

 [image: cover]

 ASP.NET AJAX in Action

 Alessandro Gallo, David Barkol & Rama Krishna Vavilala

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2008 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Tiffany Taylor
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Third, corrected printing May 2008.

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

Dedication

 To those who wait

 A.G.

 To my wife and best friend, Emily

 D.B.

 To my parents, for making me who I am!

 R.K.V.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 1. ASP.NET AJAX basics

 Chapter 1. Introducing ASP.NET AJAX

 Chapter 2. First steps with the Microsoft Ajax Library

 Chapter 3. JavaScript for Ajax developers

 Chapter 4. Exploring the Ajax server extensions

 Chapter 5. Making asynchronous network calls

 Chapter 6. Partial-page rendering with UpdatePanels

 2. Advanced techniques

 Chapter 7. Under the hood of the UpdatePanel

 Chapter 8. ASP.NET AJAX client components

 Chapter 9. Building Ajax-enabled controls

 Chapter 10. Developing with the Ajax Control Toolkit

 3. ASP.NET AJAX Futures

 Chapter 11. XML Script

 Chapter 12. Dragging and dropping

 4. Mastering ASP.NET AJAX

 Chapter 13. Implementing common Ajax patterns

 Appendices

 Appendix A. Installing ASP.NET AJAX

 Appendix B. Tools for debugging Ajax applications

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 1. ASP.NET AJAX basics

 Chapter 1. Introducing ASP.NET AJAX

 1.1. What is Ajax?

 1.1.1. Ajax components

 1.1.2. Asynchronous web programming

 1.1.3. The XMLHttpRequest object

 1.1.4. Ajax development issues

 1.2. ASP.NET AJAX architecture

 1.2.1. Client framework

 1.2.2. Server framework

 1.2.3. Client-centric development model

 1.2.4. Server-centric development model

 1.2.5. ASP.NET AJAX goals

 1.3. ASP.NET AJAX in action

 1.3.1. Simple server-centric solution

 1.3.2. UpdateProgress control

 1.3.3. Simple client-centric example

 1.4. Summary

 Chapter 2. First steps with the Microsoft Ajax Library

 2.1. A quick overview of the library

 2.1.1. Library features

 2.1.2. Ajax-enabling an ASP.NET page

 2.1.3. Script versions

 2.2. The Application model

 2.2.1. Client components

 2.2.2. Client-page lifecycle

 2.2.3. “Hello Microsoft Ajax!”

