

 [image: cover]

hapi.js in Action

 Matt Harrison

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Susanna Kline
Technical development editor: Nickie Buckner
Project editor: Janet Vail
Copyeditor: Corbin Collins
Proofreader: Elizabeth Martin
Technical proofreader: Matt Merkes
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781633430211

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the cover Illustration

 1. First steps

 Chapter 1. Introducing hapi

 Chapter 2. Building an API

 Chapter 3. Building a website

 2. Expanding your toolbox

 Chapter 4. Routes and handlers in-depth

 Chapter 5. Understanding requests and responses

 Chapter 6. Validation with Joi

 Chapter 7. Building modular applications with plugins

 Chapter 8. Cache me if you can

 3. Creating rock-solid apps

 Chapter 9. Authentication and security

 Chapter 10. Testing with Lab, Code, and server.inject()

 Chapter 11. Production and beyond

 Appendix A. Getting started with Node.js and npm

 Appendix B. npm packages used in this book

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the cover Illustration

 1. First steps

 Chapter 1. Introducing hapi

 1.1. What is hapi?

 1.1.1. What makes hapi special?

 1.1.2. What kind of framework is hapi.js?

 1.2. The building blocks of hapi

 1.2.1. Servers

 1.2.2. Connections

 1.2.3. Routes

 1.2.4. Handlers

 1.2.5. Plugins

 1.3. When you should (and shouldn’t) use hapi

 1.3.1. When you should use hapi

 1.3.2. When you shouldn’t use hapi

 1.4. How it works

 1.4.1. Installing hapi

 1.4.2. Creating a server

 1.4.3. Adding routes

 1.4.4. Registering a plugin

 1.4.5. Taking it for a spin

 1.5. Getting help

 1.5.1. hapi.js website

 1.5.2. Make Me hapi

 1.5.3. GitHub

 1.5.4. IRC

 1.5.5. Stack Overflow

 1.5.6. Read the code!

 1.6. Summary

 Chapter 2. Building an API

 2.1. Designing the API

 2.1.1. Your mission, should you choose to accept it

 2.1.2. Gathering requirements

 2.1.3. Designing the API endpoints

 2.2. Getting set up

 2.2.1. A directory to work in

 2.2.2. Preparing a database and sample data

 2.2.3. The sqlite3 node module

 2.3. Retrieving and searching recipes

 2.3.1. Introducing server.route()

 2.3.2. Route handlers

 2.3.3. Endpoint A: retrieving all recipes

 2.3.4. Endpoint A: searching recipes

 2.3.5. Endpoint B: retrieving a single recipe

 2.4. Writing maintainable code

 2.4.1. Modularizing routes

 2.4.2. Meet server.bind(): setting the context in handlers

 2.4.3. Modularizing handlers

 2.5. Authentication

 2.5.1. Schemes and strategies

 2.5.2. Implementing bearer token authentication

 2.5.3. Working with user credentials

 2.6. Creating and starring recipes

 2.6.1. Test-driving your endpoints

 2.6.2. Endpoint C: creating recipes

 2.7. Summary

 Chapter 3. Building a website

 3.1. The DinDin website

 3.1.1. What it looks like

 3.1.2. How it works

 3.1.3. Getting set up

 3.2. Serving web pages and static content

 3.2.1. Serving a static file

 3.2.2. Serving an entire directory

 3.2.3. server.views(): dynamic view rendering with Handlebars

 3.2.4. DRY views: layouts and partials

 3.3. Working with an external API

 3.3.1. Using Wreck: consuming APIs with hapi

 3.3.2. The dynamic home page

 3.3.3. The recipe detail page

 3.3.4. View helpers

 3.4. Managing logins and user sessions

 3.4.1. hapi-auth-cookie plugin

 3.4.2. Forms

 3.4.3. Implementing login

 3.4.4. Creating recipes

