

 [image: manning]

 React in Depth

 Morten Barklund

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road        

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Frances Lefkowitz
 Review editor: Kishor Rit
 Production editor: Kathy Rossland
 Copy editor: Keir Simpson
 Proofreader: Katie Tennant
 Technical proofreader: Ninoslav Čerkez
 Typesetter and cover designer: Marija Tudor

 ISBN 9781633437340

 Printed in the United States of America

 dedication

 Dedicated to my extraordinary ground crew: my wife and son.

 “Behind every great pilot is a great ground crew.”

 —Unknown

 contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Developer’s guide to the React Ecosystem

 1.1 Navigating the React mastery journey

 1.2 Why a book on React mastery?

 1.3 How does this book teach React mastery?

 1.4 The React ecosystem

 1.4.1 What’s in the ecosystem?

 1.4.2 Navigating the ecosystem

 1.5 The technology stack

 1.5.1 Why do we talk about a tech stack?

 1.5.2 Viewing the anatomy of a React stack

 1.5.3 Joining a project

 1.5.4 Creating a stack from scratch

 2 Advanced component patterns

 2.1 The Provider pattern

 2.1.1 Inventing a provider

 2.1.2 Creating a dedicated provider component

 2.1.3 Avoiding rendering everything

 2.1.4 Creating beautifully typed selectable contexts with the recontextual tool

 2.1.5 How useful is the Provider pattern?

 2.2 The Composite pattern

 2.2.1 The simple beginnings

 2.2.2 Complexity increases

 2.2.3 The ideal JSX

 2.2.4 Implementation with composite components

 2.2.5 How useful is the Composite pattern?

 2.3 The Summary pattern

 2.3.1 A single custom hook

 2.3.2 Better results with more complexity

 2.3.3 Multiple hooks required

 2.3.4 How useful is the Summary pattern?

 3 Optimizing React performance

 3.1 Understanding React rendering

 3.1.1 Changing properties is irrelevant

 3.1.2 Repeated function calls in Strict Mode while in development

 3.2 Optimizing performance by minimizing re-rendering

 3.2.1 Memoize a component

 3.2.2 Memoize part of a component

 3.2.3 Memoize properties to memoized components

 3.2.4 Memoization hooks in detail

 3.3 Understanding dependency arrays

 3.3.1 What are dependencies?

 3.3.2 Run on every render by skipping the dependency array

 3.3.3 Skip stable variables from dependencies

 3.3.4 Get help maintaining dependency arrays

 4 Better code maintenance with developer tooling

 4.1 Reducing errors with linting

 4.1.1 Problems solved by ESLint

 4.1.2 ESLint configurations

 4.1.3 How to get started using ESLint

 4.2 Increasing productivity with formatters

 4.2.1 Problems solved by Prettier

 4.2.2 Nonstandard rules with Prettier configuration

 4.2.3 How to start using Prettier

 4.2.4 Alternative formatters

 4.3 Making components more robust with property constraints

 4.3.1 How to apply property types

 4.3.2 Drawbacks of using property types

 4.3.3 Default property values

 4.3.4 How to get started using property types

 4.4 Debugging applications with React Developer Tools

 4.4.1 Problems solved by debugging

 4.4.2 How to get started using React Developer Tools

 4.4.3 Using the components inspector in React Developer Tools

 4.4.4 Using the profiler in React Developer Tools

 4.4.5 Alternatives and other tools

 5 TypeScript: Next-level JavaScript

 5.1 The importance of TypeScript

 5.2 Introduction to TypeScript

 5.2.1 TypeScript files and React

 5.2.2 Static types

 5.2.3 Employee display

 5.2.4 Optional properties

 5.3 Advanced TypeScript with generics

 5.3.1 Understanding generic types

 5.3.2 Typing children

 5.3.3 Extending interfaces

 5.3.4 Spreading props in general

 5.3.5 Restricting and loosening types

 5.3.6 Using optional and required properties

 5.3.7 Using either/or properties

 5.3.8 Forwarding refs

 6 Mastering TypeScript with React

 6.1 Using React hooks in TypeScript

 6.1.1 Typing useState

 6.1.2 Typing useRef

 6.1.3 Typing contexts and useContext

 6.1.4 Typing effects

 6.1.5 Typing reducers

 6.1.6 Typing memoization hooks

 6.1.7 Typing the remaining hooks

 6.2 Generic pagination: An example

 6.2.1 Forwarding a reference to a generic component

 6.2.2 Memoizing a generic component

 6.3 Drawbacks of using TypeScript

 6.4 TypeScript resources

