

        

            

                

            

        


    

   

    Pro Angular 16
 

  
 

   

   Adam Freeman
 

  
 

   

    

     

      

     

   
 

   

     MANNING 

   
 

   

     SHELTER ISLAND 

   
 

  
 

   

   For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.
 

  
 

   

   For more information, please contact
 

  
 

   

   Special Sales Department
 

  
 

   

   Manning Publications Co.
 

  
 

   

   20 Baldwin Road
 

  
 

   

   PO Box 761
 

  
 

   

   Shelter Island, NY 11964
 

  
 

   

   Email: orders@manning.com
 

  
 

   

   ©2024 by Manning Publications Co. All rights reserved.
 

  
 

   

   No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.
 

  
 

   

   Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.
 

  
 

   

   ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.
 

  
 

   

   The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.
 

  
 

   

    

     

      

      	  Manning Publications Co. 
  20 Baldwin Road 
  PO Box 761 
  Shelter Island, NY 11964 
  

     
 

     

   
 

    

     

      

      	  Development editor:   
  

      	  Ian Hough 
  

     
 

      

      	  Production editor:   
  

      	  Aleksandar Dragosavljević 
  

     
 

      

      	  Cover designer:   
  

      	  Marija Tudor 
  

     
 

     

   
 

  
 

   

   ISBN: 9781633436695
 

  


 

  

   contents


  


  

   preface


  


  

   about this book


  


  

   about the author


  


  

   about the cover illustration


  


  

   1 Getting ready


  


  

   1.1 Understanding where Angular excels


  


  

   1.1.1 Understanding round-trip and single-page applications


  


  

   1.2 Comparing Angular to React


  


  

   1.3 What do you need to know?


  


  

   1.4 What is the structure of this book?


  


  

   1.4.1 Part 1: Getting started with Angular


  


  

   1.4.2 Part 2: Angular in detail


  


  

   1.4.3 Part 3: Advanced Angular features


  


  

   1.5 What doesn’t this book cover?


  


  

   1.6 What software do you need for Angular?


  


  

   1.7 How do you set up the development environment?


  


  

   1.8 What if you have problems following the examples?


  


  

   1.9 What if you find an error in the book?


  


  

   1.10 Are there lots of examples?


  


  

   1.11 Where can you get the example code?


  


  

   1.12 How do you contact the author?


  


  

   1.13 What if you really enjoyed this book?


  


  

   1.14 What if this book has made you angry?


  


  

   1.15 Summary


  


  

   2 Jumping right in


  


  

   2.1 Getting ready


  


  

   2.1.1 Installing Node.js


  


  

   2.1.2 Installing an editor


  


  

   2.1.3 Installing the Angular development package


  


  

   2.1.4 Choosing a browser


  


  

   2.2 Creating an Angular project


  


  

   2.2.1 Opening the project for editing


  


  

   2.2.2 Starting the Angular development tools


  


  

   2.3 Adding features to the application


  


  

   2.3.1 Creating a data model


  


  

   2.3.2 Displaying data to the user


  


  

   2.3.3 Updating the component


  


  

   2.4 Styling the application content


  


  

   2.4.1 Applying Angular Material components


  


  

   2.4.2 Defining the spacer CSS style


  


  

   2.5 Displaying the list of to-do items


  


  

   2.5.1 Defining additional styles


  


  

   2.6 Creating a two-way data binding


  


  

   2.7 Filtering completed to-do items


  


  

   2.8 Adding to-do items


  


  

   2.9 Finishing up


  


  

   2.10 Summary


  


  

   3 Primer, part 1


  


  

   3.1 Preparing the example project


  


  

   3.2 Understanding HTML


  


  

   3.2.1 Understanding void elements


  


  

   3.2.2 Understanding attributes


  


  

   3.2.3 Applying attributes without values


  


  

   3.2.4 Quoting literal values in attributes


  


  

   3.2.5 Understanding element content


  


  

   3.2.6 Understanding the document structure


  


  

   3.3 Understanding CSS and the Bootstrap framework


  


  

   3.4 Understanding TypeScript/JavaScript


  


  

   3.4.1 Understanding the TypeScript workflow


  


  

   3.4.2 Understanding JavaScript vs. TypeScript


  


  

   3.4.3 Understanding the basic TypeScript/JavaScript features


  


  

   3.4.4 Defining variables and constants


  


  

   3.4.5 Dealing with unassigned and null values


  


  

   3.4.6 Using the JavaScript primitive types


  


  

   3.4.7 Using the JavaScript operators


  


  

   3.5 Summary


  


  

   4 Primer, part 2


  


  

   4.1 Preparing for this chapter


  


  

   4.2 Defining and using functions


  


  

   4.2.1 Defining optional function parameters


  


  

   4.2.2 Defining default parameter values


  


  

   4.2.3 Defining rest parameters


  


  

   4.2.4 Defining functions that return results


  


  

   4.2.5 Using functions as arguments to other functions


  


  

   4.3 Working with arrays


  


  

   4.3.1 Reading and modifying the contents of an array


  


  

   4.3.2 Enumerating the contents of an array


  


  

   4.3.3 Using the spread operator


  


  

   4.3.4 Using the built-in array methods


  


  

   4.4 Working with objects


  


  

   4.4.1 Understanding literal object types


  


  

   4.4.2 Defining classes


  


  

   4.4.3 Checking object types


  


  

   4.5 Working with JavaScript modules


  


  

   4.5.1 Creating and using modules


  


  

   4.6 Summary


  


  

   5 SportsStore: A real application


  


  

   5.1 Preparing the project


  


  

   5.1.1 Installing the additional NPM packages


  


  

   5.1.2 Preparing the RESTful web service


  


  

   5.1.3 Preparing the HTML file


  


  

   5.1.4 Creating the folder structure


  


  

   5.1.5 Running the example application


  


  

   5.1.6 Starting the RESTful web service


  


  

   5.2 Preparing the Angular project features


  


  

   5.2.1 Updating the root component


  


  

   5.2.2 Inspecting the root module


  


  

   5.2.3 Inspecting the bootstrap file


  


  

   5.3 Starting the data model


  


  

   5.3.1 Creating the model classes


  


  

   5.3.2 Creating the dummy data source


  


  

   5.3.3 Creating the model repository


  


  

   5.3.4 Creating the feature module


  


  

   5.4 Starting the store


  


  

   5.4.1 Creating the store component and template


  


  

   5.4.2 Creating the store feature module


  


  

   5.4.3 Updating the root component and root module


  


  

   5.5 Adding store features


  


  

   5.5.1 Displaying the product details


  


  

   5.5.2 Adding category selection


  


  

   5.5.3 Adding product pagination


  


  

   5.5.4 Creating a custom directive


  


  

   5.6 Summary


  


  

   6 SportsStore: orders and checkout


  


  

   6.1 Preparing the example application


  


  

   6.2 Creating the cart


  


  

   6.2.1 Creating the cart model


  


  

   6.2.2 Creating the cart summary components


  


  

   6.2.3 Integrating the cart into the store


  


  

   6.3 Adding URL routing


  


  

   6.3.1 Creating the cart detail and checkout components


  


  

   6.3.2 Creating and applying the routing configuration


  


  

   6.3.3 Navigating through the application


  


  

   6.3.4 Guarding the routes


  


  

   6.4 Completing the cart detail feature


  


  

   6.5 Processing orders


  


  

   6.5.1 Extending the model


  


  

   6.5.2 Collecting the order details


  


  

   6.6 Using the RESTful web service


  


  

   6.6.1 Applying the data source


  


  

   6.7 Summary


  


  

   7 SportsStore: administration


  


  

   7.1 Preparing the example application


  


  

   7.1.1 Creating the module


  


  

   7.1.2 Configuring the URL routing system


  


  

   7.1.3 Navigating to the administration URL


  


  

   7.2 Implementing authentication


  


  

   7.2.1 Understanding the authentication system


  


  

   7.2.2 Extending the data source


  


  

   7.2.3 Creating the authentication service


  


  

   7.2.4 Enabling authentication


  


  

   7.3 Extending the data source and repositories


  


  

   7.4 Installing the component library


  


  

   7.5 Creating the administration feature structure


  


  

   7.5.1 Creating the placeholder components


  


  

   7.5.2 Preparing the common content and the feature module


  


  

   7.5.3 Implementing the product table feature


  


  

   7.5.4 Implementing the product editor


  


  

   7.5.5 Implementing the order table feature


  


  

   7.6 Summary


  


  

   8 SportsStore: deployment


  


  

   8.1 Preparing the example application


  


  

   8.2 Using pre-rendering


  


  

   8.2.1 Installing the SSR packages


  


  

   8.2.2 Creating the platform service


  


  

   8.2.3 Changing the web service URL


  


  

   8.2.4 Disabling elements


  


  

   8.2.5 Prerendering the application


  


  

   8.3 Adding progressive features


  


  

   8.3.1 Installing the PWA Package


  


  

   8.3.2 Caching the data URLs


  


  

   8.3.3 Responding to connectivity changes


  


  

   8.3.4 Testing the progressive features


  


  

   8.4 Preparing the application for deployment


  


  

   8.4.1 Creating the data file


  


  

   8.4.2 Creating the server


  


  

   8.4.3 Changing the web service URL in the repository class


  


  

   8.5 Building and testing the application


  


  

   8.6 Containerizing the SportsStore application


  


  

   8.6.1 Installing Docker


  


  

   8.6.2 Preparing the application


  


  

   8.6.3 Creating the Docker container


  


  

   8.6.4 Running the application


  


  

   8.7 Summary


  


  

   9 Understanding Angular projects and tools


  


  

   9.1 Creating a new Angular project


  


  

   9.2 Understanding the project structure


  


  

   9.2.1 Understanding the source code folder


  


  

   9.2.2 Understanding the packages folder


  


  

   9.3 Using the Angular development tools


  


  

   9.3.1 Understanding the development HTTP server


  


  

   9.3.2 Understanding the build process


  


  

   9.3.3 Using the linter


  


  

   9.4 Understanding how an Angular application works


  


  

   9.4.1 Understanding the HTML document


  


  

   9.4.2 Understanding the application bootstrap


  


  

   9.4.3 Understanding the root Angular module


  


  

   9.4.4 Understanding the Angular component


  


  

   9.4.5 Understanding content display


  


  

   9.5 Understanding the production build process


  


  

   9.5.1 Running the production build


  


  

   9.6 Starting development in an Angular project


  


  

   9.6.1 Creating the data model


  


  

   9.6.2 Creating a component and template


  


  

   9.6.3 Configuring the root Angular module


  


  

   9.7 Summary


  


  

   10 Angular reactivity and signals


  


  

   10.1 Preparing for this chapter


  


  

   10.2 Understanding Angular data flow


  


  

   10.2.1 Adding user interaction


  


  

   10.3 Understanding Angular change detection


  


  

   10.3.1 The advantage of Angular change detection


  


  

   10.3.2 The disadvantage of Angular change detection


  


  

   10.4 Understanding Angular Signals


  


  

   10.4.1 Using writeable signals


  


  

   10.4.2 Using computed signals


  


  

   10.4.3 Using effects


  


  

   10.4.4 Using signals outside of components


  


  

   10.5 Working with Reactive Extensions


  


  

   10.5.1 Understanding observables


  


  

   10.5.2 Using observables with signals


  


  

   10.6 Summary


  


  

   11 Using Data Bindings


  


  

   11.1 Preparing for this chapter


  


  

   11.2 Understanding one-way data bindings


  


  

   11.2.1 Understanding the binding target


  


  

   11.2.2 Understanding the expression


  


  

   11.2.3 Understanding the brackets


  


  

   11.2.4 Understanding the host element


  


  

   11.3 Using the standard property and attribute bindings


  


  

   11.3.1 Using the standard property binding


  


  

   11.3.2 Using the string interpolation binding


  


  

   11.3.3 Using the attribute binding


  


  

   11.4 Setting classes and styles


  


  

   11.4.1 Using the class bindings


  


  

   11.4.2 Using the style bindings


  


  

   11.5 Summary


  


  

   12 Using the built-in directives


  


  

   12.1 Preparing the example project


  


  

   12.2 Using the built-in directives


  


  

   12.2.1 Using the ngIf directive


  


  

   12.2.2 Using the ngSwitch directive


  


  

   12.2.3 Using the ngFor directive


  


  

   12.2.4 Using the ngTemplateOutlet directive


  


  

   12.2.5 Using directives without an HTML element


  


  

   12.3 Understanding one-way data binding restrictions


  


  

   12.3.1 Using idempotent expressions


  


  

   12.3.2 Understanding the expression context


  


  

   12.4 Summary


  


  

   13 Using events and forms


  


  

   13.1 Preparing the example project


  


  

   13.2 Using the event binding


  


  

   13.2.1 Using event data


  


  

   13.2.2 Handling events in the component


  


  

   13.2.3 Using template reference variables


  


  

   13.3 Using two-way data bindings


  


  

   13.3.1 Using the ngModel directive


  


  

   13.4 Working with forms


  


  

   13.4.1 Adding a form to the example application


  


  

   13.4.2 Adding form data validation


  


  

   13.4.3 Validating the entire form


  


  

   13.4.4 Completing the form


  


  

   13.5 Summary


  


  

   14 Creating attribute directives


  


  

   14.1 Preparing the example project


  


  

   14.2 Creating a simple attribute directive


  


  

   14.2.1 Applying a custom directive


  


  

   14.3 Accessing application data in a directive


  


  

   14.3.1 Reading host element attributes


  


  

   14.3.2 Creating data-bound input properties


  


  

   14.3.3 Responding to input property changes


  


  

   14.3.4 Requiring input property values


  


  

   14.4 Creating custom events


  


  

   14.4.1 Binding to a custom event


  


  

   14.5 Creating host element bindings


  


  

   14.6 Creating a two-way binding on the host element


  


  

   14.7 Exporting a directive for use in a template variable


  


  

   14.8 Summary


  


  

   15 Creating structural directives


  


  

   15.1 Preparing the example project


  


  

   15.2 Creating a simple structural directive


  


  

   15.2.1 Implementing the structural directive class


  


  

   15.2.2 Enabling the structural directive


  


  

   15.2.3 Using the concise structural directive syntax


  


  

   15.3 Creating iterating structural directives


  


  

   15.3.1 Providing additional context data


  


  

   15.3.2 Using the concise structure syntax


  


  

   15.3.3 Dealing with property-level data changes


  


  

   15.3.4 Dealing with collection-level data changes


  


  

   15.4 Querying the host element content


  


  

   15.4.1 Querying multiple content children


  


  

   15.4.2 Receiving query change notifications


  


  

   15.5 Summary


  


  

   16 Understanding components


  


  

   16.1 Preparing the example project


  


  

   16.2 Structuring an application with components


  


  

   16.2.1 Creating new components


  


  

   16.2.2 Defining templates


  


  

   16.2.3 Completing the component restructure


  


  

   16.3 Using component styles


  


  

   16.3.1 Defining external component styles


  


  

   16.4 Querying template content


  


  

   16.5 Summary


  


  

   17 Using and creating pipes


  


  

   17.1 Preparing the example project


  


  

   17.2 Understanding pipes


  


  

   17.3 Creating a custom pipe


  


  

   17.3.1 Registering a custom pipe


  


  

   17.3.2 Applying a custom pipe


  


  

   17.3.3 Combining pipes


  


  

   17.3.4 Creating impure pipes


  


  

   17.4 Using the built-in pipes


  


  

   17.4.1 Formatting numbers


  


  

   17.4.2 Formatting currency values


  


  

   17.4.3 Formatting percentages


  


  

   17.4.4 Formatting dates


  


  

   17.4.5 Changing string case


  


  

   17.4.6 Serializing data as JSON


  


  

   17.4.7 Slicing data arrays


  


  

   17.4.8 Formatting key-value pairs


  


  

   17.4.9 Selecting values


  


  

   17.4.10 Pluralizing values


  


  

   17.4.11 Using the async pipe


  


  

   17.5 Summary


  


  

   18 Using services


  


  

   18.1 Preparing the example project


  


  

   18.2 Understanding the object distribution problem


  


  

   18.2.1 Demonstrating the problem


  


  

   18.2.2 Distributing objects as services using dependency injection


  


  

   18.2.3 Declaring dependencies in other building blocks


  


  

   18.3 Understanding the test isolation problem


  


  

   18.3.1 Isolating components using services and dependency injection


  


  

   18.4 Completing the adoption of services


  


  

   18.4.1 Updating the root component and template


  


  

   18.4.2 Updating the child components


  


  

   18.5 Summary


  


  

   19 Using and creating modules


  


  

   19.1 Preparing the example project


  


  

   19.2 Understanding the root module


  


  

   19.2.1 Understanding the imports property


  


  

   19.2.2 Understanding the declarations property


  


  

   19.2.3 Understanding the providers property


  


  

   19.2.4 Understanding the bootstrap property


  


  

   19.3 Creating feature modules


  


  

   19.3.1 Creating a model module


  


  

   19.3.2 Creating a utility feature module


  


  

   19.3.3 Creating a feature module with components


  


  

   19.4 Summary


  


  

   20 Creating the example project


  


  

   20.1 Starting the example project


  


  

   20.1.1 Adding and configuring the Bootstrap CSS package


  


  

   20.1.2 Creating the project structure


  


  

   20.2 Creating the model module


  


  

   20.2.1 Creating the product data type


  


  

   20.2.2 Creating the data source and repository


  


  

   20.2.3 Completing the model module


  


  

   20.3 Creating the messages module


  


  

   20.3.1 Creating the message model and service


  


  

   20.3.2 Creating the component and template


  


  

   20.3.3 Completing the message Module


  


  

   20.4 Creating the core module


  


  

   20.4.1 Creating the shared state service


  


  

   20.4.2 Creating the table component


  


  

   20.4.3 Creating the form component


  


  

   20.4.4 Completing the core module


  


  

   20.5 Completing the project


  


  

   20.6 Summary


  


  

   21 Using the forms API, part 1


  


  

   21.1 Preparing for this chapter


  


  

   21.2 Understanding the reactive forms API


  


  

   21.3 Rebuilding the form using the API


  


  

   21.3.1 Responding to form control changes


  


  

   21.3.2 Managing control state


  


  

   21.3.3 Managing control validation


  


  

   21.3.4 Adding additional controls


  


  

   21.4 Working with multiple form controls


  


  

   21.4.1 Using a form group with a form element


  


  

   21.4.2 Accessing the form group from the template


  


  

   21.4.3 Displaying validation messages with a form group


  


  

   21.5 Summary


  


  

   22 Using the forms API, part 2


  


  

   22.1 Preparing for this chapter


  


  

   22.2 Creating form components dynamically


  


  

   22.2.1 Using a form array


  


  

   22.2.2 Adding and removing form controls


  


  

   22.2.3 Validating dynamically created form controls


  


  

   22.2.4 Filtering the FormArray values


  


  

   22.3 Creating custom form validation


  


  

   22.3.1 Creating a directive for a custom validator


  


  

   22.3.2 Validating across multiple fields


  


  

   22.3.3 Performing validation asynchronously


  


  

   22.4 Summary


  


  

   23 Making HTTP Requests


  


  

   23.1 Preparing the example project


  


  

   23.1.1 Configuring the model feature module


  


  

   23.1.2 Creating the data file


  


  

   23.1.3 Running the example project


  


  

   23.2 Understanding RESTful web services


  


  

   23.3 Replacing the static data source


  


  

   23.3.1 Creating the new data source service


  


  