 3.4.5. Implementing logout

 3.5. Summary

 2. Expanding your toolbox

 Chapter 4. Routes and handlers in-depth

 4.1. Routing in-depth

 4.1.1. The hapi router: ordering and conflicting routes

 4.1.2. Route methods

 4.1.3. Parameterized paths

 4.1.4. How hapi picks a route

 4.2. Building custom handlers

 4.2.1. The internationalization (i18n) example

 4.2.2. Parsing the Accept-Language header

 4.2.3. First implementation

 4.2.4. Making things simple again

 4.3. Server methods

 An alternate syntax for creating server methods

 4.4. Route prerequisites

 4.4.2. Specifying a route prerequisite

 4.4.3. Using server methods with prerequisites

 4.4.4. Multiple serial prerequisites

 4.4.5. Parallel prerequisites: running tasks concurrently

 4.5. Managing file uploads to hapi applications

 4.5.1. Using data output: read the file contents into memory

 4.5.2. Using stream output: get the files as streams

 4.5.3. Using file output: save the files to disk

 4.5.4. Additional payload settings

 4.6. Summary

 Chapter 5. Understanding requests and responses

 5.1. The request object and lifecycle

 5.1.1. What is the request object?

 5.1.2. The request lifecycle

 5.1.3. Extension points

 5.1.4. Which extension point should I use?

 5.2. The reply interface and the response object

 5.2.1. What is the reply interface?

 5.2.2. Valid arguments to reply()

 5.2.3. The response object

 5.2.4. Responding with streams

 5.3. Dealing with errors

 5.3.1. Programmer errors vs. operational errors

 5.3.2. HTTP status codes

 5.3.3. Introducing Boom: creating HTTP-friendly errors

 5.3.4. Friendly HTML error pages for websites

 5.4. Summary

 Chapter 6. Validation with Joi

 6.1. Introducing Joi

 6.1.1. How it works

 6.1.2. A simple example: validating a scalar type

 6.1.3. A more complex example: validating a compound type

 6.2. Mastering Joi

 6.2.1. Getting to know the API

 6.2.2. Joi.assert() vs. Joi.validate()

 6.2.3. Type conversion in Joi

 6.2.4. The abortEarly option

 6.2.5. Exploring Joi errors

 6.3. Validation in hapi

 6.3.1. Validating inputs with Joi

 6.3.2. Validating payloads

 6.3.3. Validating responses

 6.3.4. Customizing the validation response with failAction

 6.4. Bringing it all together: web form validation with hapi and Joi

 6.4.1. How it works

 6.4.2. Creating the skeleton

 6.4.3. Creating the routes and views

 6.4.4. Adding validation

 6.4.5. Rendering errors on the form

 6.4.6. Redirecting users after successful form submission

 6.5. Summary

 Chapter 7. Building modular applications with plugins

 7.1. Plugged-in thinking

 7.1.1. What is a plugin?

 7.1.2. What can go in a plugin?

 7.1.3. Plugin all the things!

 7.1.4. The Pingoo application

 7.2. Creating and loading plugins

 7.2.1. Creating a plugin

 7.2.2. Loading plugins with server.register()

 7.2.3. Plugin dependencies

 7.2.4. Configuring plugins with options

 7.3. Composing plugins with Glue

 7.3.1. What is Glue?

 7.3.2. Creating a manifest

 7.3.3. Smart configuration with the Confidence utility

 7.4. Plugin communication

 7.4.1. Global server configuration

 7.4.2. Exposing properties from within a plugin with server.expose()

 7.4.3. Using an event system

 7.5. Summary

 Chapter 8. Cache me if you can

 8.1. Client-side caching

 8.1.1. Setting headers manually

 8.1.2. Setting a cache policy in configuration

 8.1.3. Revalidation and ETags