 7 CSS in JavaScript

 7.1 Styling with concerns

 7.1.1 CSS language features

 7.1.2 Developer experience

 7.1.3 Web application development

 7.1.4 Why not inline styles?

 7.1.5 What about existing UI libraries?

 7.2 The example button application

 7.3 Method 1: CSS files and class names

 7.3.1 How class names work

 7.3.2 Setup for class name project

 7.3.3 Implementation with class names

 7.3.4 Strengths of the class names approach

 7.3.5 Weaknesses of the class names approach

 7.3.6 When (not) to use CSS files and class names

 7.4 Method 2: CSS Modules

 7.4.1 How CSS Modules work

 7.4.2 Setup for CSS Modules project

 7.4.3 Source code with CSS Modules

 7.4.4 Strengths of CSS Modules

 7.4.5 Weaknesses of CSS Modules

 7.4.6 When (not) to use CSS Modules

 7.5 Method 3: Styled-components

 7.5.1 How styled-components works

 7.5.2 Setup for styled-components project

 7.5.3 Source code with styled-components

 7.5.4 Strengths of styled-components

 7.5.5 Weaknesses of styled-components

 7.5.6 When (not) to use styled-components

 7.6 One problem, infinite solutions

 8 Data management in React

 8.1 Creating a goal-tracking application

 8.2 Building the application architecture

 8.3 Managing data in pure React

 8.3.1 Context

 8.3.2 Source code

 8.4 Reducing data state

 8.4.1 Immer: Writing immutable code mutably

 8.4.2 Source code

 8.5 Scaling data management with Redux Toolkit

 8.5.1 How does Redux work?

 8.5.2 Source code

 8.6 Simplifying data management with zustand

 8.6.1 Zustand

 8.6.2 Source code

 8.7 Rethinking flow and data with XState

 8.7.1 A state machine for doing things

 8.7.2 Source code

 8.8 Data management recap

 9 Remote data and reactive caching

 9.1 Server complexity

 9.2 Adding a remote server to do goal tracking

 9.2.1 Adding signup and login

 9.2.2 Designing an API

 9.2.3 Rewriting the data layer

 9.2.4 Adding a loading indicator

 9.2.5 Putting everything together

 9.2.6 Evaluating the solution

 9.3 Migrating to TanStack Query

 9.3.1 TanStack Query architecture

 9.3.2 Queries and mutations

 9.3.3 Implementation

 9.3.4 Bonus side effects

 9.4 Reactive caching with TanStack Query

 9.4.1 Updating cache from a mutation

 9.4.2 Updating the cache optimistically

 9.4.3 Using partial data where available

 9.4.4 Hiding the loader if some data is available

 9.4.5 Putting it all together

 10 Unit-testing React

 10.1 Testing a static component

 10.1.1 Running tests

 10.1.2 Test file location

 10.1.3 Test resilience

 10.2 Testing interactive components

 10.2.1 Testing a stateful component

 10.2.2 Testing callbacks

 10.2.3 Testing a form

 10.2.4 Testing a hook

 10.3 Testing a component with dependencies

 10.3.1 Mocking the browser API

 10.3.2 Mocking a library

 10.3.3 Mocking a context

 11 React website frameworks

 11.1 What's a website framework?

 11.1.1 Fullstack React as a concept

 11.1.2 Rendering HTML on the server

 11.1.3 Dynamic content

 11.1.4 Hydration is necessary

 11.2 Implementations

 11.2.1 Next.js

 11.2.2 Remix

 11.2.3 Environment values and API keys

 11.3 Let's create a weather app!

 11.3.1 Using the URL

 11.3.2 Using data in a route

 11.3.3 Storing local data

 11.3.4 Creating an API

 11.4 Alternative React-based website frameworks

 12 Project: Build an expense tracker with Remix

 12.1 Creating the expense tracker

 12.1.1 Choosing your own adventure

 12.2 Starting from scratch

 12.2.1 Creating the basic visual framework

 12.2.2 Extending routes

 12.3 Adding the backend

 12.3.1 Extending the database

 12.3.2 Defining ORM wrappers

 12.3.3 Updating components

 12.3.4 Adding server-side data to routes

 12.4 Adding the frontend

 12.4.1 Form library

 12.4.2 Dashboard components

 12.4.3 Income component

 12.4.4 Expenses component

 12.4.5 Add-expense component

 12.5 Future work

 12.5.1 Showing error messages

 12.5.2 Editing and deleting objects

 12.5.3 Making the pie chart interactive

 12.5.4 Filtering, ordering, and paginating the expense list

 13 Project: Create a React UI library

 13.1 The existing stack

 13.1.1 Storybook: Visual testing

 13.1.2 Istanbul: Code coverage reporting

 13.2 Your new job: Extending the library

 13.2.1 A Switch component

 13.2.2 An accordion component

 13.2.3 A toast component

