
 [image: cover]

 Functional Programming in JavaScript

 Luis Atencio

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Marina Michaels
Technical development editor: Dean Iverson
Review editor: Aleksandar Dragosavljevic
Project editor: Tiffany Taylor
Copy editor: Tiffany Taylor
Proofreader: Katie Tennant
Technical proofreader: Daniel Lamb
Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

 ISBN: 9781617292828

 Printed in the United States of America

 12 13 14 15 16 – SP – 21 20 19 18

 To my wonderful wife, Ana. Thank you for your unconditional support and for being the source of passion and inspiration in my life.

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Think functionally

 Chapter 1. Becoming functional

 Chapter 2. Higher-order JavaScript

 2. Get functional

 Chapter 3. Few data structures, many operations

 Chapter 4. Toward modular, reusable code

 Chapter 5. Design patterns against complexity

 3. Enhancing your functional skills

 Chapter 6. Bulletproofing your code

 Chapter 7. Functional optimizations

 Chapter 8. Managing asynchronous events and data

 JavaScript libraries used in this book

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Think functionally

 Chapter 1. Becoming functional

 1.1. Can functional programming help?

 1.2. What is functional programming?

 1.2.1. Functional programming is declarative

 1.2.2. Pure functions and the problem with side effects

 1.2.3. Referential transparency and substitutability

 1.2.4. Preserving immutable data

 1.3. Benefits of functional programming

 1.3.1. Encouraging the decomposition of complex tasks

 1.3.2. Processing data using fluent chains

 1.3.3. Reacting to the complexity of asynchronous applications

 1.4. Summary

 Chapter 2. Higher-order JavaScript

 2.1. Why JavaScript?

 2.2. Functional vs. object-oriented programming

 2.2.1. Managing the state of JavaScript objects

 2.2.2. Treating objects as values

 2.2.3. Deep-freezing moving parts

 2.2.4. Navigating and modifying object graphs with lenses

 2.3. Functions

 2.3.1. Functions as first-class citizens

 2.3.2. Higher-order functions

 2.3.3. Types of function invocation

 2.3.4. Function methods

 2.4. Closures and scopes

 2.4.1. Problems with the global scope

 2.4.2. JavaScript’s function scope

 2.4.3. A pseudo-block scope

 2.4.4. Practical applications of closures

 2.5. Summary

 2. Get functional

 Chapter 3. Few data structures, many operations

 3.1. Understanding your application’s control flow

 3.2. Method chaining

 3.3. Function chaining

 3.3.1. Understanding lambda expressions

 3.3.2. Transforming data with _.map

 3.3.3. Gathering results with _.reduce

 3.3.4. Removing unwanted elements with _.filter

 3.4. Reasoning about your code

 3.4.1. Declarative and lazy function chains

 3.4.2. SQL-like data: functions as data

 3.5. Learning to think recursively

 3.5.1. What is recursion?

 3.5.2. Learning to think recursively

 3.5.3. Recursively defined data structures

 3.6. Summary

 Chapter 4. Toward modular, reusable code

 4.1. Method chains vs. function pipelines

 4.1.1. Chaining methods together

 4.1.2. Arranging functions in a pipeline

 4.2. Requirements for compatible functions

 4.2.1. Type-compatible functions

 4.2.2. Functions and arity: the case for tuples

 4.3. Curried function evaluation

 4.3.1. Emulating function factories

 4.3.2. Implementing reusable function templates

 4.4. Partial application and parameter binding

 4.4.1. Extending the core language

 4.4.2. Binding into delayed functions

 4.5. Composing function pipelines

 4.5.1. Understanding composition with HTML widgets

 4.5.2. Functional composition: separating description from evaluation

 4.5.3. Composition with functional libraries

 4.5.4. Coping with pure and impure code

 4.5.5. Introducing point-free programming

 4.6. Managing control flow with functional combinators

 4.6.1. Identity (I-combinator)

 4.6.2. Tap (K-combinator)

 4.6.3. Alternation (OR-combinator)

 4.6.4. Sequence (S-combinator)

 4.6.5. Fork (join) combinator

 4.7. Summary

 Chapter 5. Design patterns against complexity

 5.1. Shortfalls of imperative error handling

 5.1.1. Error handling with try-catch

 5.1.2. Reasons not to throw exceptions in functional programs

 5.1.3. Problems with null-checking

 5.2. Building a better solution: functors

 5.2.1. Wrapping unsafe values

 5.2.2. Functors explained

 5.3. Functional error handling using monads