 8.2. Introducing Catbox: a multi-strategy object-caching library

 8.2.1. What is Catbox?

 8.2.2. Catbox clients and policies

 8.2.3. Staleness

 8.2.4. Which cache strategy should I use?

 8.3. Server-side caching in hapi applications

 8.3.1. Configuring clients

 8.3.2. Creating and using a Catbox Policy with server.cache()

 8.3.3. Caching server methods

 8.3.4. Organizing cache data using keys, partitions, and segments

 8.4. Summary

 3. Creating rock-solid apps

 Chapter 9. Authentication and security

 9.1. Authentication in depth

 9.1.1. hapi authentication recap

 9.1.2. Which authentication scheme should I choose?

 9.1.3. Authentication scopes

 9.1.4. Authentication modes

 9.2. Implementing third-party authentication with Bell

 9.2.1. What is third-party authentication?

 9.2.2. Introducing Bell

 9.2.3. Integrating Bell into a hapi app

 9.3. Managing cross-origin requests with CORS

 9.3.1. Allowing cross-origin requests from anywhere

 9.3.2. Restricting access to resources to specific origins only

 9.3.3. Dealing with custom headers

 9.3.4. CORS and credentials (cookies)

 9.3.5. Granularity of CORS settings

 9.4. Protecting apps against CSRF with Crumb

 9.4.1. Combatting CSRF attacks with CSRF tokens

 9.4.2. Understanding CSRF by creating our own exploit

 9.4.3. Protecting HTML forms using Crumb

 9.4.4. Protecting RESTful APIs using Crumb

 9.5. Security headers

 9.6. Summary

 Chapter 10. Testing with Lab, Code, and server.inject()

 10.1. Introduction to Lab

 10.1.1. Your first test

 10.1.2. Lab as a local dependency

 10.1.3. Organizing tests with experiments

 10.1.4. Asynchronous by default

 10.1.5. Lab syntax flavors

 10.2. Making assertions with the Code assertion library

 10.2.1. What is the Code assertion library?

 10.2.2. Code’s grammar: structure of an assertion

 10.3. Testing hapi servers with server.inject()

 10.3.1. Readying servers for testing

 10.3.2. The server.inject() response parameter

 10.3.3. Testing with request payloads

 10.3.4. Testing authenticated routes

 10.4. Leveling up Lab

 10.4.1. Reporters

 10.4.2. Code coverage

 10.4.3. Linting

 10.4.4. Leaking globals

 10.4.5. Parallel test execution

 10.5. Testing difficult-to-test code with stubs, spies, and monkey-patching

 10.5.1. Introduction to monkey-patching

 10.5.2. Using Sinon’s spies and stubs

 10.5.3. Using proxyquire

 10.6. Summary

 Chapter 11. Production and beyond

 11.1. Logging with hapi and Good

 11.1.1. Introduction to server events in hapi

 11.1.2. Logging with request.log() and server.log()

 11.1.3. Production logging and process monitoring with Good

 11.1.4. Using multiple reporter instances

 11.2. Documenting your routes

 11.2.1. Introduction to route tags, notes, and descriptions

 11.2.2. Autogenerated documentation with Lout

 11.3. Monitoring

 11.3.1. Introducing Graphite and StatsD

 11.3.2. Measure anything with StatsD

 11.3.3. Getting operations data from hapi using Oppsy

 11.4. Debugging

 11.4.1. Don’t feel bad about using console.log()

 11.4.2. Node debug

 11.4.3. Node Inspector

 11.4.4. Core dumps with Poop

 11.4.5. Real-time request debugging with hapi TV

 11.5. Deploying SSL/TLS-enabled applications

 11.5.1. Options for TLS

 11.5.2. Setting up a TLS connection with hapi

 11.5.3. Testing SSL with a self-signed certificate

 11.5.4. Forcing HTTPS

 11.6. Summary

 Appendix A. Getting started with Node.js and npm

 A.1 What is Node.js?