   23.3.2 Configuring the data source


  


  

   23.3.3 Using the REST data source


  


  

   23.3.4 Saving and deleting data


  


  

   23.4 Consolidating HTTP requests


  


  

   23.5 Making cross-origin requests


  


  

   23.6 Configuring request headers


  


  

   23.7 Handling errors


  


  

   23.7.1 Generating user-ready messages


  


  

   23.7.2 Handling the errors


  


  

   23.8 Summary


  


  

   24 Routing and navigation: part 1


  


  

   24.1 Preparing the example project


  


  

   24.2 Getting started with routing


  


  

   24.2.1 Creating a routing configuration


  


  

   24.2.2 Creating the routing component


  


  

   24.2.3 Updating the root module


  


  

   24.2.4 Completing the Configuration


  


  

   24.2.5 Adding navigation links


  


  

   24.2.6 Understanding the effect of routing


  


  

   24.3 Completing the routing implementation


  


  

   24.3.1 Handling route changes in components


  


  

   24.3.2 Using route parameters


  


  

   24.3.3 Navigating in code


  


  

   24.3.4 Receiving navigation events


  


  

   24.3.5 Removing the event bindings and supporting code


  


  

   24.4 Summary


  


  

   25 Routing and navigation: part 2


  


  

   25.1 Preparing the example project


  


  

   25.1.1 Adding components to the project


  


  

   25.2 Using wildcards and redirections


  


  

   25.2.1 Using wildcards in routes


  


  

   25.2.2 Using redirections in routes


  


  

   25.3 Navigating within a component


  


  

   25.3.1 Responding to ongoing routing changes


  


  

   25.3.2 Styling links for active routes


  


  

   25.3.3 Fixing the All button


  


  

   25.4 Creating child routes


  


  

   25.4.1 Creating the child route outlet


  


  

   25.4.2 Accessing parameters from child routes


  


  

   25.5 Summary


  


  

   26 Routing and navigation: part 3


  


  

   26.1 Preparing the example project


  


  

   26.2 Guarding routes


  


  

   26.2.1 Delaying navigation with a resolver


  


  

   26.2.2 Preventing navigation with guards


  


  

   26.3 Summary


  


  

   27 Optimizing application delivery


  


  

   27.1 Preparing the example project


  


  

   27.2 Understanding the delivery problem


  


  

   27.3 Loading feature modules dynamically


  


  

   27.3.1 Creating a simple feature module


  


  

   27.3.2 Loading the module dynamically


  


  

   27.3.3 Guarding dynamic modules


  


  

   27.4 Using server-side rendering


  


  

   27.4.1 Installing the server-side rendering packages


  


  

   27.4.2 Preparing the application


  


  

   27.4.3 Building and running the SSR application


  


  

   27.4.4 Enabling navigation


  


  

   27.4.5 Modifying the terms guard


  


  

   27.4.6 Dealing with direct navigation


  


  

   27.4.7 Testing rehydration


  


  

   27.5 Using prerendering


  


  

   27.5.1 Preparing the application


  


  

   27.5.2 Prerendering the application


  


  

   27.6 Summary


  


  

   28 Working with component libraries


  


  

   28.1 Preparing for this chapter


  


  

   28.1.1 Removing buttons


  


  

   28.1.2 Adjusting the HTML file


  


  

   28.1.3 Running the project


  


  

   28.2 Using the library components


  


  

   28.2.1 Using the Angular Material button directive


  


  

   28.2.2 Using the Angular Material table


  


  

   28.3 Matching the component library theme


  


  

   28.3.1 Creating the custom component


  


  

   28.3.2 Using the Angular Material theme


  


  

   28.3.3 Applying the ripple effect


  


  

   28.4 Summary


  


  

   29 Angular unit testing


  


  

   29.1 Preparing the example project


  


  

   29.2 Running a simple unit test


  


  

   29.3 Working with Jasmine


  


  

   29.4 Testing an Angular component


  


  

   29.4.1 Working with the TestBed class


  


  

   29.4.2 Testing data bindings


  


  

   29.4.3 Testing a component with an external template


  


  

   29.4.4 Testing component events


  


  

   29.4.5 Testing output properties


  


  

   29.4.6 Testing input properties


  


  

   29.5 Testing an Angular directive


  


  

   29.6 Summary


  


  

 

   

    preface

 

  
 

   

   Thank you for purchasing Pro Angular 16. This is the 6th edition of this book, and the first to be published by Manning, and I am delighted that it is ready for the publication.
 

  
 

   

   Angular has become one of the most popular web application frameworks by balancing innovation with stability and consistency. After a turbulent transition from the original AngularJS, the Angular of recent years has been focused on providing a robust set of features that have evolved gradually.
 

  
 

   

   Angular 16 introduces signals, which alters the way that changes in data are detected. This book explains how signals work and demonstrates their use, setting the foundation for the next generation of Angular functionality that will be in Angular 17.
 

  
 

   

   My goal is that you will become familiar with every important Angular feature and be equipped to choose the ones that best suit your projects. I appreciate feedback and you can raise issues and ask questions using liveBook Discussion forum or using the email address given in the book.
 

  


 

   

    about this book

 

  
 

   

   This book is for experienced web developers who are new to Angular. It doesn’t explain the basics of web applications or programming. I don’t describe server-side development in any detail—see my other books if you want to create the back-end services required to support Angular applications.
 

  
 

   

   How this book is organized—a roadmap
 

  
 

   

   This book is divided into three parts, each of which delves into a set of related topics.
 

  
 

   

   In Part 1, titled "Getting started with Angular," you'll find all the information you need to prepare for the rest of the book. It includes primers and refreshers for critical technologies such as HTML and TypeScript, which is a superset of JavaScript used in Angular development. Additionally, you'll learn how to build your first Angular application and take a step-by-step approach to building a more realistic application called SportsStore.
 

  
 

   

   Part 2 of the book, "Angular in detail," covers the building blocks provided by Angular for creating applications. You'll work through each of these in turn and learn about Angular's built-in functionality, as well as endless customization options.
 

  
 

   

   Finally, in Part 3, "Advanced Angular features," you'll discover how to use advanced features to create more complex and scalable applications. You'll learn how to make asynchronous HTTP requests in an Angular application and explore other advanced features.
 

  
 

   

   About the code
 

  
 

   

   This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.
 

  
 

   

   In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.
 

  
 

   

   You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/pro-angular-16. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/ pro-angular-16, and from GitHub at https://github.com/manningbooks/pro-angular-16.
 

  
 

   

   liveBook discussion forum
 

  
 

   

   Purchase of Pro Angular 16 includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/pro-angular-16/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.
 

  
 

   

   Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
 

  
 

 

   

    about the author

 

  
 

   

   [image: image] 

  
 

   

   Adam Freeman is an experienced IT professional who started his career a programmer. He has held senior positions in a range of companies, most recently serving as Chief Technology Officer and Chief Operating Officer of a global bank. He has written 49 programming books, focusing mostly on web application development. Now retired, he spends his time writing and trying to make furniture.
 

  


 

   

    about the cover illustration

 

  
 

   

   The figure on the cover of Pro Angular 16, titled “Jésuite,” or “Jesuit,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.
 

  
 

   

   In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.
 

  


 

   

   1 Getting ready
 

  
 

   

   This chapter covers
 

    

    	Understanding the purpose of Angular
 

    	Understanding the contents of this book.
 

    	Reporting errors in this book.
 

    	Contacting the author.
 

   
 

  
 

   

   Angular taps into some of the best aspects of server-side development and uses them to enhance HTML in the browser, creating a foundation that makes building rich applications simpler and easier. Angular applications are built around a clear design pattern that emphasizes creating applications that are:
 

  
 

   

   	
Extendable: It is easy to figure out how even a complex Angular app works once you understand the basics—and that means you can easily enhance applications to create new and useful features for your users.
 

   	
Maintainable: Angular apps are easy to debug and fix, which means that long-term maintenance is simplified.
 

   	
Testable: Angular has good support for unit and end-to-end testing, meaning you can find and fix defects before your users do.
 

   	
Standardized: Angular builds on the innate capabilities of the web browser without getting in your way, allowing you to create standards-compliant web apps that take advantage of the latest HTML and features, as well as popular tools and frameworks.
 

  
 

   

   Angular is an open-source JavaScript library that is sponsored and maintained by Google. It has been used in some of the largest and most complex web apps around. In this book, I will show you everything you need to know to get the benefits of Angular in your projects.
 

  
 

   

   1.1 Understanding where Angular excels
 

  
 

   

   Angular isn’t the solution to every problem, and it is important to know when you should use Angular and when you should seek an alternative. Angular delivers the kind of functionality that used to be available only to server-side developers but delivers it entirely in the browser. This means Angular has a lot of work to do each time an HTML document to which Angular has been applied is loaded—the HTML elements have to be compiled, the data bindings have to be evaluated, components and other building blocks need to be executed, and so on.
 

  
 

   

   This kind of work takes time to perform, and the amount of time depends on the complexity of the HTML document, on the associated JavaScript code, and—critically—on the quality of the browser and the processing capability of the device. You won’t notice any delay when using the latest browsers on a capable desktop machine, but old browsers on underpowered smartphones can slow down the initial setup of an Angular app.
 

  
 

   

   The goal is to perform this setup as infrequently as possible and deliver as much of the app as possible to the user when it is performed. This means giving careful thought to the kind of web application you build. In broad terms, there are two kinds of web applications: round-trip and single-page.
 

  
 

   

   1.1.1 Understanding round-trip and single-page applications
 

  
 

   

   For a long time, web apps were developed to follow a round-trip model. The browser requests an initial HTML document from the server. User interactions—such as clicking a link or submitting a form—led the browser to request and receive a completely new HTML document. In this kind of application, the browser is essentially a rending engine for HTML content, and all of the application logic and data resides on the server. The browser makes a series of stateless HTTP requests that the server handles by generating HTML documents dynamically.
 

  
 

   

   Some current web development is still for round-trip applications, not least because they require little from the browser, which ensures the widest possible client support. But there are some drawbacks to round-trip applications: they make the user wait while the next HTML document is requested and loaded, they require a large server-side infrastructure to process all the requests and manage all the application state, and they require more bandwidth because each HTML document has to be self-contained (leading to a lot of the same content being included in each response from the server).
 

  
 

   

   Single-page applications take a different approach. An initial HTML document is sent to the browser, along with JavaScript code, but user interactions lead to Ajax requests for small fragments of HTML or data inserted into the existing set of elements being displayed to the user. The initial HTML document is never reloaded or replaced, and the user can continue to interact with the existing HTML while the Ajax requests are being performed asynchronously, even if that just means seeing a “data loading” message. The single-page application model is perfect for Angular.
 

  
 

   

   1.2 Comparing Angular to React
 

  
 

   

   The main competitor to Angular is React. There are some low-level differences between them but both frameworks are excellent, they work in similar ways, and both can be used to create rich and fluid client-side applications.
 

  
 

   

   The main difference between these frameworks is the developer experience. Angular requires you to use TypeScript to be effective, for example. If you are used to using a language like C# or Java, then TypeScript will be familiar, and it addresses some of the oddities of the JavaScript language. React doesn’t require TypeScript (although it is supported) and leans toward mixing HTML, JavaScript, and CSS content together in a single file, which not everyone likes.
 

  
 

   

   My advice is simple: pick the framework that you like the look of the most and switch if you don’t get on with it. That may seem like an unscientific approach, but there isn’t a bad choice to make, and you will find that many of the core concepts carry over between frameworks even if you switch.
 

  
 

   

   1.3 What do you need to know?
 

  
 

   

   Before reading this book, you should be familiar with the basics of web development, understand how HTML and CSS work, and have a working knowledge of JavaScript. If you are a little hazy on some of these details, I provide primers for the HTML and TypeScript/JavaScript I use in this book in chapters 3 and 4. You won’t find a comprehensive reference for HTML elements and CSS properties, though, because there just isn’t the space in a book about Angular to cover all of HTML.
 

  
 

   

   1.4 What is the structure of this book?
 

  
 

   

   This book is split into three parts, each of which covers a set of related topics.
 

  
 

   

   1.4.1 Part 1: Getting started with Angular
 

  
 

   

   Part 1 of this book provides the information you need to get ready for the rest of the book. It includes primers/refreshers for key technologies, including HTML and TypeScript, which is a superset of JavaScript used in Angular development. I also show you how to build your first Angular application and take you through the process of building a more realistic application, called SportsStore.
 

  
 

   

   1.4.2 Part 2: Angular in detail
 

  
 

   

   Part 2 of this book takes you through the building blocks provided by Angular for creating applications, working through each of them in turn. Angular includes a lot of built-in functionality and provides endless customization options.
 

  
 

   

   1.4.3 Part 3: Advanced Angular features
 

  
 

   

   Part 3 of this book explains how advanced features can be used to create more complex and scalable applications. I demonstrate how to make asynchronous HTTP requests in an Angular application, how to use URL routing to navigate around an application, and how to use component libraries.
 

  
 

   

   1.5 What doesn’t this book cover?
 

  
 

   

   This book is for experienced web developers who are new to Angular. It doesn’t explain the basics of web applications or programming. I don’t describe server-side development in any detail—see my other books if you want to create the back-end services required to support Angular applications.
 

  
 

   

   And, as much as I like to dive into the detail in my books, not every Angular feature is useful in mainstream development, and I have to keep my books to a printable size. When I decide to omit a feature, it is because I don’t think it is important or because the same outcome can be achieved using a technique that I do cover.
 

  
 

   

   1.6 What software do you need for Angular?
 

  
 

   

   You will need a code editor and the tools described in chapter 2. Everything required for Angular development is available without charge and can be used on Windows, macOS, and Linux.
 

  
 

   

   1.7 How do you set up the development environment?
 

  
 

   

   Chapter 2 introduces Angular by creating a simple application, and, as part of that process, I tell you how to create a development environment for working with Angular.
 

  
 

   

   1.8 What if you have problems following the examples?
 

  
 

   

   The first thing to do is to go back to the start of the chapter and begin again. Most problems are caused by missing a step or not fully following a listing. Pay close attention to the emphasis in code listings, which highlight the changes that are required.
 

  
 

   

   Next, check the errata list, which is included in the book’s GitHub repository. Technical books are complex, and mistakes are inevitable, despite my best efforts and those of my editors. Check the errata list for the list of known errors and instructions to resolve them. Next, check the typos list, also in the GitHub repository, which contains corrections for issues that are unlikely to cause confusion or break the examples.
 

  
 

   

   If you still have problems, then download the project for the chapter you are reading from the book’s GitHub repository, https://github.com/manningbooks/pro-angular-16, and compare it to your project. I created the code for the GitHub repository by working through each chapter, so you should have the same files with the same contents in your project.
 

  
 

   

   If you still can’t get the examples working, then you can contact me at adam@adam-freeman.com for help. Please make it clear in your email which book you are reading and which chapter/example is causing the problem. Please remember that I get a lot of emails and that I may not respond immediately.
 

  
 

   

   1.9 What if you find an error in the book?
 

  
 

   

   You can report errors to me by email at adam@adam-freeman.com, although I ask that you first check the errata and typos lists, which you can find in the book’s GitHub repository at https://github.com/manningbooks/pro-angular-16, in case it has already been reported.
 

  
 

   

    

    Errata bounty
 

   
 

    

    Manning has agreed to give a free ebook to readers who are the first to report errors that make it onto the GitHub errata list for this book. Readers can select any Manning ebook, not just my books.
 

   
 

    

    This is an entirely discretionary and experimental program. Discretionary means that only I decide which errors are listed in the errata and which reader is the first to make a report. Experimental means Manning may decide not to give away any more books at any time for any reason. There are no appeals, and this is not a promise or a contract or any kind of formal offer or competition. Or, put another way, this is a nice and informal way to say thank you and to encourage readers to report mistakes that I have missed when writing this book.
 

   
 

  
 

   

   1.10 Are there lots of examples?
 

  
 

   

   There are loads of examples. The best way to learn Angular is by example, and I have packed as many of them as I can into this book. To maximize the number of examples in this book, I have adopted a simple convention to avoid listing the contents of files over and over. The first time I use a file in a chapter, I’ll list the complete contents, just as I have in listing 1.1. I include the name of the file in the listing’s header and the folder in which you should create it. When I make changes to the code, I show the altered statements in bold.
 

  
 

   

   Listing 1.1. A complete example document
 

    

    import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

 

import { AppComponent } from './app.component';

 

@NgModule({

  declarations: [AppComponent],

  imports: [BrowserModule],

  providers: [],

  bootstrap: [AppComponent]

})

export class AppModule { }
  

   
 

  
 

   

   This listing is taken from a later chapter Don’t worry about what it does; just be aware that this is a complete listing, which shows the entire contents of the file.
 

  
 

   

   When I make a series of changes to the same file or when I make a small change to a large file, I show you just the elements that change, to create a partial listing. You can spot a partial listing because it starts and ends with an ellipsis (...), as shown in listing 1.2.
 

  
 

   

   Listing 1.2. A partial listing
 

    

    ...

class PaIteratorContext {

    odd: boolean; even: boolean;

    first: boolean; last: boolean;

 

    constructor(public $implicit: any,

            public index: number, total: number ) {

 

        this.odd = index % 2 == 1;

        this.even = !this.odd;

        this.first = index == 0;

        this.last = index == total - 1;

 

        setInterval(() => {

            this.odd = !this.odd; this.even = !this.even;

            this.$implicit.price++;

        }, 2000);

    }

}

...
  

   
 

  
 

   

   You can see that just a section of the file is shown and that I have highlighted several statements. This is how I draw your attention to the part of the listing that has changed or emphasize the part of an example that shows the feature or technique I am describing. In some cases, I need to make changes to different parts of the same file, in which case I omit some elements or statements for brevity, as shown in listing 1.3.
 

  
 

   

   Listing 1.3. Omitting statements for brevity
 

    

    import { Component } from "@angular/core";

import { FormArray, FormControl, FormGroup, NgForm, Validators } from "@angular/forms";

import { Product } from "../model/product.model";

import { Model } from "../model/repository.model"

import { Message  } from "../messages/message.model"

import { MessageService } from "../messages/message.service";

import { MODES, SharedState } from "./sharedState.service";

import { toObservable } from "@angular/core/rxjs-interop";

 

@Component({

    selector: "paForm",

    templateUrl: "form.component.html",

    styleUrls: ["form.component.css"]

})

export class FormComponent {

 

 

    // ...statements omitted for brevity...

 

    addKeywordControl() {

        this.keywordGroup.push(this.createKeywordFormControl());

    }



    removeKeywordControl(index: number) {

        this.keywordGroup.removeAt(index);

    }   

}
  

   
 

  
 

   

   This convention lets me pack in more examples, but it does mean it can be hard to locate a specific technique. To this end, the chapters in which I describe Angular features in parts 2 and 3 begin with a summary table that describes the techniques contained in the chapter and the listings that demonstrate how they are used.
 

  
 

   

   1.11 Where can you get the example code?
 

  
 

   

   You can download the example projects for all the chapters in this book from https://github.com/manningbooks/pro-angular-16.
 

  
 

   

   1.12 How do you contact the author?
 

  
 

   

   You can email me at adam@adam-freeman.com. It has been a few years since I first published an email address in my books. I wasn’t entirely sure that it was a good idea, but I am glad that I did it. I have received emails from around the world, from readers working or studying in every industry, and—for the most part, anyway—the emails are positive, polite, and a pleasure to receive.
 