 5.3.1. Monads: from control flow to data flow

 5.3.2. Error handling with Maybe and Either monads

 5.3.3. Interacting with external resources using the IO monad

 5.4. Monadic chains and compositions

 5.5. Summary

 3. Enhancing your functional skills

 Chapter 6. Bulletproofing your code

 6.1. Functional programming’s influence on unit tests

 6.2. Challenges of testing imperative programs

 6.2.1. Difficulty identifying and decomposing tasks

 6.2.2. Dependency on shared resources leads to inconsistent results

 6.2.3. Predefined order of execution

 6.3. Testing functional code

 6.3.1. Treating a function as a black box

 6.3.2. Focusing on business logic instead of control flow

 6.3.3. Separating the pure from the impure with monadic isolation

 6.3.4. Mocking external dependencies

 6.4. Capturing specifications with property-based testing

 6.5. Measuring effectiveness through code coverage

 6.5.1. Measuring the effectiveness of testing functional code

 6.5.2. Measuring the complexity of functional code

 6.6. Summary

 Chapter 7. Functional optimizations

 7.1. Under the hood of function execution

 7.1.1. Currying and the function context stack

 7.1.2. Challenges of recursive code

 7.2. Deferring execution using lazy evaluation

 7.2.1. Avoiding computations with the alternation functional combinator

 7.2.2. Taking advantage of shortcut fusion

 7.3. Implementing a call-when-needed strategy

 7.3.1. Understanding memoization

 7.3.2. Memoizing computationally intensive functions

 7.3.3. Taking advantage of currying and memoization

 7.3.4. Decomposing to maximize memoization

 7.3.5. Applying memoization to recursive calls

 7.4. Recursion and tail-call optimization (TCO)

 7.4.1. Converting non-tail calls to tail calls

 7.5. Summary

 Chapter 8. Managing asynchronous events and data

 8.1. Challenges of asynchronous code

 8.1.1. Creating temporal dependencies among functions

 8.1.2. Falling into a callback pyramid

 8.1.3. Using continuation-passing style

 8.2. First-class asynchronous behavior with promises

 8.2.1. Future method chains

 8.2.2. Composing synchronous and asynchronous behavior

 8.3. Lazy data generation

 8.3.1. Generators and recursion

 8.3.2. The Iterator protocol

 8.4. Functional and reactive programming with RxJS

 8.4.1. Data as observable sequences

 8.4.2. Functional and reactive programming

 8.4.3. RxJS and promises

 8.5. Summary

 JavaScript libraries used in this book

 Functional JavaScript libraries

 Lodash

 Ramda

 RxJS

 Other libraries used

 Log4js

 QUnit

 Sinon

 Blanket

 JSCheck

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I was in college and graduate school, my class schedule was focused on object-oriented design as the sole methodology for planning and architecting software systems. And, like many developers, I began my career writing object-oriented code and building entire systems based on this paradigm.

 Throughout my development career, I’ve learned and followed programming languages closely, not only because I want to learn something cool, but also because I’m intrigued by the design decisions and philosophy that each language fosters. Just as a new language provides a different perspective on how to approach software problems, a new paradigm can achieve the same effect. Although the object-oriented approach continues to be the modus operandi of software design, learning about functional programming will open your eyes to new techniques that you can use on their own or in parallel with any other design paradigm that fits your application.

 Functional programming has been around for years, but to me it was only a minor distraction. I had heard and read about the benefits of Haskell, Lisp, Scheme, and, more recently, Scala, Clojure, and F# in terms of expressiveness and being highly productive platforms; even Java, which has traditionally been known as a verbose language, has functional artifacts that make code more succinct. Eventually, the minor distraction became impossible to avoid. And guess what? JavaScript, that object-oriented language everyone uses, can be turned around 180 degrees and used functionally. It turns out that this is the most powerful and effective way to use JavaScript. It took me a long time to discover this, and in this book I want to make you aware of it so you don’t have go on wondering why your JavaScript code is becoming so complex.