 13.2.4 My solution

 13.3 Future work

 14 Project: Develop a word game in React

 14.1 Building a game

 14.2 Choose your ambition

 14.3 Choose your stack

 14.4 My implementation

 14.5 Share your result

 index

 preface

 Welcome aboard, ace! You’re here because you’re the best of the best, destined to ascend to the next level of web development mastery. This book isn’t just any textbook; it’s a dynamic teaching tool packed with practical knowledge and seasoned insights, specifically designed to propel you into the elite ranks of programmers.

 I penned this book driven by the same rush a pilot feels when soaring above the clouds at Mach speeds—fueled by a passion for React and a desire to share the strategies that have given me an edge in the digital arena. My transformation began when React revolutionized the way I approached web development, with its modular design and robust features making a profound impact.

 Why React? In the high-stakes world of web technologies, React distinguishes itself with its elegant solutions to complex problems. This book goes beyond the surface, diving into sophisticated component patterns and state management with hooks, all delivered through a lens heavily influenced by real-world applications and my personal coding adventures.

 As technology surges forward, staying current is crucial. This guide not only covers the fundamentals but also arms you with the latest maneuvers in React, preparing you for the innovations on the horizon, including the cutting-edge features of React 19.

 Prepare for a high-flying journey through the React ecosystem. Each chapter is crafted to challenge you, enhance your skills, and inspire your problem-solving strategies. This book is your wingman in the pursuit of excellence in React development, offering battle-tested insights and strategies ready for deployment.

 As you progress, consider this book to be your React Top Gun Flight School, in which every lesson sharpens your skills for the ultimate test. The final chapters are not just projects; they are your exams, challenging you to apply everything you’ve learned to prove yourself as an ace React developer. Success here means not just understanding React but also mastering it, ready to tackle the real-world challenges that await.

 Throttle up, pilot. It’s time to take to the skies and show what you’re made of!

 acknowledgments

 In the high-stakes world of book publishing, as in an elite flight squadron, every team member plays a pivotal role. I extend my deepest gratitude to my squadron at the publishing house, without whom this mission would not have been a success.

 Leading the charge as my development editor, Colonel Frances Lefkowitz was instrumental in navigating this journey. Her strategic insights and steadfast dedication helped sharpen and refine every section of this manuscript, ensuring that my maneuvers were both bold and precise.

 Captain Andy Waldron, my acquisitions editor, believed in the vision of this mission from the outset. His guidance through the complex airspace of publishing was invaluable, helping me chart a course that stayed true to my ambitious objectives.

 Technical proofreader Ninoslav Čerkez, call sign Eagle Eye, was the vigilant guardian of my technical accuracy. His meticulous attention to detail ensured that the code sequences were not only effective but also flawless, maintaining the integrity of the high-caliber content.

 Copy editor Keir Simpson, the linguistic wizard of the squadron, expertly navigated the storm of excessive adverbs that once cluttered my manuscript. With precision and a keen eye, Keir surgically removed unnecessary embellishments, streamlining the text for clarity and punch. His skill in refining my language ensured that every sentence flew straight and true, delivering maximum impact with elegance and efficiency. Thank you, Keir, for keeping my narrative as agile and powerful as a fighter jet.

 To the entire ground crew—the production team and the fearless reviewers who dared to challenge and push me further—I owe a debt of gratitude. Your hard work, dedication, and expert navigation were indispensable. You are the unsung heroes of this project; each of you played a crucial role in the seamless execution of our mission.

