

 [image: cover]

 Android in Practice

 Charlie Collins, Michael Galpin & Matthias Kaeppler

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

	Development editor: Cynthia Kane
 Copyeditor: Benjamin Berg
 Typesetter: Gordan Salinovic
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Background and fundamentals

 Chapter 1. Introducing Android

 Chapter 2. Android application fundamentals

 Chapter 3. Managing lifecycle and state

 2. Real world recipes

 Chapter 4. Getting the pixels perfect

 Chapter 5. Managing background tasks with Services

 Chapter 6. Threads and concurrency

 Chapter 7. Storing data locally

 Chapter 8. Sharing data between apps

 Chapter 9. HTTP networking and web services

 Chapter 10. Location is everything

 Chapter 11. Appeal to the senses using multimedia

 Chapter 12. 2D and 3D drawing

 3. Beyond standard development

 Chapter 13. Testing and instrumentation

 Chapter 14. Build management

 Chapter 15. Developing for Android tablets

 Appendix A. Debugging tools of the trade

 Appendix B. Extending Android development

 Appendix C. ProGuard

 Appendix D. monkeyrunner

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Background and fundamentals

 Chapter 1. Introducing Android

 1.1. Android in a nutshell

 1.1.1. Defining Android

 1.1.2. What sets Android apart

 1.1.3. Key platform components

 1.2. Hello Android!

 1.2.1. Getting the SDK and Eclipse

 1.2.2. Creating an Android project with Eclipse

 1.2.3. Project structure

 1.2.4. Introducing the Activity class

 1.2.5. Setting the Activity layout

 1.2.6. Referring to resources

 1.2.7. Project wiring: the manifest

 1.2.8. Running and debugging Hello Android

 1.3. Java, but not Java Java

 1.3.1. Built on Harmony

 1.3.2. Packages and libraries included

 1.3.3. The Dalvik virtual machine

 1.4. Linux, but not Linux Linux

 1.4.1. Is Android Linux?

 1.4.2. Storage devices and the file system

 1.4.3. User accounts and file permissions

 1.4.4. Processes and multitasking

 1.5. More capabilities with native libraries

 1.5.1. Audio and video processing

 1.5.2. Storage engine

 1.5.3. Web integration

 1.5.4. Sensors, camera, and more

 1.6. Tools of the trade

 1.6.1. Android-specific APIs

 1.6.2. SDK tools and components

 1.7. Summary

 Chapter 2. Android application fundamentals

 2.1. The DealDroid application

 2.2. Core building blocks

 2.3. Application manifest

 2.3.1. Permissions

 2.4. Resources

 2.4.1. Defining resources

 2.4.2. Accessing resources

 2.5. Layout, views, and widgets

 2.5.1. Declaring layouts

 2.5.2. Views and widgets

 2.6. Activities

 2.6.1. Activity basics

 2.6.2. List-based activities

 2.7. Adapters

 2.7.1. Adapter basics

 2.7.2. Custom adapters

 2.8. Intents and IntentFilters

 2.8.1. Using intents

 2.8.2. Intent types

 2.8.3. Intent resolution

 2.9. The Application object

 2.10. Summary

 Chapter 3. Managing lifecycle and state

 3.1. Defining an Android application

 3.1.1. Application lifecycle

 3.1.2. Application user ID, process, and threads

 3.2. Knowing the Activity lifecycle

 3.2.1. Lifecycle phases and methods

 3.2.2. The lifecycle in action

 3.2.3. Configuration changes

 3.3. Controlling Activity instance state

 3.3.1. Saving and restoring instance state

 3.3.2. Using nonconfiguration instance state

 3.4. Getting things done within a task

 3.4.1. Defining a task

 3.4.2. Stacking activities within a task

 3.4.3. Understanding activity task affinity

 3.5. Summary

 2. Real world recipes

 Chapter 4. Getting the pixels perfect

 4.1. The MyMovies application

 4.2. View hierarchies and rendering

 4.2.1. View hierarchies

 4.2.2. View rendering

 4.3. Arranging views in layouts

 4.3.1. Layout anatomy

 4.3.2. Layout managers

 Technique 1: The merge and include directives

 4.4. Expanding on ListView and Adapter

 Technique 2: Managing a stateful list

 Technique 3: Header and footer views

 4.5. Applying themes and styles

 4.5.1. Styling applications

 Technique 4: Applying and writing styles

 Technique 5: Applying and writing themes

 Technique 6: Styling ListView backgrounds

 4.5.2. Useful styling tidbits

 4.6. Working with drawables

 4.6.1. Drawable anatomy

 Technique 7: Working with shape drawables

 Technique 8: Working with selector drawables

 Technique 9: Scaling views with nine-patch drawables

 4.7. Creating portable user interfaces

 Technique 10: Automatically scaling to different screens

 Technique 11: Loading configuration dependent resources

 Technique 12: Programming pixel-independently

 4.8. Summary

 Chapter 5. Managing background tasks with Services

 5.1. It’s all about the multitasking

 5.2. Why services and how to use them

 Technique 13: Creating a Service

 Technique 14: Starting a Service automatically

 Technique 15: Communicating with a Service

 Technique 16: Using a Service for caching data

 Technique 17: Creating notifications

 5.3. Scheduling and Services

 Technique 18: Using the AlarmManager

 Technique 19: Keeping Services awake

 Technique 20: Using Cloud to Device Messaging

 5.4. Summary

 Chapter 6. Threads and concurrency

 6.1. Concurrency in Android

 Technique 21: Basic threading

 Technique 22: Communicating change between threads

 Technique 23: Managing threads in thread pools

 6.2. Working with AsyncTask

 Technique 24: Implementing jobs with AsyncTask

 Technique 25: Preparing for configuration changes

 6.3. Miscellaneous techniques

 Technique 26: Displaying splash screens with timers

 Technique 27: Implementing custom message loops

 6.4. Summary

 Chapter 7. Storing data locally

 7.1. Reading and writing files

 7.1.1. Internal versus external storage

 Technique 28: Using internal storage

 Technique 29: Using external storage

 Technique 30: Using cache directories

 Technique 31: Making sure files are saved with sync

 7.2. Maintaining preferences

 Technique 32: Reading and writing preference data

 Technique 33: Using a PreferenceActivity

 7.3. Working with a database

 7.3.1. Android data packages

 7.3.2. Designing a data access layer

 Technique 34: Creating a database and model objects

 Technique 35: Creating DAOs and a data manager

 7.4. Inspecting SQLite databases

 Sqlite Shell

 SQLiteManager

 7.5. Summary

 Chapter 8. Sharing data between apps

 8.1. Process-to-process sharing

 Technique 36: Using Intents

 Technique 37: Making remote procedure calls

 Technique 38: Share data (and more) by sharing Context

 8.2. Accessing common data

 Technique 39: Using standard ContentProviders

 Technique 40: Working with a custom ContentProvider

 8.3. Summary

 Chapter 9. HTTP networking and web services

 9.1. Basic HTTP networking

 Technique 41: HTTP with HttpURLConnection

 Technique 42: HTTP with Apache HttpClient

 Technique 43: Configuring a thread-safe HttpClient

 9.2. Consuming XML and JSON web services

 Technique 44: Parsing XML with SAX

 Technique 45: Parsing XML with XmlPull

 Technique 46: Parsing JSON

 9.3. How to gracefully recover from network failures

 Technique 47: Retrying requests using request-retry handlers

 Technique 48: Handling network configuration changes

 9.4. Summary

 Chapter 10. Location is everything

 10.1. A brief introduction to geospatial coordinates

 10.1.1. Latitude and longitude

 10.1.2. Potential issues to look for

 10.1.3. Other metrics

 10.2. Location managers, providers, and listeners

 10.2.1. Checking in with the LocationManager

 10.2.2. Using a LocationProvider

 10.2.3. Using a LocationListener

 Technique 49: Checking the status of a LocationProvider

 Technique 50: Determining current location with a LocationListener

 10.3. Building a map-based application

 10.3.1. Getting the Google APIs Add-On extension

 10.3.2. Setting up BrewMap

 Technique 51: Converting an address to geographical coordinates

 10.3.3. Working with MapActivity

 Technique 52: Creating a MapActivity with associated MapView

 10.3.4. Using a map Overlay

 Technique 53: Displaying OverlayItems on a MapView

 10.4. Summary

 Chapter 11. Appeal to the senses using multimedia

 11.1. Features too good for a feature phone

 Technique 54: Detecting capabilities

 11.2. Managing media

 Technique 55: Working with resources and files

 Technique 56: Using media ContentProviders

 Technique 57: Using Intents and Activities

 11.3. Media playback

 Technique 58: Images and simple animations

 Technique 59: Controlling audio

 Technique 60: Watching video

 11.4. Capturing input

 Technique 61: Taking pictures

 Technique 62: Recording audio and video

 11.5. Summary

 Chapter 12. 2D and 3D drawing

 12.1. Drawing with the 2D libraries

 12.1.1. Introducing the Canvas

 Technique 63: Going full screen

 Technique 64: Drawing simple shapes

 Technique 65: Rendering continuously in the UI thread

 Technique 66: Drawing text to the screen

 Technique 67: Using a typeface when drawing text

 Technique 68: Displaying bitmaps

 Technique 69: Applying 2D effects

 12.2. 3D and OpenGL ES

 12.2.1. What is OpenGL?

 12.2.2. How OpenGL ES works

 12.2.3. Creating an OpenGL project

 Technique 70: Drawing the first triangle

 Technique 71: Creating a pyramid

 Technique 72: Coloring the pyramid

 Technique 73: Adding texture to the pyramid

 12.3. Summary

 3. Beyond standard development

 Chapter 13. Testing and instrumentation

 13.1. Testing the Android

 13.1.1. Ways to test in Android

 13.1.2. Organizing tests

 13.1.3. Writing and running tests

 Technique 74: A simple Android unit test

 13.2. Pulling strings: Android instrumentation

 Technique 75: Unit testing Activities

 Technique 76: User stories as functional tests

 Technique 77: Beautiful tests with Robotium

 13.3. Beyond instrumentation: mocks and monkeys

 Technique 78: Mock objects and how to use them

 Technique 79: Accelerating unit tests with Robolectric

 Technique 80: Stressing out with the Monkey

 13.4. Summary

 Chapter 14. Build management

 14.1. Building Android applications

 14.1.1. The Android build process

 14.1.2. Moving toward automated builds

 Technique 81: Building with Ant

 14.2. Managing builds with Maven

 Technique 82: Building with Maven

 Technique 83: The Maven Eclipse plugin

 Technique 84: The Maven/Android SDK deployer

 14.3. Build servers and continuous builds

 Technique 85: Continuous builds with Hudson

 Technique 86: Matrix builds

 14.4. Summary

 Chapter 15. Developing for Android tablets

 15.1. Tablet prep

 Technique 87: Leveraging existing code using library projects

 Technique 88: Targeting only tablets

 15.2. Tablet fundamentals

 Technique 89: Fragments

 Technique 90: The Action Bar

 Technique 91: Drag and Drop

 15.3. Summary

 Appendix A. Debugging tools of the trade

 A.1. The Android Debug Bridge

 A.1.1. Interacting with devices

 A.1.2. Using the device shell

 A.1.3. Controlling Android’s execution environment

 A.1.4. Accessing the system logs

 A.2. StrictMode

 A.3. Summary

 Appendix B. Extending Android development

 B.1. Using WebViews and JavaScript

 B.2. Alternative programming languages

 Appendix C. ProGuard

 C.1. Overview

 C.2. Enabling ProGuard

 C.3. Writing ProGuard rules

 C.4. Useful rules and options

 C.4.1. Useful rules

 C.4.2. Useful options

 C.5. Processing error reports

 C.6. Summary

 Appendix D. monkeyrunner

 D.1. Overview

 D.2. Components and features

 D.2.1. MonkeyRunner

 D.2.2. MonkeyDevice

 D.2.3. MonkeyImage

 D.3. Scripting monkeyrunner

 D.4. Writing plugins

 D.5. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 There was a lot of buzz in late 2007 about a forthcoming Google-backed open source mobile phone venture, but there weren’t
 a lot of details. We were interested from the outset because we were all involved with open source projects in one way or
 another, and we were Linux users with a Java background. The new Google-backed “Java/Linux phone platform,” as several blogs
 and pundits termed it at the time, was exciting and it seemed to suit us perfectly.