 2.3. Working with the DOM

 2.3.1. The abstraction API

 2.3.2. A dynamic, cross-browser text box

 2.3.3. CSS and positioning

 2.3.4. Client delegates

 2.3.5. $addHandlers and $clearHandlers

 2.3.6. Callbacks

 2.4. Making development with JavaScript easier

 2.4.1. The String object

 2.4.2. Sys.StringBuilder

 2.4.3. The Array object

 2.4.4. Globalization

 2.4.5. Browser detection

 2.4.6. Debugging

 2.4.7. Typed errors

 2.5. Summary

 Chapter 3. JavaScript for Ajax developers

 3.1. Working with objects

 3.1.1. Objects

 3.1.2. Arrays

 3.1.3. Functions

 3.1.4. Creating custom objects

 3.1.5. The prototype object

 3.1.6. Extending a JavaScript type

 3.1.7. Literals

 3.2. Working with JSON

 3.2.1. JSON structures

 3.2.2. JSON and the Microsoft Ajax Library

 3.3. Classes in JavaScript

 3.3.1. Client classes

 3.3.2. The registerClass method

 3.3.3. Properties

 3.3.4. Namespaces

 3.4. Understanding inheritance

 3.4.1. Prototype-based inheritance

 3.4.2. Passing arguments to the base class

 3.4.3. Overrides

 3.5. Understanding interfaces and enumerations

 3.5.1. Interfaces

 3.5.2. Enumerations

 3.6. Using type reflection

 3.6.1. Reflection methods

 3.6.2. Object typing

 3.6.3. Building a simple class browser

 3.7. Working with events

 3.7.1. Exposing an event

 3.7.2. Subscribing to and handling events

 3.8. Summary

 Chapter 4. Exploring the Ajax server extensions

 4.1. Ajax for ASP.NET developers

 4.1.1. What are the Ajax server extensions?

 4.2. Enhancing an existing ASP.NET site

 4.2.1. A sample ASP.NET site

 4.2.2. Configuring an existing ASP.NET site

 4.3. ScriptManager: the brains of an Ajax page

 4.3.1. Understanding the ScriptManager

 4.3.2. Deploying JavaScript files

 4.3.3. Registering services

 4.3.4. Localization

 4.3.5. Using the ScriptManagerProxy

 4.4. Partial-page updates

 4.4.1. Introducing the UpdatePanel control

 4.4.2. More UpdatePanels

 4.4.3. Insert feedback here

 4.4.4. Working with a timer

 4.4.5. Error handling

 4.5. Summary

 Chapter 5. Making asynchronous network calls

 5.1. Working with ASP.NET Web Services

 5.1.1. Configuring a web service

 5.1.2. Invoking web service methods from JavaScript

 5.1.3. Managing complex types

 5.1.4. Using HTTP GET

 5.1.5. Page methods

 5.2. The asynchronous communication layer

 5.2.1. A simple WebRequest

 5.2.2. The executor

 5.2.3. WebRequestManager

 5.2.4. Handling errors

 5.3. Consuming external Web Services

 5.3.1. The script technique

 5.3.2. Cross-domain calls through the server

 5.3.3. Mash-it-up with ASP.NET AJAX

 5.3.4. Bridges

 5.4. Using ASP.NET application services

 5.4.1. Enabling ASP.NET application services

 5.4.2. Authentication service

 5.4.3. Profile

 5.4.4. Roles: an Orcas preview

 5.4.5. Message board application

 5.5. Summary

 Chapter 6. Partial-page rendering with UpdatePanels

 6.1. With great power comes great responsibility

 6.1.1. Evolution of the UpdatePanel

 6.1.2. A simple example

 6.2. Getting to know the UpdatePanel

 6.2.1. Content for the UpdatePanel

 6.2.2. Update modes

 6.2.3. Render modes

 6.2.4. ASP.NET page lifecycle

 6.3. Triggers

 6.3.1. Asynchronous triggers

 6.3.2. Postback triggers

 6.3.3. Manual triggers

 6.4. Advanced techniques

 6.4.1. Repeating UpdatePanels

 6.4.2. Nesting UpdatePanels

 6.5. Live GridView filter

 6.5.1. Live GridView filter goals

 6.5.2. How does the GridView filter work?

 6.5.3. Adding Ajax to the GridView filter

 6.5.4. It’s alive!

 6.6. Summary

 2. Advanced techniques

 Chapter 7. Under the hood of the UpdatePanel

 7.1. The PageRequestManager: the unsung hero

 7.1.1. The client-side event model

 7.1.2. The anatomy of an asynchronous postback

 7.2. A client-side event viewer

 7.2.1. Getting started

 7.2.2. Handling client-side events

 7.2.3. Aborting a postback

 7.2.4. Managing postback priority

 7.2.5. Notifying the user

 7.2.6. Locked and loaded

 7.2.7. Client-side error handling

 7.3. UpdatePanel cookbook

 7.3.1. Why is the UpdatePanel slow?

 7.3.2. Inject JavaScript during a partial postback

 7.3.3. Getting the validators to work

 7.3.4. Sys.WebForms.PageRequestManagerParseErrorException

 7.4. Caveats and limitations

 7.4.1. Asynchronous requests are sequential

 7.4.2. Unsupported ASP.NET 2.0 controls

 7.5. Summary

 Chapter 8. ASP.NET AJAX client components

 8.1. The client component model

 8.1.1. Visual and nonvisual components

 8.1.2. Controls and behaviors

 8.1.3. Component lifecycle

 8.1.4. Containers

 8.2. Working with client components

 8.2.1. Creating components

 8.2.2. Accessing components

 8.2.3. Events and property change notification

 8.3. Behaviors

 8.3.1. Sys.UI.Behavior

 8.3.2. Creating behaviors

 8.3.3. Accessing behaviors

 8.3.4. Enhancing a text box element

 8.4. Controls

 8.4.1. Sys.UI.Control

 8.4.2. Creating controls

 8.4.3. Accessing controls

 8.4.4. Creating an element wrapper: text box

 8.4.5. Creating a PhotoGallery control

 8.5. Summary

 Chapter 9. Building Ajax-enabled controls

 9.1. Script descriptors

 9.1.1. Script descriptor hierarchy

 9.1.2. Describing a behavior

 9.1.3. Describing a control

 9.1.4. Script references

 9.2. Introduction to Ajax-enabled controls

 9.2.1. How Ajax-enabled controls work

 9.2.2. Extenders and script controls

 9.3. Extenders

 9.3.1. The IExtenderControl interface

 9.3.2. Extender registration

 9.3.3. An extender for FormattingBehavior

 9.3.4. Using an extender

 9.4. Script controls

 9.4.1. The IScriptControl interface

 9.4.2. Script control registration

 9.4.3. Design strategies

 9.4.4. Adding Ajax to the ASP.NET Login control

 9.4.5. Using a script control

 9.5. Summary

 Chapter 10. Developing with the Ajax Control Toolkit

 10.1. A world of extenders

 10.1.1. The auto-complete extender

 10.1.2. The ScriptPath property

 10.1.3. The BehaviorID property

 10.2. The Ajax Control Toolkit API

 10.2.1. The Toolkit’s base classes

 10.2.2. A metadata-driven API

 10.2.3. Building Toolkit extenders: the TextChanged extender

 10.2.4. Support for Visual Studio Designer

 10.3. Animations

 10.3.1. Toolkit animation framework

 10.3.2. Animation basics

 10.3.3. Using the AnimationExtender

 10.3.4. The UpdatePanelAnimation extender

 10.3.5. JSON and animations: adding transitions to the PhotoGallery control

 10.4. Summary

 3. ASP.NET AJAX Futures

 Chapter 11. XML Script

 11.1. XML Script basics

 11.1.1. Hello XML Script!

 11.1.2. Controls and XML Script

 11.1.3. From XML Script to JavaScript

 11.1.4. Type descriptors

 11.2. Actions

 11.2.1. SetPropertyAction

 11.2.2. PostBackAction

 11.2.3. InvokeMethodAction

 11.2.4. Custom actions

 11.3. Bindings

 11.3.1. A simple binding

 11.3.2. Binding direction

 11.3.3. Target and data path

 11.3.4. Bindings as components

 11.3.5. Transformers

 11.3.6. Playing with transformers

 11.3.7. Custom transformers

 11.4. Summary

 Chapter 12. Dragging and dropping

 12.1. The drag-and-drop engine

 12.1.1. How the engine works

 12.1.2. A simple scenario for drag and drop

 12.1.3. Creating a draggable item

 12.1.4. The startDragDrop method

 12.1.5. The IDragSource interface

 12.1.6. Creating a drop target

 12.1.7. The IDropTarget interface

 12.1.8. Putting together the pieces

 12.2. A drag-and-drop shopping cart

 12.2.1. Server-side design

 12.2.2. Client-side design

 12.2.3. The ShoppingCart control

 12.2.4. The BooksCatalog control

 12.2.5. Piecing it together

 12.3. Summary

 4. Mastering ASP.NET AJAX

 Chapter 13. Implementing common Ajax patterns

 13.1. Script versioning

 13.1.1. Getting informative stack traces

 13.1.2. XML comments in JavaScript code

 13.1.3. Validating function parameters

 13.1.4. Parameter validation in production code

 13.1.5. Compressing and crunching script files

 13.2. Helpers, help me help you!

 13.2.1. Automating the declaration of properties

 13.2.2. Automating the creation of events

 13.3. Logical navigation and unique URLs

 13.3.1. Logical navigation

 13.3.2. Unique URLs

 13.4. Declarative data binding

 13.4.1. Setting up the Web Service

 13.4.2. The ListView control

 13.5. Declarative widgets

 13.5.1. The drag-drop list

 13.5.2. Widgets and XML Script

 13.6. Summary

 Appendices

 Appendix A. Installing ASP.NET AJAX

 A.1. Downloading and installing ASP.NET AJAX

 A.1.1. Adding the ASP.NET AJAX controls to the Toolbox

 A.1.2. Installing the ASP.NET Futures CTP

 A.1.3. Additional ASP.NET AJAX downloads

 A.2. Installing the Ajax Control Toolkit

 A.2.1. Adding the Toolkit controls to the Visual Studio Toolbox

 A.2.2. Using the Ajax Control Toolkit controls

 A.2.3. Interacting with CodePlex

 A.3. Installing the AdventureWorks database

 Appendix B. Tools for debugging Ajax applications

 B.1. Using Firebug for Firefox

 B.1.1. Installing Firebug

 B.1.2. Quick Overview of Firebug

 B.2. Using Web Development Helper

 B.2.1. Installing Web Development Helper

 B.2.2. Launching Web Developer Helper

 B.2.3. Inspecting HTTP traffic

 B.2.4. Script debugging and tracing

 B.2.5. Page and ASP.NET diagnostics

 B.3. Debugging HTTP with Fiddler

 B.4. Debugging JavaScript in Visual Studio 2005

 B.4.1. Enabling script debugging in Internet Explorer

 B.4.2. Setting breakpoints

 B.4.3. Other ways to break into the debugger

 Resources

 ASP.NET AJAX framework

 Ajax miscellany

 Tools

 XMLHttpRequest

 Other items of interest

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 ASP.NET is used daily by millions of professional developers world-wide. It runs some of the most successful websites and
 applications in the world, and every day thousands of new developers begin learning ASP.NET for the first time—supported by
 an incredible developer community of books, blogs, user groups, forums, and developer websites.

 Our goal with ASP.NET AJAX is to enable developers to easily build great ASP.NET applications that fully leverage the power
 of the browser, and which deliver a smoother and more interactive experience for end users. ASP.NET AJAX works with all modern
 browsers, and allows you to easily build great web applications that work cross-platform on all operating systems. ASP.NET
 AJAX 1.0 is available as a free, fully supported download for ASP.NET 2.0. It will be built into the standard .NET setup package
 starting with the .NET Framework 3.5 release of ASP.NET.

 There are several things that I think distinguish ASP.NET AJAX. The first is the productivity it delivers. ASP.NET AJAX can
 be used to very quickly add common AJAX behavior and functionality to an application with very minimal code. If you want smoother
 page updates and richer client-UI behaviors, there isn’t another AJAX framework out there that makes it easier.

 What is great about ASP.NET AJAX is that it also scales to advanced scenarios. You can use the ASP.NET AJAX client-side JavaScript
 library to build clean, encapsulated JavaScript that makes asynchronous network callbacks to the server to build extremely
 rich UI (for an example of this visit: http://www.pageflakes.com). This ability to start simple, but then go deep, using a core AJAX programming model that is nicely integrated into ASP.NET,
 ends up being extremely powerful, and is one that enables developers to build great next-generation web applications.

 ASP.NET AJAX in Action provides an excellent guide to learning and mastering all of the functionality that ASP.NET AJAX provides, and in particular
 it does a great job of explaining its more advanced features. Alessandro, David, and Rama are ASP.NET AJAX experts and share
 their experiences and insights throughout the book. They will help teach you how to fully leverage ASP.NET AJAX and build
 robust web applications faster and better than ever before.

 Enjoy!

 SCOTT GUTHRIE

 General Manager, Developer Division

 Microsoft Corporation

Foreword

 Why is Ajax important? What makes a set of technologies that were invented a decade ago suddenly relevant? Don’t we have easier
 ways to write rich applications? And aren’t some of those already cross-platform? Wasn’t the deployment problem solved long
 ago, making web applications less and less relevant?

 Those are legitimate questions—yet all the planets seem to have aligned for Ajax right now.

 First, the browser wars are finally over and even Internet Explorer is firmly steered toward standards compliance. This means
 that it has become possible, at last, to write truly cross-browser applications with a little help from Ajax toolkits, effectively
 ironing-out any last differences.

 Second, JavaScript, long considered a toy language, has evolved (in its usage at least). Most of the engineering techniques
 that are a given in other languages are finally available for JavaScript, thanks in part to the flexibility of the language
 and in part to advances in tooling and IDEs.

