JavaScript and how the proposal process works.
 In the next lesson you’ll learn how to transpile features that aren’t implemented yet, so you can use them today.

Lesson 2. Transpiling with Babel

 When new features are added to JavaScript, the browsers always have to play a game of catch-up. It takes time after an update
 to JavaScript’s specification before all modern browsers have everything fully implemented and supported. In order to use
 all of the features covered in this book, you’ll make use of the technique covered in this lesson: transpiling.

2.1. What is transpiling?

 Transpile is a portmanteau of the words translate and compile. Compilers typically compile a written programming language into incomprehensible[1] machine code. A transpiler is a special kind of compiler that translates from the source code of one programming language
 to the source code of another.

 1

To a human, anyway.

 2.1.1. Compiling to JavaScript languages

 Transpilers have been around for some time, but they exploded onto the JavaScript scene in 2009 with the introduction of CoffeeScript (http://coffeescript.org). CoffeeScript is a compile-to-JavaScript language created by Jeremy Ashkenas, who is also known for creating the popular
 JavaScript libraries Underscore and Backbone. It takes many cues from Ruby, Python, and Haskell, and focuses on the “good parts” of JavaScript made popular by Douglas Crockford in his book
 JavaScript: The Good Parts (O’Reilly Media, 2008). CoffeeScript achieved this by hiding many of what users refer to as the warts of JavaScript and only
 exposing the safer parts.

 CoffeeScript, however, is neither a subset nor a superset of JavaScript. It exposes a new syntax and many new concepts, some
 of which became inspiration for features in ES2015, such as arrow functions. Following CoffeeScript’s success, many other
 compile-to-JavaScript languages started showing up, such as ClojureScript, PureScript, TypeScript, and Elm, to name just a
 few.

 JavaScript isn’t necessarily the best target for a language to compile to, but in order to run code on the web, there is no
 other choice. Recently a new technology was announced called WebAssembly (often shortened to wasm). WebAssembly promises to be a better compile-to target for frontend development than JavaScript, and if successful, could
 pave the way for even more diversity when choosing a language to run in the browser.

 2.1.2. Where Babel fits in

 At this point, you may be thinking, “Transpilers sound cool and all, but who cares? I’m reading a book on JavaScript, not
 a language that compiles to it.” Well, transpilers aren’t just used for languages that compile to JavaScript. They can also
 help you write ESNext code and use it in the browser today. Think about it: when another language compiles to JavaScript,
 it not only targets JavaScript, but a specific version of JavaScript. CoffeeScript, for example, targets ES3. So if a completely
 differently language can be transpiled into a specific version of JavaScript, shouldn’t another version of JavaScript be able
 to as well?

 There are several transpilers for converting ESNext JavaScript into a suitable version that can be executed in the browser
 today. Two of the most commonly used are Traceur and Babel. Babel used to be called ES6to5 because it transpiled ES6 code into ES5 code, but after it started supporting all future
 JavaScript features, and considering that ES6’s name officially changed to ES2015, the team behind ES6to5 decided to change
 the project’s name to Babel.

2.2. Setting up Babel 6

 Babel is available as an NPM (https://www.npmjs.com/) package and comes bundled with Node.js (https://nodejs.org/en/). You can download an installer for Node.js from their website. This book assumes you have Node.js version 4 or later installed and NPM version 3 or later. NPM comes bundled
 with Node.js and thus doesn’t require being installed separately.

 In order to use Babel, you’ll set up a node.js package so you can install your required dependencies. With Node.js and NPM
 installed, open a command line program (Terminal .app in OSX or cmd.exe in Windows) and execute the following shell commands
 to initialize a new project (make sure you replace the placeholder project_name with the name of your project):[1]

 1

The $ at the beginning indicates that this is a shell command meant to be executed in a command line program. The $ is not part of the actual command and should not be entered.

 $ mkdir project_name
$ cd project_name
$ npm init –y

 Let’s break this command down. The line mkdir project_name will make a new directory (folder) with the name you provide. Then cd project_name will change to the newly created directory for the project. Finally, npm init will initialize this as a new project. The –y flag tells NPM to skip asking questions and go with all the defaults.

 You should now see a new file called package.json in your project indicating that this is a Node.js project. Now that you
 have a project initialized, you can set up Babel. Execute the following shell command to install Babel’s command line interface:[2]

 2

The current version of Babel at the time of this writing is version 6.5.2. The instructions in this book are for Babel version
 6.x which is a major change from version 5.x. You can constrain to some version of Babel 6 using the version range >=6.0.0 <7.0.0 e.g. npm install babel@">=6.0.0 <7.0.0"; see https://docs.npmjs.com/cli/install.