  
 

   

   I try to reply promptly, but I get many emails and sometimes I get a backlog, especially when I have my head down trying to finish writing a book. I always try to help readers who are stuck with an example in the book, although I ask that you follow the steps described earlier in this chapter before contacting me.
 

  
 

   

   While I welcome reader emails, there are some common questions for which the answers will always be “no.” I am afraid that I won’t write the code for your new startup, help you with your college assignment, get involved in your development team’s design dispute, or teach you how to program.
 

  
 

   

   1.13 What if you really enjoyed this book?
 

  
 

   

   Please email me at adam@adam-freeman.com and let me know. It is always a delight to hear from a happy reader, and I appreciate the time it takes to send those emails. Writing these books can be difficult, and those emails provide essential motivation to persist at an activity that can sometimes feel impossible.
 

  
 

   

   1.14 What if this book has made you angry?
 

  
 

   

   You can still email me at adam@adam-freeman.com, and I will still try to help you. Bear in mind that I can help only if you explain what the problem is and what you would like me to do about it. You should understand that sometimes the only outcome is to accept I am not the writer for you and that we will have closure only when you return this book and select another. I’ll give careful thought to whatever has upset you, but after 25 years of writing books, I have come to understand that not everyone enjoys reading the books I like to write.
 

  
 

   

   1.15 Summary
 

  
 

   

   In this chapter, I briefly introduced Angular and outlined the content and structure of this book.
 

  
 

   

   	Angular is a JavaScript framework used to create dynamic web applications.
 

   	Angular applications are written in TypeScript, which is a superset of the JavaScript language.
 

   	Angular is comparable to other web application frameworks, such as React.
 

  
 

   

   The best way to learn Angular development is by example, so in the next chapter, I jump right in and show you how to set up your development environment and use it to create your first Angular application.
 

  


 

   

   2 Jumping right in
 

  
 

   

   This chapter covers
 

    

    	Installing the tools and packages required for Angular development
 

    	Creating an Angular project
 

    	Using Angular features to dynamically create HTML
 

    	Displaying data in the HTML content
 

    	Responding to events
 

    	Styling the HTML content using the Angular Material package
 

   
 

  
 

   

   The best way to get started with Angular is to dive in and create a web application. In this chapter, I show you how to set up your development environment and take you through the process of creating a basic application. In chapters 5–8, I show you how to create a more complex and realistic Angular application, but for now, a simple example will suffice to demonstrate the major components of an Angular app and set the scene for the other chapters in this part of the book.
 

  
 

   

   Don’t worry if you don’t follow everything that happens in this chapter. Angular has a steep learning curve, so the purpose of this chapter is just to introduce the basic flow of Angular development and give you a sense of how things fit together. It won’t all make sense right now, but by the time you have finished reading this book, you will understand every step I take in this chapter and much more besides.
 

  
 

   

   2.1 Getting ready
 

  
 

   

   There is some preparation required for Angular development. In the sections that follow, I explain how to get set up and ready to create your first project. There is wide support for Angular in popular development tools, and you can pick your favorites.
 

  
 

   

   2.1.1 Installing Node.js
 

  
 

   

   Node.js is a JavaScript runtime for server-side applications and is used by most web application frameworks, including Angular.
 

  
 

   

   The version of Node.js I have used in this book is 18.14.0, which is the current Long-Term Support (LTS) release at the time of writing. There may be a later version available by the time you read this, but you should stick to the 18.14.0 release for the examples in this book. A complete set of 18.14.0 releases, with installers for Windows and macOS and binary packages for other platforms, is available at https://nodejs.org/dist/v18.14.0.
 

  
 

   

   Download and run the installer and ensure that the “npm package manager” option and the two Add to PATH options are selected, as shown in figure 2-1.
 

  
 

    

   [image: image] 

   Figure 2.1. Installing Node.js


  
 

   

   When the installation is complete, open a new command prompt and run the command shown in listing 2.1.
 

  
 

   

   Listing 2.1. Running Node.js
 

    

    node -v
  

   
 

  
 

   

   If the installation has gone as it should, then you will see the following version number displayed:
 

  
 

   

    

    v18.14.0
  

   
 

  
 

   

   The Node.js installer includes the Node Package Manager (NPM), which is used to manage the packages in a project. Run the command shown in listing 2.2 to ensure that NPM is working.
 

  
 

   

   Listing 2.2. Running NPM
 

    

    npm -v
  

   
 

  
 

   

   If everything is working as it should, then you will see the following version number:
 

  
 

   

    

    8.1.4
  

   
 

  
 

   

   2.1.2 Installing an editor
 

  
 

   

   Angular development can be done with any programmer’s editor, from which there is an endless number to choose. Some editors have enhanced support for working with Angular, including highlighting key terms and good tool integration.
 

  
 

   

   When choosing an editor, one of the most important considerations is the ability to filter the content of the project so that you can focus on a subset of the files. There can be a lot of files in an Angular project, and many have similar names, so being able to find and edit the right file is essential. Editors make this possible in different ways, either by presenting a list of the files that are open for editing or by providing the ability to exclude files with specific extensions.
 

  
 

   

   The examples in this book do not rely on any specific editor, and all the tools I use are run from the command line. If you don’t already have a preferred editor for web application development, then I recommend using Visual Studio Code, which is provided without charge by Microsoft and has excellent support for Angular development. You can download Visual Studio Code from https://code.visualstudio.com.
 

  
 

   

   2.1.3 Installing the Angular development package
 

  
 

   

   The Angular team provides a complete set of command-line tools that simplify Angular development. These tools are distributed in a package named @angular/cli. Run the command shown in listing 2.3 to install the Angular development tools.
 

  
 

   

   Listing 2.3 Installing the Angular Development Package
 

    

    npm install --global @angular/cli@16.0.0
  

   
 

  
 

   

   Notice that there are two hyphens before the global argument. If you are using Linux or macOS, you may need to use sudo, as shown in listing 2.4.
 

  
 

   

   Listing 2.4. Using sudo to Install the Angular Development Package
 

    

    sudo npm install --global @angular/cli@16.0.0
  

   
 

  
 

   

   2.1.4 Choosing a browser
 

  
 

   

   The final choice to make is the browser that you will use to check your work during development. All the current-generation browsers have good developer support and work well with Angular. I have used Google Chrome throughout this book, and this is the browser I recommend you use as well.
 

  
 

   

   2.2 Creating an Angular project
 

  
 

   

   Angular development is done as part of a project, which contains all of the files required to build and execute an application, along with configuration files and static content (like HTML and CSS files). To create a new project, open a command prompt, navigate to a convenient location, and run the command shown in listing 2.5. Pay close attention to the use of double and single hyphens when typing this command.
 

  
 

   

   Listing 2.5. Creating a new angular project
 

    

    ng new todo --routing false --style css --skip-git --skip-tests
  

   
 

  
 

   

   The ng command is part of the @angular-cli package, and ng new sets up a new project. The arguments configure the project, selecting options that are suitable for a first project (the configuration options are described in part 2). The process of creating a new project can take some time because there are a large number of other packages required, all of which must be downloaded the first time you run the ng new command.
 

  
 

   

    

    Tip
 

   
 

    

    You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/manningbooks/pro-angular-16. See chapter 1 for how to get help if you have problems running the examples.
 

   
 

  
 

   

   2.2.1 Opening the project for editing
 

  
 

   

   Once the ng new command has finished, use your preferred code editor to open the todo folder that has been created and that contains the new project. The todo folder contains configuration files for the tools that are used in Angular development (described in part 2), but it is the src/app folder that contains the application’s code and content and is the folder in which most development is done.
 

  
 

   

   Figure 2.2 shows the initial content of the project folder as it appears in Visual Studio Code and highlights the src/app folder.
 

  
 

    

   [image: image] 

   Figure 2.2. The initial contents of an Angular project


  
 

   

   You may see a slightly different view with other editors, some of which hide files and folders that are not often used directly during development, such as the node_modules folder, which contains the packages on which the Angular development tools rely.
 

  
 

   

   2.2.2 Starting the Angular development tools
 

  
 

   

   The final part of the setup process is to start the development tools, which will compile the placeholder content added to the project by the ng new command. To start the Angular development tools, use a command prompt to run the command shown in listing 2.6 in the todo folder.
 

  
 

   

   Listing 2.6. Starting the Angular development tools
 

    

    ng serve
  

   
 

  
 

   

   This command starts the Angular development tools, which include a compiler and a web server that is used to test the Angular application in the browser. The development tools go through an initial startup process, which can take a moment to complete. During the startup process, you will see messages like these displayed by the ng serve command:
 

  
 

   

    

    Browser application bundle generation complete.

 

Initial Chunk Files   | Names         |  Raw Size

vendor.js             | vendor        |   1.94 MB |

polyfills.js          | polyfills     | 328.81 kB |

styles.css, styles.js | styles        | 226.24 kB |

main.js               | main          |  45.98 kB |

runtime.js            | runtime       |   6.51 kB |

                      | Initial Total |   2.53 MB

 

Build at: 2023-07-20T07:42:19.998Z - Hash: 8b780a792e617175 - Time: 11498ms

 

** Angular Live Development Server is listening on localhost:4200, open your browser on http://localhost:4200/ **

 

Compiled successfully.
  

   
 

  
 

   

   Don’t worry if you don’t see the same output, just as long as you see the “compiled successfully” message at the end of the process. The integrated web server listens for requests on port 4200, so open a new browser window and request http://localhost:4200, which will show the placeholder content shown in figure 2.3.
 

  
 

    

   [image: image] 

   Figure 2.3. The placeholder content in a new Angular project


  
 

   

   2.3 Adding features to the application
 

  
 

   

   Now that the development tools are running, I am going to work through the process of creating a simple Angular application that will manage a to-do list. The user will be able to see the list of to-do items, check off items that are complete, and create new items. To keep the application simple, I assume that there is only one user and that I don’t have to worry about preserving the state of the data in the application, which means that changes to the to-do list will be lost if the browser window is closed or reloaded. (Later examples, including the SportsStore application developed in chapters 5–8, demonstrate persistent data storage.)
 

  
 

   

   2.3.1 Creating a data model
 

  
 

   

   The starting point for most applications is the data model, which describes the domain on which the application operates. Data models can be large and complex, but for my to-do application, I need to describe only two things: a to-do item and a list of those items.
 

  
 

   

   Angular applications are written in TypeScript, which is a superset of JavaScript. I introduce TypeScript in chapters 3 and 4, but its main advantage is that it supports static data types, which makes JavaScript development more familiar to C# and Java developers. (JavaScript has a prototype-based type system that many developers find confusing.) The ng new command includes the packages required to compile TypeScript code into pure JavaScript that can be executed by browsers.
 

  
 

   

   To start the data model for the application, add a file called todoItem.ts to the todo/src/app folder with the contents shown in listing 2.7. (TypeScript files have the .ts extension.)
 

  
 

   

   Listing 2.7. The contents of the todoItem.ts file in the src/app folder
 

    

    export class TodoItem {

 

  constructor(public task: string, public complete: boolean = false) {

      // no statements required

  }

}
  

   
 

  
 

   

   The language features used in listing 2.7 are a mix of standard JavaScript features and extra features that TypeScript provides. When the code is compiled, the TypeScript features are removed, and the result is JavaScript code that can be executed by browsers.
 

  
 

   

   The export, class, and constructor keywords, for example, are standard JavaScript. Not all browsers support these features, so the build process for Angular applications can translate this type of feature into code that older browsers can understand, as I explain in part 2.
 

  
 

   

   The export keyword relates to JavaScript modules. When using modules, each TypeScript or JavaScript file is considered to be a self-contained unit of functionality, and the export keyword is used to identify data or types that you want to use elsewhere in the application. JavaScript modules are used to manage the dependencies that arise between files in a project. See chapter 4 for details of how JavaScript modules are used.
 

  
 

   

   The class keyword declares a class, and the constructor keyword denotes a class constructor. Unlike other languages, such as C#, JavaScript doesn’t use the name of the class to denote the constructor.
 

  
 

   

    

    Tip
 

   
 

    

    Don’t worry if you are not familiar with these JavaScript/TypeScript features. Chapters 3 and 4 provide a primer for the JavaScript and TypeScript features that are most used in Angular development.
 

   
 

  
 

   

   Other features in listing 2.7 are provided by TypeScript. One of the most jarring features when you first start using TypeScript is its concise constructor feature, although you will quickly come to rely on it. The TodoItem class defines a constructor that receives two parameters, named task and complete. The values of these parameters are assigned to public properties of the same names. If no value is provided for the complete parameter, then a default value of false will be used:
 

  
 

   

    

    ...

constructor(public task: string, public complete: boolean = false) {

...
  

   
 

  
 

   

   The concise constructor avoids a block of boilerplate code that would otherwise be required to define properties and assign them values that are received by the constructor.
 

  
 

   

   The concise constructor syntax is helpful, but the headline TypeScript feature is static types. Both of the constructor parameters in listing 2.7 are annotated with a data type:
 

  
 

   

    

    ...

constructor(public task: string, public complete: boolean = false) {

...
  

   
 

  
 

   

   In standard JavaScript, values have types and can be assigned to any variable, which is a source of confusion to programmers who are used to variables that are defined to hold a specific data type. TypeScript adopts a more conventional approach to data types, and the TypeScript compiler will report an error if incompatible types are used. This may seem obvious if you are coming to Angular development from C# or Java, but it isn’t the way that JavaScript usually works.
 

  
 

   

   Creating the to-do list class
 

  
 

   

   To create a class that represents a list of to-do items, add a file named todoList.ts to the src/app folder with the contents shown in listing 2.8.
 

  
 

   

   Listing 2.8. The contents of the todoList.ts file in the src/app folder
 

    

    import { TodoItem } from "./todoItem";

 

export class TodoList {

    

    constructor(public user: string, private todoItems: TodoItem[] = []) {

        // no statements required

    }

 

    get items(): readonly TodoItem[]  { 

        return this.todoItems;

    }

 

    addItem(task: string) {

        this.todoItems.push(new TodoItem(task));

    }

}
  

   
 

  
 

   

   The import keyword declares a dependency on the TodoItem class. The TodoList class defines a constructor that receives the initial set of to-do items. I don’t want to give unrestricted access to the array of TodoItem objects, so I have defined a property named items that returns a read-only array, which is done using the readonly keyword. The TypeScript compiler will generate an error for any statement that attempts to modify the contents of the array, and if you are using an editor that has good TypeScript support, such as Visual Studio Code, then the autocomplete features of the editor won’t present methods and properties that would trigger a compiler error.
 

  
 

   

   2.3.2 Displaying data to the user
 

  
 

   

   I need a way to display the data values in the model to the user. In Angular, this is done using a template, which is a fragment of HTML that contains expressions that are evaluated by Angular and that inserts the results into the content that is sent to the browser.
 

  
 

   

   When the project was created, the ng new command added a template file named app.component.html to the src/app folder. Open this file for editing and replace the contents with those shown in listing 2.9.
 

  
 

   

   Listing 2.9. Replacing the contents of the app.component.html file in the src/app folder
 

    

    <h3>

  {{ username }}'s To Do List

  <h6>{{ itemCount }} Items</h6>

</h3>
  

   
 

  
 

   

   I’ll add features to the template shortly, but this is enough to get started. Displaying data in a template is done using double braces—{{ and }}—and Angular evaluates whatever you put between the double braces to get the value to display.
 

  
 

   

   The {{ and }} characters are an example of a data binding, which means they create a relationship between the template and a data value. Data bindings are an important Angular feature, and you will see more of them in this chapter as I add features to the example application (and I describe them in detail in part 2 of this book). In this case, the data bindings tell Angular to get the value of the username and itemCount properties and insert them into the content of the h3 and h6 elements.
 

  
 

   

   As soon as you save the file, the Angular development tools will try to build the project. The compiler will generate the following errors:
 

  
 

   

    

    Error: src/app/app.component.html:2:6 - error TS2339: 

Property 'username' does not exist on type 'AppComponent'.

2   {{ username }}'s To Do List

       ~~~~~~~~

  src/app/app.component.ts:5:16

    5   templateUrl: './app.component.html',

                     ~~~~~~~~~~~~~~~~~~~~~~

    Error occurs in the template of component AppComponent.

 

Error: src/app/app.component.html:3:10 - error TS2339: Property 'itemCount' does not exist on type 'AppComponent'.

3   <h6>{{ itemCount }} Items</h6>

           ~~~~~~~~~

  src/app/app.component.ts:5:16

    5   templateUrl: './app.component.html',

                     ~~~~~~~~~~~~~~~~~~~~~~

    Error occurs in the template of component AppComponent.
  

   
 

  
 

   

   These errors occur because the expressions within the data bindings rely on properties that don’t exist. I’ll fix this problem in the next section, but these errors show an important Angular characteristic, which is that templates are included in the compilation process and that any errors in the template are handled just like errors in regular code files.
 

  
 

   

   2.3.3 Updating the component
 

  
 

   

   An Angular component is responsible for managing a template and providing it with the data and logic it needs. If that seems like a broad statement, it is because components are the Angular feature that do most of the heavy lifting. As a consequence, they can be used for all sorts of tasks.
 

  
 

   

   In this case, I need a component to act as a bridge between the data model classes and the template so that I can create an instance of the TodoList class, populate it with some sample TodoItem objects, and, in doing so, provide the template with the username and itemCount properties it needs.
 

  
 

   

   When the project was created, the ng new command added a file named app.component.ts to the src/app folder. As the name of the file suggests, this is a component. Apply the changes shown in listing 2.10 to the app.component.ts file.
 

  
 

   

   Listing 2.10. Editing the contents of the app.component.ts file in the src/app folder
 

    

    import { Component } from '@angular/core';

import { TodoList } from "./todoList";

import { TodoItem } from "./todoItem";



@Component({

    selector: 'app-root',

    templateUrl: './app.component.html',

    styleUrls: ['./app.component.css']

})

export class AppComponent {

    private list = new TodoList("Bob", [

        new TodoItem("Go for run", true),

        new TodoItem("Get flowers"),

        new TodoItem("Collect tickets"),

    ]);



    get username(): string {

        return this.list.user;

    }



    get itemCount(): number {

        return this.list.items

            .filter(item => !item.complete).length;

    }

}
  

   
 

  
 

   

   The code in the listing can be broken into three main regions, as described in the following sections.
 

  
 

   

   Understanding the imports
 

  
 

   

   The import keyword declares dependencies on JavaScript modules, both within the project and in third-party packages. The import keyword is used three times in listing 2.10:
 

  
 

   

    

    ...

import { Component } from '@angular/core';

import { TodoList } from "./todoList";

import { TodoItem } from "./todoItem";

...
  

   
 

  
 

   

   The first import statement is used in the listing to load the @angular/core module, which contains the key Angular functionality, including support for components. When working with modules, the import statement specifies the types that are imported between curly braces. In this case, the import statement is used to load the Component type from the module. The @angular/core module contains many classes that have been packaged together so that the browser can load them all in a single JavaScript file.
 

  
 

   

   The other import statements are used to declare dependencies on the data model classes defined earlier. The target for this kind of import starts with ./, which indicates that the module is defined relative to the current file.
 

  
 

   

   Notice that the import statements do not include file extensions. This is because the relationship between the target of an import statement and the file that is loaded by the browser is handled by the Angular build tools, which I explain in more detail in part 2 of this book.
 

  
 

   

   Understanding the decorator
 

  
 

   

   The oddest-looking part of the code in the listing is this:
 

  
 

   

    

    ...