 Then several official press releases from the Open Handset Alliance came out and the word Java was absent from all of them. At the same time it supposedly ran a “custom virtual machine” and several people who we knew
 to be Java guys were tapped to work on various parts of it. Was this thing Java or not? This was the first of the ways Android
 intrigued us, before we were even sure what it was.

 When more details about the platform emerged, it became clear that it would use Java “the language” but would avoid the Sun
 (at the time) virtual machine, and it would deviate from the standard Linux kernel/distribution approach. Google and their
 OHA partners were using a lot of existing and open tools and components, but were wiring them up in a new way and mixing in
 parts of their own.

 We thought the platform had solid engineering, great timing, and a lot of potential. As soon as the first betas dropped, we
 grabbed the SDK and tools and started tinkering. We then bought the first Android devices available so we could put the early
 applications we wrote on our own phones, and we haven’t stopped tinkering since.

 We now know Android as a unique platform that’s both open and extremely popular. There isn’t a single device that runs Android
 anymore; now there are hundreds. And the platform hasn’t been standing still either. There have been many new releases and
 improvements. Android has grown by leaps and bounds and isn’t showing any signs of slowing down yet.

 Still, in all the excitement and growth of Android, one thing has become apparent to us, as developers. It’s extremely easy
 to start building applications for the platform, because it’s Java-based and familiar to so many, but it’s also easy to get
 into trouble. Android is a powerful laser gun from the future, but a lot of us still have it aimed at our own feet. Beyond
 the idiosyncrasies of some of the APIs and the new capabilities such as GPS, cameras, and hardware sensors, there’s also a
 constrained environment with limited resources. It’s not enough to craft a new UI, get a web service working to talk to the
 network, and be able to use the GPS, for example. You need to do all that within a lifecycle that restarts your code when
 the device orientation changes, while supporting different screen sizes, without blocking the UI thread, playing nicely with
 system resources, and more. It’s easy to create Android applications, but it’s hard to create good Android applications.

 This is where Android in Practice came into being. We’ve written Android apps downloaded by millions of users and have learned much along the way. As we learned
 from both our successes and failures, we published articles and wrote blog posts about Android. We collected a tip or a recipe
 here and there and tried to share it. We even read a few good introductory Android books, or smaller books that covered several
 topics well but left other things out. We realized there was a gap. There wasn’t a book that started with the basics and then
 went into more depth with nontrivial examples and covered everything we thought was important—from background and development
 to building and testing and more. We got together and shared our ideas and collected our articles and a new book project was
 born.

 What you’re now holding in your hands is our effort at sharing our experiences and knowledge in trying to craft a book that
 both beginners and advanced users can learn from and use as a reference. We hope you’ll find advice and techniques in this
 book that are truly useful, and we hope it helps you become aware of how to build great Android applications that are successful on the Android platform for years to come.

Acknowledgments

 It takes an entire cast of people to write a book. Without the tireless efforts of the crew at Manning, our friends who helped
 with several sections, and all of our technical reviewers and early access subscribers who provided feedback along the way,
 this book would never have happened.

 Michael Stephens at Manning got the entire project off the ground and got us into the capable hands of Troy Mott, who directed
 us through the remainder of the project. Along the way Cynthia Kane was our development editor and main advisor on many topics.
 She helped us with just about everything, from grammar and usage to style and format and more. Mary Piergies kept everything
 organized and led the way into production. Once there, Benjamin Berg did a fantastic job of formatting and copyediting, while
 Gordan Salinovic did the typesetting. And publisher Marjan Bace made the whole thing possible.

 Outside of Manning we managed to convince a few of our friends and colleagues to pitch in too. Tamas Jano and Robert Cooper
 provided code examples and text to help us create the 2D and 3D drawing chapter. And, Logan Johnson worked on several of the
 ContentProvider examples that became part of chapter 8, “Sharing data between apps.” Without their excellent contributions we would’ve lacked coverage of those important aspects
 of Android programming.

 Our other outside help came from our technical reviewers. Jerome Baton took the time to download and build and review all
 of our example projects, and he found several issues that we’d missed. As well, we got many suggestions and corrections from
 the other reviewers of our book, including Steve Prior, Nenad Nikolic, Kevin McDonagh, Mark Ryall, Peter Johnson, Al Scherer,
 Norman Klein, Tijs Rademakers, Michele Galli, Sivakumar Thyagarajan, Justin Tyler Wiley, Cheryl Jerozal, Brian Ehmann, Robby
 O’Connor, Gabor Paller, Dave Nicolette, Ian Stirk, Daniel Alford, and David Strong. The Early Access subscribers also provided
 valuable feedback.

 All of these people made this book much better than it would’ve been without them, and we’re truly grateful for their contributions.

 CHARLIE

 Writing a technical book is a long and difficult process, but it’s ultimately very rewarding when you can hold the finished
 product in your hands and be proud of it. I’d like to start by thanking my coauthors Michael and Matthias for that pride.
 These guys both not only really know their stuff, but they also kept going even when things took longer than planned, and
 they took on more than they had signed on for. In all it was a great experience working with them.

 I’d also like to thank the Android team and the Android and open source community. All of the people who work to make Android
 better either directly, or with bug reports and patches, help on forums and question and answer sites, participation in user
 groups and conferences, and creating libraries and tools are a big reason the platform works and thrives. In addition to thanking
 everyone who contributes to Android, I’d be remiss if I didn’t mention the open source community at large. Those who’ve worked
 on Linux, or a library like WebKit, or SQLite, or Apache HttpClient, or many more, and those who’ve worked on tools like Eclipse
 and Maven, are also key to the success of Android and to the everyday work that I get to do using the platform.

 Finally I’d like to thank my family and friends. My wife Erin, and my daughters Skylar and Delaney were always supportive
 and encouraging, even when “the book” took time away from my participation in one family event or another. And my parents,
 Earl and Peg Farmer, have always been there for me and have always encouraged me to do the best that I can in whatever I attempt.

 MICHAEL

 I’d like to first and foremost thank my beautiful wife Crystal. It takes a lot of time to write a book and time is one thing
 in short supply for a developer working at a startup and for a father with two young sons. Without an amazing wife, there’s
 no way this book could’ve happened. I’d also like to thank my high school English teacher, Dr. Ed Deluzain. He’s the person
 who taught me how to write, and that skill has opened up many opportunities for me. Writing a book has been a dream that’s
 finally coming true, but it’s a dream that started in Dr. Deluzain’s class. Finally, I’d like to acknowledge Troy Mott, who
 has worked with me for many years on various technical writing endeavors. It has pleased me greatly to work with him once
 again on this book.

 MATTHIAS

 First, I’d like to wholeheartedly thank the Android developer community, of which I am in highest appreciation. I’m an open-source
 enthusiast, and I fully believe in the idea of contributing back whenever you take. I have taken lots from the open source
 community: answers, ideas, code, and this book is my way of contributing back to you all. Thanks especially to everyone who
 has contributed ideas and code back to Signpost, Droid-Fu, and Calculon, my pet projects.

 Personally, I’d also like to send a big kudos to Kevin McDonagh and Carl-Gustaf Harroch of Novoda, for all the effort they
 put into making Android not just a platform, but a community. Special thanks also go to Manfred Moser, Hugo Josefson, and
 Renas Reda, authors of the Android plugin for Maven and the Robotium library respectively, for reviewing those chapters in
 this book. Big thanks also go to Julian Harty, Carlos Sessa, Nenad Nikolic, Jan Berkel, Thibaut Rouffineau, and all the other
 great people who either reviewed this book, or with whom I had insightful discussions about Android and building amazing open
 source software. You guys are all rockstars!

 It should not go unnoted that this book was a team effort; that’s why I want to thank Charlie and Michael for continually
 driving this project forward and for the uniquely enjoyable ride!

 Last, and definitely not least, I thank my dear parents for supporting me all the way through this book and for keeping me
 going whenever I was about to get stuck.

About this Book

 Android is an open source mobile device platform created by Google and the Open Handset Alliance. Android powers smartphones,
 tablets, set-top boxes, TVs, and more. Android in Practice is a book dedicated to helping developers build applications for the Android platform.

 This book is intended to provide some background information and coverage of the basics of developing applications for Android
 for beginners and also goes into depth on many topics for intermediate to advanced developers. The overall goal of Android in Practice is to collect and organize helpful Android programming techniques over a variety of topics and explain those techniques in
 the context of the overall platform. We’re going for the why as much as the how. You will find 91 techniques in the book, each consisting of a problem, solution, and discussion section.

Who should read this book?

 This is a book about developing applications for the Android platform, from key components and application basics to advanced
 techniques, testing, building, project management, and more. We hope this book will appeal to Android developers of varying
 skill levels, from beginner to advanced; Android testers; and managers and team leaders looking to better understand Android
 development.

 This book is intended for people who already have some programming experience and are at least familiar with Java. Therefore,
 we assume that most readers are somewhat familiar with Java and related technologies (working with IDEs, compiling and writing
 Java code, XML, basic networking, and so forth).

Roadmap

 Chapter 1 introduces Android, the platform and talks about the progression that led to it, the companies behind it, and what sets it
 apart. It also introduces the core Android APIs and tools and includes a “hello world” programming example.

 Chapter 2 covers all of the key components needed in a basic Android application, including resources, layout, views, activities, adapters,
 and intents.

 Chapter 3 discusses the details of the lifecycle of an Android application and of activities. We discuss both the stack of activities
 an application includes and how activities are grouped into tasks.

 Chapter 4 focuses entirely on the user interface. This includes how views are created and rendered, how they’re arranged in layouts,
 how adapters are used to manage them, how they can be styled and reused, working with drawables, and handling devices with
 different screen sizes.

 Chapter 5 provides details on multitasking using services. This goes from what a service is and why it’s necessary to how they can
 be created, how they can be started automatically or scheduled with alarms, how they can be used to cache data and send notifications,
 and how to push messages from the cloud to devices.

 Chapter 6 details where threads and asynchronous tasks can be used to make Android applications more responsive and performant. The
 topics covered include communicating between threads, managing threads, using handlers and timers, message loops, and more.

 Chapter 7 deals with working with external and internal storage to store data. This includes using the filesystem and preferences files
 and working with SQLite and databases.

 Chapter 8 deals with sharing data between different applications. This includes consuming data from other applications on the platform
 and providing data to other applications, both using a content provider.

 Chapter 9 extends the concepts of storing and sharing data by using the network. This means using HTTP from several different clients,
 working with web services using XML and JSON, understanding how to detect and switch between different network data sources,
 and recovering gracefully from networking problems.

 Chapter 10 deals with location-related services. This includes determining what location providers are present and what resources each
 requires, obtaining location data from different sources, and building map-based applications.