 Third, HTML and CSS as semantic and layout description languages are still one of the most relevant options. No other rendering
 technology associates such a low price of entry with the same developer friendliness and flexibility.

 Finally, the technology is not disruptive and this may be its most compelling advantage. With Ajax, you can use what you already
 know about web technologies and incrementally improve your applications.

 This is what ASP.NET AJAX is about: start with what you know and learn as you go, improving your toolset along the way. Our
 intention was to make it as easy as possible for you to start and then to take you as far as you’re ready to go.

 Alessandro, David, and Rama are among the best specialists in those technologies and they’re going to take you on an exciting
 ride. You’ll learn from the pioneers in this field what you need to know to write solid JavaScript, HTML, and CSS and how
 to exploit ASP.NET AJAX to its full potential. The authors of this book have more combined knowledge about and experience
 with Ajax than almost anyone else in the industry—and they’re about to share that treasure with you.

 BERTRAND LE ROY, PH.D.

 Software Design Engineer, ASP.NET team

 Microsoft Corporation

Preface

 Every book tells a story—even a book about web programming. This story begins in the summer of 2005, at the Professional Developer
 Conference (PDC) in Los Angeles. It was there that Microsoft gave us our first preview of Atlas, the original codename for ASP.NET AJAX. Excited about its promise, we immediately jumped at the opportunity to play around
 with the young and evolving framework. In the beginning (and we still do this today), we flocked to the forums, blogs, and
 user groups to learn, and in the process shape, the latest technology.

 When Manning approached us about collaborating on this book, it seemed like a natural progression, considering all the time
 we had invested in learning about the framework. Our goal was to provide the reader with the tools for becoming a well-rounded
 ASP.NET AJAX developer. To us this meant becoming proficient in JavaScript, authoring Ajax-enabled controls, and understanding
 how to enrich ASP.NET applications through a collection of best practices and patterns. Along the way, we wanted to display
 our enthusiasm for what makes ASP.NET AJAX unique by sharing the lessons we had learned from the .NET community, our everyday
 jobs, and from Microsoft.

 What makes ASP.NET AJAX in Action special (perhaps even irreplaceable) is its approach to explaining in detail how to use and understand the framework. Beginning
 with simple examples, we slowly progress to more complex, real-world scenarios that challenge the reader to master the technology
 and raise his or her skill level.

 With the book now complete, our “story” has been told and we believe that we’ve achieved our goal in delivering a unique and
 thorough guide to ASP.NET AJAX. As you explore the book, it is our hope that you will become inspired to build the rich and
 intuitive applications that users expect today.

Acknowledgments

 We’d like to thank everyone at Manning, especially our publisher, Marjan Bace; our acquisitions editor, Mike Stephens; and
 our development editor, Nermina Miller, for their continuous support and help with many aspects of the manuscript. Thanks
 also to the others at Manning who worked with us in different stages of the project: review editor Karen Tegtmayer, webmaster
 Gabriel Dobrescu, and not least of all project editor Mary Piergies. Special thanks to copy editor Tiffany Taylor, proofreader
 Elizabeth Martin, design editor Dottie Marsico, and typesetter Gordan Salinovic. We’d like to also acknowledge the invaluable
 feedback and dedication of our technical editor Joe Stagner, whose support and encouragement greatly contributed to the success
 of the book.

 A very special thank you to Scott Guthrie of Microsoft and Bertrand Le Roy of Microsoft for writing the forewords to our book.
 Finally, we also thank the many reviewers of the manuscript: Irena Kennedy, Walter Myers, Darren Neimke, Eric Pascarello,
 Lucas Carlson, Radhakrishna M.V., Berndt Hamboeck, Kazi Manzur Rashid, Mark Mrachek, Curt Christianson, Mohammad Azam, Al
 Harding, Omar AL Zabir, Sonu Kapoor, Steve Marx, Dave Glover, and Abe Semaan.

Alessandro Gallo

 This is my first book, and I’ve put my time, passion, and soul into writing it. Now that it’s done, I can say that writing
 a book is tough. This would have been impossible to accomplish without the help of the people who contributed to its conception
 and development.

 Working with David and Rama has been an amazing experience. It was an absolute pleasure working with you guys! I’m also grateful
 to those who dedicated their time and energy to read and comment on the manuscript: David Anson, Ronald Buckton, Sonu Kapoor,
 Bertrand Le Roy, Steve Marx, and Joe Stagner.

 A special thank-you to Luis Abreu for all the help and suggestions he provided during the many hours spent discussing ASP.NET
 AJAX, since the first CTP release of “Atlas.” Muito obrigado Luis!

 And I can never say thank you enough to Valentina for her patience, enthusiasm, and love.

David Barkol

 Writing this book has been a rewarding and challenging experience. Although it took more time that one could possibly justify,
 working with Alessandro and Rama has been an absolute pleasure. I’m truly proud of what we’ve produced together as a team
 and the friendship we’ve created in the process.

 I would like to thank everybody at Neudesic for their technical expertise and support, especially Samir Patel, Jason Jung,
 Tim Marshall, Parsa Rohani, Anthony Ferry, and Ashish Agarwal. An extended thank-you goes out to Mickey Williams, Steve Saxon,
 and Phil Scott for influencing my career and providing me with invaluable advice and encouragement.

 Thanks to our reviewers, who provided us with much-needed feedback and support that greatly influenced our book. I would like
 to particularly thank Irena Kennedy, Walter Myers, and Joe Stagner from Microsoft for their magnanimous contributions and
 assistance during the review process.

 Most important, I would like to thank my wife Emily and two daughters Miranda and Madeline, for inspiring me to do my best
 every day. The sacrifices they made prove what a wonderful family I have and how lucky I am to have them.

Rama Krishna Vavilala

 It has been an extreme pleasure to work with Alessandro and David. I consider myself very fortunate and blessed for all the
 support and understanding I received from them. Special thanks to our editor Michael Stephens for believing in all of us and
 in this project.

 I would like to acknowledge the support my family has shown to me during the writing of the book. Thank you, Radhika, for
 all the hard work and understanding; and thanks, Shreya, for not troubling me too much while I was writing.

 My friend Nishant Sivakumar, who had just been through the book-writing ordeal, was generous enough to share tips and tricks
 with me. Thanks, Nish!

 Last but not least, I also thank the people who participate in the online forums www.asp.net and www.codeproject.com. I have learned a lot from them.

About this Book

 Almost one year has elapsed since the release of the 1.0 version of ASP.NET AJAX. With the buzz created by the Ajax paradigm,
 the framework has gained a strong popularity among ASP.NET developers. The official ASP.NET AJAX website provides video tutorials,
 online documentation, and discussion forums. With all these resources available, one might think that a book would have little
 to contribute.

 Our opinion is different. It’s true that the online documentation acts as a good, general reference. It’s also true that you
 can search the ASP.NET forums for the latest tips and tricks.

 We believe that a strong comprehension of the new concepts and development techniques that ASP.NET AJAX brings to ASP.NET
 is fundamental in order to become proficient with the framework. What is the client page lifecycle? How does a partial postback
 work? Why do you need to write an Ajax-enabled control? One of the goals of this book is to explain how things work in ASP.NET
 AJAX. We also wanted to provide as much code as possible to show how to implement common Ajax scenarios with the help of ASP.NET
 AJAX.

 Each chapter tries to explain the whys and hows of the concepts covered. We believe that simple examples are the way to go, so the reader can quickly start coding without
 losing the focus on ASP.NET AJAX concepts. Once the main concepts have been assimilated, we challenge the reader with more
 advanced examples.

 We believe that Ajax development is client-oriented. As a consequence, six chapters of the book are entirely dedicated to the client-centric development model. Two of these chapters cover features that will be embedded in the next versions of the framework, and
 are currently provided as CTP (Community Technical Preview) material. Both the client-centric and the server-centric development
 models are discussed in great detail. As result, this book aims at giving you a deep and comprehensive knowledge of the ASP.NET
 AJAX Extensions framework.

Who should read this book?

 This book is targeted at ASP.NET developers who want to master the ASP.NET AJAX Extensions. Even if we wrote this book with
 the beginner and intermediate developers in mind, the advanced developer could benefit from it, due to the new concepts and
 programming techniques brought to the ASP.NET world by the ASP.NET AJAX framework.