 $ npm install babel-cli --save-dev

 Beginning in version 6, Babel doesn’t do any transforming by default, and you must install plugins or presets for any transformations
 you want to apply. To use a plugin or preset, you must both install it in your project and specify its use in Babel’s configuration.

 Babel uses a special file called .babelrc for its configuration. You must put this file in the project’s root and the contents
 of the file must be valid JSON. To specify that you want Babel to transpile all ES2015 features, you can use the ES2015 preset.
 Edit the .babelrc file so its contents are

 {
 "presets": ["es2015"]
}

 Now that you’ve told Babel to use the ES2015 preset, you must also install it:

 $ npm install babel-preset-es2015 --save-dev

 You should now be ready to transpile some ES6 code! Test it out. First add a new folder in your project named src and add
 a new index.js file in it. Your project structure should now look like this:

 project_name
[image:] src
 [image:] index.js

 Now add some ES2015 code to transpile. Add the following code to your index.js file:

 let foo = "bar";

 You can now tell Babel to transpile your source code. In your terminal, run the following command.

 Listing 2.1. Compiling from src folder to a dist folder

 $ babel src -d dist

 After running this command, a new directory named dist should be created with the transpiled code inside. Let’s break the
 command down. When you specify babel src you are telling Babel to operate on the contents of the src directory. By default, Babel outputs the transpiled code to the
 terminal. When you add the –d <directory_name>, you can tell Babel to output the transpiled code to a directory instead.

 The structure of your project should now look like this:

 project_name
[image:] dist
[image:] index.js
[image:] src
 [image:] index.js

 The dist/index.js file contains the following transpiled code:

 "use strict";

var foo = "bar";

2.3. The Babel configuration needed for this book

 Each of the TC39 stages has a preset. You can include a preset for any of the five stages and Babel will be able to compile
 code that has reached that stage (or higher). For example, if you use the stage-2 preset, you could use features that have
 reached stages 2, 3, or 4, but not stages 0 or 1.

 Because I can’t predict what stages each proposal will be at when you read this, please consult the TC39 stages links from
 lesson 1 to determine what presets you will need.

 Alternatively you can go with stage 0 to grab everything, using the following .babelrc preset.

 Listing 2.2. Babel stage-0 presets

 {
 "presets": ["es2015", "stage-0"],
 "plugins": ["transform-decorators-legacy"],
 "sourceMaps": "inline"
}

 In listing 2.2, you’re using the ES2015 and stage-0 presets to include all of ES2015 and all of the existing proposed features. You also
 need to include the transform-decorators-legacy plugin in order to transpile decorators. And finally you tell Babel to include
 inline source maps to make debugging easier. Now in order for Babel to use those plugins and presets, you need to install
 them:[1]

 1

You can install them all at once instead of one at a time like I did. I did it this way for legibility in the small margins
 of a book.

 $ npm install babel-preset-es2015 --save-dev
$ npm install babel-preset-stage-0 --save-dev
$ npm install babel-plugin-transform-decorators-legacy --save-dev

 2.3.1. A note on source maps

 In your Babel configuration you added a section for source maps. If you’re unfamiliar with source maps, they’re a technology invented to make it easier to debug minified code. Most production
 applications ship with their code minified to save bandwidth so that the app will load faster. This minified code can be a
 nightmare to debug, though, so source maps were invented to map code back to its original form. Compile-to-JavaScript languages started using source maps to show the original language’s source instead of the transpiled JavaScript, and Babel
 does as well. To learn more about source maps, see http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/.

 2.3.2. Set up Babel as NPM script

 You may not want to repeatedly tell Babel what folder to transpile from and to (like you did in listing 2.1). You can make your life easier by setting up an NPM script to do that for you. If you’re unfamiliar with how NPM scripts
 work, it’s really simple. In your NPM configuration file named package.json, there’s a special scripts section that allows
 you to specify shell commands that can be executed by their name. See https://docs.npmjs.com/misc/scripts for further information about NPM scripts.

 There should already be a test script added to your package.json by default. If you open your package.json file and locate
 the scripts section, it should look like this:[1]

 1

Depending on your operating system, it could look different.