 Chapter 11 features multimedia. The topics here include detecting multimedia capabilities, working with resources and files, using media
 related content providers, and working with audio and video, including using the camera, displaying animations, and controlling
 audio playback.

 Chapter 12 delves into 2D and 3D drawing. This is where we learn about drawing shapes and lines on the canvas, creating effects, building
 custom views, and working with 3D programming using OpenGL ES.

 Chapter 13 covers automated testing of Android applications. This includes working with different types of tests and several different
 test approaches and frameworks.

 Chapter 14 discusses project management and build automation. This includes an overview of all the steps required in an Android build,
 coverage of working with build tools such as Ant and Maven, and continuous integration of Android builds with Hudson.

 Chapter 15 targets developing for Android tablets. This includes using existing code libraries, targeting different devices, working
 with activity fragments, and different user interface components for tablets.

 Appendix A picks up several questions involving debugging Android applications and gives some useful advice on how to effectively use
 the Android Debug Bridge. It also covers a recent addition to Android called StrictMode, which allows you to detect performance
 smells in your applications.

 Appendix B presents Android application development from an entirely new perspective, as it explores two alternative approaches to native
 Android development: using WebViews and programming in alternative languages like Scala.

 Appendix C covers use of the ProGuard byte code optimizer and obfuscator, something you should have on your radar for any production-quality
 application.

 Appendix D covers monkeyrunner, a scripted tool used to instrument Android applications. This is our attempt to shed some light on a
 useful but underdocumented tool.

Code conventions and downloads

 This book contains many example projects, all of which are based on multiple code listings. We’ve tried to be as thorough
 as possible in the listings and yet keep them concise, but this isn’t always easy with Java and XML. Many of the listings
 also include code annotations that highlight important concepts and explain portions. These annotations are discussed in the
 text.

 In some listings we’ve omitted the more verbose or boilerplate portions of the code where we feel it makes sense to do so.
 For example, after we’ve introduced one concept, we typically don’t keep repeating the same technique in the code listings.
 We know it can be frustrating to not have complete examples, but it’s also impossible to include all of the code this book
 covers in its entirety and still adequately discuss the related concepts. We’ve tried to strike a balance and indicate in
 the listings wherever code is omitted for brevity, and we’ve also included every line of code as a complete working project
 available for download as either source or in working binary form at the Android in Practice Google Code hosting site: http://code.google.com/p/android-in-practice/. The code is also available from the publisher’s website at http://www.manning.com/AndroidinPractice.

Author Online

 The purchase of Android in Practice includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to http://manning.com/AndroidinPractice. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 CHARLIE COLLINS is the director of development at MOVL, where he helps create apps that allow connected TVs and mobile devices to interact.
 Charlie has worked on several open source projects and has a strong background in web applications and web services. Charlie
 was also the coauthor of Manning’s GWT in Practice and Unlocking Android. When he’s not coding Android apps or writing server logic, Charlie can often be found playing tennis or mountain biking.
 Charlie lives in Atlanta, Georgia, with his wife and two daughters.

 MICHAEL GALPIN is a developer at Bump Technologies where he works on Bump, one of the most popular social networking apps on the Android
 Market. Prior to that, he was at eBay for four years where he worked on eBay Mobile for Android, one of the most popular shopping
 apps. He frequently writes articles about open source technology for IBM developerWorks. He lives in San Jose, California,
 with his wife and two sons.

 MATTHIAS KÄPPLER is a developer at Qype.com, Europe’s largest community portal for local reviews, where he leads development in Qype’s mobile
 products division, the “A-Team” (Android and API). He has been all over Android from its early alpha day and has founded or
 contributed to several well-received open source projects, including Signpost OAuth, Droid-Fu, Calculon, and Gradle’s Android
 plugin. In his spare time he’s a music, movie, and coffee addict, and when not busy discovering new locations and reviewing
 them on Qype, he’s probably practicing Taekkyon, a Korean martial art. Matthias lives in Hamburg, Germany.

About the Cover Illustration

 The figure on the cover of Android in Practice is captioned “Habit of the Grand Seigneur’s Body Guard in 1700” and is taken from the four-volume Collection of the Dresses of Different Nations by Thomas Jefferys, published in London between 1757 and 1772. The collection, which includes beautifully hand-colored copperplate
 engravings of costumes from around the world, has influenced theatrical costume design ever since it was published.

 The diversity of the drawings in the Collection of the Dresses of Different Nations speaks vividly of the richness of the costumes presented on the London stage over 200 years ago. The costumes, both historical
 and contemporaneous, offered a glimpse into the dress customs of people living in different times and in different countries,
 bringing them to life for London theater audiences.

 Dress codes have changed in the last century and the diversity by region, so rich in the past, has faded away. It’s now often
 hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we’ve traded a cultural
 and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional and historical costumes brought back to life by pictures from collections such as this one.

Part 1. Background and fundamentals

 This first part of Android in Practice will explain the core concepts surrounding the Android platform and its key components. In chapter 1, you’ll learn what Android is, who created it, and why it was created. We’ll also introduce you to the basics of developing
 applications for it. In chapter 2, you’ll take the basics further and build a foundation for later examples by completing your first nontrivial example. This
 will involve the application manifest, activities, views, resources, layouts, and adapters. Chapter 3 will build upon this foundation by helping you understand and work with the well-defined lifecycle of components such as
 activities, as well as overall Android applications.

Chapter 1. Introducing Android

 In this chapter

	Android in a nutshell

 	Writing a Hello Android app

 	Android’s Java and Linux roots

 	Native libraries and other tools

 Reality is that which, when you stop believing in it, doesn’t go away.

 Philip K. Dick

 Today, mobile phones are everywhere. They’re more prevalent than personal computers. They’ve replaced our watches, calculators,
 cameras, MP3 players, and often our means of internet access. They also provide capabilities such as GPS navigation, motion
 and gesture interfaces, social networking, and an indescribably broad array of “apps” that mix and match many features. With
 all of this, it’s easy to see why mobile devices are popular.

 The technology behind mobile devices has advanced rapidly. It wasn’t all that long ago that voice calls were routed through
 a completely wired network with human switchboard operators and all phones were attached to physical wires. The “plain old
 telephone system” (POTS), as it has become known, matured, and manual switchboards were replaced with computer controlled
 switches. Then features such as voicemail and caller id were added. Eventually, the wires were cut. At first, wireless phones had home base stations and
 bulky antennas. Then, carriers built extensive wireless networks that made even that unnecessary. Next, crude applications
 began to appear alongside the telephony capability, and mobile devices and networks were pushed to provide more and more functionality.
 Today, we’ve come a long way, but we’re still pushing. With impressive hardware and network speeds, we have incredibly powerful
 wireless handheld computers.

 Making use of all this computing and networking power is the tricky part. Until recently, the software in many mainstream
 mobile devices was proprietary. This typically meant several things, all of which were hurdles for developers:

	The source code wasn’t available to see how things ticked.

 	There may have been formidable licensing fees or other development costs.

 	There were restrictive terms and opaque policies even if you were licensed.

 	There weren’t easily approachable programming languages or software development kits (SDKs).

 	There weren’t easy ways to get applications in front of users and installed on devices.

A consortium of companies known as the Open Handset Alliance, led by Google, looked at the landscape several years ago and asked the question “What would it take to build a better mobile
 phone?” By better they meant a phone that could overcome the hurdles holding back widespread collaboration, innovation, and adoption on other
 platforms. The answer they came up with was Android. Android is a powerful and open platform that anyone can use and extend.
 Figure 1.1 shows a montage of screen shots that demonstrate a few of the platform’s capabilities.

 Figure 1.1. Several Android screen shots demonstrating some of the capabilities of the platform, including a customizable interface, phone,
 application market, full-fledged browser, mapping, and navigation.

 [image:]

 Android’s power and capabilities make it appealing to users. Those same features combined with the open nature and impressive
 engineering make it attractive to developers. Android is the way forward. The potential is there; what’s needed now are more
 innovative developers to write quality applications. Android needs you.

 Being both Android users and developers ourselves, this is what inspired us to try to pass on some practical knowledge about
 the platform, and about how to write applications for it. That’s where Android in Practice comes into play. This book is about building applications for Android and it brings real-world tips from the trenches.

	

Preflight Check

 One thing we need to get out of the way up front is that Android in Practice is intended to be a recipe-style book of practical examples that tackle many different aspects of the platform (some of them
 advanced). Part 1 of this book, including this chapter, is a whirlwind introduction to the basics. Once we get past this, we’ll advance quickly.
 If you’re already familiar with Android and have already written Android applications, you may want to go straight for the
 deeper dive and skip ahead to parts 2 and 3. These are each focused on a particular area of the platform and go into much more depth than this introduction. You’re welcome
 to stay with us and revisit the fundamentals if you prefer as well.

	

In this first chapter, we’ll start by sharing some background information and dealing with the basics. That means we’ll first
 talk more about what Android is, and why it matters. From there we’ll build a simple “Hello Android” application to get the
 lay of the land. Through that exercise, we’ll introduce you to the Android Software Development Kit (SDK) and the main parts of an Android application. Then we’ll move on to cover the key aspects of the specialized Java runtime
 Android uses, Dalvik. We’ll also examine some of the details of the Linux-based operating system (OS) that powers all of it. After that, we’ll
 discuss Android’s overall architecture, including its native middleware libraries, its applications and application framework,
 and further developer tools and SDK details.

 At the end of this chapter, you should have a basic understanding of the Android platform and development process. With that
 foundation, you should be ready to move on to tackling more detail in chapter 2 and beyond.

1.1. Android in a nutshell

 If we were to ask one of the millions of Android device owners “What is Android?” we’d get a variety of responses. Some might
 say it’s a kind of phone, or it’s a place to get apps for their phone, or maybe a cute little green robot. As developers,
 we go further—we understand it’s a broad platform for creating and running applications.

 Before we jump into the code, we need to define what we mean when we say “Android,” touch on what sets it apart, and discuss
 the key components of the platform.

 1.1.1. Defining Android

 The marketing tag line is that Android is a “complete set of software for mobile devices: an operating system, middleware,
 and key mobile applications.” It’s that and more. It goes beyond mobile, and arguably, the development framework and SDK aren’t
 captured in that description—but they’re essential too.

 Android truly is a complete stack, from boot loader, device drivers, and libraries, to software APIs, included applications,
 and SDK. Android isn’t a particular device, or even class of devices; it’s a platform that can be used and adapted to power
 different hardware configurations. Mobile phones are the main class of Android powered devices, but it’s also currently used
 on electronic book readers, netbooks, tablets, and set-top boxes.

 1.1.2. What sets Android apart

 Even though it’s open and powerful, Android isn’t perfect. Android doesn’t get everything right, but we think it’s a big step
 in the right direction. Android avoids many of the issues surrounding proprietary systems by being open source and being licensed
 in an open manner (with no licensing fees whatsoever). Android provides an approachable and accessible (free) SDK and other
 development tools. And, Android deals with getting applications in front of users with a built-in market application that
 allows users to easily download and install apps right from their phones.

	

The Market and Installing Applications

 The Android Market is the main way users find and install applications on their phones. Anyone who registers and agrees to
 the terms can submit applications to the Android Market. Once in the Market, applications are available to users immediately
 (without any review process). Applications can then be rated and commented upon by users. This technique is different because
 it’s ultra-convenient and it brings a social aspect directly to the mix. Application ratings are a sort of artificial selection
 for the app ecosystem. The fittest apps survive and thrive. In addition to the official Android Market, users can also use
 (if their carriers permit it) third-party markets and direct downloads to install applications.