 A little knowledge of the Ajax paradigm and the JavaScript programming language is desirable in order to fully understand
 the material presented in the book, but we do provide a good amount of background material in order for you to quickly become
 familiar with the concepts involved if you are a novice. We’d like to stress the fact that this book is specific to the ASP.NET
 AJAX framework, which is an implementation of many common Ajax patterns. Consequently, you won’t find a general and comprehensive
 discussion about Ajax and its techniques and patterns. If you’re new to the Ajax world, we strongly recommend reading an additional
 book about general Ajax concepts that is a framework-agnostic book. We particularly enjoyed reading Ajax in Action, written by Dave Crane, Eric Pascarello, and Darren James and published by Manning in October 2005.

Roadmap

 This book is divided into four parts and is intended to guide you from the initial stages of developing with ASP.NET AJAX
 all the way to becoming an expert.

 Part 1, which spans chapters 1–6, covers the basics of ASP.NET AJAX and its two development models, the server-centric development model and the client-centric
 development model. In these chapters, you’ll roll up your sleeves and become familiar with the essentials of Ajax programming
 and the ASP.NET AJAX infrastructure. You’ll learn about the components that make up the framework and how to use it effectively
 to enhance web applications.

 Part 2 encompasses chapters 7–10 and goes deep into the development models by covering advanced scenarios and techniques. Prior to this, we’ll lay the groundwork
 for understanding the fundamentals of ASP.NET AJAX programming; but in this part it’s time to apply those lessons against
 challenging, real-life situations.

 Part 3 is chapters 11 and 12. It highlights a set of features knows as the ASP.NET Futures. Here, we examine what is on the horizon for ASP.NET AJAX.

 Part 4 consists of chapter 13. This chapter will help you become an ASP.NET AJAX master by implementing some of the most common Ajax patterns using the
 skills acquired from the previous chapters.

 The approach we decided to follow in this book provides concepts and code rather than a reference manual. For this reason,
 we strongly recommend that you read all the chapters, because each chapter is built on the previous one and the complexity
 increases gradually. If you intend to focus on a specific development model, the following table suggests a possible division
 of the material covered in the book.

	
 Chapter

 	
 Title

 	
 Client-centric developer

 	
 Server-centric developer

 	
 ASP.NET AJAX master

	1
 	Introducing ASP.NET AJAX
 	X
 	X
 	X

	2
 	First steps with the Microsoft Ajax Library
 	X
 	
 	X

	3
 	JavaScript for Ajax developers
 	X
 	
 	X

	4
 	Exploring the Ajax server extensions
 	
 	X
 	X

	5
 	Making asynchronous network calls
 	X
 	X
 	X

	6
 	Partial-page rendering with UpdatePanels
 	
 	X
 	X

	7
 	Under the hood of the UpdatePanel
 	
 	X
 	X

	8
 	ASP.NET AJAX client components
 	X
 	
 	X

	9
 	Building Ajax-enabled controls
 	
 	X
 	X

	10
 	Developing with the Ajax Control Toolkit
 	
 	X
 	X

	11
 	XML Script
 	X
 	
 	X

	12
 	Dragging and dropping
 	X
 	
 	X

	13
 	Implementing common Ajax patterns
 	X
 	X
 	X

Chapter 1 introduces Ajax and the ASP.NET AJAX extensions to the ASP.NET developer. Together with the foundations and the terminology,
 we present the server-centric and client-centric development models. With the client-centric model, you can develop Ajax applications
 by leveraging DHTML and JavaScript without relying on the ASP.NET server technology. With the server-centric model, you can
 take advantage of ASP.NET capabilities to combine client functionality with ASP.NET server controls.

 After we’ve established the foundations and provided a whirlwind tour of features, chapters 2 and 3 cover the Microsoft Ajax Library, which is the client portion of the ASP.NET AJAX framework. In chapter 2, we’ll explain some basic concepts such as the application model and the client page lifecycle, as well as provide an overview
 of all the features provided by the library. In chapter 3, we’ll focus specifically on object-oriented programming with JavaScript and the Microsoft Ajax Library. After reviewing
 the basics of the JavaScript language and JSON, we’ll go deep into the object-oriented constructs provided by the Microsoft
 Ajax Library.

 Chapter 4 tackles a common scenario that many ASP.NET developers will encounter: upgrading an existing ASP.NET application to ASP.NET
 AJAX. In this chapter, you’ll learn how a new collection of server controls called the Ajax server extensions can help you gracefully and easily enhance an existing application.

 After some reinforcement about the server-centric model in the previous chapter, chapter 5 delves into a key pillar of Ajax development: the ability to make asynchronous network requests from the browser to the server.
 In this thorough chapter, we cover in detail topics such as working with ASP.NET Web Services, ASP.NET application services
 such as authentication and profile, and the bridge technology.

 The next few chapters focus primarily on the UpdatePanel control and the partial-page rendering mechanism. Beginning with
 chapter 6, we explain how to use the UpdatePanel correctly and efficiently. Chapter 7 unveils how the partial-page rending mechanism works under the hood and provides insight into how you can take more control
 of the application during the process.

 In chapter 8, we’ll return to the Microsoft Ajax Library to examine the client component model. With this model, which is similar to the
 one used in the .NET framework on the server side, you can create components using JavaScript. Components let you easily encapsulate
 and reuse portions of client-side code, and they simplify the development of Ajax-enabled server controls.

 We cover Ajax-enabled controls in chapter 9, which explains how to combine client components with ASP.NET server controls in order to enrich them with client functionality.
 In this chapter, you’ll learn how to build extenders and script controls, the two new categories of server controls introduced
 by ASP.NET AJAX.

 Chapter 10 is dedicated to the Ajax Control Toolkit, which is the biggest collection of Ajax-enabled controls available at present.
 The Toolkit is an open-source project owned by Microsoft and open to contributions from the community. In the chapter, we’ll
 discuss some of the Ajax-enabled controls shipped with the Ajax Control Toolkit. We’ll also introduce the Toolkit API for
 developing Ajax-enabled controls, as well as the Animation framework for easily creating animations and visual effects.

 Chapters 11 and 12 explore the future of ASP.NET AJAX. We’ll cover in detail some of the features that will be included in the next versions
 of ASP.NET AJAX. These features are, at present, shipped as evaluation code in a separate package called ASP.NET Futures.
 In chapter 11, we’ll cover XML Script, which is a declarative language, similar to the ASP.NET markup code, used for instantiating client
 components in a web page. You can use it to execute complex client-side code without writing a single line of JavaScript.
 Chapter 12 is dedicated to the drag-and-drop engine, which makes it possible to drag and drop DOM elements in a web page. In this chapter,
 you’ll build a drag-and-drop–enabled shopping cart from scratch by leveraging both the client-centric and the server-centric
 development models.

 Finally, chapter 13 shows you how to implement some of the most common and useful Ajax patterns using the ASP.NET AJAX framework. In addition
 to implementing classic patterns such as drag-and-drop widgets and logical navigation, we’ve decided to give space to coding
 patterns as well. Chapter 13 covers advanced scenarios such as writing debug versions of script files and extending the Microsoft Ajax Library to become
 even more productive with JavaScript.

 Appendixes A and B are dedicated to the setup of the tools needed to install and use ASP.NET AJAX. Appendix A covers the installation of both the ASP.NET AJAX framework and the Ajax Control Toolkit. It also shows you how to install
 the Visual Studio templates and how to add server controls to the Visual Studio Toolbox. A section is dedicated to the installation
 of the AdventureWorks database, which is used in some of the examples presented in the book.

 Appendix B covers some of the tools that are a must-have for an Ajax developer. It explains how to install and use Firebug to debug
 web applications in the Firefox browser. You’ll also learn how to install and use Web Development Helper and Fiddler to access
 the browser’s console and debug HTTP traffic. The final section shows you how to configure Visual Studio 2005 for the purpose
 of debugging the JavaScript code.

Typographical conventions

 The following typographical conventions appear throughout the book:

	Technical terms are introduced in italics.

 	Code examples and fragments appear in a fixed-width font.

 	Namespaces and types, as well as members of these types, also appear in a fixed-width font.