 Throughout my journey as a developer, I’ve learned how to use functional programming principles to create code that is modular, expressive, robust, easy to reason about, and simple to test. Without a doubt, this has changed me as a software engineer, so I wanted to capture and jot down my experiences somehow—perhaps in a book. Naturally, I approached Manning, with the idea of writing a functional programming book using the Dart programming language. I was playing around with Dart at the time and thought that combining it with my functional background would be a fun, unexplored, uncharted territory. I wrote a proposal, and a week later I had an interview. During the interview, I learned that Manning was seeking a person to write a book about functional programming in JavaScript. Because JavaScript is a language I’m very much obsessed with, to say the least, I was thrilled to jump into this opportunity. By writing this book, I hope to help you develop the same skills and take your development in a new direction.

Acknowledgments

 Writing a book is not a trivial undertaking, and the tireless collaboration of many people with a variety of talents brought to life the manuscript you’re holding (or reading onscreen).

 The staff at Manning were incredible and instrumental in obtaining the level of quality we all hoped for, and I thank all of them from the bottom of my heart. Without them, this book would not have been possible. Special thanks to Marjan Bace and Mike Stephens for believing in the idea of this book and in me as an author; to Marina Michaels, for giving me a map and a flashlight to navigate this maze of book-writing challenges; to Susan Conant, for bringing me up to speed and teaching me my first lessons about what it means to write a technical book; to Bert Bates, for giving me my initial sparks of creativity and for his amazing insights on how to teach programming; and to everyone on the editorial and production teams, including Mary Piergies, Janet Vail, Kevin Sullivan, Tiffany Taylor, Katie Tennant, Dennis Dalinnik, and many others who worked behind the scenes.

 I can’t thank enough the amazing group of technical peer reviewers led by Aleksandar Dragosavljevic—Amy Teng, Andrew Meredith, Becky Huett, Daniel Lamb, David Barkol, Ed Griebel, Efran Cobisi, Ezra Simeloff, John Shea, Ken Fukuyama, Peter Edwards, Subhasis Ghosh, Tanner Slayton, Thorsten Szutzkus, Wilfredo Manrique, William E. Wheeler, and Yiling Lu—and the talented forum contributors. Their contributions included catching technical mistakes, errors in terminology, and typos, and making topic suggestions. Each pass through the review process and each piece of feedback implemented through the forum topics shaped and molded the manuscript.

 On the technical side, special thanks to Dean Iverson, who served as the book’s technical editor; Daniel Lamb, who served as the book’s technical proofreader; and Brian Hanafee, for his thorough and in-depth evaluation of the entire book. They are the best technical editors I could have hoped for.

 Last but not least, I thank my wife for always supporting me, and my family for pushing me to become better every day and not asking why I didn’t call as often to check in while I was writing this book. Also, thanks go to my colleagues at work for purchasing early releases of the chapters. I am grateful to have the pleasure of working alongside such wonderful people.

About this Book

 Complexity is a huge beast to tame, and we’ll never get rid of it entirely; it will always be an aspect of software development. I’ve spent countless hours and immeasurable brainpower trying to understand what a particular piece of code does. The secret is to control the complexity so it doesn’t grow in proportion to the size of your code base—and functional programming can help. We’re writing more JavaScript than ever before. We’ve gone from building small client-side event-handling routines, to heavy client-side architectures, to complete isomorphic (server + client) JavaScript applications. Functional programming isn’t a tool—it’s a way of thinking that can apply equally to any of these environments.

 This book is designed to teach you how to apply functional programming techniques to your code using ECMAScript 6 JavaScript. The material is presented at a gradual, steady pace and covers both theoretical and practical aspects of functional programming. I provide additional information for advanced readers, to help you get deeper into some of the harder concepts.

Roadmap

 This book has eight chapters and is divided into three parts that guide you from fundamental building blocks to more-advanced and practical applications of functional programming.

 Part 1, “Think functionally,” paints a high-level landscape of functional JavaScript. It also discusses core aspects of using JavaScript functionally and thinking like a functional programmer:

 	
Chapter 1 introduces some of the core functional concepts that are explained in later chapters and prepares you to make the functional leap. It introduces the main pillars of functional programming, including pure functions, side effects, and declarative programming.

 	
Chapter 2 establishes a level playing field for beginning and intermediate JavaScript developers and acts as a refresher for more-advanced readers. In addition, it’s sprinkled with basic functional programming concepts to prepare you for the techniques discussed in part 2.