 A.2 Getting Node and npm

 A.2.1 Installers

 A.2.2 Linux

 A.2.3 Compiling from source

 A.2.4 Using a version manager

 A.3 Hello Node

 A.4 Hello npm

 Appendix B. npm packages used in this book

 B.1 A quick word about version numbers and Semver

 MAJOR.x.x

 MAJOR.MINOR.x

 B.2 The packages

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 At the heart of any development framework is the idea that by sharing patterns and code, we tap into the collective wisdom
 and build on each other’s success. Frameworks are, after all, a common foundation shared by like-minded developers solving
 similar problems. They are also the core building block of team collaboration and effective engineering communications.

 What started as a small collection of utilities around the same time as Node.js’s conception grew and evolved into the hapi.js
 framework. As we learned more from our collective experiences, built more large-scale production systems, grew our engineering
 teams, and increased our collaboration complexity, the framework evolved to reflect it and internalize these lessons learned.

 The hapi.js community documentation is an excellent source of reference material, but it does not (and cannot) encompass the
 significant amount of knowledge and experience gained over the years from actual use. This is where hapi.js in Action comes in—an extensive collection of knowledge that has been, until recently, only available to a select few early adopters.

 As a hapi.js core project maintainer, Matt Harrison brings a unique combination of insider know-how and community leadership.
 A big part of being a core maintainer involves interacting with new and experienced developers, answering questions, and investigating
 issues. It is this experience and body of work spread over hundreds of issues and questions that guides and makes this book
 invaluable.

 Getting started with hapi.js is trivial. You can bring up a working web application in a couple of hours with just a few methods.
 However, hapi.js is a constantly evolving framework with its own terminology and best practices. From servers, connections,
 plugins, and routes to realms, extensions, and schemes, there are many ways the framework can make your life easier and your
 products better. But they can’t help you if you don’t know they exist.

 As with any technology, moving from being a beginner to becoming an expert takes time. With this book, Matt has organized
 a largely undocumented and scattered knowledge into an easy-to-follow narrative that both beginners and experts would benefit
 from.

 As you begin (or continue) your experience with the hapi.js framework, you will join an engaged and rich community of application
 developers working together on the best-in-class tools and patterns. These tools already power an impressive array of products
 and services. From payment services and online retailers to cloud and music providers, you are probably already using at least
 one hapi.js based application today. Tomorrow we might use something you created.

 With this book in hand, you have taken your first step toward becoming a hapi.js expert. Whether you use that experience to
 build innovative products, create your own open source components to share with others, or join the hapi.js community as an
 active contributor, I hope you find working with the framework fun and empowering. It was built with love and dedication by
 dozens of open source developers looking to make application development better every day.

 It’s called hapi for a reason.

 ERAN HAMMER

 HAPI.JS CREATOR

Preface

 When I was 16, I was having a ball, secretly recording my friends’ catchphrases and turning them into Flash soundboards. I
 was slicing and dicing garish designs in Photoshop and putting together websites with HTML tables in Dreamweaver.

 I spent a long time away from the web, training to become an architect. But I always really missed the buzz of building websites,
 creating something from just my own code and having it appear on screen and do stuff, so when I finally graduated I made a
 U-turn—I decided I wanted to get back into the web.

 But, boy had things changed! We had CSS, web standards, and JavaScript, and PHP was the hot server technology of the day.
 I voraciously learned everything I could about WordPress, Joomla, Zend, CodeIgniter, and all the big frameworks and content
 management systems of the time. I made some pretty decent sites and landed a job as a junior developer. The truth is that
 I had no idea what I was really doing. My understanding of what was really happening was minimal. These frameworks did so much magic for me . . . and were so big that I felt totally lost.

 This all began to change when I discovered Node.js. I started by writing a few small scripts that did things like spin up
 a mini HTTP server and serve a file to a browser from my hard drive. No magic, no heavy framework, just a few lines of the
 same humble JavaScript I knew from the browser. I knew what every line of code was doing. The lack of distance between my
 code and the inner workings was much more satisfying to my mind.

 Everything started to fall into place for me after that. All these heavy frameworks I’d been using in the past were just obscuring
 the simplicity and beauty that was at the heart of all this web stuff. I vowed never to use something again in my work again
 without understanding how it worked.