 	Many sections of code have numbered annotations that appear in the right margin. These numbered annotations are discussed
 more fully following the code.

In the book, we use special paragraphs to highlight topics for further exploration of ASP.NET AJAX and the .NET Framework.
 Here’s an example:

	

Note

 These paragraphs provide additional details about the .NET Framework or sources of additional information accessible from
 the Internet. The URL addresses shown in these paragraphs were valid as of August 1, 2007.

	

Source code downloads

 All source code for the programs presented in ASP.NET AJAX in Action is available to purchasers of the book from the Manning website. Visit the site at www.manning.com/gallo or www.manning.com/ASPNETAJAXinAction for instructions on downloading the code.

Author Online

 Free access to a private Internet forum, Author Online, is included with the purchase of this book. Visit the website for
 detailed rules about the forum, to subscribe to and access the forum, to retrieve the code for each chapter and section, and
 to view updates and corrections to the material in the book. You are invited to make comments, good or bad, about the book,
 ask technical questions, and receive help from the authors and other ASP.NET AJAX programmers. The forum is available at the
 book’s website at www.manning.com/gallo or www.manning.com/ASPNETAJAXinAction.

 Manning’s commitment to readers is to provide a venue where a meaningful dialogue among individual readers and among readers
 and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution remains voluntary (and unpaid). So please keep the questions and comments interesting!

 Alessandro can be contacted directly at modulino@gmail.com or through his blog at aspadvice.com/blogs/garbin.

 David can be contacted directly at david.barkol@neudesic.com or through his blog at weblogs.asp.net/davidbarkol.

 Rama can be contacted directly at rama.vavilala@gmail.com.

About the Authors

 ALESSANDRO GALLO is a Microsoft MVP in the Visual ASP/ASP.NET category and a .NET developer/consultant with a primary focus on ASP.NET application
 design and development. He is a contributor for the Ajax Control Toolkit project, owned by Microsoft. Alessandro has been
 developing with ASP.NET AJAX since the first CTP. He won the Grand Prize at the Mash-it-up with ASP.NET AJAX contest held
 by Microsoft in 2006. Alessandro lives in Sassari, a small city on the beautiful Italian island of Sardinia.

 DAVID BARKOL is a Principal Consultant for Neudesic, one of Microsoft’s leading .NET professional service firms and a Gold Certified Partner.
 At Neudesic, David specializes in providing custom .NET solutions that leverage the Microsoft technology platform. A frequent
 speaker at code camps and .NET user groups in Southern California, David is also an MCSD in .NET and avid urban hang-glider.
 David resides in tropical La Palma, California, with his wife Emily and two daughters Miranda and Madeline.

 RAMA KRISHNA VAVILALA is Chief Technical Architect at 3C Software. He is the brain behind Impact:ECS™, the leading enterprise cost-management solution
 for manufacturers in vertical markets ranging from textiles to semiconductors to food processors. He has over a decade of
 wide-ranging experience from developing desktop applications using MFC, Windows Forms, and WPF, to developing Microsoft Office
 Solutions, to developing Ajax-powered web applications. He lives in Atlanta with his wife Radhika and his daughter Shreya.

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or to
 solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they
 want it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of ASP.NET AJAX in Action is “Le Béarnais,” or an inhabitant of the region of Béarn in Southwestern France. The region is known for its contrasts,
 encompassing both valleys and mountains, that extend to the Pyrenean frontier with Spain.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions
 of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. ASP.NET AJAX basics

 The first part of the book sets the foundations of ASP.NET AJAX. Chapter 1 introduces the main Ajax concepts and terminology. In this chapter, we’ll also take a whirlwind tour of the features in ASP.NET
 AJAX that will be covered throughout the book.

 The subsequent chapters discuss the primary development models used in ASP.NET AJAX programming. We present the client-centric
 programming model in chapters 2 and 3. Reading these chapters will provide you with the skills you need to write object-oriented JavaScript code using the Microsoft
 Ajax Library.

 Chapter 4 takes a break from the client-script to introduce the Ajax server extensions-a server-centric solution for ASP.NET developers.
 In this chapter, you’ll enhance an existing ASP.NET application with the controls and features of the ASP.NET AJAX framework.
 This pattern is continued in chapter 6, where we offer a thorough explanation of how to use the ScriptManager control for partial-page rendering. In between, chapter 5 focuses on one of the fundamental pillars of Ajax: making asynchronous calls. This chapter unveils how asynchronous calls
 to the server are invoked from the browser.

Chapter 1. Introducing ASP.NET AJAX

 In this chapter:

	An overview of Ajax programming

 	The ASP.NET AJAX architecture

 	The client-centric development model

 	The server-centric development model

 	A tour of ASP.NET AJAX

Ajax has revolutionized the way users interact with web pages. Gone are the days of frustrating page refreshes, losing your
 scroll position on a page, and working in the redraw-refresh paradigm of traditional web applications. In its place is the
 next generation of web applications: Ajax applications, whose characteristics include smoother page updates; continuous, fluid
 interaction; and visually appealing, rich interfaces.

 The term Ajax, which stands for Asynchronous JavaScript and XML, was coined to describe this new approach to web development. Although
 most users aren’t familiar with the acronym, they’re certainly familiar with its benefits. Sites like Google Maps, Live.com,
 and Flickr are just a few examples of recent applications that are leading the way through this new frontier. Each of them
 offers slightly different services, but all share the same goal: to provide a rich user experience that is personalized, engaging,
 and supported across all major browsers.

 Unfortunately, using these next-generation web applications is far more trivial than authoring them. Ajax applications require a different approach to thinking about web solutions. This paradigm shift requires more discipline
 and knowledge of client-side scripting along with the conscious decision to deliver a smarter and more intuitive application
 to the browser. In addition, although it’s been around for a while, Ajax is still relatively new to web developers, and techniques
 for patterns, guidelines, and best practices are still being discovered and refined. To assist in this transition, the Microsoft
 ASP.NET AJAX framework encapsulates a rich set of controls, scripts, and resources that empowers you to more easily craft
 the next generation of web applications.

 The goal in this introductory chapter is to get you started on developing applications with the ASP.NET AJAX framework. To
 whet your appetite, we’ll go through a whirlwind tour of the most basic and commonly used components and follow up with a
 few quick examples that demonstrate their use. Subsequent chapters examine each of these components in more detail and reveal
 how things work under the hood. But before you can discover the ASP.NET AJAX framework, you must first understand what Ajax
 is and how we got here.

1.1. What is Ajax?

 Ajax is an approach or pattern to web development that uses client-side scripting to exchange data with a web server. This
 approach enables pages to be updated dynamically without causing a full page refresh to occur (the dream, we presume, of every
 web developer). As a result, the interaction between the user and the application is uninterrupted and remains continuous
 and fluid. Some consider this approach to be a technology rather than a pattern. Instead, it’s a combination of related technologies
 used together in a creative way.

 The result of bringing these technologies together is nothing new. Techniques for asynchronous loading of content on the Web
 can be dated as far back as Internet Explorer 3 (also known as the Jurassic years of web development) with the introduction
 of the IFRAME element. Shortly after, the release of Internet Explorer 5 introduced the XMLHttpRequest ActiveX object, which
 made possible the exchange of data between the client and server through web browser scripting languages.

	

Note

 Some credit remote scripting as the precursor to Ajax development. Prior to the XMLHttpRequest object, remote scripting allowed
 scripts running in a browser to exchange information with a server. For more about remote scripting, read http://en.wikipedia.org/wiki/Remote_Scripting.

	

Even with the release of the XMLHttpRequest object, and with applications like Outlook Web Access taking advantage of these
 techniques, it wasn’t until the release of Google Maps that Ajax was noticed by the masses.

 You now have a high-level understanding of Ajax and how it came to be, but we haven’t discussed the technologies that make
 up the pattern or how the ASP.NET AJAX framework fits into the picture. It’s important that we spend a little more time fully
 explaining how Ajax works and discussing the technologies that form it.

 1.1.1. Ajax components

 As we previously mentioned, the Ajax programming pattern consists of a set of existing technologies brought together in an
 imaginative way, resulting in a richer and more engaging user experience. The following are the main pillars of the Ajax programming
 pattern and the role they play in its model:

	
JavaScript— A scripting language that is commonly hosted in a browser to add interactivity to HTML pages. Loosely based on the C programming
 language, JavaScript is the most popular scripting language on the Web and is supported by all major browsers. Ajax applications
 are built in JavaScript.