 To all the reviewers—Adam Wan, Amarjit Bhandal, Bernard Fuentes, Brandon Friar, Chris Kardell, Habib Akinwale, Jaehyun Yeom, Jeremy Chen, John McCormack, José Alberto Reyes Quevedo, Karthikeyarajan Rajendran, Keith Kim, Laud Bentil, Lin Zhang, Matthias Cavigelli, Mladen Djuric, Nicolantonio Vignola, Paul Mcilwaine, Richard Vaughan, Rodney Weis, Sankaranarayanan Murugan, Sonja Krause-Harder, and Theo Despoudis—thank you, your suggestions helped make this book better.

 Thank you all for your commitment and tireless efforts. Like a meticulously maintained and expertly piloted aircraft, this book could not have soared without you. Together, we’ve achieved something extraordinary. Let’s fly high, knowing that we’ve equipped countless developers with the knowledge to rule the skies of React development.

 about this book

 This book is designed to help you master React by providing a mix of foundational knowledge and advanced techniques. It includes a variety of practical examples and exercises that will help you apply what you learn directly to real-world scenarios. Whether you are looking to deepen your understanding of React or expand your development skills, this book will provide the resources and guidance necessary to enhance your proficiency.

 Who should read this book

 This book is designed for web developers of all kinds. Whether you’re working on the frontend or the backend or as a fullstack developer, if you’re looking to deepen your expertise in creating both interactive web applications and static sites with modern generators, this book is for you. Ideal readers are already familiar with the fundamentals of React, including JSX, functional components, state management, event handling, and form processing. A solid grasp of HTML, CSS, JavaScript, command-line tools, Git, GitHub, npm, and browser developer tools is also strongly encouraged.

 How this book is organized: A road map

 This book contains 14 chapters, each building on advanced React concepts and exploring technologies in the React ecosystem. The initial six chapters delve into general advanced React techniques and concepts:

 	 Chapter 1, “Developer’s guide to the React ecosystem,” offers a comprehensive overview of the tools and libraries that complement React, helping you navigate and integrate them into your projects effectively.

 	 Chapter 2, “Advanced component patterns,” explores complex patterns for structuring React components, enhancing their reusability and scalability.

 	 Chapter 3, “Optimizing React performance,” focuses on strategies and techniques to boost the efficiency and speed of your React applications.

 	 Chapter 4, “Better code maintenance with developer tooling,” discusses advanced tools that support maintaining and scaling large React codebases.

 	 Chapter 5, “TypeScript: Next-level JavaScript,” shows how TypeScript integrates with React, enhancing type safety and component robustness.

 	 Chapter 6, “Mastering TypeScript with React,” goes deeper into using TypeScript’s advanced features to write cleaner, more maintainable React code.

 The following five chapters are more specialized, focusing on technologies that enhance React development but are also part of the broader JavaScript ecosystem:

 	 Chapter 7, “CSS in JavaScript,” discusses how CSS-in-JS libraries, such as styled-components, can streamline styling in React applications.

 	 Chapter 8, “Data management in React,” covers advanced state management techniques that help you manage complex data flows in large applications.

 	 Chapter 9, “Remote data and reactive caching,” explores strategies for managing remote data fetching and caching to optimize performance and user experience.

 	 Chapter 10, “Unit-testing React,” provides insights into best practices for testing React components and applications, ensuring reliability and stability.

 	 Chapter 11, “React website frameworks,” examines frameworks such as Next.js and Remix, which extend React’s capabilities for server-side rendering and static site generation.

 The book concludes with three practical projects that challenge you to apply your accumulated knowledge:

 	 Chapter 12, “Project: Build an expense tracker with Remix,” guides you through the process of creating a complex application, reinforcing your skills with React and Remix.

 	 Chapter 13, “Project: Create a React UI library,” involves developing a set of reusable UI components, demonstrating effective design patterns and practices.

 	 Chapter 14, “Project: Develop a word game in React,” allows you to use React’s capabilities for interactive web applications, focusing on state management and UI updates.

 Although this book assumes familiarity with the basics of React, it is structured to enhance your understanding of advanced topics, which you can explore in sequence or in an order based on your specific development needs. The final project chapters serve as a comprehensive application of the advanced concepts discussed in the book, providing practical experience and a deeper understanding of React’s potential.