 Naturally, like everyone in the Node world, I started to use Express to build my web apps. Express was a joy to use for the
 kind of small projects I was working on at the time. As I started to work on larger, more serious projects, though, I kept
 running into problems with Express. Things like scaling to many developers, several teams, and large apps were a pain with
 Express. I started to wonder if I’d been so naïve to think that I could build serious apps with Node, sticking together a
 few dependencies by myself. Perhaps those big, heavy frameworks like Zend and ASP.NET with all their classes and abstractions
 were like that because that’s what’s needed for complex projects?

 About the time I found out about hapi. These guys over at Walmart had the audacity to power the mobile traffic of world’s
 biggest retailer on Black Friday with . . . a Node.js app. They were a big team, they had a lot of users, and their systems
 were complex. It sounded like they’d shared the same kind of frustrations that I’d had with Express and built their own framework.
 The best thing was that they’d open sourced it all. Maybe you could do enterprise-scale apps successfully in Node. I had to check this out!

 The transition to using hapi for me was quick and painless. I loved the simple configuration-driven APIs and the powerful
 plugin system. My code was cleaner than ever. What’s more, it was fast and secure. I decided hapi was somewhere I wanted to
 stay. I started contributing to the project on GitHub, improving documentation and writing my own blog posts evangelizing
 hapi.

 I found the community extremely helpful, quickly responding to issues and fixing bugs. The project was and still is in a very
 healthy state. The policy of only releasing code that is tested to 100% coverage shows their commitment to quality.

 When Manning approached me about writing a hapi book, I was a little intimidated by the prospect but I knew I would say yes.
 hapi needed a book, and I wanted to be the one to write about it. I’m honored to be able to share with you everything that
 I’ve learned about hapi. After almost 18 months of writing, I’ve learned so much more about the framework than I originally
 knew, yet my opinions have stayed the same. I believe it has that perfect balance of rich features and unlimited customizability
 but also remains easy to get up and running and stays out of your way in complex apps.

Acknowledgments

 I feel slightly guilty that it’s my name emblazoned on the cover of this book. In reality this is the culmination of work
 and effort by many, many people. I didn’t quite get the scale of this until I embarked on this journey. Every author says
 this in their acknowledgments and it’s not out of modesty or humility—it’s a fact.

 First of all, I would like to thank my developmental editor Susanna Kline, with whom I’ve exchanged many, many hours of conversation
 on Skype. We’ve talked about everything from the weather (a lot, I think) to flying planes, cowboys (she’s originally from
 Texas), and occasionally this book. Without Susanna’s infinite capacity for good advice and insight, this would have been
 a different and lesser book altogether. Thanks also to Cynthia Kane for helping out as my editor on the first chapter.

 Big thanks to Michael Stephens who was my first contact at Manning. Thanks, Mike, for your encouragement in our first chats
 and believing that I could take on this project. The confidence you gave me early on kept me going right till the end.

 Thanks to Corbin Collins whose comments have been invaluable to keeping the quality and accuracy high. Thanks to Nickie Buckner
 for his eagle-eye and technical review of the manuscript, catching some very subtle mistakes in the text. Also a big thanks
 to Elizabeth Martin for picking up on lots of issues during the final stages of production. The following reviewers gave generously
 of their time and improved this book: Davide Fiorentino lo Regio, Earl Bingham, Gavin Whyte, Gonzalo Huerta-Canepa, Jeff Smith,
 Jeroen Benckhuijsen, Jerry Tan, Jonathan Whittington, Margriet and Nikander Bruggeman, Matt Hernandez, Nick McGinness, Philippe
 Charrière, Ryan Pulling, Stephen Byrne, and Thomas Peklak.

 Thanks also to all the hapi contributors for creating hapi in the first place and making it such a pleasure to work with and
 write about. Without your brilliant work, this book wouldn’t exist. Special thanks to Eran Hammer for starting the hapi project
 and your cooperation with reading this manuscript and writing a great foreword for us.