	

Beyond the users and the market, Android also runs on a plethora of devices. In fact, there are so many different devices
 now that it can be difficult to develop and test applications that work on every one. This is one criticism that has been
 leveled at Android. But there are many ways to mitigate the associated problems, and Android was designed to help cope with
 this. We’ll learn more about creating applications that work on multiple devices, even with multiple screen sizes, in several
 later examples in the book.

 Android didn’t pioneer the open source mobile operating system concept. Others have come before it, and there surely will
 be others after. Android also didn’t invent the market approach that it uses to provide easy and socialized access to applications for users. Yet, Android has combined
 all of these things in new ways, with the backing of a consortium of successful commercial companies and solid engineering,
 and this has made it one of the most popular and successful mobile operating systems on the planet today.

 With a description of Android in hand, and some understanding of the motivation for its creation, we’ll next turn to the key
 components that make up the platform.

 1.1.3. Key platform components

 Like any technology stack, the Android platform can be broken down into areas of responsibility to make it easier to understand.
 The main divisions of the Android platform are depicted in figure 1.2.

 Figure 1.2. An overview of the major components of the Android platform: OS, middleware, application framework, applications, and developer
 tools

 [image:]

	

Qrcodes and URLs

 Throughout the book, in cases where it might be useful on a mobile device, instead of providing only a text URL to an online
 resource, we’re also going to provide a Quick Response (QR) code (2D bar code). These codes can be scanned by many bar code scanners, such as several available on Android, and resolved to
 URLs for quick and easy browsing.

 [image:]

 The preceding QR code decodes to the official “what is Android” documentation: http://mng.bz/Z4Le. There you can find more information about what Android is, including the official architectural “layer cake” diagram.

	

The architectural diagram in figure 1.2 shows that the Android platform can be broken down into five sections:

	Applications

 	Application framework

 	Middleware libraries

 	Operating system

 	SDK and developer tools

Applications are pretty obvious. But several different types of applications are available on most Android devices, and the
 distinction is subtle. Core open source applications are included as part of Android itself, such as the Browser, Camera,
 Gallery, Music, Phone, and more. These are typically included with every Android device. There are also non–open source Google
 apps that are included with most official builds, including Market, Gmail, Maps, YouTube and more. Many carrier or handset
 manufacturer-specific applications are included on specific builds (such as AT&T’s own music player, Verizon’s own Navigator,
 or Sprint’s TV). And, third-party applications are available in the Android Market, which can be either open source or proprietary.
 These include independent Google applications such as Goggles and Listen, official apps from popular services like Twitter
 and Facebook, and thousands of other choices.

	

Why Can’t I Uninstall Some Apps?

 Many handset manufacturers and service carriers, and even Google to some degree, include certain applications on a special
 read-only part of the Android file system called the system partition. Applications that are installed here can’t be easily uninstalled (you need to have administrative privileges, and/or mount
 the partition as read-write to remove them). This is often annoying, but also understandable. Part of the power of Android
 is that manufacturers and carriers can customize it the way they want to. This is part of the reason why many of these companies
 have adopted the platform to begin with.

	

Supporting applications, the Android platform includes a framework to run them in. The application framework provides a tightly
 integrated part of the platform SDK and APIs that allow for high-level interaction with the system from within applications.
 When your application needs access to hardware sensors, network data, the state of interface elements, or many other things, it gets to that information through the application framework. We’ll learn more
 about the SDK and the application framework in section 1.6.

 Beneath the application framework sits the software collectively referred to as the middleware. As the name suggests, middleware is software components that sit in between—in this case between the operating system and the applications/application framework. The middleware includes libraries for
 many functions (data storage, graphics rendering, web browsing, and so on) and it also contains a special subsection called
 the Dalvik runtime. This is Android’s special nonstandard virtual machine (VM) and its core application libraries. We’ll learn more about Dalvik
 in section 1.3.

 At the bottom of the Android stack is the operating system. Android’s OS is Linux-based and performs much the same tasks you’d
 expect from any conventional desktop computer OS. This includes interfacing with the hardware through a set of device drivers
 (such as audio or video drivers), processing user input, managing application processes, handling file and network I/O, and
 so forth. We’ll learn more about the Android Linux OS in section 1.4.

 With Android’s layered design, each level is an abstraction of the one beneath it. Don’t worry—as a developer you won’t have
 to deal with lower-level details directly. Rather, you’ll always access subsystems by going through simple interfaces exposed
 in Android’s application framework (unless you’re doing native development work with the Native Development Kit or NDK, but that’s getting ahead of the game).

 Android is a vast system; we neither can nor want to cover everything here. Instead, as we progress through this chapter,
 we’ll focus on the important parts, the parts we think you should know about and have a basic understanding of. As we go,
 we’ll share more details about the layers we’ve introduced, within the context of building applications and understanding
 the platform from a developer’s perspective. To do that, we’ll start by getting the prerequisites in order and writing our
 first Android application, “Hello Android.”

1.2. Hello Android!

 Our first Android application will display a single line of text and one image on a single screen. It isn’t impressive, but
 we’re keeping it simple on purpose. We want the components of the application, and the process, to take center stage. The
 application we’ll build, “Hello Android,” is seen in completed form running in the emulator in figure 1.3.

 Figure 1.3. The Hello Android application being run from an emulator instance and showing some simple onscreen elements: text and an image

 [image:]

 To build Hello Android we’ll use a few tools that we need to get in order first. These include the Android SDK, the Eclipse Integrated Development Environment (IDE), and the Eclipse Android Development Tools (ADT) plugin.

 1.2.1. Getting the SDK and Eclipse

 If you’ve never worked with Android before, to get started you need to check the system requirements and then download and
 set up a Java development kit (JDK), the Android SDK, and the Eclipse IDE. We won’t spend a lot of time on describing the
 processes for installing these prerequisites because they’re well documented online. Table 1.1 includes a description of the related online resources, and links to where they’re located.

 Table 1.1. Prerequisites and online documentation for Android development

	
 Description

 	
 URL

	System requirements
 	http://developer.android.com/sdk/requirements.html

	Java—JDK5 or JDK6
 	http://www.oracle.com/technetwork/java/javase/downloads

	Eclipse IDE for Java Developers
 	http://www.eclipse.org/downloads/

	Android SDK
 	http://developer.android.com/sdk/index.html

	Android Development Tools (ADT) Eclipse Plugin
 	http://developer.android.com/sdk/eclipse-adt.html

The Android ADT plugin works in conjunction with Eclipse’s Java Development Tools (JDT). The fact that an Android application’s source code can be written in Java (the language) and Android development is supported
 by Eclipse isn’t an accident. Java has strong tooling support (like Eclipse) and a large active community of developers. Eclipse
 provides convenient Java development features such as syntax highlighting, code completion, error detection, build support,
 and an excellent debugger. Eclipse also provides wizards for creating and running Android applications, managing and manipulating
 Android Virtual Devices (AVDs), and specialized editors for creating user interfaces and managing application metadata.

	

Do I Have to Use Eclipse?

 The short answer is no, you don’t have to use Eclipse. You can use the Apache Ant Java-based build tool and the command line
 if you prefer. Or, you can integrate the Ant-based tools supplied with another IDE if that’s your preference. Our recommendation
 is to use Eclipse. The Android team has chosen Eclipse as the main IDE to support, and the Android Development Tools (ADT)
 plugin for Eclipse is useful.

	

	

For that Matter, Do I Have to Use Java?

 For those out there who don’t prefer Java, Android hasn’t forgotten you entirely, and neither have we. We’ll touch on using
 alternative languages such as Scala in an appendix. And, we’ll also look at building web applications (using JavaScript and
 CSS, for example) for Android too. These are broad topics so we can’t cover them in depth, but we want to at least introduce them and make sure
 you know there are options. That said, Java is the main development language of Android, and it’ll be the main language we
 use throughout this book.

	

Though we aren’t going to spell out how to install Eclipse and the Android SDK and ADT plugin here (as previously noted),
 we’ll mention a few tips. Even if you already have Eclipse, if you don’t have Android, you might want to reinstall Eclipse
 in a new location, and install the ADT plugin there. That way you’ll have a shiny new Android-specific Eclipse install (or
 maybe also include the Google plugin for AppEngine and GWT and make it a Google Eclipse install). This helps on a few fronts:
 first, Eclipse can get bogged down when too many plugins and extras are installed; and second, this new installation will
 be out of the way of any existing projects and plugins you have, so it might be easier to troubleshoot any plugin issues or
 configuration problems should they arise. Also, even though you’re likely to use Eclipse a lot, you’ll want to make sure the
 Android tools are in your PATH and that you have the command line handy. A few tools only work from the command line (they
 aren’t exposed in the plugin), and it’s a good idea to know what the underlying tools are and how to use them. We’ll cover
 the tools specifically in section 1.6, and as related topics come up in later examples and topics.

 Once you get set up, the next step is to fire up the Eclipse IDE and create an Android project.

 1.2.2. Creating an Android project with Eclipse

 You’re probably already familiar with Eclipse, or at least with the concept of creating a new project in a GUI tool. To create
 our Hello Android project we’ll follow the well-worn path from File, to New, to Android Project, as seen in figure 1.4.

 Figure 1.4. Creating a new Android project in Eclipse

 [image:]

 The next dialog that pops up in the IDE is the initial project properties screen. We’ll enter some basic information for our
 project, as seen in figure 1.5. The project properties you’ll need to create a new project include a Project Name (the name used to identify the project
 within Eclipse), and then a series of Android related inputs: Build Target, Application Name, Package Name, and Activity Name
 (labeled Create Activity in figure 1.5).

 Figure 1.5. Set properties for the HelloAndroid project in Eclipse using the ADT plugin

 [image:]

 The names are straightforward, as is the Java package. The Build Target is more interesting. This is the Android SDK Platform
 that you had to install when you installed the SDK. The platform contains the particular dependencies and tools for a specific
 version of the Android API. You can install multiple platforms, and therefore build and test for different versions of the
 API, but you’re only required to have one. (We’ve picked Android 1.6, but for this simple project it doesn’t matter; any Target/platform
 will do.) The Create Activity setting is also worth touching on. If you check this, the ADT will create a template “Hello
 World” class and screen for you.

 Before we go any further, let’s take a look at the structure we now have after we click the Finish button and let the Eclipse
 ADT plugin create our initial Android project.

 1.2.3. Project structure

 Android projects rely on a predefined project structure to allow different components to be located, and to provide some convention
 over configuration. Java source code, layout files, string resources, image resources, and more have their place in the hierarchy.
 Figure 1.6 depicts the complete structure for our Hello Android project, including the source (and generated source), resources, and
 manifest.

 Figure 1.6. An overview of the basic project structure of an Android application

 [image:]

 As figure 1.6 shows, Java source code for an Android project is placed in a top level src directory. From there a parallel gen directory is also present for generated source. This is where the Android tool chain will create autogenerated sources for
 you, including R.java.

 R is an internal class that’s used to wire resources. As for resources, they’re noncode items (such as externalized strings)
 that are included with your project. Resources are placed in the res directory. Within the res directory are several subdirectories that determine the type of resource, and when it should be used. Lastly, within the
 top level directory is the Android configuration file for the project, AndroidManifest.xml.

 Now that we’ve seen the structure and know where things go, in the next few sections we’ll focus on what each of these items
 is, and how you build and use them, as we create the Hello Android application. We’ll start with Main.java file in the src directory. This is our first look at an Android
 Activity class.