 	
Document Object Model (DOM)— Defines the structure of a web page as a set of programmable objects that can be accessed through JavaScript. In Ajax programming,
 the DOM is leveraged to effectively redraw portions of the page.

 	
Cascading Style Sheets (CSS)— Provides a way to define the visual appearance of elements on a web page. CSS is used in Ajax applications to modify the exterior
 of the user interface interactively.

 	
XMLHttpRequest— Allows a client-side script to perform an HTTP request. Ajax applications use the XMLHttpRequest object to perform asynchronous
 requests to the server as opposed to performing a full-page refresh or postback.

	

Note

 The name of the XMLHttpRequest object is somewhat misleading because data can be transferred in the form of XML or other text-based
 formats. The ASP.NET AJAX framework relies heavily on a format called JavaScript Object Notation (JSON) to deliver data to and from the server. Examples of JSON and how the ASP.NET AJAX framework uses it are scattered throughout
 this book. You can find a more thorough explanation of JSON in chapter 3.

	

Listing the technologies is easy; but understanding how they work together, complement each other, and deliver a better user
 experience is the objective. Figure 1.1 illustrates how these technologies interact with one another from the browser.

 Figure 1.1. Ajax components. The technologies used in the Ajax pattern complement each to deliver a richer and smarter application that
 runs on the browser.

 [image:]

 In an Ajax-enabled application, you can think of JavaScript as the glue that holds everything together. When data is needed, the XMLHttpRequest object is used to make a request to the server. When
 the data is returned, the DOM and CSS are leveraged to update the browser’s user interface dynamically.

	

Tip

 You can find a collection of Ajax design patterns at http://ajaxpatterns.org.

	

To see this in action, visit the maps page on the Windows Live site at http://local.live.com (see figure 1.2). Notice the interactive map and how clicking and dragging the map updates the contents on the page without causing a full
 page refresh to occur. The tiles for the map are retrieved in the background via the XMLHttpRequest object; the user is granted continuous interaction with the application in the process. Take some time to discover
 what the site has to offer, and note how fluid and responsive the page actions appear. Using the ASP.NET AJAX framework, these
 are the types of intuitive and interactive applications that you’ll build throughout this book.

 Figure 1.2. The Windows Live site is an excellent example of what can be accomplished with the ASP.NET AJAX framework.

 [image:]

 The maps on Live.com rely heavily on retrieving data asynchronously so users can continue to interact with the applications.
 This key pattern is perhaps the most important thing to understand about Ajax.

 1.1.2. Asynchronous web programming

 The A in Ajax stands for asynchronous; this is a key behavior in the Ajax programming pattern. Asynchronous means not synchronized or not occurring at the same time. To better understand this, let’s take a real-life example. If you go to Starbucks and walk up to the counter, you present
 the cashier with your order (a tall, iced café mocha for David, in case you were wondering). The cashier marks an empty cup
 with details of the order and places it into a queue. The queue, in this instance, is literally a stack of other empty cups
 that represent pending orders waiting to be fulfilled. This process decouples the cashier from the individuals (baristas, if you want to get fancy) who prepare the drinks. With this approach, the cashier can continue to interact with the customers
 while orders are being processed at a different time—asynchronously. In the end, Starbucks maximizes its output and significantly
 improves the customer experience.

 Now, let’s examine what things would be like with a more traditional approach—in a synchronous process. If only one person
 were working in the shop that day, they would have to take on the chores and responsibilities of both the cashier and barista.
 A customer would place an order, and the next customer would be forced to wait for the previous order to be completed before
 they could place their own. This less efficient process is how traditional web applications work: They take away the continuous
 interaction and force users to wait for a particular action to be completed. Figure 1.3 demonstrates the flow of a traditional web application in a synchronous manner.

 Figure 1.3. Traditional web applications behave in a synchronous manner and take away all interaction from the user during HTTP requests.

 [image:]

 Normally, a user action such as clicking a button on a form invokes an HTTP request back to the web server. The server then
 processes the request, possibly doing some calculations or performing a few database operations; and then returns back to
 the client a whole new page to render. Technically, this makes a lot of sense—web pages are stateless by nature, and because
 all the logic about the application typically resides on the server, the browser is just used to display the interface. The
 server goes through the entire page lifecycle again and returns to the browser the HTML, CSS, and any other resources it needs to refresh the page. Unfortunately, this doesn’t present the user
 with a desirable experience. Instead, they’re exposed to a stop-start-stop pattern where they temporarily (and unwillingly)
 lose interaction with the page and are left waiting for it to be updated.

	

Note

 In ASP.NET, when a form posts data back to itself (or even to another page), it’s called a postback. During this process, the current state of the page and its controls are sent to the server for processing. The postback
 mechanism is relied on to preserve the state of the page and its server controls. This process causes the page to refresh
 and is costly because of the amount of data sent back and forth to the server and the loss of interaction for the user.

	

An Ajax-enabled application works differently, mainly by eliminating the intermittent nature of interaction with the introduction
 of an Ajax agent placed between the client and server. This agent communicates with the server asynchronously, on behalf of
 the client, to make the HTTP request to the server and return the data needed to update the contents of the page. Figure 1.4 demonstrates this asynchronous model.

 Figure 1.4. The asynchronous web application model leverages an Ajax engine to make an HTTP request to the server.

 [image:]

 Notice that in the asynchronous model, a call originating from JavaScript is made to the Ajax engine instead of the server
 to retrieve and receive data. At the core of the Ajax engine is the XMLHttpRequest object, which we’ll look at next to solidify
 your understanding of how Ajax works.

 1.1.3. The XMLHttpRequest object

 The XMLHttpRequest object is at the heart of Ajax programming because it enables JavaScript to make requests to the server
 and process the responses. It was delivered in the form of an ActiveX object when released in Internet Explorer 5, and it’s
 supported in most current browsers. Other browsers (such as Safari, Opera, Firefox, and Mozilla) deliver the same functionality
 in the form of a native JavaScript object. Ironically, Internet Explorer 7 now implements the object in native JavaScript
 as well, although differences between browsers remain. The fact that there are different implementations of the object based
 on browsers and their versions requires you to write browser-sensitive code when instantiating it from script. Listing 1.1 uses a technique called object detection to determine which XMLHttpRequest object is available.

 Listing 1.1. Instantiating the XMLHttpRequest object

 var xmlHttp = null;
if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, Opera, etc.
 xmlHttp = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 try{
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP"); //IE 5.x, 6
 }
 catch(e) {}
}

 Now that the object has been instantiated, you can use it to make an asynchronous request to a server resource. To keeps things
 simple, you can make a request to another page called Welcome.htm, the contents of which are shown in listing 1.2.

 Listing 1.2. Welcome.htm

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Welcome</title>
</head>
<body>
 <div>Welcome to ASP.NET AJAX In Action!</div>
</body>
</html>

 Welcome.htm is pretty minimal and contains some static text welcoming you to the book. You make the asynchronous request with
 a few more lines of code that you wrap in a function called sendRequest (see listing 1.3).

 Listing 1.3. Sending an asynchronous request

 [image:]

 The sendRequest method takes as a parameter the URL to which you’ll be making an HTTP request. Next, it [image:] opens a connection with the asynchronous flag set to true. After the connection is initialized, it [image:] assigns the onreadystatechange property of the XMLHttpRequest object to a local function called onCallback. Remember, this will be an asynchronous call, which means you don’t know when it will return. A callback function is given
 so you can be notified when the request is complete or its status has been updated. After specifying the content type in the
 request header, you call the [image:]send method to transmit the HTTP request to the server.

	

 Starbucks part 2
 If you go back to the earlier Starbucks example, the open command is similar to placing the order, and the send command is like the order being placed in the queue. The callback function is the unique name associated with your order—typically
 your name. Another interesting tidbit is that in IE, only two connections can be opened at a time, which is the equivalent
 of having two cashiers available to take the orders.

	

When the status of the request changes and the callback function is invoked, the final step is to check the status and update
 the user interface with the contents returned from Welcome.htm (see listing 1.4).