@Component({

    selector: 'app-root',

    templateUrl: './app.component.html',

    styleUrls: ['./app.component.css']

})

...
  

   
 

  
 

   

   This is an example of a decorator, which provides metadata about a class. This is the @Component decorator, and, as its name suggests, it tells Angular that this is a component. The decorator provides configuration information through its properties. This @Component decorator specifies three properties: selector, templateUrl, and styleUrls.
 

  
 

   

   The selector property specifies a CSS selector that matches the HTML element to which the component will be applied.
 

  
 

   

   When you request http://localhost:4200, the browser receives the contents of the index.html file, which was added to the src folder when the project was created. This file contains a custom HTML element, like this:
 

  
 

   

    

    <!doctype html>

<html lang="en">

<head>

  <meta charset="utf-8">

  <title>Todo</title>

  <base href="/">

  <meta name="viewport" content="width=device-width, initial-scale=1">

  <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

  <app-root></app-root>

</body>

</html>
  

   
 

  
 

   

   The Angular development tools automatically add script elements to this HTML, which instruct the browser to request the JavaScript files that provide the Angular framework and the custom features defined in the project.
 

  
 

   

   When the Angular code is executed, the value of the selector property defined by the component is used to locate the specified element in the HTML document, and it is this element into which the content generated by the application is introduced. I am skipping over some details for brevity in this chapter, but I return to this topic in more detail in later chapters. For now, it is enough to understand that the value of the component decorator’s selector property corresponds to the element in the HTML document.
 

  
 

   

   The templateUrl property is to specify the component’s template, which is the app.component.html file for this component and is the file edited in listing 2.9.
 

  
 

   

   The styleUrls property specifies one or more CSS stylesheets that are used to style the elements produced by the component and its template. The setting in this component specifies a file named app.component.css, which I use later in the chapter to create CSS styles.
 

  
 

   

   Understanding the class
 

  
 

   

   The final part of the listing defines a class that Angular can instantiate to create the component.
 

  
 

   

    

    ...

export class AppComponent {

    private list = new TodoList("Bob", [

        new TodoItem("Go for run", true),

        new TodoItem("Get flowers"),

        new TodoItem("Collect tickets"),

    ]);

 

    get username(): string {

        return this.list.user;

    }

 

    get itemCount(): number {

        return this.list.items

            .filter(item => !item.complete).length;

    }

}

...
  

   
 

  
 

   

   These statements define a class called AppComponent that has a private list property, which is assigned a TodoList object and is populated with an array of TodoItem objects. The AppComponent class defines read-only properties named username and itemCount that rely on the TodoList object to produce their values. The username property returns the value of the TodoList.user property, and the itemCount property uses the standard JavaScript array features to filter the Todoitem objects managed by the TodoList to select those that are incomplete and returns the number of matching objects it finds.
 

  
 

   

   The value for the itemCount property is produced using a lambda function, also known as a fat arrow function, which is a more concise way of expressing a standard JavaScript function. The arrow in the lambda expressions is read as “goes to” such as “item goes to not item.complete.”
 

  
 

   

   When you save the changes to the TypeScript file, the Angular development tools will build the project. There should be no errors this time because the component has defined the properties that the template requires. The browser window will be automatically reloaded, showing the output in figure 2.4.
 

  
 

    

   [image: image] 

   Figure 2.4. Generating content in the example application


  
 

   

   2.4 Styling the application content
 

  
 

   

   To style the HTML content produced by the application, I am going to use the Angular Material package, which contains a set of components for use in Angular applications. Angular Material is as close as you can get to an “official” component library, and it has the advantage of being free to use, full of useful features, and well-integrated into the rest of the Angular framework.
 

  
 

   

    

    Note
 

   
 

    

    Angular Material isn’t the only component package available, and as you will see in later chapters, you don’t need to use third-party components at all if that is your preference.
 

   
 

  
 

   

   Use Control+C to stop the Angular development tools, and use the command prompt to run the command shown in listing 2.11 in the todo folder.
 

  
 

   

   Listing 2.11. Adding the Angular Material package
 

    

    ng add @angular/material@16.0.0 --defaults
  

   
 

  
 

   

   When prompted, press Y to install the package. Once the package has been installed, open the app.module.ts file in the src folder and make the changes shown in listing 2.12. These changes declare dependencies on the Angular Material features that are used in this chapter. Confusingly, this file is also called a module, which means that there are two types of modules in an Angular project: JavaScript modules and Angular modules. This is an example of an Angular module, which is described in more detail in part 2. For this chapter, it is enough to know that this is how features from the Angular Material package are included in the example project.
 

  
 

   

   Listing 2.12. Adding dependencies in the app.module.ts file in the src folder
 

    

    import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

 

import { AppComponent } from './app.component';

import { BrowserAnimationsModule } 

    from '@angular/platform-browser/animations';

 

import { FormsModule } from '@angular/forms'

import { MatButtonModule } from '@angular/material/button';

import { MatToolbarModule } from '@angular/material/toolbar';

import { MatIconModule } from '@angular/material/icon';

import { MatBadgeModule } from '@angular/material/badge';

import { MatTableModule  } from '@angular/material/table';

import { MatCheckboxModule  } from '@angular/material/checkbox';

import { MatFormFieldModule   } from '@angular/material/form-field';

import { MatInputModule   } from '@angular/material/input';

import { MatSlideToggleModule } from '@angular/material/slide-toggle';



@NgModule({

  declarations: [

    AppComponent

  ],

  imports: [

    BrowserModule,

    BrowserAnimationsModule,

    FormsModule,

    MatButtonModule, MatToolbarModule, MatIconModule, MatBadgeModule,

    MatTableModule, MatCheckboxModule, MatFormFieldModule, MatInputModule,

    MatSlideToggleModule

  ],

  providers: [],

  bootstrap: [AppComponent]

})

export class AppModule { }
  

   
 

  
 

   

   Each feature used by the application increases the amount of JavaScript code that must be downloaded by the browser, which is why features are enabled individually. You must pay close attention to the changes shown in listing 2.12 because errors will prevent the example application from working as expected. If you encounter issues, then compare your file with the one included in the GitHub repository for this book, which can be found at https://github.com/manningbooks/pro-angular-16.
 

  
 

   

   2.4.1 Applying Angular Material components
 

  
 

   

   The next step is to use components contained in the Angular Material package to style the content produced by the application. Components are applied using HTML elements and attributes in the template file, as shown in listing 2.13.
 

  
 

   

   Listing 2.13. Applying components in the app.components.html file in the src/app folder
 

    

    <mat-toolbar color="primary" class="mat-elevation-z3">

    <span>{{ username }}'s To Do List</span>

    <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

        checklist

    </mat-icon>

</mat-toolbar>
  

   
 

  
 

   

   The new template content relies on features from the Angular Material package, each of which is applied differently. The first feature is the toolbar, which is applied using the mat-toolbar element, with the contents of the toolbar contained within the opening and closing tag:
 

  
 

   

    

    ...

<mat-toolbar color="primary" class="mat-elevation-z3">

...

</mat-toolbar>

...
  

   
 

  
 

   

   The color attribute is used to specify the color for the toolbar. The Angular Material package uses color themes, and the primary value used to configure the toolbar represents the predominant color of the theme.
 

  
 

   

   The class that the mat-toolbar element has been assigned applies a style provided by the Angular Material package for creating a raised appearance for content:
 

  
 

   

    

    ...

<mat-toolbar color="primary" class="mat-elevation-z3">

...
  

   
 

  
 

   

   The other features are an icon and a badge, which are used together to indicate how many incomplete items are in the user’s to-do list. The icon is applied using the mat-icon element:
 

  
 

   

    

    ...

<mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

    checklist

</mat-icon>

...
  

   
 

  
 

   

   Icons are selected by specifying a name as the content of the mat-icon element. In this case, the checklist icon has been selected:
 

  
 

   

    

    ...

<mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

    checklist

</mat-icon>

...
  

   
 

  
 

   

   You can see the complete set of icons that are available by visiting https://fonts.google.com/icons?selected=Material+Icons. Icons are distributed using font files, and the command used to add Angular Material to the project in listing 2.13 adds the links required for these files to the index.html file in the src folder.
 

  
 

   

   The badge is applied as an option to the mat-icon element using the matBadge and matBadgeColor attributes:
 

  
 

   

    

    ...

<mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

    checklist

</mat-icon>

...
  

   
 

  
 

   

   Badges are small circular status indicators, used to present the user with a number or characters, which makes them ideal for indicating how many to-do items there are. The value of the matBadge attribute sets the content of the badge, and the matBadgeColor attribute is used to set the color, which is accent in this case, denoting the theme color that is used for highlighting.
 

  
 

   

   Save the changes to the template file and use the ng serve command to start the Angular development tools. Once the tool startup sequence is complete, use a browser to request http://localhost:4200, and you will see the content shown in figure 2.5.
 

  
 

    

   [image: image] 

   Figure 2.5. Introducing Angular Material components


  
 

   

   I will improve the layout in the next section, but the addition of the Angular Material components is already an improvement over the raw HTML content. Notice that the template in listing 2.13 still contains the same data bindings introduced earlier in the chapter, and they still work in the same way, providing access to the data provided by the component.
 

  
 

   

   2.4.2 Defining the spacer CSS style
 

  
 

   

   The Angular Material package is generally comprehensive, but one omission is spacers to help position content. I want to position the span element that contains the user’s name centrally within the title bar and have the icon and badge appear on the right. The first step is to create a CSS class that will configure HTML elements to grow to fill available space. As noted earlier, the decorator in the app.component.ts file contains a styleUrls property, which is used to select CSS files that are applied to the component’s template. Add the style shown in listing 2.14 to the app.component.css file, which is the file specified by default when the project is created.
 

  
 

   

   Listing 2.14. Adding a CSS style in the app.component.css file in the src/app folder
 

    

    .spacer { flex: 1 1 auto }
  

   
 

  
 

   

   The addition in listing 2.14 applies a style to any element assigned to a class named spacer. The style sets the flex property, which is part of the CSS flexible box feature, also known as flexbox. Flexbox is used to lay out HTML elements so they adapt to the space that is available and can respond to changes, such as when a browser window is resized or a device screen is rotated. The setting in listing 2.14 configures an element to grow to fill any available space, and if there are multiple HTML elements in the same container assigned to the spacer class, then the available space will be allocated evenly between them. Add the elements shown in listing 2.15 to the template file to introduce spacers into the layout.
 

  
 

   

   Listing 2.15. Adding elements in the app.component.html file in the src/app folder
 

    

    <mat-toolbar color="primary" class="mat-elevation-z3">

    <span class="spacer"></span>

    <span>{{ username }}'s To Do List</span>

    <span class="spacer"></span>

    <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

        checklist

    </mat-icon>

</mat-toolbar>
  

   
 

  
 

   

   When you save the file, the Angular development tools will detect the changes, recompile the project, and trigger a browser reload, producing the new layout shown in figure 2.6.
 

  
 

    

   [image: image] 

   Figure 2.6. Adding spacers to the component layout


  
 

   

   2.5 Displaying the list of to-do items
 

  
 

   

   The next step is to display the to-do items. Listing 2.16 adds a property to the component that provides access to the items in the list.
 

  
 

   

   Listing 2.16. Adding a property in the app.component.ts file in the src/app folder
 

    

    import { Component } from '@angular/core';

import { TodoList } from "./todoList";

import { TodoItem } from "./todoItem";

 

@Component({

    selector: 'app-root',

    templateUrl: './app.component.html',

    styleUrls: ['./app.component.css']

})

export class AppComponent {

    private list = new TodoList("Bob", [

        new TodoItem("Go for run", true),

        new TodoItem("Get flowers"),

        new TodoItem("Collect tickets"),

    ]);

 

    get username(): string {

        return this.list.user;

    }

 

    get itemCount(): number {

        return this.list.items.filter(item => !item.complete).length;

    }

 

    get items(): readonly TodoItem[] {

      return this.list.items;

    }

}
  

   
 

  
 

   

   To display details of each item to the user, I am going to use the Angular Material table component, as shown in listing 2.17, which makes it easy to present the user with tabular data. (I explain how you can create a custom equivalent to the table component in part 2, using the same Angular features as the Angular Material package.)
 

  
 

   

   Listing 2.17. Adding a table in the app.component.html file in the src/app folder
 

    

    <mat-toolbar color="primary" class="mat-elevation-z3">

    <span class="spacer"></span>

    <span>{{ username }}'s To Do List</span>

    <span class="spacer"></span>

    <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

        checklist

    </mat-icon>

</mat-toolbar>

 

<div class="tableContainer">

    <table mat-table [dataSource]="items" 

            class="mat-elevation-z3 fullWidth">



        <ng-container matColumnDef="id">

            <th mat-header-cell *matHeaderCellDef>#</th>

            <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>

        </ng-container>



        <ng-container matColumnDef="task">

            <th mat-header-cell *matHeaderCellDef>Task</th>

            <td mat-cell *matCellDef="let item"> {{ item.task }} </td>

        </ng-container>



        <ng-container matColumnDef="done">

            <th mat-header-cell *matHeaderCellDef>Done</th>

            <td mat-cell *matCellDef="let item"> {{ item.complete }} </td>

        </ng-container>



        <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>

        <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];">

        </tr>

    </table>

</div>
  

   
 

  
 

   

   The Angular Material table component is applied by adding the mat-table attribute to a standard HTML table element, and the data the table will contain is specified using the dataSource attribute:
 

  
 

   

    

    ...

<table mat-table [dataSource]="items" class="mat-elevation-z3 fullWidth">

...
  

   
 

  
 

   

   The square brackets (the [ and ] characters) denote an attribute binding, which is a data binding that is used to set an element attribute, providing the Angular Material table component with the data that it will display. Angular defines a range of data bindings for use in different situations, and these are described in detail in part 2. This binding configures the table to display the values returned by the items property defined in listing 2.16.
 

  
 

   

   The table component is configured by defining the columns that will be displayed to the user. The ng-container element is used to group content, and, in this case, it is used to group the elements that define a header and a content cell for a column, like this:
 

  
 

   

    

    ...

<ng-container matColumnDef="task">

    <th mat-header-cell *matHeaderCellDef>Task</th>

    <td mat-cell *matCellDef="let item"> {{ item.task }} </td>

</ng-container>

...
  

   
 

  
 

   

   This arrangement of elements defines the header and content table cells for a column named task. The header cell is defined using a th element to which the mat-header-cell and *matHeaderCellDef attributes have been applied:
 

  
 

   

    

    ...

<th mat-header-cell *matHeaderCellDef>Task</th>

...
  

   
 

  
 

   

   The effect of the mat-header-cell attribute is to configure the appearance of the header cell so that it matches the rest of the table. The effect of the *matHeaderCellDef attribute is to configure the behavior of the cell.
 

  
 

   

    

    Note
 

   
 

    

    When you start working with Angular, the template syntax can feel arcane and impenetrable, with endless combinations of curly braces, square braces, and asterisks. All of these features are described in later chapters, but for now, make sure you don’t omit the asterisks from the attributes when they are shown in the listings.
 

   
 

  
 

   

   The content cell is defined using a td element to which the mat-cell and *matCellDef attributes are applied. The *matCellDef attribute is used to select the content that will be displayed in each table cell:
 

  
 

   

    

    ...

<td mat-cell *matCellDef="let item"> {{ item.task }} </td>

...
  

   
 

  
 

   

   I explain how this feature works in detail in part 2 of the book, but for the moment, it is enough to know that the expression assigned to the *matCellDef attribute will be evaluated for each element in the data source, which will be assigned to a variable named item, and this variable is used in a data binding to populate the table cell. In this case, the value of the task property will be displayed in the table cell.
 

  
 

   

   The Angular Material table component provides additional context data as it creates table rows, including the index of the data item for which the current row is being created and which can be accessed like this:
 

  
 

   

    

    ...

<td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>

...
  

   
 

  
 

   

   The expression used for this table cell assigns the index value provided by the table component to a variable named i, which is used in the data binding to produce a simple counter.
 

  
 

   

   The columns for the table header and body are selected by applying attributes to tr elements, like this:
 

  
 

   

    

    ...

<tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>

<tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];"></tr>

...
  

   
 

  
 

   

   These elements select the id, task, and done rows defined in listing 2.17. It may seem odd that the columns are not applied automatically, but this approach is useful when you want to select different columns based on user input.
 

  
 

   

   2.5.1 Defining additional styles
 

  
 

   

   The final step of setting up the table is to define additional CSS styles, as shown in listing 2.18.
 

  
 

   

   Listing 2.18. Defining styles in the app.component.css file in the src/app folder
 

    

    .spacer { flex: 1 1 auto }

.tableContainer { padding: 15px }

.fullWidth { width: 100% }
  

   
 

  
 

   

   The first new style selects any element that has been assigned to the tableContainer class and applies padding around it. There is a div element in listing 2.18 that I added to this class and that contains the table element. The second new style sets elements assigned to the fullwidth class to occupy 100 percent of the width available to them.
 

  
 

   

   Save the changes, and the Angular development tools will compile the project and reload the browser, producing the content shown in figure 2.7.
 

  
 

    

   [image: image] 

   Figure 2.7. Displaying the list of to-do items


  
 

   

   2.6 Creating a two-way data binding
 

  
 

   

   At the moment, the template contains only one-way data bindings, which means they are used to display a data value but are unable to change it. Angular also supports two-way data bindings, which can be used to display a data value and change it, too. Two-way bindings are used with HTML form elements, and listing 2.19 adds an Angular Material checkbox to the template that allows users to mark a to-do item as complete.
 

  
 

   

   Listing 2.19. Adding a checkbox in the app.component.html file in the src/app folder
 

    

    <mat-toolbar color="primary" class="mat-elevation-z3">

    <span class="spacer"></span>

    <span>{{ username }}'s To Do List</span>

    <span class="spacer"></span>

    <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

        checklist

    </mat-icon>

</mat-toolbar>

 

<div class="tableContainer">

    <table mat-table [dataSource]="items"

            class="mat-elevation-z3 fullWidth">

 

        <ng-container matColumnDef="id">

            <th mat-header-cell *matHeaderCellDef>#</th>

            <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>

        </ng-container>

 

        <ng-container matColumnDef="task">

            <th mat-header-cell *matHeaderCellDef>Task</th>

            <td mat-cell *matCellDef="let item"> {{ item.task }} </td>

        </ng-container>

 

        <ng-container matColumnDef="done">

            <th mat-header-cell *matHeaderCellDef>Done</th>

            <td mat-cell *matCellDef="let item">

                <mat-checkbox [(ngModel)]="item.complete" color="primary">

                    {{ item.complete }}

                </mat-checkbox>

            </td>

        </ng-container>



        <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>

        <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];">

        </tr>

    </table>

</div>
  

   
 

  
 

   

   The mat-checkbox element applies the Angular Material checkbox component. The two-way binding is expressed using a special attribute:
 

  
 

   

    

    ...

<mat-checkbox [(ngModel)]="item.complete" color="primary">

...
  

   
 

  
 

   

   The combination of brackets is known as the banana-in-a-box because the round brackets look like a banana contained in a box made by the square brackets. These brackets denote a two-way data binding, and ngModel is an Angular feature and is used to set up two-way bindings on form elements, such as checkboxes.
 

  
 

   

   Save the changes to the file, and the Angular development tools will recompile the project and reload the browser to display the content shown in figure 2.8. The effect is that the complete property of each to-do item is used to set a checkbox when it is displayed to the user. The appropriate complete property will also be updated when the user toggles the checkbox.
 