 1.2.4. Introducing the Activity class

 In Android terms, an activity is a Java class that creates a default window on the screen and allows for placement of the user interface (UI) elements.
 Simply put, an Activity class roughly correlates to a screen in an Android application (most of the time: there are some subtleties, which we’ll
 learn as we go). Because we started our project using the ADT plugin and we enabled the Create Activity option, we already
 have our first Activity class, Main.

 Listing 1.1. Main.java Android Activity class as generated by the ADT plugin

 [image:]

 The generated Activity class the ADT plugin provides is simple, which makes it a great place to start poking around. First, we see that this class
 extends Activity [image:]. This is important. Activity brings a lot along, including lifecycle methods such as onCreate [image:]. As the comment in the code (which the plugin also generated) indicates, this is called when the Activity class is first created. We’ll learn much more about Activity in chapters 2 and 3. Activity is one of the most important classes you’ll use in day-to-day development, and it has many more facets we won’t touch on
 here.

 For now, think of this as the first screen, where you can hook into the lifecycle and tell the framework how to configure
 the visual elements using a separate layout resource [image:]. In this case our layout resource is R.layout.main and we set it as the content view. The R class is a special generated class that hooks names with resources, something we’ll learn more about shortly.

 1.2.5. Setting the Activity layout

 A layout resource is a special configuration file for the design and arrangement of visual elements on the screen. One handy aspect of Android
 development is that a lot of the time the UI can be declared in XML with a layout resource. This separates the presentation
 from the code (somewhat), and makes many UI elements reusable. The first layout resource we’re using for our Main Activity screen is shown next.

 Listing 1.2. Main.xml layout resource used to declare UI elements for the Main Activity

 [image:]

 The layout we’re using for Hello Android is basic, but we’ve modified it from the default generated layout the ADT plugin
 creates. The first thing to note here is the xmlns:android namespace. This is an XML shortcut. We define it this way so we can refer to the Android schema elements throughout the rest
 of the file using only the android: prefix. Next we see that we’re using a LinearLayout [image:]. LinearLayout refers to an Android layout class, in this case, one that puts the child elements it contains in a line (either horizontal
 or vertical; see the orientation attribute). A layout in Android is a specialized type of View (specifically, a ViewGroup, but we’re getting ahead of ourselves). Several different layouts are available in Android, all of which we’ll meet in chapter 4. View is the base class of elements that are capable of dealing with screen layout and are intended to be seen or interacted with
 by the user. Android is loaded with many different types of views, such as the TextView [image:] we see next in our layout.

 A TextView, you guessed it, displays text. View elements often have attributes that can manipulate their properties. Here we’ve set
 the margin, gravity (position on the screen relative to other elements), color, and size of the TextView [image:]. Also, we see that the android:text attribute, which determines what text to display is set to @string/hello [image:]. This usage of @string means we’re referring to a string resource. We could have hard-coded some text here, but externalizing resources like this
 keeps our layout and our content nicely separated.

 After the TextView, we next have an ImageView [image:]. For it, we’re specifying the src attribute as @drawable/droid, another external resource reference, this time to a drawable named droid [image:]. We’ll discuss drawables in chapter 4. For now, we need to understand that we’ve included a droid.gif image file in the res/drawable-mdpi directory of the project and that way Android can find and use it (this file is available with the code download for the
 book; we initially grabbed it from the Android goodies page: http://www.android.com/media/goodies.html). With our layout out of the way, let’s take a closer look at how the resource references work.

 1.2.6. Referring to resources

 As we’ve seen, the @ sign in a layout file (which itself is a type of resource) is a reference to another resource. In the case of @string/hello we’re referring to a strings.xml file. It’s always a good idea to keep different types of entities in your project separate
 from the code. This goes for layouts, strings, images, XML files, and anything that Android refers to as a resource.

 With strings and images, this is obvious. If you want to have different resources based on different settings, such as language
 or location, you can. The @ sign tells Android to parse these values as resources. Android has many resource types, which we’ll learn more about in the
 next few chapters, but for now let’s take a look at what’s in our strings.xml file.

 Listing 1.3. The res/values/strings.xml resource file

 <?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello Android!</string>
 <string name="app_name">HelloAndroid</string>
</resources>

 This externalized string file is in an XML format, and it holds key/value paired data. In the layout we referred to the hello resource, which will ultimately display the “Hello Android!” string. Strings, as well as more complex data types such as
 colors and drawables (an Android type for shapes), can all be represented in XML and used as resources.

	

Why All this XML?

 XML isn’t all bad. For Android it makes a lot of sense. XML gives the tooling a rigid structure and strong types to work with,
 but it can often be bloated and slow to parse. Don’t worry—these resources are compiled into a binary format by the platform
 and not parsed as XML at runtime.

	

Android can also use other components that aren’t XML as resources. For example, our droid picture is a binary image file.
 When such binary files are placed in the correct place in the project’s path for their type, they’re automatically made accessible
 as resources. Next, let’s take a quick look at how resources are named and resolved.

 All Android resources are identified by the Android application framework as constants in Java through the auto-generated
 R class. The R class is comprised of multiple internal classes, as shown in the next listing.

 Listing 1.4. The autogenerated R.java class showing internal classes and constant names

 [image:]

 The comment at the top of the R source file makes it clear: this class is automatically created for you, and shouldn’t be modified by hand [image:].

	

Eclipse and R

 If Eclipse complains about the R class not being present, or not compiling, don’t panic. This class will be regenerated if
 you have a gen directory, and you clean (Project -> Clean) or recompile/build your project. The Android Asset Processing Tool, or aapt, is invoked by Eclipse when you rebuild your project, and it regenerates the R source file.

	

Inside the R source file is a separate subclass for each type of resource your project contains. For our purposes with Hello Android we’ve used drawables (images) [image:], a layout [image:], and some strings [image:]. When an Android project is compiled, it goes through some special steps, one of which is to identify and label resources
 (and compile them, if they’re compilable). The constants in the R class allow you to refer to resources later by name, rather than by the integer that defines the location of the item (in
 the resource table Android uses to look up resources).

 Again, we’ll learn more about resources in chapter 2, and throughout the book. At this point, keep in mind that noncode entities are stored as resources, and referenced via R.java.
 With some background on R, we now have Java source that’s tied to a layout resource, and our layout resource itself refers to several other resources.
 The next thing we need to cover is how all of these different elements are brought together and wired up to make an application.
 This is why we need an application manifest.

 1.2.7. Project wiring: the manifest

 Every Android application must have a manifest file named AndroidManifest.xml. This file, as seen in the following listing,
 wires up the different components of the application and defines properties such as label, version, and a lot more.

 Listing 1.5. The AndroidManifest.xml file used to define configuration

 [image:]

 The manifest file that our Hello Android application is using is basic. This file hasn’t been modified at all from what the
 ADT plugin generated. It includes an opening manifest element with version properties, package name, namespace [image:], and an application element with icon and label [image:]. Both of these elements support more attributes, and we’ll explore the manifest further in chapter 2.

 Inside the application element we see an activity element, with name and label [image:]. You guessed it, this is where the single Activity class in our Hello Android application is defined. Each Activity within a particular application must be defined here in order to be resolved and used by the platform.

 The next item, the intent-filter element, represents an important concept [image:]. Intent filters are the way Android manages activities (and other components such as services and broadcast receivers, which we’ll discuss
 in chapter 5) and decides what each is capable of. Other activities don’t need to know the exact name of an Activity class to use it (though they can use it that way). Instead, activities can specify what they want to accomplish—their intent—and the system will check for any registered activities that fit the bill. These will be resolved and used at runtime.

 Intent filters can get complicated. At this point we aren’t going to veer off course and get into the finer points; we’ll
 leave the topic for chapter 2. For now, it’s important to understand that an intent filter with an action of Main, and a category of Launcher makes an Activity show up on the default Android application selection screen (which is a platform provided application called Launcher).

 With our project in place, and our understanding of the basic structure complete, the next step is to run and debug our application
 from Eclipse.

 1.2.8. Running and debugging Hello Android

 Running and debugging an Android application from Eclipse is straightforward. It’s done the same way you would any project
 in Eclipse, except that you have the option in the configuration to run via an emulated phone or another device. To create
 a launch configuration and run or debug Hello Android do the following:

	
Run— Right click project -> Run As -> Android Application

 	
Debug— Right click project -> Debug As -> Android Application

Once your application has been launched once, you’ll have a launch configuration that you can edit (under Run -> Run Configurations
 in Eclipse). From this dialog you can set the Target (which device or emulator instance to use) to manual or automatic, and
 you can tweak other emulator options. We’ll go into more depth concerning the Android emulator and Android Virtual Devices
 (AVDs), Eclipse and the ADT plugin, and other tools in section 1.6.

 Before we get to those details though, let’s step back and examine how the platform and architecture work together to make
 Android tick now that we have a working application. To begin with, we need to explain the way Android deals with Java.

1.3. Java, but not Java Java

 Any Java runtime environment (JRE) consists of two things. First, the core library bundles all classes that are part of the
 Java platform, including language utilities, networking, concurrency, and so forth. Second, the Java virtual machine (JVM)
 runs Java programs by interpreting the Java bytecode contained in a set of class files produced by a Java compiler.

 Android’s runtime environment follows this pattern, but the similarity with Sun/Oracle’s JRE ends there. Android’s Java core
 library doesn’t bundle the same packages (although there’s significant overlap) and the JVM can neither load .class files nor interpret Java bytecode. At first, this sounds bad. Don’t panic—you’ll still be able to reuse many Java libraries
 with your Android application and you usually won’t even notice that Java bytecode isn’t a part of the picture.

 If Android Java isn’t regular Java, what is it? In the next few section, we’ll discuss just that. We’ll cover the Java core
 library implementation, which is based on the Apache Harmony project, and which standard packages are or aren’t included.
 Additionally, we’ll address the virtual machine, named Dalvik, that runs all Android applications written in Java.

 1.3.1. Built on Harmony

 As we’ve already noted, Android is an open source project. This includes its Java core library implementation. You might assume
 that Google either created their own open source implementation of Java or took the source code from Sun’s OpenJDK project
 (Sun started to turn the Java platform into open-source several years ago). Neither is the case. Instead, Android is based
 on Apache Harmony, an alternative implementation of the Java 5 Standard Edition released by the Apache Software Foundation.

 When mentioning Harmony, it’s important to understand that even though it’s the basis for Android’s core Java library, they
 aren’t exactly the same. The Android core library implementation is trimmed down to include only packages that are useful
 on a mobile device or those that aren’t replaced by an Android-specific Java technology. In all, what’s included, and what
 isn’t?

 1.3.2. Packages and libraries included

 Let’s say it one more time: not all of Java’s runtime library is implemented in Android. Understanding what is and isn’t there
 lets you know how much of your Java programming knowledge you’ll be able to reuse and determines if you’ll be able to leverage
 existing Java libraries (because those libraries are likely to rely on the core Java runtime library). Figure 1.7 shows a breakdown of which parts of the Java standard runtime library are implemented on Android.

 Figure 1.7. A graphical representation of the top-level packages in the standard Java runtime and their status in the Android runtime

 [image:]

 As seen in figure 1.7, Android implements much of the Java standard runtime library. For most of the unimplemented packages, it’s fairly obvious
 why they were omitted from the Android runtime. For example, Java’s desktop user interface libraries, AWT and Swing, aren’t
 implemented and this is sensible. Android provides its own user interface components (based on Views as we saw earlier), so there’s no need for AWT or Swing. Java also supports some legacy technologies such as CORBA and RMI
 that would make little sense as part of Android (these often make little sense as part of standard core Java as well, but
 we digress).