 Listing 1.4. The callback function gets called every time the ready state changes for the asynchronous request.

 [image:]

 The status of the request is returned in the readyState [image:] property of the XMLHttpRequest object. The value 4 indicates that the request has completed. Next, the response from the server [image:] must be checked to confirm that everything was successful. Status code 200 is designated in the HTTP protocol to indicate
 that a request has succeeded. Finally, the innerHTML of a span element is updated to reflect the contents in the response [image:]. Listing 1.5 shows the complete code for this example.

 Listing 1.5. Using the XMLHttpRequest control to asynchronously retrieve data

 <%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="XmlHttpRequest.aspx.cs"
 Inherits="CH_01_XmlHttpRequest" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>ASP.NET AJAX In Action - XMLHttpRequest</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Loading...
 </div>
 </form>
<script type="text/javascript">
var xmlHttp = null;
window.onload = function() {
 loadXmlHttp();
 sendRequest("Welcome.htm");
}
function loadXmlHttp() {
 if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, Opera
 xmlHttp = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 try{
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP"); //IE 5.x, 6
 }
 catch(e) {}
 }
}
function sendRequest(url) {
 if (xmlHttp) {
 xmlHttp.open("GET", url, true); // true = async
 xmlHttp.onreadystatechange = onCallback;
 xmlHttp.setRequestHeader('Content-type',
 'application/x-www-form-urlencoded');
 xmlHttp.send(null);
 }
}
function onCallback() {
 if (xmlHttp.readyState == 4) {
 if (xmlHttp.status == 200){
 var r = document.getElementById('results');
 r.innerHTML = xmlHttp.responseText;
 }
 else {
 alert('Error: ' + xmlHttp.status);
 }
 }
}
</script>
</body>
</html>

 Figure 1.5 shows the output that results when you execute the example code.

 Figure 1.5. A simple asynchronous request to another page

 [image:]

 The example we just walked through demonstrates how to leverage the XMLHttpRequest object to make a simple asynchronous HTTP
 request to another page on the server. When the request is completed, you display the results on the page by dynamically updating
 the contents of one of its UI elements—a span. There is a lot more to the XMLHttpRequest object that we didn’t cover; we barely
 scratched the surface. The point of this exercise was to introduce you to the basics of the Ajax programming pattern. You
 should recognize some of the issues that arise with Ajax development, such as cross-browser compatibility and the need for
 a lot of plumbing code to execute requests to the server. This takes us into the next section, which discusses other issues and complexities
 in Ajax development.

 1.1.4. Ajax development issues

 Without a toolkit or framework to leverage, developing Ajax-enabled applications is no trivial task. Several development issues
 arise, the most obvious of which is browser compatibility. Aside from the different implementations of the XMLHttpRequest
 object, each browser also implements a slightly different version of the DOM. Keeping up with changes between browsers and managing browser detection can be a tedious and error-prone process. One
 of the goals of a toolkit or framework is to abstract away the complexities and discrepancies between browsers so you can
 use a simple and consistent set of APIs to perform the same operations.

 Another challenge is the requirement for a strong grasp of the JavaScript language. JavaScript isn’t inherently a complex
 language; however, many ASP.NET developers lack expertise in it. In addition, JavaScript doesn’t offer the object-oriented,
 type-safe features that .NET developers have grown accustomed to with C#, VB.NET, and other .NET languages. Concepts such
 as inheritance, interfaces, and events can be simulated in JavaScript but are left to you to implement. Without a framework,
 this portion of JavaScript remains for you to master in order to make any progress. Debugging and the lack of support for
 client-scripting languages in integrated development environments (IDEs) adds to the complexity and challenges.

 By now, you probably see the direction we’re headed: In almost every case, it’s wiser to leverage a framework or toolkit when
 developing Ajax-enabled applications rather than deal with these complexities on your own. We’re certain there are simple
 situations where coding something quickly with the XMLHttpRequest object can get the job done, but this book’s aspirations
 are much greater. With that said, it’s time to look at ASP.NET AJAX and what it has to offer as a framework and library.

1.2. ASP.NET AJAX architecture

 The ASP.NET AJAX framework enables developers to create rich, interactive, highly personalized web applications that are cross-browser
 compliant. At first glance, you may think this sounds like another way of saying that the framework is an Ajax library. The
 truth is, it’s primarily an Ajax library, but it offers many other features that can increase the productivity and quality
 of your web applications. This will make more sense once we examine the architecture, shown in figure 1.6.

 Figure 1.6. The ASP.NET AJAX architecture spans both the client and server.

 [image:]

 The first thing you may notice about the architecture of the ASP.NET AJAX framework is that it spans both the client and server.
 In addition to a set of client-side libraries and components, there is also a great deal of support on the server side, with
 ASP.NET server controls and services.

 We’ll explore both sides of the framework heavily throughout the book, beginning with the client framework.

 1.2.1. Client framework

 One of the nice things about the client framework is that the core library isn’t reliant on the server components. The core
 library can be used to develop applications built in Cold Fusion, PHP, and other languages and platforms. With this flexibility,
 the architecture can be divided logically into two pieces: the client framework and the server framework. Understanding how
 things work in the client framework is essential even for server-side developers, because this portion brings web pages to
 life. At the core is the Microsoft Ajax Library.

Microsoft Ajax Library

 As we stated previously, the heart of the client framework is the Microsoft Ajax Library, also known as the core library. The library consists of a set of JavaScript files that can be used independently from the server features. We’ll
 ease into the core library by explaining the intentions of each of its pieces or layers, beginning with its foundation: the
 type system.

	

Note

 In previous versions of ASP.NET AJAX, when it had the codename Atlas, the core library was referred to as the Client Script Library.

	

The goal of the type system is to introduce familiar object-oriented programming concepts to JavaScript—like classes, inheritance,
 interfaces, and event-handling. This layer also extends existing JavaScript types. For example, the String and Array types
 in JavaScript are both extended to provide added functionality and a familiarity to ASP.NET developers. The type system lays
 the groundwork for the rest of the Ajax core library.

 Next up in the core library is the Components layer. Built on top of the type system’s solid foundation, the Components layer does a lot of the heavy lifting for the core
 library. This layer provides support for JSON serialization, network communication, localization, DOM interaction, and ASP.NET
 application services like authentication and profiles. It also introduces the notion of building reusable modules that can
 be categorized as controls and behaviors on a page.

 This brings us to the top layer in the library: the Application layer. A more descriptive title is the application model. Similar to the page lifecycle in ASP.NET, this layer provides an event-driven programming model that you can use to work
 with DOM elements, components, and the lifecycle of an application in the browser.

HTML, JavaScript, and XML Script

 ASP.NET AJAX-enabled web pages are written in HTML, JavaScript, and a new XML-based, declarative syntax called XML Script. This provides you with more than one option for authoring client-side code—you can code declaratively with XML Script and
 imperatively with JavaScript. Elements declared in XML Script are contained in a new script tag:

 <script type="text/xml-script">

 The browser can detect the script tag but doesn’t have a mechanism for processing the xml-script type. Instead, the JavaScript files from the ASP.NET AJAX framework can parse the script and create an instance of components
 and controls on the page. Listing 1.6 provides a snippet of how XML Script is used to display a message after the page has loaded.

 Listing 1.6. XML-Script: a declarative alternative for developing Ajax-enabled pages

 [image:]

 In this example, a JavaScript function called [image:]page_load is declaratively attached to the load event in the page lifecycle. Executing this page invokes the [image:]page_load function after the load event to display a message box on the client.

	

 ASP.NET Futures CTP
 XML Script and some other features in the framework are delivered in a separate set of resources called the ASP.NET Futures. These features are currently in the Community Technology Preview (CTP) status. CTP reflects the current state of a product that is still undergoing possible changes. In this case, the ASP.NET
 Futures CTP is an extension of the core ASP.NET AJAX framework that will eventually be migrated into the core package. The
 good news is that we’ll cover XML Script and other features in great detail throughout the book so nothing is left out.

	

Why choose XML Script over JavaScript or vice versa? Sometimes the answer comes down to your preference; some developers prefer
 the elegance of a markup language over script, but others feel more comfortable and in control coding only JavaScript. These
 approaches can coexist, and both have pros and cons that we’ll discuss in their respective chapters of the book.