  
 

    

   [image: image] 

   Figure 2.8. Using two-way bindings


  
 

   

   I left the true/false values in the output to demonstrate an important aspect of how Angular deals with changes. Each time you toggle a checkbox, the corresponding text value changes and so does the counter displayed by the badge, as shown in figure 2.9.
 

  
 

    

   [image: image] 

   Figure 2.9. Toggling a checkbox


  
 

   

   This behavior reveals an important Angular feature: the data model is live. This means data bindings—even one-way data bindings—are updated when the data model is changed. This simplifies web application development because it means you don’t have to worry about ensuring that you display updates when the application state changes.
 

  
 

   

   It can be easy to forget that underneath the templates and components and the live data model, Angular is using the browser’s JavaScript API to create and display regular HTML elements. Right-click one of the checkboxes in the browser window and select Inspect or Inspect Element from the pop-up menu (the exact menu item will depend on your chosen browser). The browser’s developer tools will open, and you can explore the HTML content displayed by the browser. You may have to dig around a little by expanding elements to see their contents, but you will see that the effect of applying an Angular Material checkbox in the template is a regular HTML checkbox, like this:
 

  
 

   

    

    ...

<input type="checkbox" class="mat-checkbox-input cdk-visually-hidden" 

    id="mat-checkbox-1-input" tabindex="0" aria-checked="false">

...
  

   
 

  
 

   

   If you find yourself confused by the way an Angular application behaves, then a good place to start is to examine the elements displayed by the browser, which reveals the effects created by your templates and components. There are other diagnostic tools available, as I explain in part 2, but this is a simple and effective way to understand what an application is doing.
 

  
 

   

   2.7 Filtering completed to-do items
 

  
 

   

   The checkboxes allow the data model to be updated, and the next step is to remove to-do items once they have been marked as done. Listing 2.20 changes the component’s items property so that it filters out any items that have been completed.
 

  
 

   

   Listing 2.20. Filtering to-do items in the app.component.ts file in the src/app folder
 

    

    import { Component } from '@angular/core';

import { TodoList } from "./todoList";

import { TodoItem } from "./todoItem";

 

@Component({

    selector: 'app-root',

    templateUrl: './app.component.html',

    styleUrls: ['./app.component.css']

})

export class AppComponent {

    private list = new TodoList("Bob", [

        new TodoItem("Go for run", true),

        new TodoItem("Get flowers"),

        new TodoItem("Collect tickets"),

    ]);

 

    get username(): string {

        return this.list.user;

    }

 

    get itemCount(): number {

        return this.list.items.filter(item => !item.complete).length;

    }

 

    get items(): readonly TodoItem[] {

        return this.list.items.filter(item => !item.complete);

    }

}
  

   
 

  
 

   

   The filter method is a standard JavaScript array feature. This is the same expression I used previously in the itemCount property. I could rework this property to avoid duplication, but I will add support for choosing whether completed tasks should be shown later in the chapter, which will require the items and itemCount properties to process the list of to-do items differently.
 

  
 

   

   Since the data model is live and changes are reflected in data bindings immediately, checking the checkbox for an item removes it from view, as shown in figure 2.10.
 

  
 

    

   [image: image] 

   Figure 2.10. Filtering the to-do items


  
 

   

   2.8 Adding to-do items
 

  
 

   

   A to-do application isn’t much use without the ability to add new items to the list. Listing 2.21 uses Angular Material components to present the user with an input element, into which a task description can be entered, and with a button that will use the description to create a new to-do item.
 

  
 

   

   Listing 2.21. Adding elements in the app.component.html file in the src/app folder
 

    

    <mat-toolbar color="primary" class="mat-elevation-z3">

    <span class="spacer"></span>

    <span>{{ username }}'s To Do List</span>

    <span class="spacer"></span>

    <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

        checklist

    </mat-icon>

</mat-toolbar>

 

<div class="inputContainer">

    <mat-form-field class="fullWidth">

        <mat-label style="padding-left: 5px;">New To Do</mat-label>

        <input matInput placeholder="Enter to-do description" #todoText>

        <button matSuffix mat-raised-button color="accent" 

            class="addButton"

            (click)="addItem(todoText.value); todoText.value = ''">

            Add

        </button>

    </mat-form-field>

</div>



<div class="tableContainer">

    <table mat-table [dataSource]="items"

            class="mat-elevation-z3 fullWidth">



        <ng-container matColumnDef="id">

            <th mat-header-cell *matHeaderCellDef>#</th>

            <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>

        </ng-container>



        <ng-container matColumnDef="task">

            <th mat-header-cell *matHeaderCellDef>Task</th>

            <td mat-cell *matCellDef="let item"> {{ item.task }} </td>

        </ng-container>



        <ng-container matColumnDef="done">

            <th mat-header-cell *matHeaderCellDef>Done</th>

            <td mat-cell *matCellDef="let item">

                <mat-checkbox [(ngModel)]="item.complete" color="primary">

                    {{ item.complete }}

                </mat-checkbox>

            </td>

        </ng-container>



        <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>

        <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];">

        </tr>

    </table>

</div>
  

   
 

  
 

   

   The new elements display an input element and a button element. The mat-form-field element and the mat* attributes on the other elements configure the Angular Material styling.
 

  
 

   

   The input element has an attribute whose name starts with the # character, which is used to define a variable to refer to the element in the template’s data bindings:
 

  
 

   

    

    ...

<input matInput placeholder="Enter to-do description" #todoText>

...
  

   
 

  
 

   

   The name of the variable is todoText, and it is used by the binding that has been applied to the button element.
 

  
 

   

    

    ...

<button matSuffix mat-raised-button color="accent" 

    class="addButton"

    (click)="addItem(todoText.value); todoText.value = ''">

...
  

   
 

  
 

   

   This is an example of an event binding, and it tells Angular to invoke a component method called addItem, using the value property of the input element as the method argument, and then to clear the input element by setting its value property to the empty string.
 

  
 

   

   Custom CSS styles are required to manage the layout of the new elements, as shown in listing 2.22.
 

  
 

   

   Listing 2.22. Defining styles in the app.component.css file in the src/app folder
 

    

    .spacer { flex: 1 1 auto }

.tableContainer { padding: 15px  }

.fullWidth { width: 100% }

.inputContainer { margin: 15px 15px 5px }

.addButton { margin: 5px }
  

   
 

  
 

   

   Listing 2.23 adds the method called by the event binding to the component.
 

  
 

   

    

    Tip
 

   
 

    

    Don’t worry about telling the bindings apart for now. I explain the different types of binding that Angular supports in part 2 and the meaning of the different types of brackets or parentheses that each requires. They are not as complicated as they first appear, especially once you have seen how they fit into the rest of the Angular framework.
 

   
 

  
 

   

   Listing 2.23. Adding a method in the app.component.ts file in the src/app folder
 

    

    import { Component } from '@angular/core';

import { TodoList } from "./todoList";

import { TodoItem } from "./todoItem";

 

@Component({

    selector: 'app-root',

    templateUrl: './app.component.html',

    styleUrls: ['./app.component.css']

})

export class AppComponent {

    private list = new TodoList("Bob", [

        new TodoItem("Go for run", true),

        new TodoItem("Get flowers"),

        new TodoItem("Collect tickets"),

    ]);

 

    get username(): string {

        return this.list.user;

    }

 

    get itemCount(): number {

        return this.list.items.filter(item => !item.complete).length;

    }

 

    get items(): readonly TodoItem[] {

        return this.list.items.filter(item => !item.complete);

    }

 

    addItem(newItem: string) {

        if (newItem != "") {

            this.list.addItem(newItem);

        }

    }

}
  

   
 

  
 

   

   The addItem method receives the text sent by the event binding in the template and uses it to add a new item to the to-do list. The result of these changes is that you can create new to-do items by entering text in the input element and clicking the Add button, as shown in figure 2.11.
 

  
 

    

   [image: image] 

   Figure 2.11. Creating a to-do item


  
 

   

   2.9 Finishing up
 

  
 

   

   The basic features are in place, and now it is time to wrap up the project. In listing 2.24, I removed the true/false text from the Done column in the table from the template and added an option to show completed tasks.
 

  
 

   

   Listing 2.24. Modifying the template in the app.component.html file in the src/app folder
 

    

    <mat-toolbar color="primary" class="mat-elevation-z3">

    <span class="spacer"></span>

    <span>{{ username }}'s To Do List</span>

    <span class="spacer"></span>

    <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">

        checklist

    </mat-icon>

</mat-toolbar>

 

<div class="inputContainer">

    <mat-form-field class="fullWidth">

        <mat-label style="padding-left: 5px;">New To Do</mat-label>

        <input matInput placeholder="Enter to-do description" #todoText>

        <button matSuffix mat-raised-button color="accent" 

            class="addButton"

            (click)="addItem(todoText.value); todoText.value = ''">

                Add

        </button>

    </mat-form-field>

</div>

 

<div class="tableContainer">

    <table mat-table [dataSource]="items" 

        class="mat-elevation-z3 fullWidth">

 

        <ng-container matColumnDef="id">

            <th mat-header-cell *matHeaderCellDef>#</th>

            <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>

        </ng-container>

 

        <ng-container matColumnDef="task">

            <th mat-header-cell *matHeaderCellDef>Task</th>

            <td mat-cell *matCellDef="let item"> {{ item.task }} </td>

        </ng-container>

 

        <ng-container matColumnDef="done">

            <th mat-header-cell *matHeaderCellDef>Done</th>

            <td mat-cell *matCellDef="let item">

                <mat-checkbox [(ngModel)]="item.complete" color="primary">

                    <!-- {{ item.complete }} -->

                  </mat-checkbox>

            </td>

        </ng-container>



        <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>

        <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];">

        </tr>

    </table>

</div>



<div class="toggleContainer">

    <span class="spacer"></span>

    <mat-slide-toggle [(ngModel)]="showComplete">

        Show Completed Items

    </mat-slide-toggle>

    <span class="spacer"></span>

</div>
  

   
 

  
 

   

   The new elements present a toggle switch that has a two-way data binding for a property named showComplete. Listing 2.25 adds the definition for the showComplete property to the component and uses its value to determine whether completed tasks are displayed to the user.
 

  
 

   

   Listing 2.25. Showing completed tasks in the app.component.ts file in the src/app folder
 

    

    import { Component } from '@angular/core';

import { TodoList } from "./todoList";

import { TodoItem } from "./todoItem";

 

@Component({

    selector: 'app-root',

    templateUrl: './app.component.html',

    styleUrls: ['./app.component.css']

})

export class AppComponent {

    private list = new TodoList("Bob", [

        new TodoItem("Go for run", true),

        new TodoItem("Get flowers"),

        new TodoItem("Collect tickets"),

    ]);

 

    get username(): string {

        return this.list.user;

    }

 

    get itemCount(): number {

        return this.list.items.filter(item => !item.complete).length;

    }

 

    get items(): readonly TodoItem[] {

        return this.list.items

            .filter(item => this.showComplete || !item.complete);

    }



    addItem(newItem: string) {

        if (newItem != "") {

            this.list.addItem(newItem);

        }

    }



    showComplete: boolean = false;

}
  

   
 

  
 

   

   An additional CSS style is required to lay out the toggle switch, as shown in listing 2.26.
 

  
 

   

   Listing 2.26. Adding a style in the app.component.css file in the src/app folder
 

    

    .spacer { flex: 1 1 auto }

.tableContainer { padding: 15px  }

.fullWidth { width: 100% }

.inputContainer { margin: 15px 15px 5px }

.addButton { margin: 5px }

.toggleContainer { margin: 15px; display: flex }
  

   
 

  
 

   

   The result is that the user can decide whether to see completed tasks, as shown in figure 2.12.
 

  
 

    

   [image: image] 

   Figure 2.12. Showing completed tasks


  
 

   

   2.10 Summary
 

  
 

   

   In this chapter, I showed you how to create your first simple Angular app, which lets the user create new to-do items and mark existing items as complete. Don’t worry if not everything in this chapter makes sense. What’s important to understand at this stage is the general shape of an Angular application, which is built around a data model, components, and templates. If you keep these three key building blocks in mind and remember that the result is standard HTML elements, then you will have a solid foundation for everything that follows.
 

  
 

   

   	Angular development uses open-source packages and tools, although there are many paid-for options for the code editor.
 

   	Angular provides a tool package for creating new projects using a standard template.
 

   	Angular generates content using components and templates, which are connected using data bindings and event bindings.
 

   	Angular Material is an add-on package that is used to style content and is written using Angular features.
 

  
 

   

   In the next chapter, I put Angular in context and describe the structure of this book.
 

  


 

   

   3 Primer, part 1

 

  
 

   

   This chapter covers
 

    

    	Understanding the basic structure of HTML and the role of CSS
 

    	Understanding the relationship between JavaScript and TypeScript
 

    	Using TypeScript to make the JavaScript type system predictable
 

    	Using the basic JavaScript/TypeScript types and operators
 

   
 

  
 

   

   Developers come to the world of web app development via many paths and are not always grounded in the basic technologies that web apps rely on. In this chapter, I provide a brief overview of HTML, introduce the basics of JavaScript and TypeScript, and give you the foundation you need to understand the examples in the rest of the book, continuing with more advanced features in chapter 4. If you are already familiar with HTML and TypeScript, you can jump right to chapter 5, where I use Angular to create a more complex and realistic application.
 

  
 

   

   3.1 Preparing the example project
 

  
 

   

   To create the example project for this chapter, open a new command prompt, navigate to a convenient location, and run the command shown in listing 3.1.
 

  
 

   

    

    Tip
 

   
 

    

    You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/manningbooks/pro-angular-16. See chapter 1 for how to get help if you have problems running the examples.
 

   
 

  
 

   

   Listing 3.1. Creating the example project
 

    

    ng new Primer --routing false --style css --skip-git --skip-tests
  

   
 

  
 

   

   This command creates a project called Primer that is set up for Angular development. I don’t do any Angular development in this chapter, but I am going to use the Angular development tools as a convenient way to demonstrate different HTML, JavaScript, and TypeScript features.
 

  
 

   

   Next, run the command shown in listing 3.2 in the Primer folder to add the Bootstrap CSS package to the project. This is the package that I use to manage the appearance of content throughout this book.
 

  
 

   

   Listing 3.2. Installing the Bootstrap CSS package
 

    

    npm install bootstrap@5.2.3
  

   
 

  
 

   

   If you are using Linux or macOS, run the command shown in listing 3.3 to integrate Bootstrap into the application, taking care to enter the command as it is shown, without any extra spaces or quotes.
 

  
 

   

   Listing 3.3. Changing the application configuration
 

    

    ng config projects.Primer.architect.build.options.styles '["src/styles.css", "node_modules/bootstrap/dist/css/bootstrap.min.css"]'
  

   
 

  
 

   

   If you are using Windows, then use a PowerShell prompt to run the command shown in listing 3.4 in the example folder.
 

  
 

   

   Listing 3.4. Changing the application configuration using powershell
 

    

    ng config projects.Primer.architect.build.options.styles `

'[""src/styles.css"",

""node_modules/bootstrap/dist/css/bootstrap.min.css""]'
  

   
 

  
 

   

   Run the command shown in listing 3.5 in the Primer folder to start the Angular development compiler and HTTP server.
 

  
 

   

   Listing 3.5. Starting the development tools
 

    

    ng serve --open
  

   
 

  
 

   

   After an initial build process, the Angular tools will open a browser window, which displays placeholder content added to the project when it was created, as shown in figure 3.1.
 

  
 

    

   [image: image] 

   Figure 3.1. Running the example application


  
 

   

   3.2 Understanding HTML
 

  
 

   

   Use your code editor to open the Primer folder and replace the contents of index.html in the src folder with the content shown in listing 3.6.
 

  
 

   

   Listing 3.6. Replacing the contents of the index.html file in the src folder
 

    

    <!DOCTYPE html>

<html>

<head>

    <title>ToDo</title>

    <meta charset="utf-8" />

</head>

<body class="m-1">

    <h3 class="bg-primary text-white p-3">Adam's To Do List</h3>

    <div class="my-1">

        <input class="form-control" />

        <button class="btn btn-primary mt-1">Add</button>

    </div>    

    <table class="table table-striped table-bordered">

        <thead>

            <tr>

                <th>Description</th>

                <th>Done</th>

            </tr>

        </thead>

        <tbody>

            <tr><td>Buy Flowers</td><td>No</td></tr>

            <tr><td>Get Shoes</td><td>No</td></tr>

            <tr><td>Collect Tickets</td><td>Yes</td></tr>

            <tr><td>Call Joe</td><td>No</td></tr>

        </tbody>

    </table>

</body>

</html>
  

   
 

  
 

   

   Reload the browser and you will see the content shown in figure 3.2. You will see some errors in the browser’s JavaScript console if you have it open, but these can be ignored and will be resolved later in the chapter.
 

  
 

    

   [image: image] 

   Figure 3.2. Understanding HTML


  
 

   

   At the heart of HTML is the element, which tells the browser what kind of content each part of an HTML document represents. Here is an element from the example HTML document:
 

  
 

   

    

    ...

<td>Buy Flowers</td>

...
  

   
 

  
 

   

   As illustrated in figure 3.3, this element has three parts: the start tag, the end tag, and the content.
 

  
 

    

   [image: image] 

   Figure 3.3. The anatomy of a simple HTML element


  
 

   

   The name of this element (also referred to as the tag name or just the tag) is td, and it tells the browser that the content between the tags should be treated as a table cell. You start an element by placing the tag name in angle brackets (the < and > characters) and end an element by similarly using the tag, except that you also add a / character after the left-angle bracket (<). Whatever appears between the tags is the element’s content, which can be text (such as Buy Flowers in this case) or other HTML elements.
 

  
 

   

   3.2.1 Understanding void elements
 

  
 

   

   The HTML specification includes elements that are not permitted to contain content. These are called void or self-closing elements, and they are written without a separate end tag, like this:
 

  
 

   

    

    ...

<input />

...
  

   
 

  
 

   

   A void element is defined in a single tag, and you add a / character before the last angle bracket (the > character). The input element is the most used void element, and its purpose is to allow the user to provide input, through a text field, radio button, or checkbox. You will see lots of examples of working with this element in later chapters.
 

  
 

   

   3.2.2 Understanding attributes
 

  
 

   

   You can provide additional information to the browser by adding attributes to your elements. Here is an element with an attribute from the example document:
 

  
 

   

    

    ...

<meta charset="utf-8" />

...
  

   
 

  
 

   

   This is a meta element, and it describes the HTML document. There is one attribute, which I have emphasized so it is easier to see. Attributes are always defined as part of the start tag, and these attributes have a name and a value.
 

  
 

   

   The name of the attribute in this example is charset. For the meta element, the charset attribute specifies the character encoding, which is UTF-8 in this case.
 

  
 

   

   3.2.3 Applying attributes without values
 

  
 

   

   Not all attributes are applied with a value; just adding them to an element tells the browser that you want a certain kind of behavior. Here is an example of an element with such an attribute (not from the example document; I just made up this example element):
 

  
 

   

    

    ...

<input class="form-control" required />

...
  

   
 

  
 

   

   This element has two attributes. The first is class, which is assigned a value just like the previous example. The other attribute is just the word required. This is an example of an attribute that doesn’t need a value.
 