 Part 2, “Get functional,” focuses on core functional programming techniques, including function chains, currying, composition, monads, and more:

 	
Chapter 3 introduces function chains and explores writing programs as combinations of recursion and high-order functions like map, filter, and reduce. It teaches these concepts using the Lodash.js framework.

 	
Chapter 4 covers the popular techniques of currying and composition, which increase the modularity of your code. Using a functional framework such as Ramda.js, composition is the glue that orchestrates your entire JavaScript solution.

 	
Chapter 5 provides a deep dive into more-theoretical areas of functional programming, with a comprehensive and gradual discussion of functors and monads in the context of error handling.

 Part 3, “Enhancing your functional skills,” discusses the practical benefits of using functional programming to tackle real-world challenges:

 	
Chapter 6 reveals the inherent ease with which functional programs can be unit tested. In addition, it introduces a rigorous, automated testing mode called property-based testing.

 	
Chapter 7 takes a look at JavaScript’s memory model, which is used to support the evaluation of functions. This chapter also discusses techniques that help optimize the execution time of functional JavaScript applications.

 	
Chapter 8 introduces some of the main challenges JavaScript developers face on a day-to-day basis when dealing with event-driven and asynchronous behavior. It discusses how functional programming can provide elegant solutions to reduce the complexity of existing imperative solutions with a related paradigm known as reactive programming, implemented using RxJS.

Who should read this book

 Functional Programming in JavaScript is written for JavaScript developers with at least a basic understanding of object-oriented software and a general awareness of the challenges of modern web applications. Because JavaScript is such a ubiquitous language, if you want an introduction to functional programming and prefer a familiar syntax, you can take full advantage of this book instead of learning Haskell. (If you want to ease your way into Haskell, this book isn’t the best resource, because each language has its own idiosyncrasies that are best understood by learning it directly.)

 The book will help beginning and intermediate programmers heighten their JavaScript skills with higher-order functions, closures, function currying, composition, as well as new JavaScript ES6 features like lambda expressions, iterators, generators, and promises. Advanced developers will enjoy the comprehensive coverage of monads and reactive programming as well, which can help you implement innovative ways of tackling the arduous task of dealing with event-driven and asynchronous code, taking full advantage of the JavaScript platform.

How to use this book

 If you’re a beginner or intermediate JavaScript developer and functional programming is new to you, begin with chapter 1. If you’re a strong JavaScript programmer, you can skim through chapter 2 and move quickly into chapter 3, which begins with function chains and overall functional design.

 More-advanced users of functional JavaScript typically understand pure functions, currying, and composition, so you may skim chapter 4 and move into functors and monads in chapter 5.

Examples and source code

 The code examples in this book use ECMAScript 6 JavaScript, which can run equally well on either the server (Node.js) or the client. Some examples show I/O and browser DOM APIs, but without regard for browser incompatibilities. I assume you have experience interacting at a basic level with HTML pages and the console. No specific browser-based JavaScript is used.

 The book makes heavy use of functional JavaScript libraries like Lodash.js, Ramda.js, and others. You can find documentation and installation information in the appendix.

 This book contains extensive code listings that showcase functional techniques and, where appropriate, compare imperative versus functional designs. You can find all the code samples at the publisher’s website, https://www.manning.com/books/functional-programming-in-javascript, and on GitHub at https://github.com/luijar/functional-programming-js.

Typographical conventions

 The following conventions are used throughout the book:

 	
Italic typeface is used to reference important terms.

 	
Courier typeface is used to denote code listings, as well as elements and attributes, methods names, classes, functions, and other programming artifacts.

 	Code annotations accompany some of the source code listings, highlighting important concepts.

About the author

 Luis Atencio (@luijar) is a staff software engineer for Citrix Systems in Ft. Lauderdale, Florida. He has a B.S. and an M.S. in Computer Science and now works full-time developing and architecting applications using JavaScript, Java, and PHP platforms. Luis is very involved in the community and has presented frequently at local meetups and conferences. He blogs about software engineering at luisatencio.net, writes articles for magazines and DZone, and is also the coauthor of RxJS in Action (forthcoming from Manning in 2017).