 About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/react-in-depth. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/react-in-depth and from GitHub at https://github.com/React-in-Depth/react-in-depth. Additionally, you can interact with all examples directly in the browser by visiting https://www.reactindepth.dev/browse.

 liveBook discussion forum

 Purchase of React in Depth includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/react-in-depth/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest that you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible on the publisher’s website as long as the book is in print.

 Software requirements

 To use and run the examples and projects in this book, you need only three things:

 	 A command-line environment with a recent version of Node.js and npm installed

 	 A text editor

 	 Source code from the repository

 That’s it! Now let me show you how to set up your command-line environment and select a text editor so you’ll be ready for the first exercises in chapter 2.

 Command-line environment with Node.js and npm

 First, you want to check whether you already have compatible versions of Node.js and npm installed. You need at least Node.js version 12 to use the examples in this book:

 	 Windows

 	 Open the command prompt or PowerShell by pressing Windows key+R and typing cmd or powershell in the Run dialog box.

 	 Type node -v in the command prompt, and press Enter. If you have Node.js installed, it displays the version number.

 	 Mac and Unix-like systems

 	 Open the Terminal app.

 	 Type node -v in the terminal, and press Return or Enter. If you have Node.js installed, it displays the version number.

 If you do not have Node.js installed or if your version is older than 12, please go to https://nodejs.org/en/download, download the proper package for your operating system, and follow the installation instructions. If you’re a power user of your operating system, feel free to use any other package manager to install Node.js as long as you get at least version 12.

 Text editor

 It is likely that you already possess a text editor or have experience using one, given your familiarity with React, which is crucial for making the most of this book. In case you don’t have a text editor installed, here are some widely used options that are compatible with most platforms:

 	 Sublime Text—https://www.sublimetext.com/download (free trial)

 	 Brackets—https://brackets.io (open source and free)

 	 Visual Studio Code—https://code.visualstudio.com (free)

 Source code

 To get started with the examples in this book, you need to set up the source code on your local machine. You can either clone the repository or download a zip file containing all the necessary files. To clone the repository, open your command-line interface, and then execute the following command:

 git clone https://github.com/React-in-Depth/react-in-depth.git

 This command copies all the project files from GitHub to your local machine.

 If you prefer not to use Git, you can download the entire source code as a zip file from https://www.reactindepth.dev/browse. After the download, extract the files to a directory of your choice.

 Next, navigate to the root directory of the project in your command-line interface and run

 npm install

 This command installs all dependencies required for the entire monorepo, allowing you to run any example or project in the book.

 To run an individual example, use the command

 npm run dev -w chXX/YYY

 Replace chXX/YYY with the directory name that corresponds to the chapter and example you want to explore. This command configures Vite to build and serve the specific example.

 For the content in chapters 11 and 12 that uses Next.js or Remix instead of Vite, follow the instructions provided in those chapters to set up and execute the examples. These instructions will guide you through using the framework’s commands and settings to get the examples running.

 By setting up the project as described, you will be equipped to dive into the examples and start experimenting with the advanced React techniques discussed throughout the book.

 about the author

 Morten Barklund holds a Master of Science degree in Computer Science and boasts more than two decades of experience in frontend web development. Currently, he is a staff engineer at Corti, a pioneering medical AI startup. Beyond his day job, Morten is deeply involved in the tech community, hosting a local TypeScript meetup, speaking at various conferences, and teaching workshops. This book is Morten’s third publication, reflecting his dedication to sharing knowledge and fostering the development of fellow web professionals through practical insights and expert guidance.

 [image: figure]

 about the cover illustration

 The figure on the cover of React in Depth is “Femme Chingulaise” (“Chingulaise woman”), by Claude Louis Desrais (1787), taken from the Miriam and Ira D. Wallach Division of Art, Prints and Photographs: Picture Collection, New York Public Library.

 In those days, it was easy to identify where people lived and what their trade or station in life was by their dress alone. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Developer’s guide to the React Ecosystem

 This chapter covers

 	Understanding the concept of React mastery

 	Navigating the React ecosystem

 	Introducing the React technology stack

 	Creating a proper React stack

 Greetings, and welcome to React in Depth, an essential travel companion for developers who are ready to deepen their expertise and keep pace with the dynamic React community. As you embark on this developmental odyssey, remember that mastering React is more than understanding the basics; it’s also about embracing a universe of advanced methodologies, best practices, and evolving tools.