 If you look at what Android does implement, you see the majority of the Java runtime that most developers regularly use. You
 see most of the essential java.lang package. You also see most of the java.util package, which has all of the key data structures you might need, such as linked lists and hash tables. You see all of java.io and java.net, the packages for reading and writing data from files, the network, and so on. You also see all of the java.nio package for reading and writing data asynchronously.

 In fact, some of the packages included with Android might surprise you. For example, Android includes the java.sql and javax.sql packages. That’s right: Android includes classes for connecting to relational databases. (Because Android supports such things
 doesn’t mean you’d want to connect to a remote database from a phone.) Android also provides most of the many XML support
 classes in Java. For example, it supports both Document Object Model (DOM) and Simple API for XML (SAX) parsing of XML documents,
 and includes all of the core Java classes that those parsers require. Nevertheless, not all of the XML options offered by
 Java are supported in Android. For example, the Java API for XML Binding (JAXB) is missing completely. Also, Java’s Streaming
 API for XML (StAX) is notably absent, although Android does include a library with similar functionality. This library, the
 XML pull-parser (org.xmlpull.v1) has been popular on the Java ME platform because of its small memory footprint.

 The XML pull-parser library used in Android is an example of an open source, third-party library that’s included with the
 Android runtime and is therefore available to any Android application. Several other similar, notable libraries are included
 with Android. The one that you’ll most likely use is the Apache HttpClient API. This is a popular open source library that
 has been around for a decade, and as the name suggests, can be used to greatly simplify HTTP communication. You can use Java’s
 java.net package directly, but if you need to deal with things such as cookies, redirects, authentication, and the like, then you’ll
 want to consider HttpClient. Another notable third-party library bundled with Android is the JavaScript Object Notation (JSON)
 API from json.org. The Android JSON API is a stripped down version of that popular library, with only the essential classes
 needed for parsing JSON strings, and serializing Java objects into JSON strings. (We’ll discuss all the networking and XML/JSON
 options in detail in chapter 9.)

 Knowing what’s available, both in terms of standard and third-party libraries, will save you a lot of time when building Android
 applications. Beyond these basic Java libraries, Android also provides a rich set of APIs for accessing Android specific parts
 of the platform. This includes device hardware, media, graphics, location, local data, and more. We’ll learn more about these APIs when we focus on the SDK in section 1.6. Another key aspect of Android Java is understanding the virtual machine it provides, Dalvik.

 1.3.3. The Dalvik virtual machine

 Dalvik is Google’s own Java virtual machine, and as such is in charge of executing Java applications running on Android. It
 was designed and developed from scratch, and has been optimized to run on embedded systems such as mobile phones. Dalvik isn’t
 bound to the Android platform; it works on any UNIX-based operating system, including vanilla Linux, BSD, and MacOS X.

 When talking about running applications on mobile phones, what we mean is running applications in an environment that’s low
 on both resources and power. Dalvik therefore has been designed around three basic requirements:

	It must be fast, even on weak CPUs

 	It must run on systems with little memory

 	It must run in an energy-efficient way

When we said Dalvik is a Java virtual machine, that’s not completely true (but we find that it’s easier to understand when
 thinking of it as the part of Android that runs applications written in Java, which certainly is true). That’s because as
 we touched on earlier, Dalvik can’t interpret Java bytecode, which is what you get when compiling a Java program using javac. Instead, Dalvik uses a memory efficient, custom bytecode language, into which the .class files produced by the Java compiler
 get converted.

 The Dalvik bytecode format differs from Oracle/Sun Java bytecode in several significant ways. First, the code isn’t spread
 over multiple self-contained .class files, but is aggregated into a single .dex file (short for Dalvik executable). This helps reduce duplication of internal data structures and cuts down significantly on file size. (To put this into perspective,
 an uncompressed DEX file is about half the size of a compressed JAR file.) Second, unlike the Oracle/Sun JVM, which is a stack-based
 virtual machine, Dalvik is based on registers. This implies that its instruction set is slightly more complex (it needs a
 bigger vocabulary than a stack-based VM to represent and interpret programs), but at the same time can perform the same tasks
 using less code. The result is fewer instruction dispatches and smaller program size. Fewer instructions means less CPU cycles
 and therefore less battery consumption. Smaller program size means less memory consumed at runtime.

 Even though DEX isn’t Java bytecode, one key thing to understand is that javac and Java bytecode are still part of the equation. This is because Java source code written for an Android application is
 first compiled into Java class files. There are several excellent reasons for building on top of the Java compiler, instead
 of replacing it. The compiler does a lot of optimizations for us, and Java bytecode is a much simpler programming language
 to work with from a tooling perspective. The other nice thing about this design is that you can use anything that you have
 class files (or a jar) for. It’s not necessary to have the source code for a library to use it in an Android application.
 After the source code is compiled into class files, they’re then dexed (compiled) by the Android dx tool. We’ll touch more on tools, and dx, in section 1.6.

 In addition to using the streamlined DEX format, Dalvik also performs a host of other optimizations, such as utilizing shared
 memory to allow objects being used by more than one application. This results in less memory consumption and fewer garbage
 collector cycles (again saving computing time and therefore battery). To achieve this, Android starts a special Dalvik VM
 instance on system boot, called Zygote, which preloads data into the shared memory that will likely be used by all applications
 (such as the core libraries). The Zygote VM then forks a new Dalvik instance from itself for each new application that’s about
 to start. Each child process (which is also a separate Linux process, as we’ll discuss in the next section) can then access
 the shared data. An overview of the VM and Zygote application-spawning process is depicted in figure 1.8.

 Figure 1.8. An overview of the Android Java Dalvik VM and application initialization process through the initial Zygote VM

 [image:]

 Dalvik is therefore intentionally different from a standard Java VM. Dalvik has optimizations that were designed for better
 performance and resource usage on an embedded device. The Zygote Dalvik VM is also intended to make copies of itself for each
 application process. An Android device ultimately runs many virtual machines, many separate instances of Dalvik.

	

Dalvik and Just in Time Compilation (JIT)

 As of Android 2.2, Dalvik also includes a just-in-time (JIT) compiler. Using a JIT, the Dalvik VM can automatically recognize and optimize portions of code at runtime, and compile them into native
 code. This further helps improve the performance of code running on the Dalvik VM (code that would otherwise always have to
 be interpreted and run as bytecode).

	

Android provides a Java runtime that’s (almost) as powerful as on the desktop, and better yet, super-fast. Next, we’ll talk
 about the next part of the stack: the operating system the virtual machine runs on. In Android terms, that means a specialized
 version of Linux.

1.4. Linux, but not Linux Linux

 Underneath the Java source code, the bytecode, the application platform, and the Dalvik VM, Android is powered by a Linux-based
 operating system. Operating systems are complicated beasts, but you have nothing to fear. Even if you don’t know much about
 them, as a programmer you’ll be able to understand the core concepts involved.

 1.4.1. Is Android Linux?

 There is some disagreement about whether the Android operating system should be referred to as Linux, the free and open source operating system invented by Linus Torvalds in the 1990s. Truth is, it depends both on what you
 mean by Linux, and how picky you are. Traditionally, Linux refers to the Linux kernel, the OS core stripped of any additional
 applications. Often, when people refer to an OS as Linux, they mean a GNU/Linux distribution. A GNU/Linux distribution comprises
 the Linux kernel, the set of standard operating system applications from the GNU project (which aren’t exclusive to Linux),
 plus any additional applications specific to that distribution. Ubuntu, Red Hat, and OpenSUSE are examples of GNU/Linux distributions:
 they consist of a Linux kernel (often modified), the GNU applications, and other vendor-specific applications.

 That being said, Android is based on the Linux kernel. It has been forked from the 2.6.x mainline, yet it’s not a GNU/Linux distribution because it lacks many of the applications that all GNU/Linux distributions share (especially the
 X11 windowing system). In fact, Android doesn’t even contain the GNU standard C language library (glibc). Rather, it contains
 a custom, much slimmer implementation optimized for mobile devices called Bionic. This means that programs written for x86 GNU/Linux distributions won’t work on Android by default—if at all. Instead, they
 first have to be compiled against Android’s C library (Bionic).

	

Of Androids and Penguins

 When Android development began, the Android operating system kernel started out as a true branch of the 2.6.x Linux kernel
 tree. The Linux community had high hopes for the future of Linux, with a player like Google actively working and improving
 on the source code and contributing changes back upstream. But due to heavy modifications to the driver architecture (partially
 caused by Android’s custom security system), code contributions from the Android kernel branch were impossible to merge into
 the Linux kernel mainline. This upset the Linux community, because it locked out vendors who developed Android device drivers
 by keeping them from contributing code back to the Linux kernel. As a result of this, any code contributions made by Google
 to the Linux kernel project have been completely removed from kernel.org as of February 2010, and both projects are now being
 developed independently of each other.

	

Despite these sometimes pointed discussions, the Android OS always has been—and for the most part still is—Linux. Don’t let
 Linux’s prankish mascot Tux the penguin fool you. Linux is a serious player in the operating systems market and is deployed
 on millions of systems worldwide. Its flexible architecture, security, speed, and stability make it an excellent choice for
 many purposes.

 If you don’t have any experience with a Linux-based OS, again, don’t worry. You’ll rarely have to access the Android OS directly,
 because most tasks that involve the OS are either wrapped in a framework interface (when talking about application development),
 or can be performed by means of specialized tools provided with the platform SDK (when talking about user-level interaction
 such as accessing the command prompt). Still, we think it’s a good idea to know about certain aspects of a typical Linux system,
 because a few key points are vital to understanding how Android applications work and interact (and why the Open Handset Alliance,
 the consortium of companies behind Android, chose Linux to base the platform on). We’ll start with Linux’s file and device
 handling, continue with its security model, and finally have a brief look at its process model and how it affects application
 development.

 1.4.2. Storage devices and the file system

 In contrast to Microsoft Windows, storage devices such as hard-drives, memory cards, and so forth aren’t assigned letters
 on Linux. Instead, Linux uses a single directory tree, called root or /, where each directory (including the root directory itself) can be mapped to a storage device (or more precisely, to a partition
 on a storage device, but for simplicity we’ll ignore this subtlety hereafter).

	

A Note about Path Separators

 Unlike Windows, file and directory paths on Linux use forward slashes. For example, the file readme.txt in directory help,
 which is located under the root directory, would be addressed using the following absolute path:

 /help/readme.txt

 If you’re already in the root directory, you can address files using a relative path:

 help/readme.txt or ./help/readme.txt

 The period (.) in a Linux path always refers to the current directory.

	

A directory mapped to a storage device, is called a mount point. We furthermore say that a device is being mounted to some directory. You may have already come across the term mounting when plugging your Android phone into your computer.
 When you do this, you’ll see a notification asking whether you’d like to mount the phone’s SD card. This means that the SD
 card storage device will be bound to a directory through which you’ll be able to access its contents.

 The root directory must always be a mount point; it typically points to the boot partition. Other directories may refer to
 other devices, such as a memory card or a DVD drive. These devices can be mounted and unmounted at runtime, making this a
 flexible approach to managing multiple devices and access paths. Let’s look at the directory tree of an Android emulator instance,
 as seen in figure 1.9 (you’ll learn more about the emulator and the adb tool used to launch the shell in section 1.6).