  
 

   

   3.2.4 Quoting literal values in attributes
 

  
 

   

   Angular relies on HTML element attributes to apply a lot of its functionality. Most of the time, the values of attributes are evaluated as JavaScript expressions, such as with this element, taken from chapter 2:
 

  
 

   

    

    ...

<td [ngSwitch]="item.complete">

...
  

   
 

  
 

   

   The attribute applied to the td element tells Angular to read the value of a property called complete on an object that has been assigned to a variable called item. There will be occasions when you need to provide a specific value rather than have Angular read a value from the data model, and this requires additional quoting to tell Angular that it is dealing with a literal value, like this:
 

  
 

   

    

    ...

<td [ngSwitch]="'Apples'">

...
  

   
 

  
 

   

   The attribute value contains the string Apples, which is quoted in both single and double quotes. When Angular evaluates the attribute value, it will see the single quotes and process the value as a literal string.
 

  
 

   

   3.2.5 Understanding element content
 

  
 

   

   Elements can contain text, but they can also contain other elements, like this:
 

  
 

   

    

    ...

<thead>

    <tr>

        <th>Description</th>

        <th>Done</th>

    </tr>

</thead>

...
  

   
 

  
 

   

   The elements in an HTML document form a hierarchy. The html element contains the body element, which contains content elements, each of which can contain other elements, and so on. In the listing, the thead element contains tr elements that, in turn, contain th elements. Arranging elements is a key concept in HTML because it imparts the significance of the outer element to those contained within.
 

  
 

   

   3.2.6 Understanding the document structure
 

  
 

   

   There are some key elements that define the basic structure of an HTML document: the DOCTYPE, html, head, and body elements. Here is the relationship between these elements with the rest of the content removed:
 

  
 

   

    

    <!DOCTYPE html>

<html>

<head>

    ...head content...

</head>

<body>

    ...body content...

</body>

</html>
  

   
 

  
 

   

   Each of these elements has a specific role to play in an HTML document. The DOCTYPE element tells the browser that this is an HTML document and, more specifically, that this is an HTML5 document. Earlier versions of HTML required additional information. For example, here is the DOCTYPE element for an HTML4 document:
 

  
 

   

    

    ...

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 

    "http://www.w3.org/TR/html4/strict.dtd">

...
  

   
 

  
 

   

   The html element denotes the region of the document that contains the HTML content. This element always contains the other two key structural elements: head and body. As I explained at the start of the chapter, I am not going to cover the individual HTML elements. There are too many of them, and describing HTML5 completely took me more than 1,000 pages in my HTML book. That said, table 3.1 provides brief descriptions of the elements I used in the index.html file in listing 3.2 to help you understand how elements tell the browser what kind of content they represent.
 

  
 

   

    

    Understanding the Document Object Model
 

   
 

    

    When the browser loads and processes an HTML document, it creates the Document Object Model (DOM). The DOM is a model in which JavaScript objects are used to represent each element in the document, and the DOM is the mechanism by which you can programmatically engage with the content of an HTML document.
 

   
 

    

    You rarely work directly with the DOM in Angular, but it is important to understand that the browser maintains a live model of the HTML document represented by JavaScript objects. When Angular modifies these objects, the browser updates the content it displays to reflect the modifications. This is one of the key foundations of web applications. If we were not able to modify the DOM, we would not be able to create client-side web apps.
 

   
 

  
 

   

   Table 3.1. HTML elements used in the example document
 

    

     

      

      	   Element 
 
  

      	   Description 
 
  

     
 

      

      	  DOCTYPE  
  

      	  Indicates the type of content in the document 
  

     
 

      

      	  body  
  

      	  Denotes the region of the document that contains content elements 
  

     
 

      

      	  button  
  

      	  Denotes a button; often used to submit a form to the server 
  

     
 

      

      	  div  
  

      	  A generic element; often used to add structure to a document for presentation purposes 
  

     
 

      

      	  h3  
  

      	  Denotes a header 
  

     
 

      

      	  head  
  

      	  Denotes the region of the document that contains metadata 
  

     
 

      

      	  html  
  

      	  Denotes the region of the document that contains HTML (which is usually the entire document) 
  

     
 

      

      	  input  
  

      	  Denotes a field used to gather a single data item from the user 
  

     
 

      

      	  link  
  

      	  Imports content into the HTML document 
  

     
 

      

      	  meta  
  

      	  Provides descriptive data about the document, such as the character encoding 
  

     
 

      

      	  table  
  

      	  Denotes a table, used to organize content into rows and columns 
  

     
 

      

      	  tbody  
  

      	  Denotes the body of the table (as opposed to the header or footer) 
  

     
 

      

      	  td  
  

      	  Denotes a content cell in a table row 
  

     
 

      

      	  th  
  

      	  Denotes a header cell in a table row 
  

     
 

      

      	  thead  
  

      	  Denotes the header of a table 
  

     
 

      

      	  title  
  

      	  Denotes the title of the document; used by the browser to set the title of the window or tab  
  

     
 

      

      	  tr  
  

      	  Denotes a row in a table 
  

     
 

     

   
 

  
 

   

   3.3 Understanding CSS and the Bootstrap framework
 

  
 

   

   HTML elements tell the browser what kind of content they represent, but they don’t provide any information about how that content should be displayed. The information about how to display elements is provided using Cascading Style Sheets (CSS). CSS consists of properties that can be used to configure every aspect of an element’s appearance and selectors that allow those properties to be applied.
 

  
 

   

   CSS is flexible and powerful, but it requires time and close attention to detail to get good, consistent results, especially as some legacy browsers implement features inconsistently. CSS frameworks provide a set of styles that can be easily applied to produce consistent effects throughout a project.
 

  
 

   

   Throughout this book, I use the Bootstrap CSS framework, which consists of CSS classes that can be applied to elements to style them consistently, and JavaScript code that performs additional enhancements. I use the Bootstrap CSS styles because they let me style the examples without having to define custom styles in each chapter. I don’t use the Bootstrap JavaScript features at all in this book since the interactive parts of the examples are provided using Angular.
 

  
 

   

   I won't go into detail about Bootstrap because it isn’t the topic of this book, but you will see that many of the HTML elements used in examples throughout this book are assigned to classes like this:
 

  
 

   

    

    ...

<h3 class="bg-primary text-white p-3">Adam's To Do List</h3>

...
  

   
 

  
 

   

   The bg-primary, text-white, and p-3 classes all apply styles defined by the Bootstrap framework, setting the background color, text color, and padding, respectively. Unless noted in the description of an example, you can ignore the classes to which elements are assigned. See https://getbootstrap.com for details of the Bootstrap framework.
 

  
 

   

   3.4 Understanding TypeScript/JavaScript
 

  
 

   

   Angular applications are written in TypeScript, which is a superset of JavaScript that adds support for static types. In this section, I describe the relationship between TypeScript and JavaScript and introduce the basic features that you will need to understand to begin Angular development, continuing in chapter 4. This is not a comprehensive guide to TypeScript or JavaScript, but it addresses the basics, and it will give you the knowledge you need to get started.
 

  
 

   

   3.4.1 Understanding the TypeScript workflow
 

  
 

   

   Angular projects are set up with the TypeScript compiler, which is used to generate the JavaScript code that will be sent to the browser. There is no Angular development in this chapter, but I am going to take advantage of the TypeScript support to demonstrate important language features. The key file for this process is named main.ts and is found in the src folder. Replace the contents of the main.ts file with the statements shown in listing 3.7.
 

  
 

   

   Listing 3.7. Replacing the contents of the main.ts file in the src folder
 

    

    console.log("Hello");
  

   
 

  
 

   

   The basic JavaScript building block is the statement. Each statement represents a single command, and statements are usually terminated by a semicolon (;). The semicolon is optional, but using them makes your code easier to read and allows for multiple statements on a single line.
 

  
 

   

   When you save the file, the change is detected, and the Angular tools rebuild the project, sending the results to the browser to execute. The statement in listing 3.7 calls the console.log function, which writes a message to the browser’s JavaScript console. Open your browser’s F12 developer tools (which is typically done by pressing the F12 key) and select the Console; you will see the output shown in figure 3.4.
 

  
 

    

   [image: image] 

   Figure 3.4. A message in the JavaScript console


  
 

   

   The output from the statement in the main.ts file is displayed, along with additional messages generated by the automatic reloading process, which will automatically update the browser when a change is detected. Listing 3.8 adds another statement to the main.ts file.
 

  
 

   

   Listing 3.8. Adding a statement in the main.ts file in the src folder
 

    

    console.log("Hello");

console.log("Hello, World");
  

   
 

  
 

   

   When you save the file, the project will be recompiled, and the browser will automatically reload, producing the following output in the JavaScript console:
 

  
 

   

    

    Hello

Hello, World
  

   
 

  
 

   

   3.4.2 Understanding JavaScript vs. TypeScript
 

  
 

   

   JavaScript has an unusual approach to data types, which means that, for example, any variable can be assigned any value, regardless of type. As a simple demonstration, I am going to work outside of the Angular tools for a moment. Open a new command prompt, navigate to a convenient location, and create a file named example.js with the content shown in listing 3.9. It doesn’t matter where you put this file, as long as it isn’t in the Primer project folder.
 

  
 

   

   Listing 3.9. The contents of the example.js file
 

    

    function myFunction(param) {

    let result = param + 100;

    console.log("My result: " + result);

}
  

   
 

  
 

   

   This listing defines a JavaScript function, which receives a value as a parameter, uses the addition operator to add 10 to the value, and then writes out the result to the JavaScript console. Notice that there are no data types specified in this code. The function, which is named myFunction, can receive any data type, as shown in listing 3.10.
 

  
 

   

   Listing 3.10. Invoking the function in the example.js file
 

    

    function myFunction(param) {

    let result = param + 100;

    console.log("My result: " + result);

}

 

myFunction(1);

myFunction("London");
  

   
 

  
 

   

   The first new statement invokes myFunction with a number. The second new statement invokes myFunction with a string, London. Using the command prompt, execute the JavaScript code by running the command shown in listing 3.11 in the folder in which you created the example.js file.
 

  
 

   

   Listing 3.11. Executing the JavaScript code
 

    

    node example.js
  

   
 

  
 

   

   This command will produce the following output as the JavaScript statements are executed:
 

  
 

   

    

    My result: 101

My result: London100
  

   
 

  
 

   

   When the function received a number, the addition operator combined one number, 1, with another number, 100, and produced the result 101. But when the function received a string, the addition operator was asked to combine values with two different data types. It produced its result by converting the number 100 into a string and concatenating it with the parameter value to produce the result London100. JavaScript does provide the means to check whether a value is of a specific type, as shown in listing 3.12.
 

  
 

   

   Listing 3.12. Checking a type in the example.js file
 

    

    function myFunction(param) {

    if (typeof(param) == "number") {

        let result = param + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number: " + param)

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   The typeof function is used to check that the parameter is a number value, and the throw keyword is used to create an error if it is not, which you can see by running the command in listing 3.11 again, which produces the following output:
 

  
 

   

    

    My result: 101

C:\example.js:6

        throw ("Expected a number: " + param)

        ^

Expected a number: London

(Use `node --trace-uncaught ...` to show where the exception was thrown)
  

   
 

  
 

   

   The behavior of the function has changed so that it only accepts numbers, but this change is enforced at runtime, and there is no way for a programmer calling the function to know what it expects without reading the source code.
 

  
 

   

   Compiling the function with TypeScript
 

  
 

   

   TypeScript is a superset of JavaScript that requires types to be specified so they can be checked by a compiler. Returning to the Angular project, replace the contents of the main.ts file with those shown in listing 3.13.
 

  
 

   

   Listing 3.13. Replacing the contents of the main.ts file in the src folder
 

    

    function myFunction(param) {

    if (typeof(param) == "number") {

        let result = param + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number: " + param)

    }

}

 

myFunction(1);

myFunction("London");
  

   
 

  
 

   

   This is the same code that I used in the JavaScript file in the previous section. When the file is saved, the Angular development tools detect the change and rebuild the project, which includes using the TypeScript compiler to compile files with the .ts extension. The compiler reports the following error:
 

  
 

   

    

    Error: src/main.ts:1:21 - error TS7006: Parameter 'param' implicitly has 

an 'any' type.

1 function myFunction(param) {

                      ~~~~~
  

   
 

  
 

   

   TypeScript is a layer on top of JavaScript but doesn’t change the way that JavaScript works. So, TypeScript functions are allowed to accept any data type because that is how JavaScript functions work. The difference is that TypeScript requires the developer to explicitly declare that is the behavior that is required, as shown in listing 3.14.
 

  
 

   

   Listing 3.14. Specifying the function parameter type in the main.ts file in the src folder
 

    

    function myFunction(param: any) {

    if (typeof(param) == "number") {

        let result = param + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number: " + param)

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   The type for the parameter is specified after the name, separated by a colon, which is known as a type annotation. The type specified in this listing is any, which indicates that the function can accept any data type. The behavior of the function hasn’t changed, but the any keyword satisfies the TypeScript compiler. When the file is saved, the code will be compiled, sent to the browser, and executed, producing the following output in the browser’s JavaScript console:
 

  
 

   

    

    My result: 101

Uncaught Expected a number: London
  

   
 

  
 

   

   TypeScript features are erased during the compilation process so that pure JavaScript remains. Most F12 developer tools allow you to inspect the JavaScript code received by the browser, which reveals that the compilation process has removed the any keyword, as shown in figure 3.5.
 

  
 

    

   [image: image] 

   Figure 3.5. Examining the compiled code


  
 

   

   Using a more specific type
 

  
 

   

   TypeScript requires the any keyword to make sure that you really want the default JavaScript behavior. Most of the time, however, TypeScript code is written with more specific data types, as shown in listing 3.15.
 

  
 

   

   Listing 3.15. Specifying a single type in the main.ts file in the src folder
 

    

    function myFunction(param: number) {

    if (typeof(param) == "number") {

        let result = param + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number: " + param)

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   JavaScript defines five core primitive types: string, number, boolean, undefined, and null. In listing 3.15, I have changed the type annotation to replace any with the JavaScript primitive type number, which tells TypeScript that the function only expects to receive number values.
 

  
 

   

    

    Tip
 

   
 

    

    There are also bigint and symbol primitive types, but I don’t use them in this book. The bigint type is used to represent numbers expressed in arbitrary precision format, and the symbol type is used to represent unique token values.
 

   
 

  
 

   

   The TypeScript compiler will report the following error when the code is compiled:
 

  
 

   

    

    Error: src/main.ts:11:12 - error TS2345: Argument of type 'string' is not

assignable to parameter of type 'number'.

11 myFunction("London");

              ~~~~~~~~
  

   
 

  
 

   

   The TypeScript compiler has inspected the argument types and determined that one of them doesn’t match the number type annotation. The type annotation also allows me to simplify the function code, as shown in listing 3.16, because I can rely on the TypeScript compiler to check types, rather than do so at runtime.
 

  
 

   

   Listing 3.16. Simplifying the function in the main.ts file in the src folder
 

    

    function myFunction(param: number) {

    //if (typeof(param) == "number") {

        let result = param + 100;

        console.log("My result: " + result);

    // } else {

    //     throw ("Expected a number: " + param)

    // }

}



myFunction(1);

//myFunction("London");
  

   
 

  
 

   

   When the file is saved and compiled, the following output will be displayed in the browser’s JavaScript console:
 

  
 

   

    

    My result: 101
  

   
 

  
 

   

   Using a type union
 

  
 

   

   TypeScript is a compile-time gatekeeper that helps you make your use of types explicit so that problems that would otherwise cause runtime errors can be detected. And, since TypeScript compiles into pure JavaScript and doesn’t change the way that JavaScript works, everything that can be done in JavaScript can be described in TypeScript. This is important because many developers assume that TypeScript is similar to languages such as C# or Java. That’s not the case—TypeScript is just a layer, albeit a useful one, that allows the programmer to annotate JavaScript code to explain to the compiler what types are expected in a given section of code so that the compiler can warn the programmer when different types are used.
 

  
 

   

   As an example, earlier examples in this section have covered two extreme situations: that myFunction can accept all parameter types (denoted with the any keyword) and myFunction can accept only number parameters (denoted with the number type). But it is possible to write JavaScript functions so they can deal with combinations of types, as shown in listing 3.17.
 

  
 

   

   Listing 3.17. Supporting multiple types in the main.ts file in the src folder
 

    

    function myFunction(param: number) {

    if (typeof(param) == "number" || typeof(param) == "string") {

        let result = param + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number or a string: " + param)

    }

}



myFunction(1);

//myFunction("London");
  

   
 

  
 

   

   There is now a mismatch between the code in the function and its parameter type annotation. To describe situations where multiple types are acceptable, TypeScript supports type unions, as shown in listing 3.18.
 

  
 

   

   Listing 3.18. Using a type union in the main.ts file in the src folder
 

    

    function myFunction(param: number | string) {

    if (typeof(param) == "number" || typeof(param) == "string") {

        let result = param + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number or a string: " + param)

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   Type unions combine multiple types with the | character so that the type annotation number | string tells the compiler that myFunction will accept both number and string values. But the TypeScript compiler is clever, and it knows that JavaScript will do different things when it applies the addition operator to two number values or a string and a number, which means that this statement produces an ambiguous result:
 

  
 

   

    

    ...

let result = param + 100;

...
  

   
 

  
 

   

   TypeScript is designed to avoid ambiguity, and the compiler will generate the following error when compiling the code:
 

  
 

   

    

    ...

Error: src/main.ts:3:20 - error TS2365: Operator '+' cannot be applied to 

types 'string | number' and 'number'.

...
  

   
 

  
 

   

   Remember that the purpose of TypeScript is only to highlight potential problems, not to enforce any particular solution to a problem. There are several ways to resolve this ambiguity, but the one that I want to illustrate in this section is shown in listing 3.19, which is to tell the TypeScript compiler that everything is going to be alright.
 

  
 

   

   Listing 3.19. Addressing the ambiguity in the main.ts file in the src folder
 

    

    function myFunction(param: number | string) {

    if (typeof(param) == "number" || typeof(param) == "string") {

        let result = (param as any) + 100;

        console.log("My result: " + result);

    } else {

        throw ("Expected a number or a string: " + param)

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   The as keyword tells the TypeScript compiler that its knowledge of the param value is incomplete and that it should treat it as a type that I specify. In this case, I have specified the any type, which has the effect of telling the TypeScript that the ambiguity is expected and prevents it from producing an error. This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    My result: 101

My result: London100
  

   
 

  
 

   

   The as keyword should be used with caution because the TypeScript compiler is sophisticated and usually has a good understanding of how data types are being used. Equally, using the any type can be dangerous because it essentially stops the TypeScript compiler from checking types. And, it should go without saying, when you tell the TypeScript compiler that you know more about the code, then you need to make sure that you are right; otherwise, you will return to the runtime-error issue that led to the introduction of TypeScript in the first place.
 

  
 

   

   Accessing type features
 

  
 

   

   Unions are a useful way to describe combinations of types, but TypeScript will only allow the use of features that are shared by all of the types in the union. So, for example, for a value whose type is the union number | string, the TypeScript compiler will only allow the use of features that are defined by both the number and string types. To demonstrate, listing 3.20 attempts to use the toFixed method, which is defined by the number type and which is not defined by the string type.
 