 In this inaugural chapter, we chart the territory ahead. I’ll introduce the concept of React mastery and guide you through the expansive React ecosystem. You’ll learn about the essential components that make up the React technology stack and get a glimpse of how these elements interact to form effective solutions.

 Although this chapter sets the stage for understanding, the rest of the book will take you on a deeper dive into selecting and crafting the right technologies and libraries for your projects. By blending theoretical knowledge with practical insights, I aim to equip you with the foundational understanding necessary to navigate the complex landscape of modern web development as a proficient React developer.

1.1 Navigating the React mastery journey

 This book assumes that you have a solid understanding of React and are comfortable building simple applications. To explain in very simple terms, you have progressed from A to B in figure 1.1, and this book will take you from B to C. As you can see in the figure, you have a lot more to learn in this segment of the journey.

 [image: figure]

Figure 1.1 You knew how to write static websites using HTML, CSS, and JavaScript. And then you “just” had to learn React to get to your current level. Now you have to learn ESLint, Prettier, Chrome DevTools, React Developer Tools, TypeScript, CSS Modules, styled-components, Emotion, Tailwind CSS, Redux Toolkit, Zustand, XState, Immer, npm, Node.js, Vite, Mock Service Worker, TanStack Query, Vitest, Testing Library, Next.JS, Remix, React Testing Library, Storybook, and Istanbul. That doesn't sound too daunting, does it?

 When you arrive at point B, you’re probably capable of getting a good job as a junior or midlevel React developer and might even be able to make it to the senior level from there. But to kick-start your advancement and navigate your way forward quicker, let me introduce you to what I call React mastery.

 React mastery is more than just writing code that works. It involves understanding best practices, designing applications for scalability and maintainability, and working effectively in a team environment. It requires a deep understanding of React and its ecosystem, as well as knowledge of the latest tools and techniques for building modern web applications.

 At its core, React mastery is about building applications that are easy to understand, easy to maintain, and easy to extend, which means writing clean, modular code that can be easily tested and refactored. It means designing applications that can scale to meet the needs of a growing user base without sacrificing performance or stability. It means working collaboratively with other developers to build applications that meet the needs of stakeholders and users alike.

 To become a React master, you need to have a solid understanding of React’s core concepts and be comfortable working with a wide range of libraries and tools. You should be familiar with common design patterns and architectural principles, and you should be able to apply them to real-world problems. You should also be able to work effectively in a team environment, using version-control systems and agile development methodologies.

 This book will teach you all these things. When you’ve finished it, you will be equipped to build, maintain, and collaborate on high-quality, scalable React applications for organizations of all sizes in all domains.

 This opening chapter will dive a bit deeper into the raison d’être of this book: why I believe this book needs to exist and why you need to read it. Then we will explore the concepts of the ecosystem and technology stack—two topics that are very important when it comes to architecting React applications. We’ll devote most of this chapter to discussing the ecosystem, how to navigate it, how to apply it, and how to understand any new technology that will inevitably spring to life even after this book has been set in stone (or paper, probably; I don’t think we’ll publish it on stone tablets).

 In the rest of this book, we will explore the key concepts and tools that you need to become a React master. We will cover topics such as tooling, strong typing, data management, remote data access, unit testing, and website frameworks. We will also provide practical examples and real-world simulations to help you apply these concepts in your own work. So let’s dive in and get on the road to React mastery!

1.2 Why a book on React mastery?

 The truth is, many resources are available for learning React, from great books and online tutorials to official documentation. But few of these resources cover the practical aspects of building large-scale applications with React.

 React in Depth is designed to fill this gap by providing a comprehensive guide. Whether you are a frontend developer looking to improve your React skills or a full-stack developer building complex applications, this book has something to offer.

 Figure 1.2 shows the crucial knowledge areas that create a well-rounded React developer. What’s unique about this book is that it addresses all these areas.

 [image: figure]

Figure 1.2 This book fits right in the intersection of popular libraries, best practices, ecosystem overview, and collaboration and teamwork.

 One of the key goals of this book is to help you become a more efficient and effective React developer. We will cover a range of topics that are essential for building high-quality React applications, from data management to testing to website frameworks. By mastering these topics, you will be able to build applications that are more scalable, maintainable, and robust.