Author Online

 Purchase of Functional Programming in JavaScript includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to https://www.manning.com/books/functional-programming-in-javascript. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to Author Online remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Part 1. Think functionally

 It’s highly probable that most of your experience building professional applications has been with an object-oriented language. You may have heard or read about functional programming in other books, blogs, forums, and magazine articles, but you’ve probably never written any functional code. Don’t worry; this is to be expected. I’ve done most of my development in an object-oriented environment as well. Writing functional code isn’t difficult, but learning to think functionally and letting go of old habits is. The primary goal of part 1 of this book is to lay the foundation for and prepare your mind to embrace the functional techniques discussed in parts 2 and 3.

 Chapter 1 discusses what functional programming is and the mindset you need to embrace it; it also introduces some of the most important techniques based on pure functions, immutability, side effects, and referential transparency. These form the backbone of all functional code and will help you transition into functional more easily. Also, these will be the guiding principles that set the stage for many of the design decisions we make in the following chapters.

 Chapter 2 provides a first view of JavaScript as a functional language. Because it’s so ubiquitous and mainstream, it’s an ideal language with which to teach functional programming. If you aren’t a strong JavaScript developer, this chapter will bring you up to speed with everything you need to know to understand functional JavaScript, such as higher-order functions, closures, and scoping rules.

 Chapter 1. Becoming functional

 This chapter covers

 	Thinking in functional terms

 	Learning the what and why of functional programming

 	Understanding the principles of immutability and pure functions

 	Functional programming techniques and their impact on overall design

 OO makes code understandable by encapsulating moving parts.

 FP makes code understandable by minimizing moving parts.

 Michael Feathers (Twitter)

 If you’re reading this book, chances are you’re a JavaScript developer with a working knowledge of object-oriented or structured design, and you’re curious about functional programming. Perhaps you’ve tried to learn it before and haven’t been able to apply it successfully at work or on your personal projects. In either case, your main goal is to advance your development skills and improve the quality of your code. This book can help you accomplish that.

 The rapid pace of web platforms, the evolution of browsers, and—most important—the demands of end users have all had a profound effect on the way we design web applications today. Users demand that web applications feel more like a native desktop or a mobile app with rich and responsive widgets. Naturally, these demands force JavaScript developers to think more broadly about the solution space and to adopt adequate programming paradigms and best practices that provide the best possible solutions.

 As developers, we gravitate toward frameworks that help us create extensible and clean application architectures. Yet the complexity of our codebase still gets out of control, and we’re challenged to reexamine the basic design principles of our code. Also, the web of today is radically different than it was years ago for JavaScript developers, because we can do many things now that weren’t technically feasible before. We can choose to write large server-side applications with Node.js or push the bulk of the business logic onto the client, leaving a thin server behind. In either case, we need to interact with storage technology, spawn asynchronous processes, handle events, and much more.

 Object-oriented design helps solve part of the problem; but because JavaScript is such a dynamic language with lots of shared state, it isn’t long before we accumulate enough complexity to make our code unwieldy and hard to maintain. Object-oriented design certainly moves the needle in the right direction, but we need more. Perhaps you’ve heard the term reactive programming in recent years. This programming paradigm facilitates working with data flows and propagation of change. In JavaScript, this is extremely important when dealing with asynchronous or event-based code. Overall, what we need is a programming paradigm that encourages us to think carefully about our data and the functions that interact with it. When thinking about an application’s design, ask yourself the following questions in terms of these design principles:

 	
Extensibility— Do I constantly refactor my code to support additional functionality?

 	
Easy to modularize— If I change one file, is another file affected?

 	
Reusability— Is there a lot of duplication?

 	
Testability— Do I struggle to unit test my functions?

 	
Easy to reason about— Is my code unstructured and hard to follow?

 If you answer “Yes” or “I don’t know” to any of these questions, then you’ve picked up the right book as a guide on the path to productivity. Functional programming (FP) is the programming paradigm you need. Although it’s based on simple concepts, FP requires a shift in the way you think about problems. FP isn’t a new tool or an API, but a different approach to problem solving that will become intuitive once you understand the basic principles.

 In this chapter, I define what functional programming is and tell you how and why it’s useful and important. I introduce the core principles of immutability and pure functions and talk about FP techniques and how those techniques affect your approach to designing programs. These techniques allow you to easily pick up reactive programming and use it to solve complex JavaScript tasks. But before we can get into all this, you need to learn why thinking functionally is important and how it can help you tackle the complexities of JavaScript programs.