  
 

   

   Listing 3.20. Accessing a type feature in the main.ts file in the src folder
 

    

    function myFunction(param: number | string) {

    if (typeof(param) == "number" || typeof(param) == "string") {

        let fixed = param.toFixed(2);

        console.log("My result: " + fixed);

    } else {

        throw ("Expected a number or a string: " + param)

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   The TypeScript compiler is guarding against ambiguity again. It knows that the param value will be either a number or a string and that calling the toFixed method when the value is a string will cause an error. The compiler produces the following error when the code is compiled:
 

  
 

   

    

    Error: src/main.ts:3:25 - error TS2339: Property 'toFixed' does not 

exist on type 'string | number'.
  

   
 

  
 

   

   To resolve this issue, either I can use only features that are available for both number and string values or I can check the type param value within the function to eliminate the ambiguity, as shown in listing 3.21.
 

  
 

   

   Listing 3.21. Checking a type in the main.ts file in the src folder
 

    

    function myFunction(param: number | string) {

    if (typeof(param) == "number") {

        let numberResult = param.toFixed(2);

        console.log("My result: " + numberResult);

    } else {

        let stringResult = param + 100;

        console.log("My result: " + stringResult);

    }

}



myFunction(1);

myFunction("London");
  

   
 

  
 

   

   I need to remove the ambiguity about the parameter value’s type so that I call the toFixed method only when the function receives a number. This code produces the following output in the browser’s JavaScript console when it is compiled and executed:
 

  
 

   

    

    My result: 1.00

My result: London100
  

   
 

  
 

   

   3.4.3 Understanding the basic TypeScript/JavaScript features
 

  
 

   

   Now that you understand the relationship between TypeScript and JavaScript, it is time to describe the basic language features you will need to follow the examples in this book. This is not a comprehensive guide to either TypeScript or JavaScript, but it should be enough to get you started as you learn how the features provided by Angular fit together.
 

  
 

   

   3.4.4 Defining variables and constants
 

  
 

   

   The let keyword is used to define variables, and the const keyword is used to define a constant value that will not change, as shown in listing 3.22.
 

  
 

   

   Listing 3.22. Defining variables and constants in the main.ts file in the src folder
 

    

    let condition = true;

let person = "Bob";

const age = 40;
  

   
 

  
 

   

   The TypeScript compiler infers the type of each variable or constant from the value it is assigned and will generate an error if a value of a different type is assigned. Types can be specified explicitly, as shown in listing 3.23.
 

  
 

   

   Listing 3.23. Specifying types in the main.ts file in the src folder
 

    

    let condition: boolean = true;

let person: string = "Bob";

const age: number = 40;
  

   
 

  
 

   

   3.4.5 Dealing with unassigned and null values
 

  
 

   

   In JavaScript, variables that have been defined but not assigned a value are assigned the special value undefined, whose type is undefined, as shown in listing 3.24.
 

  
 

   

   Listing 3.24. Defining a variable without a value in the main.ts file in the src folder
 

    

    let condition: boolean = true;

let person: string = "Bob";

const age: number = 40;

 

let place;

console.log("Place value: " + place + " Type: " + typeof(place));

place = "London";

console.log("Place value: " + place + " Type: " + typeof(place));
  

   
 

  
 

   

   This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Place value: undefined Type: undefined

Place value: London Type: string
  

   
 

  
 

   

   This behavior may seem nonsensical in isolation, but it is consistent with the rest of JavaScript, where values have types, and any value can be assigned to a variable. JavaScript also defines a separate special value, null, which can be assigned to variables to indicate no value or result, as shown in listing 3.25.
 

  
 

   

   Listing 3.25. Assigning null in the main.ts file in the src folder
 

    

    let condition: boolean = true;

let person: string = "Bob";

const age: number = 40;

 

let place;

console.log("Place value: " + place + " Type: " + typeof(place));

place = "London";

console.log("Place value: " + place + " Type: " + typeof(place));

place = null;

console.log("Place value: " + place + " Type: " + typeof(place));
  

   
 

  
 

   

   I can generally provide a robust defense of the way that JavaScript features work, but there is an oddity of the null value that makes little sense, which can be seen in the output this code produces in the browser’s JavaScript console:
 

  
 

   

    

    Place value: undefined Type: undefined

Place value: London Type: string

Place value: null Type: object
  

   
 

  
 

   

   The oddity is that the type of the special null value is object. I introduce the JavaScript support for objects in chapter 4, but this JavaScript quirk dates back to the first version of JavaScript and hasn’t been addressed because so much code has been written that depends on it.
 

  
 

   

   Leaving aside this inconsistency, when the TypeScript compiler processes the code in listing 3.25, it determines that values of different types are assigned to the place variable and infers the variable’s type as any.
 

  
 

   

   As I explained, the any type allows values of any type to be used, which effectively disables the TypeScript compiler’s type checks. A type union can be used to restrict the values that can be used, while still allowing undefined and null to be used, as shown in listing 3.26.
 

  
 

   

   Listing 3.26. Using a type union in the main.ts file in the src folder
 

    

    let condition: boolean = true;

let person: string = "Bob";

const age: number = 40;

 

let place: string | undefined | null;

console.log("Place value: " + place + " Type: " + typeof(place));

place = "London";

console.log("Place value: " + place + " Type: " + typeof(place));

place = null;

console.log("Place value: " + place + " Type: " + typeof(place));
  

   
 

  
 

   

   This type union allows the place variable to be assigned string values or undefined or null. Notice that null is specified by value in the type union. This listing produces the same output in the JavaScript console as listing 3.26.
 

  
 

   

   3.4.6 Using the JavaScript primitive types
 

  
 

   

   As noted earlier, JavaScript defines a small set of primitive types: string, number, boolean, undefined, and null. This may seem like a short list, but JavaScript manages to fit a lot of flexibility into these types.
 

  
 

   

   Working with Booleans
 

  
 

   

   The boolean type has two values: true and false. Listing 3.27 shows both values being used, but this type is most useful when used in conditional statements, such as an if statement. There is no console output from this listing.
 

  
 

   

   Listing 3.27. Defining boolean values in the main.ts file in the src folder
 

    

    let firstBool = true;

let secondBool = false;
  

   
 

  
 

   

   Working with Strings
 

  
 

   

   You define string values using either the double or single quote characters, as shown in listing 3.28.
 

  
 

   

   Listing 3.28. Defining string variables in the main.ts file in the src folder
 

    

    let firstString = "This is a string";

let secondString = 'And so is this';
  

   
 

  
 

   

   The quote characters you use must match. You can’t start a string with a single quote and finish with a double quote, for example. There is no output from this listing.
 

  
 

   

   JavaScript provides string objects with a basic set of properties and methods, the most useful of which are described in table 3.2.
 

  
 

   

   Table 3.2. Useful string properties and methods
 

    

     

      

      	   Name 
 
  

      	   Description 
 
  

     
 

      

      	  length  
  

      	  This property returns the number of characters in the string. 
  

     
 

      

      	  charAt(index)  
  

      	  This method returns a string containing the character at the specified index. 
  

     
 

      

      	  concat(string)  
  

      	  This method returns a new string that concatenates the string on which the method is called and the string provided as an argument. 
  

     
 

      

      	  indexOf(term, start)  
  

      	  This method returns the first index at which  term appears in the string or -1 if there is no match. The optional  start argument specifies the start index for the search. 
  

     
 

      

      	  replace(term, newTerm)  
  

      	  This method returns a new string in which all instances of  term are replaced with  newTerm. 
  

     
 

      

      	  slice(start, end)  
  

      	  This method returns a substring containing the characters between the start and end indices. 
  

     
 

      

      	  split(term)  
  

      	  This method splits up a string into an array of values that were separated by  term. 
  

     
 

      

      	  toUpperCase()  
  toLowerCase()   
  

      	  These methods return new strings in which all the characters are uppercase or lowercase. 
  

     
 

      

      	  trim()  
  

      	  This method returns a new string from which all the leading and trailing whitespace characters have been removed. 
  

     
 

     

   
 

  
 

   

   A common programming task is to combine static content with data values to produce a string that can be presented to the user. The traditional way to do this is through string concatenation, which is the approach I have been using in the examples so far in this chapter, as follows:
 

  
 

   

    

    ...

console.log("Place value: " + place + " Type: " + typeof(place));

...
  

   
 

  
 

   

   JavaScript also supports template strings, which allow data values to be specified inline, which can help reduce errors and result in a more natural development experience. Listing 3.29 shows the use of a template string.
 

  
 

   

   Listing 3.29. Using a template string in the main.ts file in the src folder
 

    

    let place: string | undefined | null;

console.log(`Place value: ${place} Type: ${typeof(place)}`);
  

   
 

  
 

   

   Template strings begin and end with backticks (the ` character), and data values are denoted by curly braces preceded by a dollar sign. This string, for example, incorporates the value of the place variable and its type into the template string:
 

  
 

   

    

    ...

console.log(`Place value: ${place} Type: ${typeof(place)}`);

...
  

   
 

  
 

   

   This example produces the following output:
 

  
 

   

    

    Place value: undefined Type: undefined
  

   
 

  
 

   

   Working with Numbers
 

  
 

   

   The number type is used to represent both integer and floating-point numbers (also known as real numbers). Listing 3.30 provides a demonstration.
 

  
 

   

   Listing 3.30. Defining number Values in the main.ts File in the src Folder
 

    

    let daysInWeek = 7;

let pi = 3.14;

let hexValue = 0xFFFF;
  

   
 

  
 

   

   You don’t have to specify which kind of number you are using. You just express the value you require, and JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point value, and prefixed a value with 0x to denote a hexadecimal value. Listing 3.30 doesn’t produce any output.
 

  
 

   

   Working with null and undefined values
 

  
 

   

   The null and undefined values have no features, such as properties or methods, but the unusual approach taken by JavaScript means that you can only assign these values to variables whose type is a union that includes null or undefined, as shown in listing 3.31.
 

  
 

   

   Listing 3.31. Assigning null and undefined values in the main.ts file in the src folder
 

    

    let person1 = "Alice"; 

let person2: string | undefined = "Bob";
  

   
 

  
 

   

   The TypeScript compiler will infer the type of the person1 variable as string because that is the type of the value assigned to it. This variable cannot be assigned the null or undefined value.
 

  
 

   

   The person2 variable is defined with a type annotation that specifies string or undefined values. This variable can be assigned undefined but not null, since null is not part of the type union.
 

  
 

   

   3.4.7 Using the JavaScript operators
 

  
 

   

   JavaScript defines a largely standard set of operators. I’ve summarized the most useful in table 3.3.
 

  
 

   

   Table 3.3. Useful JavaScript operators
 

    

     

      

      	   Operator 
 
  

      	   Description 
 
  

     
 

      

      	  ++,  --   
  

      	  Pre- or post-increment and decrement 
  

     
 

      

      	  +,  -,  *,  /,  %   
  

      	  Addition, subtraction, multiplication, division, remainder 
  

     
 

      

      	  <,  <=,  >,  >=   
  

      	  Less than, less than or equal to, more than, more than or equal to 
  

     
 

      

      	  ==,  !=   
  

      	  Equality and inequality tests 
  

     
 

      

      	  ===,  !==   
  

      	  Identity and nonidentity tests 
  

     
 

      

      	  &&,  ||   
  

      	  Logical AND and OR  
  

     
 

      

      	  ||, ??   
  

      	  Null and null-ish coalescing operators 
  

     
 

      

      	  ?  
  

      	  Optional chaining operator 
  

     
 

      

      	  =  
  

      	  Assignment 
  

     
 

      

      	  +  
  

      	  String concatenation 
  

     
 

      

      	  ?:  
  

      	  Three-operand conditional statement 
  

     
 

     

   
 

  
 

   

   Using conditional statements
 

  
 

   

   Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend to use the if/else and switch statements. Listing 3.32 shows the use of both, which will be familiar if you have worked with pretty much any programming language.
 

  
 

   

   Listing 3.32. Using the if/else and switch conditional statements in the main.ts file in the src folder
 

    

    let firstName = "Adam";



if (firstName == "Adam") {

    console.log("firstName is Adam");

} else if (firstName == "Jacqui") {

    console.log("firstName is Jacqui");

} else {

    console.log("firstName is neither Adam or Jacqui");

}



switch (firstName) {

    case "Adam":

        console.log("firstName is Adam");

        break;

    case "Jacqui":

        console.log("firstName is Jacqui");

        break;

    default:

        console.log("firstName is neither Adam or Jacqui");

        break;

}
  

   
 

  
 

   

   The results from the listing are as follows:
 

  
 

   

    

    firstName is Adam

firstName is Adam
  

   
 

  
 

   

   The equality operator vs. the identity operator
 

  
 

   

   In JavaScript, the equality operator (==) will attempt to coerce (convert) operands to the same type to assess equality. This can be a useful feature, but it is widely misunderstood and often leads to unexpected results. Listing 3.33 shows the equality operator in action.
 

  
 

   

   Listing 3.33. Using the equality operator in the main.ts file in the src folder
 

    

    let firstVal: any = 5;

let secondVal: any = "5";



if (firstVal == secondVal) {

    console.log("They are the same");

} else {

    console.log("They are NOT the same");

}
  

   
 

  
 

   

   The output from this script is as follows:
 

  
 

   

    

    They are the same
  

   
 

  
 

   

   JavaScript is converting the two operands into the same type and comparing them. In essence, the equality operator tests that values are the same irrespective of their type.
 

  
 

   

   If you want to test to ensure that the values and the types are the same, then you need to use the identity operator (===, three equal signs, rather than the two of the equality operator), as shown in listing 3.34.
 

  
 

   

   Listing 3.34. Using the identity operator in the main.ts file in the src folder
 

    

    let firstVal: any = 5;

let secondVal: any = "5";

 

if (firstVal === secondVal) {

    console.log("They are the same");

} else {

    console.log("They are NOT the same");

}
  

   
 

  
 

   

   In this example, the identity operator will consider the two variables to be different. This operator doesn’t coerce types. The result from this script is as follows:
 

  
 

   

    

    They are NOT the same
  

   
 

  
 

   

   To demonstrate how JavaScript works, I had to use the any type when declaring the firstVal and secondVal variables, because TypeScript restricts the use of the equality operator so that it can be used only on two values of the same type. Listing 3.35 removes the variable type annotations and allows TypeScript to infer the types from the assigned values.
 

  
 

   

   Listing 3.35. Removing the type annotations in the main.ts file in the src folder
 

    

    let firstVal = 5;

let secondVal = "5";



if (firstVal === secondVal) {

    console.log("They are the same");

} else {

    console.log("They are NOT the same");

}
  

   
 

  
 

   

   The TypeScript compiler detects that the variable types are not the same and generates the following error:
 

  
 

   

    

    Error: src/main.ts:4:5 - error TS2367: This condition will always return 'false' since the types 'number' and 'string' have no overlap.
  

   
 

  
 

   

    

    Understanding Truthy and Falsy
 

   
 

    

    The comparison operator presents another pitfall for the unwary, which is that expressions can be truthy or falsy. The following results are always falsy:
 

   
 

    

    	The false (boolean) value
 

    	The 0 (number) value
 

    	The empty string ("")
 

    	null
 

    	undefined
 

    	
NaN (a special number value)
 

   
 

    

    All other values are truthy, which can be confusing. For example, "false" (a string whose content is the word false) is truthy. The best way to avoid confusion is to only use expressions that evaluate to the boolean values true and false.
 

   
 

  
 

   

   Explicitly converting types
 

  
 

   

   The string concatenation operator (+) has higher precedence than the addition operator (also +), which means JavaScript will concatenate variables in preference to adding. This can confuse because JavaScript will also convert types freely to produce a result—and not always the result that is expected, as shown in listing 3.36.
 

  
 

   

   Listing 3.36. String concatenation operator precedence in the main.ts file in the src folder
 

    

    let myData1 = 5 + 5;

let myData2 = 5 + "5";

        

console.log(`Result 1: ${myData1}, Type: ${typeof(myData1)}`);

console.log(`Result 2: ${myData2}, Type: ${typeof(myData2)}`);
  

   
 

  
 

   

   This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Result 1: 10, Type: number

Result 2: 55, Type: string
  

   
 

  
 

   

   The second result is the kind that confuses. What might be intended to be an addition operation is interpreted as string concatenation through a combination of operator precedence and type conversion. The TypeScript compiler understands the way the JavaScript operators behave and correctly infers the data types it produces, but, unlike the equally confusing equality operator, TypeScript doesn’t prevent the type conversion.
 

  
 

   

   To avoid this, you can explicitly convert the types of values to ensure you perform the right kind of operation, as described in the following sections.
 

  
 

   

   If you are working with multiple number variables and want to concatenate them as strings, then you can convert the numbers to strings with the toString method, as shown in listing 3.37.
 

  
 

   

   Listing 3.37. Using the number.toString method in the main.ts file in the src folder
 

    

    let myData1 = (5).toString() + String(5);

let myData2 = 5 + "5";

        

console.log(`Result 1: ${myData1}, Type: ${typeof(myData1)}`);

console.log(`Result 2: ${myData2}, Type: ${typeof(myData2)}`);
  

   
 

  
 

   

   Notice that I placed the numeric value in parentheses, and then I called the toString method. This is because you have to allow JavaScript to convert the literal value into a number before you can call the methods that the number type defines. I have also shown an alternative approach to achieve the same effect, which is to call the String function and pass in the numeric value as an argument. Both of these techniques have the same effect, which is to convert a number to a string, meaning that the + operator is used for string concatenation and not addition. The output from this script is as follows:
 

  
 

   

    

    Result 1: 55, Type: string

Result 2: 55, Type: string
  

   
 

  
 

   

   Other methods allow you to exert more control over how a number is represented as a string. I briefly describe these methods in table 3.4. All of the methods shown in the table are defined by the number type.
 

  
 

   

   Table 3.4. Useful Number-to-String methods
 

    

     

      

      	   Method 
 
  

      	   Description 
 
  

     
 

      

      	  toString()  
  

      	  This method returns a string that represents a number in base 10. 
  

     
 

      

      	  toString(2)  
  toString(8)  
  toString(16)   
  

      	  This method returns a string that represents a number in binary, octal, or hexadecimal notation. 
  

     
 

      

      	  toFixed(n)  
  

      	  This method returns a string representing a real number with the  n digits after the decimal point. 
  

     
 

      

      	  toExponential(n)  
  

      	  This method returns a string that represents a number using exponential notation with one digit before the decimal point and  n digits after. 
  

     
 

      

      	  toPrecision(n)  
  

      	  This method returns a string that represents a number with  n significant digits, using exponential notation if required. 
  

     
 

     

   
 

  
 

   

   The complementary technique is to convert strings to numbers so that you can perform addition rather than concatenation, as shown in listing 3.38.
 

  
 

   

   Listing 3.38. Converting Strings to Numbers in the main.ts file in the src folder
 

    

    let myData1 = (5).toString() + String(5);

let myData2 = Number("5") + parseInt("5");

        

console.log(`Result 1: ${myData1}, Type: ${typeof(myData1)}`);

console.log(`Result 2: ${myData2}, Type: ${typeof(myData2)}`);
  

   
 

  
 

   

   The output from this script is as follows:
 

  
 

   

    

    Result 1: 55, Type: string

Result 2: 10, Type: number
  

   
 

  
 

   

   The Number function is strict in the way that it parses string values, but there are two other functions you can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt and parseFloat. I have described all three methods in table 3.5.
 

  
 

   

   Table 3.5. Useful String to Number methods
 

    

     

      

      	   Method 
 
  

      	   Description 
 
  

     
 

      

      	  Number(str)  
  

      	  This method parses the specified string to create an integer or real value. 
  

     
 

      

      	  parseInt(str)  
  

      	  This method parses the specified string to create an integer value. 
  