 Figure 1.9. Emulator shell instance showing the top-level directory structure by using the ls command

 [image:]

 The # symbol on the second line of figure 1.9 indicates that this is a command line prompt for the superuser, or root user. This is the administrative account on a Linux system, and the default on the Android emulator. For normal users, this symbol
 would change to $. The ls / part is a command. ls is a GNU application which lists the contents of the directory or path given to it, in this case /, which is the root directory. Everything following that line, up to the next # symbol, is the output of the ls command.

 Usually, you don’t have to deal with most of the files and directories, but for some of these, it’s helpful to know where
 they are, and what they’re for. Table 1.2 lists some of the most important locations on the Android filesystem.

 Table 1.2. Important locations on the Android filesystem

	
 Location

 	
 Description

	/sdcard
 	This is the mount point for the Secure Digital (SD) mass storage card that you can stick in many Android devices. If you want
 to browse its contents, or copy files from/to it, this is where you’ll want to look.

	/data/app
 	This is where Android saves all installed applications, in their bundled form (as APK files).

	/data/data
 	This is where Android saves application specific data. If, for example, your application uses a preference file or bundles
 custom libraries, you can find them here.

When talking about files and directories, one question that inevitably arises is what about security and privacy? How can
 you prevent another user from accessing your private data? As it turns out, Linux uses a simple but effective permission system
 to handle that.

 1.4.3. User accounts and file permissions

 One thing Linux is popular for, especially in multiuser environments, is its user account management and—closely related—its
 permission and privacy model. Permissions in Linux are handled on a per-file basis. This may sound restrictive, but it isn’t,
 because we didn’t yet mention a rather curious aspect about Linux (in fact, any UNIX-based OS): everything in Linux is a file.
 Disks and processes are represented and controlled through files, applications and their settings are files, even directories
 are files. Hence, you can control access to almost anything by looking at one or more files. This is reflected in Linux’s
 security model; permissions are stored directly in the file-system. Every file permission mask controls three security realms:
 user, group, and others (corresponding to the file’s owner, the file’s user group, and everyone else, respectively). For each
 of these realms, you can set read, write, and execute permissions separately. A file could for instance be writable by its
 owner, but not by anyone else. Running the ls -l command on a file or directory, as seen in figure 1.10, shows the permissions, and a few other notable things.

 Figure 1.10. Annotated diagram of the output produced by the ls command

 [image:]

 There are several important parts to the output seen in figure 1.10. We’ll touch on each section from left to right. The leftmost letter in the permissions group indicates the type of file
 (in this case d for directory). The three groups of read-write-execute permissions (rwx) correspond to user, group, and others. A dash indicates the absence of a permission. Next is the user. In this case, the
 system user owns this resource. Following that is the group, cache. The last-updated timestamp is next, followed by the name of the resource. Here we have a directory named cache. In all, this output shows us that the user and group have full access to the directory and everyone else has no permissions
 at all—they can’t even list the directory’s contents.

 This system enables fine-grained control over resources (files, directories, and other resources that are treated as files).
 This has an important implication for Android. When a user installs an application on their Android phone, a new user account
 is created for the application, and only that account can access the files. The application is thereby sandboxed. It can’t
 access sensitive system files, files of other applications, or the user’s private data—it can only access its own files and
 data. This isn’t to say that Android applications can’t interoperate or access each other’s data, or that users and permissions
 can’t be explicitly controlled. All of those things are possible, and we’ll learn about them, but the default settings are
 one locked-down user per application.

 1.4.4. Processes and multitasking

 Android’s rigorous security model continues with system processes. Every Android application starts in its own Linux system
 process, isolating its state from any other process running at the same time—in particular from other applications. That’s
 because an application process on Linux (in fact, any modern OS) is only allowed to access the memory it’s been assigned,
 not the memory reserved by the OS or another application.

 We’d like to mention one more aspect briefly, and that’s multitasking. Even though all modern operating systems can execute
 many processes in parallel, you may be used to running only one application at a time on your phone. That limitation isn’t
 present on the Android platform; you can run as many applications in parallel as you like.

 Multitasking offers the huge benefit of not having to exit an application when launching another, improving the overall user
 experience. This is important on platforms where interaction between applications is part of the system’s overall design,
 which is the case for Android. Android balances the potentially significant cost of multiple applications running simultaneously
 in a limited environment with some design choices. Specifically Android gives preference to applications the user is currently
 interacting with, or has used most recently, and all applications are run in a stack. We’ll learn more about the lifecycle
 of Android applications, and processes and tasks, in chapter 3, but the platform manages the system resources by balancing the most relevant applications.

 That is all you need to know about Android’s Linux lineage. If you want to learn more about Linux itself, there are plenty
 of good books on that topic, but now that you’re equipped with the fundamentals of Linux’s file management, and have been
 introduced to its account, security, and process model, you’re good to venture into the Android native libraries that run
 on top of it.

1.5. More capabilities with native libraries

 We’re now going to look at the system libraries bundled with the Android platform. Welcome to the world of C/C++ and native
 libraries! These libraries are also exposed to the Android SDK via JNI, and therefore you don’t have to deal with native code
 (unless you want to), but it’s important to understand the relationships.

 Well cover these libraries briefly, to describe the Android middle tier. Our intention is to give you an idea of what’s possible
 with Android by looking at some of the technologies that ship with it. We’ll begin with the stuff that gets your attention
 first: audio and video from OpenCORE. Then we’ll check out the database storage option, SQLite. From there we’ll look at the
 browser rendering engine, WebKit. And finally we’ll wrap it up with a discussion of hardware sensors and the camera.

 1.5.1. Audio and video processing

 Android has rich support for multimedia, sporting advanced 2D/3D graphics rendering using SGL and OpenGL ES (which we’ll cover
 in chapter 11), as well as audio and video playback and recording in various formats. For the latter, Android builds on PacketVideo’s OpenCORE
 system, a sophisticated media framework optimized for mobile devices that supports a host of common file formats and codecs,
 including MP3, MIDI, Ogg Vorbis, PCM, and AAC for audio; and H.263, H.264, and MPEG-4 for video playback. The 3GPP container
 format is supported too.

 With these audio and video libraries, Android applications have access to a some serious multimedia capabilities. Beyond recoding
 video and playing 3D games, another important library Android provides is its SQLite data storage engine.

 1.5.2. Storage engine

 If you need to persist data from your application to the device, then Android has you covered. Android ships with SQLite,
 a fully transactional database engine based on the SQL-92 standard. SQLite is a relational storage engine. It stores data
 in tables (called relations in database theory), much like MySQL, Oracle, or DB2. But its architecture dramatically differs from conventional database
 management systems (DBMS) like the ones mentioned.

 First, SQLite doesn’t require a client-server architecture. With a client-server DBMS, a server process listens for incoming
 requests from one or more client processes, transferring data back and forth using interprocess communication (IPC—typically
 via sockets). This is required for a client to query a remote database, for example over the Internet. SQLite can be embedded
 directly with the application that uses it, communicating with it via simple function calls instead of complex IPC mechanisms.

 Second, SQLite is simpler in almost every aspect. It uses a much simpler approach to data storage, storing a database’s schema,
 indices, and tables in a single, cross-platform portable file. This makes database backups ridiculously simple; you copy a
 single file from A to B. It’s also self-contained and extremely small. SQLite is deployed as a single library file of about
 200-300 kilobytes (depending on the configuration at compile time), with only minimal dependencies to the C language library.
 It also requires literally zero configuration. SQLite doesn’t require configuration files or installation procedures; you
 drop it somewhere and use it. This makes it a perfect candidate for embedded systems such as mobile phones.

 Despite these simplifications, SQLite is powerful. Its storage engine supports ACID (atomic, consistent, isolated, durable)
 compliant transactions, and supports B-tree indexing for fast data access. It also has its limitations though. Writing to
 a database table will lock the entire database, resulting in reduced throughput where high concurrency is desired. That’s
 typically not the case in a mobile application, making this less of a drawback than it may sound. Much worse is SQLite’s limited
 support for ALTER TABLE statements, making schema migrations painful to handle. This can be a serious problem when deploying
 updates to your application. Persisting data using SQLite will be covered in chapter 6.

 Along with having data covered, Android also includes another library that’s of paramount importance in the modern web-enabled
 world, a full-blown browser rendering engine based on WebKit.

 1.5.3. Web integration

 Android comes equipped with WebKit, a complete HTML rendering engine also used in Apple’s Safari and Google’s Chrome. WebKit
 supports CSS Level 3 stylesheets (scoring an impressive 100 out of 100 points in the important Acid3 web standards test) and
 also sports a performant JavaScript engine (Google’s V8, which outperforms most other JavaScript VMs in many head-to-head
 comparisons). The Browser application that comes preinstalled with every Android handset is as powerful as any desktop browser
 out there. This is a key point. The browser engine Android provides isn’t stripped down. It’s not exactly the same as your
 desktop browser, but it’s close.

 Also, it’s important to understand that use of WebKit isn’t constrained to the Browser application. In fact, you can embed
 HTML backed by WebKit directly into your applications by using a UI widget component called a WebView (which we’ll see in several examples in the book). This will allow you to seamlessly integrate your applications with content
 from the World Wide Web.

 The next area of native library integration we need to visit is the impressive array of hardware drivers and support for sensors
 and cameras, and more.

 1.5.4. Sensors, camera, and more

 In addition to multimedia, database support, and web browsing capabilities, Android also comes with support for a wide array
 of sensors to scan the phone’s environment, plus support for built-in digital cameras. The latest version of Android has support
 for the following sensor types:

	
GPS location for accurate device position detection (network-based positioning using cell triangulation is also possible;
 see chapter 9)

 	Device orientation and movement detection through gyroscopes and accelerometers

 	Magnetic field detection

 	Ambient light and proximity detection

 	Temperature sensors

 	Pressure sensors

Note that not all sensor types are supported by all devices. Google’s first Android phone, the G1 (a.k.a. HTC Dream), only
 has GPS, accelerometer, magnetic field, and orientation sensors. Newer Android phones such as the Motorola Droid (called Milestone
 in Europe) also have light and proximity sensors. All Android phones at the time of this writing are equipped with a camera.
 We’ll leave it to your imagination how you can leverage these technologies to build truly innovative applications, but table 1.3 outlines a list of applications that already do.

 Table 1.3. List of notable applications that make innovative use of sensors on the Android platform

	
 Application name

 	
 Description

	Hoccer
 	Uses location and throw/catch gestures to exchange items like contacts, images, or files between two phones—data exchange
 has never been funnier!

	Locale
 	Manages your phone settings such as ringer volume based on location and time—automatically silence your phone when at home!

	Coin Flip
 	Uses flick gestures and gyroscopic positioning data to toss a virtual coin—let the bets come!

	Bubble
 	Uses orientation sensors to realize a virtual bubble level—never have skewed pictures on your wall again!

	The Android phone app
 	Uses the proximity sensor to determine whether you’re holding the phone to your ear—this will automatically turn off the display
 during calls to preserve battery!

	Compass
 	Uses magnetic field data to render a virtual compass—never get lost again!

	Barcode Scanner
 	Uses the camera to read 1D and 2D barcodes—never type lengthy product codes again!

There are more examples, but table 1.3 should give you an idea of what’s possible with sensors on Android. In total, it’s an impressive combination of hardware
 and software that makes for some unique and exciting user experiences.

 Now that we’ve covered the basic background of Android itself—from what it is and why it was created to application fundamentals,
 key platform components, and native libraries—it’s time to take a closer look at the day-to-day developer tools from the SDK
 and Eclipse ADT plugin.