1.1. Can functional programming help?

 Learning functional programming has never been as important as it is today. The development community and major software companies are starting to realize the benefits of using FP techniques to power their business applications. Nowadays, most major programming languages (Scala, Java 8, F#, Python, JavaScript, and many more) provide either native or API-based functional support. Hence, FP skills are in high demand now and will continue to be in the years to come.

 In the context of JavaScript, an FP mindset can be used to shape the incredibly expressive nature of the language and help you write code that is clean, modular, testable, and succinct so that you can be more productive at work. For many years, we’ve neglected the fact that JavaScript can be written more effectively in a functional style. This neglect is partly due to an overall misunderstanding of the JavaScript language, and also due to JavaScript’s lack of native constructs to properly manage state; it’s a dynamic platform that places the burden of managing this state on us (the ones responsible for introducing bugs into our applications). This may work well for small scripts, but it becomes harder to control as your code base grows. In a way, I think FP protects you from JavaScript itself. I discuss this further in chapter 2.

 Writing functional JavaScript code addresses most of these concerns. Using a set of proven techniques and practices based on pure functions, you can write code that is easy to reason about in the face of increasing complexity. Writing JavaScript functionally is a two-for-one deal, because you not only improve the quality of your entire application, but also gain more proficiency in and a better understanding of the JavaScript language.

 Because functional programming isn’t a framework or a tool, but a way of writing code, thinking functionally is radically different from thinking in object-oriented terms. But how do you become functional? How do you begin to think functionally? Functional programming is intuitive once you’ve grasped its essence. Unlearning old habits is the hardest part and can be a huge paradigm shift for most people who come from an object-oriented background. Before you can learn to think functionally, first you must learn what FP is.

1.2. What is functional programming?

 In simple terms, functional programming is a software development style that places a major emphasis on the use of functions. You might say, “Well, I already use functions on a day-to-day basis at work; what’s the difference?” As I mentioned earlier, FP requires you to think a bit differently about how to approach the tasks you’re facing. It’s not a matter of just applying functions to come up with a result; the goal, rather, is to abstract control flows and operations on data with functions in order to avoid side effects and reduce mutation of state in your application. I know this sounds like a mouthful, but I’ll visit each of these terms further and build on them throughout the book.

 Normally, FP books start with computing Fibonacci numbers, but I’d rather start with a simple JavaScript program that displays text on an HTML page. What better text to print than the good ol’ “Hello World”:

 document.querySelector('#msg').innerHTML = '<h1>Hello World</h1>';

 Note

 I mentioned earlier that because functional programming isn’t a specific tool, but a way of writing code, you can apply it to write client-side (browser-based) as well as server-side applications (Node.js). Opening the browser and typing in some code is probably the easiest way to get JavaScript up and running, and that’s all you’ll need for this book.

 This program is simple, but because everything is hardcoded, you can’t use it to display messages dynamically. Say you wanted to change the formatting, the content, or perhaps the target element; you’d need to rewrite this entire expression. Maybe you decide to wrap this code with a function and make the change points parameters, so you can write it once and use it with any configuration:

 function printMessage(elementId, format, message) {
 document.querySelector(`#${elementId}`).innerHTML =
 `<${format}>${message}</${format}>`;
}

printMessage('msg', 'h1','Hello World');

 An improvement, indeed, but still not a completely reusable piece of code. Suppose you want to write to a file instead of an HTML page. You need to take the simple thought process of creating parameterized functions to a different level, where parameters aren’t just scalar values but can also be functions themselves that provide additional functionality. Functional programming is a bit like using functions on steroids, because your sole objective is to evaluate and combine lots of functions with others to achieve greater behavior. I’ll fast-forward a bit and show you a sneak peek at this same program using a functional approach.

 Listing 1.1. Functional printMessage

 var printMessage = run(addToDom('msg'), h1, echo);

printMessage('Hello World');

 Without a doubt, this looks radically different than the original. For starters, h1 isn’t a scalar anymore; it’s a function just like addToDom and echo. Visually, it feels as though you’re creating a function from smaller functions.