 Thanks to my girlfriend, Yi Ching, for always supporting me and really believing in my abilities, even when I didn’t.

 Thanks to my parents, Gail and David, for giving me the love, encouragement, and resources I need to find my own path in this
 world, even when it looked like there was no path at all.

About this Book

 hapi.js in Action is a guide to hapi for total beginners, designed to ease you in at first with some simple but functional examples. Later
 the text builds on your theoretical knowledge with in-depth coverage of all the important features within hapi and the various
 plugins and modules in its rich ecosystem. By the end of the book, you should be comfortable with building maintainable, fast,
 secure production-ready web applications.

Who should read this book

 Anyone who has an interest in building websites, APIs, single-page application servers, or any kind of networked HTTP service
 in JavaScript should read this book. Whether you’ve already used Node.js in your career or are just getting started, this
 book gives you a 360-degree view of the hapi world.

 Even if you’re familiar with hapi, I’ve no doubt there’s material in this book that will be new and useful to you. Experienced
 hapi developers can use this book as a reference—the examples of how to use some of the more esoteric features will be useful
 to you.

How this book is organized

 This book is split into three parts and eleven chapters.

 Part 1: First Steps doesn’t dilly-dally around. This gets you writing code in no time.

 	
Chapter 1: Introducing hapi does exactly that. You’ll see what hapi is useful for and some of the key building blocks used to create apps.

 	
Chapter 2: Building an API gathers some requirements and helps you build a fully functional hapi app.

 	
Chapter 3: Building a website looks at some of the more front end-oriented hapi features like serving static content.

 Part 2: Expanding your toolbox is all about building upon your basic knowledge from part 1 with a deeper understanding of the key building blocks. Mixed in with that, I teach you a few extra superpowers like validation
 and caching.

 	
Chapter 4: Route and handlers in depth explores in-depth two of the key components in all hapi apps.

 	
Chapter 5: Understanding requests and responses looks at the lifecycle of a request and how to modify it.

 	
Chapter 6: Validation with Joi teaches you how to lock down your APIs against bad input data by using the expressive and powerful Joi library.

 	
Chapter 7: Building modular applications with plugins shows you both how to extend hapi and how to split your apps into small, maintainable packages called plugins.

 	
Chapter 8: Cache me if you can teaches you how to make use of both browser and server-side caching to supercharge your apps.

 Part 3: Creating rock-solid apps is where we get very serious and make sure your apps are secure, well tested, and free of bugs.

 	
Chapter 9: Authentication and security looks at various ways of authenticating users and some common security exploit mitigation techniques.

 	
Chapter 10: Testing with Lab, Code, and server.inject() teaches you the art of writing simple yet powerful tests to probe every inch of your apps.

 	
Chapter 11: Production and beyond helps you get your app on the road to production and gives you some advice and techniques for when things go awry.

 There are two appendices. Appendix A: Getting started with Node.js and npm provides supplemental information, including downloading and installing Node and npm. Appendix B: npm packages used in this book explains version numbers and, as the title reads, contains an explanation of packages used in the book.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to make it stand out from ordinary text. Sometimes code is also in bold fixed-width font to highlight code that is particularly important or relevant to the surrounding discussion.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 [image:]. Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 All the source code for the examples and listings in this book can be found on GitHub at https://github.com/mtharrison/hapi.js-in-action. The code is organized hierarchically to match the chapter and subheading format used in the book. This is designed to make
 it as easy as possible for you to look up the working code for whichever section on the book you’re working through.

 The code samples in this book and on GitHub are written to work only with Node.js versions above 4.0.0, as several ES2015
 features are used, such as let, const, and arrow functions.

Author Online

 The purchase of hapi.js in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. To access and subscribe to the forum, go to www.manning.com/books/hapi-js-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions,
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

Other online resources

 	There is full API documentation along with several tutorials on the official hapi website at http://hapijs.com/.