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
},

 You can add our Babel command as a script like so:

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "babel": "babel src –d dist",
},

 Don’t forget to add the comma after the test command! You should now be able to execute this NPM script by executing the following
 shell command:

 $ npm run babel

 This is not only simpler and easier to remember, but you can also modify your Babel script as your needs evolve, and your
 command always remains the same.

Summary

 In this lesson you learned what transpiling is and how it can be used to start using the ESNext features. You also learned
 how set up Babel to transpile the code in this book.

Lesson 3. Bundling modules with Browserify

 Modules are a big part of the additions to JavaScript. As you’ll learn in this lesson, transpiling alone is not enough for
 modules. This is because the most defining aspect of modules is that they break your code into seperate files. This means
 that you’ll need to bundle them into one file. There are several popular tools for bundling JavaScript modules; two popular up-and-coming options are
 Webpack and Rollup. In this lesson you’ll use one of the first ones that hit the scene, Browserify.

3.1. What’s a module?

 Many programming languages support modularized code. Ruby calls these pieces of modularized code gems, Python calls them eggs, and Java calls them packages. JavaScript never had official support for this concept until ES2015 with the introduction of modules. A module is an individual file of modularized JavaScript code. Becuase JavaScript was so late to this party, many community
 solutions for modules in JavaScript were created, the most ubiquitous being node.js modules.

3.2. How modules work in Node.js

 Node.js has a fantastic module system with NPM. NPM is the Node package manager that comes bundled with Node.js. With roughly
 a quarter of a million packages published to NPM’s registry and billions of downloads a month, NPM is one of the richest ecosystems
 of code in the world.

 There is a specific way to import and export modules in Node.js. When referring to Node.js-style modules, many people use
 the term CommonJS, which is a specification originally called ServerJS that was created so that many server-side JavaScript implementations
 could all share a compatible module definition. Only one server-side JavaScript implementation took off—Node.js—so it wasn’t
 necessary to standardize their module definition. So while Node’s module definition is similar to and often called CommonJS,
 strictly speaking it is not.

 The module system in Node.js allows developers to separate their programs into modules that encapsulate logic and only expose
 necessary APIs. Because a module only exposes what is explicitly exported, there is no need to wrap everything in an immediately
 invoked function expression. Better yet, because the modules are only available where imported, they do not pollute the global
 namespace, protecting against accidental naming collisions.

3.3. What is Browserify?

 Broswerify is a tool that lets you define modules, the same way Node.js does during development, and then bundle them into a single
 file. Browserify operates on an entry point, your main JavaScript file, and analyzes what scripts are imported. It then runs
 on all those scripts as well, eventually building a tree of all the dependencies that are needed. Browserify then generates
 a single JavaScript file with all the required modules bundled into it while maintaining their proper scoping and namespacing.
 This bundled JavaScript file can then be included in a webpage on the frontend. This allows front-end developers to write
 modularized JavaScript and even utilize the rich ecosystem of all the packages published to NPM. Browserify was named after
 its ability to write code in a Node.js fashion and use Node.js modules in the browser.

3.4. How does Browserify help with ES6 modules?

 You learned in lesson 2 that Babel transpiles your ESNext code so you can execute it in a browser. But Babel doesn’t supply you with a module system.
 It simply translates your ESNext source to an ES5 destination and leaves the developer with the task of solving the bundling.
 ES2015, on the other hand, does define a formal module specification for JavaScript. So how can you use ES2015 modules today
 if Babel doesn’t expose a module loader? What if you could get Browserify and Babel to work together so that Babel could transpile
 the ES2015 modules into the kind of modules that Browserify likes to work with, and then Browserify could take it from there?
 Luckily Browserify has the concept of transforms. Transforms allow the code to be transformed before being operated on by Browserify. There is a transform for Babel called
 babelify. When you use babelify, each file will be transpiled before being sent to Browserify, allowing you to use ES2015 modules.

3.5. Setting up Browserify with Babel

 Now that you understand what Browserify is and the role it plays, let’s install it.

 3.5.1. Installing Browserify

 First globally install Browserify. Execute the following shell command:

 $ npm install browserify --global

 This installs Browserify globally, so it can be used for any project. You won’t need to install it again unless you want to
 upgrade to a newer version.