 There’s a reason for this madness. Listing 1.1 captures the process of decomposing a program into smaller pieces that are more reusable, more reliable, and easier to understand, and then combining them to form an entire program that is easier to reason about as a whole. Every functional program follows this fundamental principle. For the time being, you’ll use a magical function, run,[1] to invoke a series of functions sequentially, such as addToDom, h1, and echo. I’ll explain run in detail later. Behind the scenes, it basically links each function in a chain-like manner by passing the return value of one as input to the next. In this case, the string “Hello World” returned from echo is passed into h1, and the result is finally passed into addToDom.

 1

 For more details on this provisional run function, visit http://mng.bz/nmax.

 Why does the functional solution look this way? I like to think of it as basically parameterizing your code so that you can easily change it in a noninvasive manner—like adjusting an algorithm’s initial conditions. With this foundation laid, you can now easily augment printMessage to repeat the message twice, use an h2 header, and write to the console instead of the DOM, all without having to rewrite any of the internal logic.

 Listing 1.2. Extending printMessage

 var printMessage = run(console.log, repeat(2), h2, echo);

printMessage('Get Functional');

 This visually distinct approach isn’t accidental. When comparing the functional to the nonfunctional solution, you may have noticed that there’s a radical difference in style. Both print the same output, yet they look very different. This is due to FP’s inherent declarative mode of development. In order to fully understand functional programming, first you must learn the fundamental concepts on which it’s based:

 	Declarative programming

 	Pure functions

 	Referential transparency

 	Immutability

 1.2.1. Functional programming is declarative

 Functional programming falls under the umbrella of declarative programming paradigms: it’s a paradigm that expresses a set of operations without revealing how they’re implemented or how data flows through them. The more popular models used today, though, are imperative or procedural, and are supported in most structured and object-oriented languages like Java, C#, C++, and others. Imperative programming treats a computer program as merely a sequence of top-to-bottom statements that changes the state of the system in order to compute a result.

 Let’s look at a simple imperative example. Suppose you need to square all the numbers in an array. An imperative program follows these steps:

 var array = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
for(let i = 0; i < array.length; i++) {
 array[i] = Math.pow(array[i], 2);
}
array; //-> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

 Imperative programming tells the computer, in great detail, how to perform a certain task (looping through and applying the square formula to each number, in this case). This is the most common way of writing this code and will most likely be your first approach to tackling this problem.

 Declarative programming, on the other hand, separates program description from evaluation. It focuses on the use of expressions to describe what the logic of a program is without necessarily specifying its control flow or state changes. An example of declarative programming is found in SQL statements. SQL queries are composed of statements that describe what the outcome of a query should look like, abstracting the internal mechanism for data retrieval. In chapter 3, I show an example of using a SQL-like overlay over your functional code to give meaning to both your application and the data that runs through it.

 Shifting to a functional approach to tackle this same task, you only need to be concerned with applying the right behavior at each element and cede control of looping to other parts of the system. You can let Array.map() do most of the heavy lifting:

 [image:]

 Compared with the previous example, you see that this code frees you from the responsibility of properly managing a loop counter and array index access; put simply, the more code you have, the more places there are for bugs to occur. Also, standard loops aren’t reusable artifacts unless they’re abstracted with functions. And that’s precisely what we’ll do. In chapter 3, I demonstrate how to remove manual loops completely from your code in favor of first-class, higher-order functions like map, reduce, and filter, which accept functions as parameters so that your code is more reusable, extensible, and declarative. This is what I did with the magical run function in listings 1.1 and 1.2.

 Abstracting loops with functions lets you take advantage of lambda expressions or arrow functions, introduced in ES6 JavaScript. Lambda expressions provide a succinct alternative to anonymous functions that can be passed in as a function argument, in the spirit of writing less:

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].map(num => Math.pow(num, 2));

//-> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

 	

 Translating lambda notation to regular function notation

 Lambda expressions provide an enormous syntactical advantage over regular function notations because they reduce the structure of a function call down to the most important pieces. This ES6 lambda expression

 num => Math.pow(num, 2)

 is equivalent to the following function:

 function(num) {
 return Math.pow(num, 2);
}

OEBPS/Images/common02.jpg

OEBPS/Images/008fig01_alt.jpg

OEBPS/Images/logo.jpg

OEBPS/Images/common01.jpg

OEBPS/Images/cover.jpg