 	For any questions about how to use hapi or about the project in general, you can post issues on the discuss repo at https://github.com/hapijs/discuss.

 	There’s the hapijs tag on Stack Overflow too at http://stackoverflow.com/questions/tagged/hapijs.

About the author

 Matt Harrison is a freelance web developer and consultant. He’s a core contributor to hapi.js, a frequent blogger, and an active member
 of the Node.js community. In a former life, he was an architect. He likes to eat ramen and drink Guinness, though never at
 the same time.

About the cover Illustration

 The figure on the cover of hapi.js in Action is captioned “Sauvage de la Nouvelle Zeelande” (a savage of New Zealand). The illustration is taken from a collection of
 dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays,
 published in France in 1797. Each illustration is finely drawn and colored by hand.

 The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
 regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or
 in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It’s now hard to
 tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. First steps

 This first part of hapi.js in Action is all about laying the foundations for the rest of the book and introducing many of the core concepts in hapi.

 Chapter 1 introduces hapi and explains what it is and what it can do for you. You’ll also see—at a very high level—how apps can be
 put together.

 In chapter 2, you’ll jump right in and build a JSON API using hapi. You’ll discover how to translate business requirements into working
 code and you’ll touch upon many key concepts including routing, handlers, authentication, and working with a database.

 Chapter 3 focuses on the front end, building a simple website for the API you built in chapter 2. You’ll also learn all about static file serving and how to organize your markup into layouts, partials, and views using
 templating languages.

Chapter 1. Introducing hapi

 This chapter covers

 	What hapi.js is

 	The problem hapi.js solves

 	The philosophy behind hapi.js

 	The architecture of hapi.js

 If you’ve built web applications, in any language or platform, you’ll know that what sometimes starts out as a simple vision
 can quickly become complicated. There are numerous things to consider when building a web app, including how to go about caching,
 validating, and authenticating. You also need to decide how to structure your code into files and directories in a way that
 makes sense.

 The decisions one needs to make up front are often difficult and can become overwhelming, even for experienced developers.
 This is one of the reasons we use frameworks rather than start from scratch every time.

 There are many frameworks for building web applications with Node.js. The more minimal ones like Express.js offer relatively
 little out of the box, with the aim of flexibility, and still require you to make a lot of decisions about infrastructure.
 Other, more focused API-only frameworks like Restify are limited in their scope of applications.

 	

 Terminology

 Sometimes I write hapi.js and other times just hapi. In general, when I use hapi.js, I’m referring to the project, ecosystem,
 or community as a whole. When I use hapi, I’m talking about the core hapi package. hapi is always written with a lowercase
 “h.” I’ll use Node.js and Node interchangeably, referring to the same thing. Likewise, I may use Express.js, or simply Express,
 to refer to the other popular Node framework.

 	

 hapi.js lets you have your cake and eat it too. Its configuration-centric approach means it is flexible and can be tweaked
 to your desire. But if you only want to get up and running writing your business logic, the framework makes sensible decisions
 for you.

 hapi’s plugin system and rich module ecosystem means there’s usually a module available that’s been created by the hapi.js
 core team to solve your problem, and you can be sure it’s secure and has been tested extensively.

1.1. What is hapi?

 hapi is an open source framework for building web applications with Node, created by the mobile web team at Walmart Labs.
 If you’ve ever used a Walmart mobile app or browsed the company’s website from your phone, you’ve been using hapi and probably
 didn’t know it.

 hapi’s most common use case is building web services such as JSON APIs, but it can also be used to build HTTP proxies and
 as the server component of single page apps or websites. Figure 1.1 shows a few examples of these applications. If you need to build software that speaks HTTP, hapi’s going to make your life
 a lot easier.

 Figure 1.1. hapi can be used to build all sorts of networked applications.

 [image:]

 Node already provides a way of building web servers with its built-in http module, but building anything serious using http
 alone is complicated and fraught. Thankfully, that’s where frameworks like hapi step in.