 3.5.2. Setting up a project using babelify

 Now that you have Browserify, you can get started by creating a new project called babelify_example. Create a new folder called
 babelify_example containing a .babelrc file, a dist folder, and a src folder, with the src folder containing an index.js and
 an app.js so that your project structure looks like this:

 babelify_example
[image:] dist
[image:] src

[image:] app.js
[image:] index.js
[image:] .babelrc

 Now in your terminal, cd (change directory) to your project’s root folder, initialize as an NPM project with babelify and
 the other Babel presets and plugins you used in the previous chapter:

 $ cd babelify_example
$ npm init -y
$ npm install babelify --save-dev
$ npm install babel-preset-es2015 --save-dev
$ npm install babel-preset-stage-0 --save-dev
$ npm install babel-plugin-transform-decorators-legacy --save-dev

 Notice that you did not install the babel-cli package. This is because you’re now using Browserify with babelify and thus
 no longer need the Babel CLI (command line interface). Go ahead and add the same Babel config from your previous lesson to
 the .babelrc file:

 {
 "presets": ["es2015", "stage-0"],
 "plugins": ["transform-decorators-legacy"],
 "sourceMaps": "inline"
}

 OK, you should now be all set to start using Browserify with babelify! Test it out by writing a small module to check for you. In the app.js file, add the following code:

 const MyModule = {
 check() {
 console.log('Yahoo! modules are working!!');
 }

}

export default MyModule;

 Now in the index.js file, add the following code:

 import MyModule from './app';

MyModule.check();

 Fantastic. Now bundle this with the following shell command:

 $ browserify src/index.js --transform babelify --outfile dist/bundle.js
[image:]--debug

 If everything was set up correctly, your dist folder should now contain a new bundle.js file with some transpiled JavaScript
 code inside of it. Let’s break down that command. The first argument to Browserify is src/index.js. This tells Browserify that this is the entry point of your application—entry point meaning the root JavaScript file that imports other modules. Then the --transform babelify tells Browserify to use the babelify transform to transpile your code before bundling. The --outfile dist/bundle.js specifies what the destination or output file is for your bundled and transpiled source code. Finally, the --debug flag is necessary to include source maps, which wouldn’t be included without it.

 You can see see a list of the available arguments to Browserify by running

 $ browserify help

 Now test your code with Node.js. If you’ve never used Node.js to execute JavaScript before, don’t fret. You already have it
 installed, and telling it to execute JavaScript is as simple as pointing it to a JavaScript file. So tell Node to execute
 your transpiled bundle.js file by executing the following shell script:

 $ node dist/bundle.js

 You should be greeted with an enthusiastic

 Yahoo! modules are working!!

 Don’t worry about understanding the semantics of how modules work just yet. We will cover that in lessons 20 and 21. For now, get your bundle working in the browser instead of Node. Create an index.html file at the root of your project with
 the following contents:

 <!DOCTYPE html>
<html>
<head>
 <title>Babelify Example</title>
</head>
<body>
 <h1>Hello, ES6!</h1>

 <script src="dist/bundle.js"></script>
</body>
</html>

 Now open your index.html in your web browser. Check the console; if using Google Chrome, select Menu > More Tools > Developer
 Tools, then select the Console tab. You should see the same quote in your console: Yahoo! modules are working!!

 Let’s recap what you’ve done so far:

 	You created a module with a check method to log a message in app.js.

 	In your index.js, you imported the module and invoked the check method.

 	You used Browserify and Babel to transpile and bundle your JavaScript.

 	You then included your bundled code in an HTML page and saw that it works!

 That encompasses all the steps necessary to execute all the code in this book. The remaining chapters will assume that you
 are set up and able to execute your examples.

 Don’t forget to recompile (via executing the browserify command) whenever you make a change to your source files so that your bundle.js reflects your latest code. (Look into watchify
 for automatic bundling.) You can add the Browserify shell command as an NPM script in your package.json to make it easier
 to run.

3.6. Alternatives to Browserify

 There are plenty of other ways to transpile and bundle your ESNext code. Webpack and Rollup are currently very popular options.
 Which one works best for your project will depend a lot on the details of your project. Babel has good setup examples for
 different scenarios that you can check out here: http://babeljs.io/docs/setup.

Summary

 In this lesson, you learned how to set up Browserify to bundle your ES2015 modules. For more infomation on modules, see lessons 20–21.

Unit 1. Variables and strings

 One of the most familiar statements in JavaScript is the var

OEBPS/t.jpg

OEBPS/p.jpg

OEBPS/xifig01.jpg

OEBPS/l.jpg

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/pt.jpg

OEBPS/cover.jpg
GET PROGRAMMING
JAVASCRIPT NEXT

New features of ECMAScript 2015, 2016, and beyond

Bl s

JD Isaacks