ASP.NET AJAX service proxies

 The client framework offers the ability to call web services from JavaScript via a set of client-side proxies that are generated
 from the server. These proxies can be leveraged much like a web reference in managed .NET code.

	

Note

 A proxy is a class that operates as an interface to another thing—in this case, a web service. For more on the proxy pattern, visit
 the Wikipedia page at http://en.wikipedia.org/wiki/Proxy_pattern.

	

We’ll take a more thorough look at how this works later in the chapter. If this is something you’d like to know more about
 now, feel free to jump to chapter 5, where we discuss working with services and making asynchronous calls in greater detail.

 Now that you have a high-level understanding of the client framework, let’s move on to the server framework to complete your
 understanding of the overall architecture.

 1.2.2. Server framework

 Built on top of ASP.NET 2.0 is a valuable set of controls and services that extend the existing framework with Ajax support.
 This tier of the server framework is called the ASP.NET AJAX server extensions. The server extensions are broken into three areas: server controls, the web services bridge, and the application services
 bridge. Each of these components interacts closely with the application model on the client to improve the interactivity of
 existing ASP.NET pages.

ASP.NET AJAX server controls

 The new set of server controls adds to the impressive arsenal of tools in the ASP.NET toolbox and is predominantly driven
 by two controls. The first of these controls is the ScriptManager, which is considered the brains of an Ajax-enabled page. One of the many responsibilities of the ScriptManager is orchestrating
 the regions on the page that are dynamically updated during asynchronous postbacks. The second control, named the UpdatePanel, is used to define the regions on the page that are designated for partial updates. These two controls work together to greatly
 enhance the user experience by replacing traditional postbacks with asynchronous postbacks. This results in regions of the page being updated incrementally rather than all at once with a full page refresh.

 The remaining components of the server extensions are services that bridge the gap between the client and server.

Web services bridge

 Typically, web applications are limited to resources on their local servers. Aside from a few external resources, like images
 and CSS files, applications aren’t granted access to resources that aren’t in the scope of the client application. To overcome
 these hurdles, the server extensions in the ASP.NET AJAX framework include a web services bridge that creates a gateway for you to call external web services from client-side script. This type of technology will be handy
 when we look at how to aggregate or consume data from third-party services.

Application services bridge

 Because ASP.NET AJAX is so tightly integrated with ASP.NET, access to some of the application services like authentication
 and profile can be added to an existing application almost effortlessly. This feature enables tasks like verifying a user’s
 credentials and accessing their profile information to originate from the client script. This isn’t entirely necessary, but
 it adds to the overall user experience.

 Now that you have a general idea of what pieces form the framework, we can begin to examine how they’re leveraged effectively.
 This leads to the examination of two development scenarios.

 1.2.3. Client-centric development model

 The flexible design of the architecture naturally provides two development scenarios. The first scenario is primarily implemented
 on the client side and is known as the client-centric development model. The second is developed mainly on the server side and is identified as the server-centric development model. It’s worth taking some time to understand how these models work and when to use each of them.

 In the client-centric model, the presentation tier is driven from the client-script using DHTML and JavaScript. This means
 a smarter and more interactive application is delivered from the server to the browser when the page is first loaded. Afterward,
 interaction between the browser application and the server is limited to retrieving the relevant data necessary to update
 the page. This model encourages a lot more interactivity between the user and the browser application, resulting in a richer
 and more intuitive experience. Figure 1.7 illustrates the client-centric development model.

 Figure 1.7. The client-centric development model is driven by a smarter and more interactive application that runs on the browser.

 [image:]

 The client-centric model is also ideal for mashups and applications that wish to fully exploit all the features DHTML has to offer.

	

Note

 A mashup is a web application that consumes content from more than one external source and aggregates it into a seamless, interactive
 experience for the user.

	

You’ll build a simple mashup in chapter 5, once you’ve delved deeper into the networking components of the framework. In the meantime, Pageflakes.com provides an excellent
 example of the rich content mashups can consume (see figure 1.8).

 Figure 1.8. Pageflakes is a great example of how a mashup application consumes data from multiple resources to enrich the user experience.

 [image:]

 An application like Pageflakes relies heavily on user interaction. In addition, the page needs to be light, effective, and
 mindful of system resources. For these reasons, a client-centric approach is the preferred model.

 1.2.4. Server-centric development model

 In the server-centric model, the application logic and most of the UI rationale remain on the server. Incremental changes
 for the UI are passed down to the browser application instead of the changes being made from the client-side script. This
 approach resembles the traditional ASP.NET page model, where the server renders the UI on each postback and sends back down
 to the browser a new page to render. The difference between this model and the traditional model in ASP.NET is that only the
 portions of the UI that need to be rendered are passed down to the browser application, rather than the whole page. As a result,
 interactivity and latency are both improved significantly. Figure 1.9 illustrates the nature of the server-centric development model.

 Figure 1.9. The Server-Centric Development model passes down to the browser application portions of the page to update instead of a whole
 new page to refresh.

 [image:]

 This approach appeals to many ASP.NET developers because it grants them the ability to keep the core UI and application logic
 on the server. It’s also attractive because of its transparency and ability to behave as a normal application if the user
 disables JavaScript in the browser. When you’re working with controls like the GridView and Repeater in ASP.NET, the server-centric
 model offers the simplest and most reliable solution.

OEBPS/01fig04_alt.jpg
Ajax engine

User action

Server

Process request

Process request

OEBPS/011fig01_alt.jpg
function sendRequest (url) {

if Gmineep) { Open
asynchronous
xmlHttp. open ("GET", url, true); // true = async connection
xmliicep. onzeadystatechange = onCallbacki S pgen allback

function
xmlHttp. setRequestHeader ('Content-type',

"application/x-www-form-urlencoded") ;

xmlHcep. send (null) ; S —
request

OEBPS/01fig02_alt.jpg
Vil e

OEBPS/01fig03_alt.jpg
Browser)
User action
—

Useraction (waiting..) ~ Useraction (waiting.
; 20

peerecien]
=

5 ¢ o
2 3 2
5§ 5

Process request Process request Seoer

HIML 4 o

OEBPS/pub.jpg

OEBPS/01fig01_alt.jpg
Document Object Model >

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/circle_1.jpg

OEBPS/circle_3.jpg

OEBPS/circle_2.jpg
(2]
(2]

OEBPS/cover.jpg
Alessandro Gallo
David Barkol

Rama Krishna Vavilola

OEBPS/01fig05_alt.jpg
&
|mmm..s..,m.,m.m,
oo

6 ASP.NET AJAXIn Action - XiHitpRequest =

v e

Desn”

‘Welcome to ASP NET AJAX In Action!

(3 @ Intemet | Protected Mode: Off

Haox -

OEBPS/013fig01_alt.jpg
function onCallback() { Look for completed
ready state

if (xmlHctp.readyState == 4) { Seneudi
us

if (xmlHttp.status 200) { < successful request

var r = document.getElementByld('results'); <
r.innerHTML = xmlHEtp.responseText;

}

else |

}

Display request
results

alert ('Error: ' + xmlHttp.status);

OEBPS/017fig01.jpg
<script type="text/xml-script®>

<page xmlns="http://schenas.microsoft . con/xml-script/2005">
<components>
<application load="page_load" /> Hook application
</components> toad vt
</page>
</script>
<script types"text/javascript’>
function page_load (sender, e) { Handler for
alert("Hello from XML-Script!®); load event

}

</script>

OEBPS/01fig06_alt.jpg
HTML, JavaScnpll ‘ASP.NET AJAX
XML Script \Web Service Proxies|

‘Ajax-enabled

ASPNET Pages || i

Microsoft Ajax Library

ASPNET 2.0 Ajax Server Extensions

Application

Components

Type System

ASPNET AJAX
Server Controls

ASPNET 2.0

ASPNET AJAX Client Framework

'ASP.NET AJAX Server Framework.

OEBPS/01fig08_alt.jpg
o 0

ottt eted

OEBPS/01fig07_alt.jpg
Inita Delivery |

Data Requesl

OEBPS/01fig09.jpg
Web Browser Web Server
Initial Delivery

Ul + JavaScript

Input Data

Updated Ul +
JavaScript