 To understand where hapi fits in, look at figure 1.2. You can see that hapi sits between Node and your own application’s code, providing an abstraction layer for working with
 HTTP requests and responses.

 Figure 1.2. Where hapi fits into an example application

 [image:]

 If you’ve ever worked with Node, it’s likely you’ve either used or are aware of projects with similar functionality to hapi.
 Express.js, Restify, Director, Loopback, and Sails are all examples of other frameworks that can be used to build web applications.

 This section looks at what makes hapi different from these other frameworks and discusses the main building blocks that you’ll
 need to know to be successful with hapi. It also considers the kinds of applications hapi is suited to and the kinds it isn’t.
 Then it takes a look at the best places to go for help when you need it.

 	

 Node.js

 Node is a platform for writing applications in JavaScript that run on a server. It’s powered by the same, blazingly fast V8
 JavaScript engine inside the Google Chrome browser. What Node offers on top of V8 is a set of APIs that you would expect to
 find in other languages used to write apps on the server side. There are APIs for working with TCP, HTTP, filesystems, and
 many more. These APIs are exposed as built-in JavaScript modules using the CommonJS module system.

 Because the http module in Node is fairly low level, building web applications from scratch every time can be tedious and
 involve writing a lot of boilerplate code. That’s where frameworks like hapi find their place, offering a higher-level, more
 convenient API that suits many applications you might want to build.

 If you come from a different server-side programming background like PHP or Ruby you may not be used to working so directly
 with HTTP requests in your application. You might be more familiar with using Apache or NGINX as a web server. Things are
 quite different in the Node world—the web server is actually part of your application, as highlighted here.

 [image:]

With Node, the web server is the application developer’s responsibility.

 	

 1.1.1. What makes hapi special?

 If there are so many other frameworks with similar features available, why should you choose hapi? The team members who developed
 hapi did so as a last resort, growing it out of their experience and frustration with other existing frameworks. As developers
 in charge of the mobile web infrastructure of Walmart, the world’s biggest retailer, they might be considered a somewhat picky
 customer, but their collective effort has led to a framework that we can all benefit from.

 Walmart has experienced doubling of mobile traffic and revenue year after year, as more people pick up their mobile devices
 to do their shopping, constantly presenting fresh challenges for its engineers. The mobile web team at Walmart Labs, led by
 senior architect Eran Hammer, chose Node as the platform to build out its future infrastructure. This decision was based on
 Node’s efficient scaling model, the engineers’ familiarity with the JavaScript language, and the healthy and vibrant community
 around Node.

OEBPS/006fig01_alt.jpg
User application (PHP)
1
PHP interpreter

Client HTTP
requests.

Typical PHP application stack

Web server is separately installed software.

Web server User appiication (JS)

Nodejs

Client HTTP
requests.

Typical Node js application stack

Web server s part of the application.

OEBPS/01fig01_alt.jpg
hapi as an APl server

> GET /items/1 >
- {id: 1,name: "Item 1°, . o
api
Ciient ik
> GET /items/2 > (SR
2,name: *Item 27, P——
hapi as a website server
—> GET /index.html ——————————»
<--+ <DOCTYPE html><html>...</html> <--= X
Ciient hapi
— > GET /logo.png —» [@pplicatan
<--- [Binary data] <-- s
O
hapi as an HTTP proxy
= — 1111
hapi External service
Client application
P O —| 1]11]
External service

OEBPS/01fig02_alt.jpg
o

T /products HITR/1.1

= 1
Host: mysite.com f Youicnde
L X2
o o way
Content-type: application/ison =
Mobile client 4239 2
- A
to o et
L

© Your app gets products data from database.

Products data i given to hapi's rep.y () funcion. hapi validates and caches the oulput if configured to.
B 17T mscicia b et BowBiog 1o i tbils salcatini.

OEBPS/common01.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/cover.jpg