     
 

      

      	  parseFloat(str)  
  

      	  This method parses the specified string to create an integer or real value. 
  

     
 

     

   
 

  
 

   

   Using the null and nullish coalescing operators
 

  
 

   

   The logical OR operator (||) has been traditionally used as a null coalescing operator in JavaScript, allowing a fallback value to be used in place of null or undefined values, as shown in listing 3.39.
 

  
 

   

    

    Note
 

   
 

    

    If you move the mouse pointer over the variable in code editors such as Visual Studio Code, you will see that the TypeScript compiler is smart enough to infer when the variables in the next few examples are null or undefined. This is because all of the statements in the main.ts file are executed in sequence, allowing the compiler to use a more specific combination of types than have been used in the type annotations. This doesn’t happen in real projects, where code is defined in functions or methods.
 

   
 

  
 

   

   Listing 3.39. Using the null coalescing operator in the main.ts file in the src folder
 

    

    let val1: string | undefined;

let val2: string | undefined = "London";



let coalesced1 = val1 || "fallback value";

let coalesced2 = val2 || "fallback value";



console.log(`Result 1: ${coalesced1}`);

console.log(`Result 2: ${coalesced2}`);
  

   
 

  
 

   

   The || operator returns the left-hand operand if it evaluates as truthy and otherwise returns the right-hand operand. When the operator is applied to val1, the right-hand operand is returned because no value has been assigned to the variable, meaning that it is undefined. When the operator is applied to val2, the left-hand operand is returned because the variable has been assigned the string London, which evaluates as truthy. This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Result 1: fallback value

Result 2: London
  

   
 

  
 

   

   The problem with using the || operator this way is that truthy and falsy values can produce unexpected results, as shown in listing 3.40.
 

  
 

   

   Listing 3.40. An unexpected null coalescing result in the main.ts file in the src folder
 

    

    let val1: string | undefined;

let val2: string | undefined = "London";

let val3: number | undefined = 0;



let coalesced1 = val1 || "fallback value";

let coalesced2 = val2 || "fallback value";

let coalesced3 = val3 || 100;



console.log(`Result 1: ${coalesced1}`);

console.log(`Result 2: ${coalesced2}`);

console.log(`Result 3: ${coalesced3}`);
  

   
 

  
 

   

   The new coalescing operation returns the fallback value, even though the val3 variable is neither null nor undefined, because 0 evaluates as falsy. The code produces the following results in the browser’s JavaScript console:
 

  
 

   

    

    Result 1: fallback value

Result 2: London

Result 3: 100 
  

   
 

  
 

   

   The nullish-coalescing operator (??) addresses this issue by returning the right-hand operand only if the left-hand operand is null or undefined, as shown in listing 3.41.
 

  
 

   

   Listing 3.41. Using the nullish-coalescing operator in the main.ts file in the src folder
 

    

    let val1: string | undefined;

let val2: string | undefined = "London";

let val3: number | undefined = 0;

 

let coalesced1 = val1 ?? "fallback value";

let coalesced2 = val2 ?? "fallback value";

let coalesced3 = val3 ?? 100;



console.log(`Result 1: ${coalesced1}`);

console.log(`Result 2: ${coalesced2}`);

console.log(`Result 3: ${coalesced3}`);
  

   
 

  
 

   

   The nullish operator doesn’t consider truthy and falsy outcomes and looks only for the null and undefined values. This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Result 1: fallback value

Result 2: London

Result 3: 0
  

   
 

  
 

   

   Using the optional chaining operator
 

  
 

   

   As explained earlier, TypeScript won’t let null or undefined to be assigned to variables unless they have been defined with a suitable type union. Further, TypeScript will only allow methods and properties defined by all of the types in the union to be used. This combination of features means that you have to guard against null or undefined values before you can use the features provided by any other type in a union, as demonstrated in listing 3.42.
 

  
 

   

   Listing 3.42. Guarding against null or undefined values in the main.ts file in the src folder
 

    

    let count: number | undefined | null = 100;

if (count != null && count != undefined) {

    let result1: string = count.toFixed(2);

    console.log(`Result 1: ${result1}`);

}
  

   
 

  
 

   

   To invoke the toFixed method, I have to make sure that the count variable hasn’t been assigned null or undefined. The TypeScript compiler understands the meaning of the expressions in the if statement and knows that excluding null and undefined values means that the value assigned to count must be a number, meaning that the toFixed method can be used safely. This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Result 1: 100.00
  

   
 

  
 

   

   The optional chaining operator (the ? character) simplifies the guarding process, as shown in listing 3.43.
 

  
 

   

   Listing 3.43. Using the optional chaining operator in the main.ts file in the src folder
 

    

    let count: number | undefined | null = 100;

if (count != null && count != undefined) {

    let result1: string = count.toFixed(2);

    console.log(`Result 1: ${result1}`);

}

 

let result2: string | undefined = count?.toFixed(2);

console.log(`Result 2: ${result2}`);
  

   
 

  
 

   

   The operator is applied between the variable and the method call and will return undefined if the value is null or undefined, preventing the method from being invoked:
 

  
 

   

    

    ...

let result2: string | undefined = count?.toFixed(2);

...
  

   
 

  
 

   

   If the value isn’t null or undefined, then the method call will proceed as normal. The result from an expression that includes the optional chaining operator is a type union of undefined and the result from the method. In this case, the union will be string | undefined because the toFixed method returns a string. The code in listing 3.43 produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Result 1: 100.00

Result 2: 100.00
  

   
 

  
 

   

   3.5 Summary
 

  
 

   

   In this chapter, I described some of the basic features of the foundation on which Angular is built. I described the basic structure of HTML elements and explained the relationship between JavaScript and TypeScript, before introducing the basic JavaScript/TypeScript features.
 

  
 

   

   	Angular applications generate HTML content, which is displayed to the user by a web browser.
 

   	Browsers execute JavaScript, which is a full-featured language with some features that often confuse.
 

   	Angular applications are written in TypeScript, which is a superset of JavaScript, which makes development more consistent with other mainstream programming languages.
 

   	TypeScript code is compiled into JavaScript so that it can be executed by browsers, which means that the compiler has to erase the TypeScript features from the code that is used by the browser.
 

   	TypeScript doesn’t alter the JavaScript type system but requires the developer to indicate what data types are expected in code, which avoids many of the problems encountered by developers who are new to JavaScript.
 

  
 

   

   In the next chapter, I continue to describe useful JavaScript and TypeScript features and provide a brief overview of an important JavaScript library that you will encounter in Angular development.
 

  


 

   

   4 Primer, part 2
 

  
 

   

   This chapter covers
 

    

    	Understanding and using JavaScript functions
 

    	Using the JavaScript concise function syntax
 

    	Defining and using JavaScript arrays
 

    	Creating objects using the literal syntax
 

    	Using classes to create objects
 

    	Defining and using JavaScript modules
 

   
 

  
 

   

   In this chapter, I continue to describe the basic features of TypeScript and JavaScript that are required for Angular development.
 

  
 

   

   4.1 Preparing for this chapter
 

  
 

   

   This chapter uses the Primer project created in chapter 3. No changes are required for this chapter. Open a new command prompt, navigate to the Primer folder, and run the command shown in listing 4.1 to start the Angular development tools.
 

  
 

   

    

    Tip
 

   
 

    

    You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/manningbooks/pro-angular-16. See chapter 1 for how to get help if you have problems running the examples.
 

   
 

  
 

   

   Listing 4.1. Starting the development tools
 

    

    ng serve --open
  

   
 

  
 

   

   After an initial build process, the Angular tools will open a browser window and display the content shown in figure 4.1.
 

  
 

    

   [image: image] 

   Figure 4.1. Running the example application


  
 

   

   This chapter continues to use the browser’s JavaScript console. Press F12 to open the browser’s developer tools and switch to the console; you will see the following results (you may have to reload the browser):
 

  
 

   

    

    Result 1: 100.00

Result 2: 100.00
  

   
 

  
 

   

   4.2 Defining and using functions
 

  
 

   

   When the browser receives JavaScript code, it executes the statements it contains in the order in which they have been defined. In common with most languages, JavaScript allows statements to be grouped into a function, which won’t be executed until a statement that invokes the function is executed, as shown in listing 4.2.
 

  
 

   

   Listing 4.2. Defining a function in the main.ts file in the src folder
 

    

    function writeValue(val: string | null) {

    console.log(`Value: ${val ?? "Fallback value"}`)

}



writeValue("London");

writeValue(null);
  

   
 

  
 

   

   Functions are defined with the function keyword and are given a name. If a function defines parameters, then TypeScript requires type annotations, which are used to enforce consistency in the use of the function. The function in listing 4.2 is named writeValue, and it defines a parameter that will accept string or null values. The statement inside of the function isn’t executed until the browser reaches a statement that invokes the function. The code in listing 4.2 produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Value: London

Value: Fallback value
  

   
 

  
 

   

   4.2.1 Defining optional function parameters
 

  
 

   

   By default, TypeScript will allow functions to be invoked only when the number of arguments matches the number of parameters the function defines. This may seem obvious if you are used to other mainstream languages, but a function can be called with any number of arguments in pure JavaScript, regardless of how many parameters have been defined. The ? character is used to denote an optional parameter, as shown in listing 4.3.
 

  
 

   

   Listing 4.3. Defining an optional parameter in the main.ts file in the src folder
 

    

    function writeValue(val?: string) {

    console.log(`Value: ${val ?? "Fallback value"}`)

}



writeValue("London");

writeValue();
  

   
 

  
 

   

   The ? operator has been applied to the val parameter, which means that the function can be invoked with zero or one argument. Within the function, the parameter type is string | undefined, because the value will be undefined if the function is invoked without an argument.
 

  
 

   

    

    Note
 

   
 

    

    Don’t confuse val?: string, which is an optional parameter, with val: string | undefined, which is a type union of string and undefined. The type union requires the function to be invoked with an argument, which may be the value undefined, whereas the optional parameter allows the function to be invoked without an argument.
 

   
 

  
 

   

   The code in listing 4.3 produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Value: London

Value: Fallback value
  

   
 

  
 

   

   4.2.2 Defining default parameter values
 

  
 

   

   Parameters can be defined with a default value, which will be used when the function is invoked without a corresponding argument. This can be a useful way to avoid dealing with undefined values, as shown in listing 4.4.
 

  
 

   

   Listing 4.4. Defining a default parameter value in the main.ts file in the src folder
 

    

    function writeValue(val: string = "default value") {

    console.log(`Value: ${val}`)

}



writeValue("London");

writeValue();
  

   
 

  
 

   

   The default value will be used when the function is invoked without an argument. This means that the type of the parameter in the example will always be string, so I don’t have to check for undefined values. The code in listing 4.4 produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Value: London

Value: default value
  

   
 

  
 

   

   4.2.3 Defining rest parameters
 

  
 

   

   Rest parameters are used to capture any additional arguments when a function is invoked with additional arguments, as shown in listing 4.5.
 

  
 

   

   Listing 4.5. Using a rest parameter in the main.ts file in the src folder
 

    

    function writeValue(val: string, ...extraInfo: string[]) {

    console.log(`Value: ${val}, Extras: ${extraInfo}`)

}



writeValue("London", "Raining", "Cold");

writeValue("Paris", "Sunny");

writeValue("New York");
  

   
 

  
 

   

   The rest parameter must be the last parameter defined by the function, and its name is prefixed with an ellipsis (three periods, ...). The rest parameter is an array to which any extra arguments will be assigned. In the listing, the function prints out each extra argument to the console, producing the following results:
 

  
 

   

    

    Value: London, Extras: Raining,Cold

Value: Paris, Extras: Sunny

Value: New York, Extras: 
  

   
 

  
 

   

   4.2.4 Defining functions that return results
 

  
 

   

   You can return results from functions by declaring the return data type and using the return keyword within the function body, as shown in listing 4.6.
 

  
 

   

   Listing 4.6. Returning a result in the main.ts file in the src folder
 

    

    function composeString(val: string) : string {

    return `Composed string: ${val}`;

}



function writeValue(val?: string) {

    console.log(composeString(val ?? "Fallback value"));

}



writeValue("London");

writeValue();
  

   
 

  
 

   

   The new function defines one parameter, which is a string, and returns a result, which is also a string. The type of the result is defined using a type annotation after the parameters:
 

  
 

   

    

    ...

function composeString(val: string) : string {

...
  

   
 

  
 

   

   TypeScript will check the use of the return keyword to ensure that the function returns a result and that the result is of the expected type. This code produces the following output in the browser’s JavaScript console:
 

  
 

   

    

    Composed string: London

Composed string: Fallback value
  

   
 

  
 

   

   4.2.5 Using functions as arguments to other functions
 

  
 

   

   JavaScript functions are values, which means you can use one function as the argument to another, as demonstrated in listing 4.7.
 

  
 

   

   Listing 4.7. Using a function as an argument to another function in the main.ts file in the src folder
 

    

    function getUKCapital() : string { 

    return "London";

}



function writeCity(f: () => string)  {

    console.log(`City: ${f()}`)

}



writeCity(getUKCapital);
  

   
 

  
 

   

   The writeCity function defines a parameter called f, which is a function that it invokes to get the value to insert into the string that it writes out. TypeScript requires the function parameter to be described so that the types of its parameters and results are declared:
 

  
 

   

    

    ...

function writeCity(f: () => string)  {

...
  

   
 

  
 

   

   This is the arrow syntax, also known as fat arrow syntax or the lambda expression syntax. There are three parts to an arrow function: the input parameters surrounded by parentheses, then an equal sign and a greater-than sign (the “arrow”), and finally the function result. The parameter function doesn’t define any parameters, so the parentheses are empty. This means that the type of the parameter f is a function that accepts no parameters and returns a string result. The parameter function is invoked within a template string:
 

  

OEBPS/Images/cover0001.jpg
M MANNING

Adam Freeman





OEBPS/Images/04__image001.png
& > C ® localhost:4200 w &

Adam's To Do List

Add

Description Done
Buy Flowers No
Get Shoes No
Collect Tickets Yes

Call Joe No






OEBPS/Images/02__image013.png
a Todo X

< C @ localhost:4200

Bob's To Do List

Go for run

Get flowers

Collect tickets






OEBPS/Images/02__image021.png
o e x

€ 2> C O localhost4200

Bob's To Do List

1 Get flowers O faise Get flowers

2 Collect tickets 0O false Collect tickets






OEBPS/Images/02__image023.png
'oroae _ _
fodo

€ 5 C O locakhost4200 e %
€ > C O localhost4200 e x O® :

Bob's To Do List i
Bob's To Do List

New To Do
NewToo =

. Task Done Done
# Task
B Get flowers [m}
1 Goforrun
2 Collect tickets
2 Get flowers m}

@ show Completed items






OEBPS/Images/03__image005.png
Start Tag Content End Tag

L





OEBPS/Images/03__image001.png
< C @ localhost4:

A vecome

Resources

CLI Documentat






OEBPS/Images/03__image007.png
9 DevTools - localhost:4200/

Y ﬂ Elements Console Sources Network Performance

[ © topY @ | Filter

> = 2 messages Hello
> © 2user mess.. [webpack-dev-server] Live Reloading enabled.
© Noerrors
A No warnings
v @ 2info
. mainjs 1
B polyf. 1
¥ No verbose

>

B1
1lssue: B 1

main.ts:1

index.js:548

-






OEBPS/Images/03__image003.png
QY oo x
& > C @ localhost:4200

Adam's To Do List

Add
Description
Buy Flowers
Get Shoes
Collect Tickets

Call Joe

Done

No

*

LY






OEBPS/Images/03__image009.png
DevTools - localhost:4200/

R (] | Elements Console Sources Network Performance Memory Applicaion  Security  Lighthouse » (@1 B1/ &%

Page » i | [@ stylescss  mainjs X vendorjs  polyfilsjs  styjlesjs  bootstrap Bl At t o+ v @
vDOtop function myFunction(param) { 4 > Watch
v O localhost4200 if (typeof (param) === “number”) { v Breakpoints
B let result = param + 100;
H (index) console.log("My result: * + result); No breakpoints
mainjs b
B polyfls else { ¥ Scope
polytilisys throw ("Expected a number: " + param); Not paused
B runtimejs 3 lot pause
les X ¥ Call Stack
=SM » myFunction(1);
H vendorjs myFunction("London"); Not paused
styles.css .
» XHR/fetch Breakpoints
» O fontsgstaticcom L - — =
»
» O webpack// 2 kpoints
s > Global Listeners
=x*/ _webpack_require__ => { // webpackRuntimeModules » Event Listener Breakpoints

-~ '-IZ wauwwn » > "."‘—.





OEBPS/Images/02__image019.png
o o x

€ 2 C O localhost4200 o Todo x

€ > C O localhost4200
Bob's To Do List

Bob's To Do List

Get flowers

Collecttickets 0 false
Collect tickets.






OEBPS/Images/02__image007.png
e Todo X

<> C @ localhost:4200

Bob's To Do List

2 Items






OEBPS/Images/02__image003.png
» - Visual Studio Code

UTF-8

app
assets

>

>

> environments
*

favicon.ico
<> index.html
TS main.ts
TS polyfills.ts
# styles.css
TS testts
.browserslistrc
£ .editorconfig
© .gitignore
{} angularjson
X karma.confjs
{} package-lockjson
{} package,json
@® README.md
{} tsconfig.app.json
B tsconfig,json

{} tsconfig.specjson

LF  JSON with Comments v/ Spell

> node_modules
v src
V' app
app.component.css
app.componenthtml
app.component.ts
app.modulets
> assets
> environments
* favicon.ico
<> index.html|
TS main.ts
TS polyfills.ts
# styles.css
TS testts
.browserslistrc
& .editorconfig
© .gitignore
{} angular,json
X karma.confjs
{} package-lockjson
{} packagejson
® README.md
{} tsconfig.app.json

B tsconfigjson

{} tsconfig.spec.json

paces:2 UTF-8 CRLF CSS

V/ Spell

A Q






OEBPS/Images/02__image005.png
m

& > C @ localhost:4200 e x &

A Welcome

‘ todo app is running!

Resources

Here are some links to help you get started:

®) Leam Angular > <> CL Documentation > ©Q Angular Material >

©) Angular Blog > @ Angular DevTools >

.-—..M,’*“y___A,_M 3





OEBPS/Images/02__image001.png
i Node.js Setup

Custom Setup d
Select the way you want features to be installed. n.s c

Click the icons in the tree below to change the way features will be installed.

3] @ Node.js runtime Install the core Node.js runtime
o (node.exe).

This feature requires OKB on your
hard drive. It has 0 of 1
subfeatures selected. The
subfeatures require 0KB on your
hard drive.






OEBPS/Images/02__image011.png
G Todo X
& > C @ localhost:4200 Z ® v« ™

Bob's To Do List e






OEBPS/Images/02__image009.png
G Todo X
& > C @ localhost:4200 Z ® v« ™

Bob's To Do List:$‘_2





OEBPS/Images/02__image017.png
mm

€ 5 C @ localhost4200 zex ®: € > C O localhost4200 zex ®:

Bob' Bob's To Do I ist

s Task

1 Goforrun

2 Get flowers Get flowers

3 Collect tickets. 0 false 3 Collect tickets 0 false






OEBPS/Images/02__image015.png
e Todo X

< C @ localhost:4200

Bob's To Do List

Go for run true

Get flowers [ false

Collect tickets [0 false






OEBPS/Images/about-author__image001.png