1.6. Tools of the trade

 We know you’re eager to get into more Android application details, but software development is like a craft; a good carpenter
 must know their nails and timbers (the materials) as much as their drill and hammer (the tools). Now that we have a taste
 of basic development, and have learned a bit about the materials involved, we’ll take a closer look at the tools.

 Android provides many different tools for creating, maintaining, debugging, profiling, and more. Among them, the SDK provides
 libraries for accessing everything on a device from sending SMS to determining latitude and longitude, and a rich application
 framework that’s designed to make application development straightforward and keep boilerplate code to a minimum. Along with
 APIs, the SDK also includes a wide array of extremely useful command line programs. And, there’s a helpful GUI wrapper for
 both in the form of the Eclipse IDE and the ADT Eclipse plugin.

 1.6.1. Android-specific APIs

 The Android SDK provides about all of the core Java functionality you’re likely to need through the Apache Harmony–based core
 JVM libraries we discussed in section 1.3. The main java and javax packages, and general use third-party libraries for networking and XML parsing and the like are all available. But what about
 libraries for accessing Android-specific constructs? What about interacting with device hardware, working with audio and video,
 using local networking, and more? The answers to these questions take us to the next level of the Android SDK, the android package namespace.

 Within the Java realm, beyond the core libraries are the Android specific constructs in the android package. Want to play an MP3? Look at the android.media package. Need to get the user’s geolocation? Check out the android.location package. Maybe you need to connect to another Android device using Bluetooth? Take a look at the android.bluetooth package. Most phones have a camera, and you can access that using the Camera class in the android.hardware package (where you can also find other hardware-related APIs). Speaking of phone features, what about making phone calls
 or sending text messages? The android.telephony package exposes those traditional mobile phone features.

 Along with media and hardware support, another compelling feature of Android is its stunning graphics. This is obviously important
 for game developers, but what application doesn’t benefit from some gratuitous eye candy? The android.graphics package contains a lot of easy-to-use APIs for working with graphical primitives such as images, colors, and polygons. For
 more intense 3D graphics, the android.opengl package is where you’ll find Android’s implementation of the OpenGL ES library for 3D graphics.

	

What about Going Native?

 Like the vast majority of Android application code, the SDK’s core libraries and application framework are written in pure
 Java. But the SDK also has a C/C++ counterpart, the NDK. The NDK is an addon to the SDK and works in conjunction to it. With
 the NDK, you can write code directly in C or C++ and bypass Java and the Dalvik virtual machine altogether. As you might guess, this is usually done for performance reasons. The NDK includes all of the headers you’ll need
 to link to your native code, as well as tools for building your native libraries and embedding those libraries in an Android
 application.

	

The Java side of the Android SDK comes into full view when you combine the android APIs with the core Java libraries with key third-party components also present. The sum of these parts is a powerful foundation
 to build applications on top of. Beyond APIs, the Android SDK also provides some important command-line tools.

 1.6.2. SDK tools and components

 Speaking of tools, the SDK comes packed with them. Among them, it includes tools for compiling your application source code
 into the dex class files understood by the Dalvik VM, packaging your code into an APK file for use on an Android device, running an Android
 emulator, logging, live debugging, performance profiling, and more.

 In fact, we used some of these tools when we worked with the Eclipse ADT plugin in section 1.2 and created the Hello Android application. Here we’ll go into a bit more detail. The plugin wraps many of the tools and incorporates
 them automatically. This is a nice feature: you can manually use the tools we’re about to introduce, and they’re often extremely
 useful, but you don’t have to. We encourage you to get to know the tools and understand what they do, because doing so will
 give you a better understanding of Android overall. That knowledge will make it easier for you to identify and troubleshoot
 any issues, if you prefer you can stick to the Eclipse plugin.

 Before we delve in, we have to explain that Android tools come in two different varieties: core tools and platform-specific
 tools. One complexity of developing for Android is that you must deal with multiple supported versions of Android APIs or
 platforms. The SDK accounts for this, and you can install multiple platform components within the SDK. This is definitely
 better than having to install multiple SDKs!

 Once you install the SDK and a platform or two, you’ll find the tools in a couple of locations. The core SDK tools can be
 found in the <sdk>/tools directory (which can be added to your PATH to make the tools convenient to use from anywhere). Platform-specific tools can
 be found in the <sdk>/platform-tools directory. Table 1.4 lists some of the key tools and describes what they do.

 Table 1.4. Some of the key Android command-line tools

	
 Tool

 	
 Location

 	
 Description

	aapt
 	<sdk>/platform-tools
 	Android Asset Packaging Tool—Used to compile resources into binary assets, and to package archives (APK files).

	aidl
 	<sdk>/platform-tools
 	Android Interface Definition Language—Compiles .aidl files that are used to define interfaces for Android Inter-Process Communication
 (IPC).

	dx
 	<sdk>/platform-tools
 	Used to read .class bytecode and transform it into Android bytecode (which is stored in .dex files).

	adb
 	<sdk>/platform-tools
 	Android Debug Bridge—A client/server application used to interact with and manage devices and emulators. Provides many subcommands.

	android
 	<sdk>/tools
 	Used to create and delete Android Virtual Devices (emulator instances). Also used to create and update projects from the command
 line. Also used to manage SDK platform components.

	ddms
 	<sdk>/tools
 	Dalvik Debug Monitor Service—Used for debugging and inspecting running Android applications. Provides an interface to logging,
 memory statistics, thread statistics, state information, and more. Also used to send mock call, SMS, and location data to
 a device or emulator instance.

	draw9patch
 	<sdk>/tools
 	Used to draw Nine Patch images.

	emulator
 	<sdk>/tools
 	QEMU-based mobile device emulator.

	hierarchyviewer
 	<sdk>/tools
 	Used to view and optimize UI layout hierarchies.

	layoutopt
 	<sdk>/tools
 	Used to quickly analyze and recommend layout optimizations.

	mksdcard
 	<sdk>/tools
 	Used to create images to be used as external storage (SD card) by emulator instances.

	sqlite3
 	<sdk>/tools
 	Used to explore and interact with SQLite databases.

	traceview
 	<sdk>/tools
 	Used to analyze trace files, which are profiling snapshots of Android applications.

In addition to the overview we’ve provided here in table 1.4, which isn’t comprehensive, you can quickly see a description of each available tool and its usage instructions by invoking
 it from the command line with no arguments (or in some cases using --help as the sole argument). You can also find detailed documentation for each of these tools in the online SDK documentation.
 We’ll go over some of the more essential tools here to give you an idea of what tools fits what job (and we’ll revisit other
 relevant tools in other areas of the book). We’ll start with compiling code using the dx compiler tool.

 Android uses the Java programming language (most of the time), as we’ve discussed, but the binary files that are deployed
 to a device aren’t Java class files that run on the Java VM. Instead, as we noted in section 1.3, they’re .dex files that run on the Dalvik VM. Java developers are used to using the Java compiler, javac, to compile Java source code files into Java class files. Even though the Dalvik VM doesn’t use Java class files, we still
 need the Java compiler, as you can see from figure 1.11.

 Figure 1.11. The Android compiling and packaging process from source files, through compilation steps, and finally into an APK file

 [image:]

 The dx tool is a platform-specific tool, as you’d expect. It takes all of the class files in your application and produces a single
 .dex file. This file is the input to the last step in the larger process of packaging an application. Packaging is handled by
 the aapt tool we noted in section 1.2.6 when exploring the R file.

 The aapt tool handles all of the building and compiling of an application, but what about running and debugging? First, before you
 can run an application, as we noted in section 1.2, you need to create an Android virtual device (AVD) to run it on. This is an emulator image that runs a specific version
 of the Android OS and has specific hardware (mainly its visual display). To create an image, you can use another tool, the
 Android SDK and AVD Manager.

 The android tool is used to manage AVDs and to update/install platforms and update the SDK itself (remember, the SDK is modular). You
 can create a new AVD with the following command:

 android create avd -t <PLATFORM> -n <NAME>

 For example, android create avd -t android-7 -n avd21 would create an AVD called avd21 that targets the android-7 platform. The string android-7 identifies an Android platform (also called API level). To get a list of available platforms, you can use the command android list target. Typing android -help will display all of the many options with the android tool. If you don’t want to remember all of this, you can invoke the android tool with no arguments and it’ll launch a graphical interface that lets you execute any of the commands. Figure 1.12 shows the android GUI.

 Figure 1.12. The android tool interface, which shows the SDK and AVD manager

 [image:]

 As you can see from figure 1.12, the android tool GUI is also used to start an AVD—to launch an Android emulator. From the GUI, you can do this by selecting an AVD and
 clicking on the Start button in the right column. You can also start an emulator from the command line using another tool,
 the emulator tool:

 emulator -avd <AVD NAME>

 For example, emulator -avd avd21 would launch the AVD called avd21. There are many more options to the android tool, and to the emulators you can create with it. For complete details see the
 help output or the documentation. Figure 1.13 shows the emulator running an Android 2.1 image.

 Figure 1.13. The Android emulator running an AVD image configured to work with version 2.1 of the Android platform

 [image:]

 Now that you’ve seen the tools for creating and running an AVD, to query for available devices and get your application installed
 on an emulator you’ll use a tool that you’ll get to know well, the Android debug bridge, adb. The adb tool is your main access point into a running AVD. It has numerous capabilities, and you’re encouraged to explore them. As
 with other tools, you can get a list of the options by typing adb -help. To check for devices that are connected or running (which you’ve created and started) you can use the adb devices command. To install an application (after you’ve confirmed an emulator device is running), you can use this command:

 adb install <app>

 For example, adb install MyApp.apk will install MyApp.apk to a running emulator (this will only work if one emulator is running; if more than one are running,
 specify which emulator to run on). You can use the same adb command to install the application on a physical device as well. A handy way to direct adb commands back and forth between a single emulator and a single physical device is to use the -e and -d switches, respectively (adb -e install or adb -d install).

 You can also use the adb tool to connect to the device using the adb shell command and explore the virtual system. Remember, as we saw in section 1.4, the Android kernel is based on Linux and the shell will give you a command prompt. The shell itself has many other useful
 subcommands; again we encourage you to explore it. We’ll see the shell again in several other areas of the book where it’s
 relevant. Once you have an emulator running and your application is installed on it, another use for the adb tool is to trace log files or dump debug information.

 For a more detailed inspection of a device, you’ll need another indispensable SDK tool, the Dalvik Debug Monitor or ddms. This graphical application shows various types of diagnostic information from an emulator or device. Figure 1.14 shows the ddms tool in action.

 Figure 1.14. Using the Dalvik Debug Monitor (DDMS), which has many capabilities, to inspect the heap of a running application

OEBPS/01fig03.jpg

OEBPS/01fig04_alt.jpg

OEBPS/01fig02.jpg

OEBPS/008fig01.jpg

OEBPS/common-1.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/014fig01_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig06.jpg

OEBPS/cover.jpg

OEBPS/01fig10.jpg

OEBPS/01fig09_alt.jpg

OEBPS/01fig12_alt.jpg

OEBPS/01fig11_alt.jpg

OEBPS/01fig13_alt.jpg

OEBPS/01fig08.jpg

OEBPS/01fig07_alt.jpg

OEBPS/circle02.jpg

OEBPS/circle01.jpg

OEBPS/015fig01_alt.jpg

OEBPS/circle03.jpg

OEBPS/circle05.jpg

OEBPS/circle04.jpg

OEBPS/017fig01_alt.jpg

OEBPS/circle06.jpg

OEBPS/018fig01_alt.jpg