 Another goal of this book is to provide practical guidance for working in a team environment. Building large-scale React applications requires collaboration with other developers, designers, and stakeholders. We will cover best practices for coding guidelines and developer tooling often used on large teams, as well as introduce TypeScript, a new flavor of JavaScript that’s used by more and more teams.

 Finally, this book aims to provide a road map for ongoing learning and professional development. The React ecosystem is constantly evolving, with new tools and techniques emerging all the time. I will provide guidance on staying up to date with the latest developments in React and improving your skills over time. Whether you are just starting with React at an advanced level or are already an experienced developer, this book will help you take your skills to the next level.

1.3 How does this book teach React mastery?

 The scope of this book is broad, covering a range of topics related to React development, including libraries commonly used with React, data management, remote data, unit testing, and website frameworks. I’ll cover each of these topics in detail, giving you the knowledge and skills you need to tackle real-world projects.

 The focus of this book is on practical, hands-on development. Although I’ll provide some background and theory on each topic, my main goal is to help you learn by doing. Each chapter includes a series of examples, and the book concludes with three complex projects that allow you to apply what you’ve learned and build your own React applications from scratch.

 Throughout the book, I’ll also emphasize best practices and common pitfalls to avoid. I want you to come away with not just a deeper understanding of React but also with the ability to build high-quality, maintainable applications that can stand up to the demands of real-world development. You can see your journey ahead in figure 1.3.

 [image: figure]

Figure 1.3 Your journey to React mastery starts with the first step. These steps represent nine realms of React that will be covered in this book, with one or two chapters dedicated to each.

 Overall, this book is designed to help you become a master in the field of React development, equipped with the skills and knowledge you need to tackle any project with confidence.

1.4 The React ecosystem

 The React ecosystem is a vast collection of libraries and tools built around the React library. As the popularity of React has grown, so has the number of tools and libraries that developers can use to enhance their workflows and improve the performance and functionality of their React applications.

 One of the most significant advantages of using React is the sheer number of libraries available for it. These libraries cover a wide range of use cases, from data management and routing to animation and testing. Many of these libraries have become essential parts of the React developer’s toolkit, and understanding how they work and how to use them effectively is a critical part of modern-day React development.

 In this book, we will explore many of the most popular and useful libraries and tools in the React ecosystem. The book covers libraries for everything from styling to state management.

 It’s worth noting that not all libraries in the React ecosystem are created equal, and not all of them are necessary for every project. For those reasons, we will focus on the most commonly used libraries and tools, providing guidance on how to evaluate and choose the right libraries for your specific project needs.

 By the end of this book, you will have a solid understanding of the React ecosystem and the libraries and tools available within it. You will be able to confidently choose the right libraries for your projects, and you will have the skills and knowledge necessary to build complex, high-performance React applications.

1.4.1 What’s in the ecosystem?

 To give you an idea of the enormity of the current React ecosystem, take a look at figure 1.4, which lists more than 150 tools and libraries currently being used with React. The tools are sorted into three main groups, depending on what they do and where they are used:

 [image: figure]

Figure 1.4 The React ecosystem is split into three main groups (UI, architecture, and productivity) and comprises hundreds of technologies, tools, and libraries. If you found the amount of technologies displayed in figure 1.1 daunting, this figure might break you.

 	 User interface —Includes things like UI libraries and animation tools

 	 Architecture —Includes data management tools, authentication libraries, and many others

 	 Productivity—Covers build tools, testing libraries, and more

 The React ecosystem is fairly complex, with many tools, libraries, and technologies involved. Not all the technologies are specific to React, but many are. In this book, we’ll at least partially cover the technologies highlighted in figure 1.5. I chose these technologies because they’re popular and stable, representing either the diversity or flexibility within their categories. We’ll get into more detail about how the technologies are located within their categories in each chapter.

 You’ll notice in figure 1.5 that most of the focus is on the productivity group because these tools are the most essential and also the most diverse. As an example, you can use any UI library from the UI library category to achieve the same result, but not all build tools are the same; neither are they interchangeable.

 A lot of technologies are connected to an existing brand. This connection happens when some company decides to open up its internal tools or libraries to the public by open sourcing them. This situation is fairly common. Adobe appears three times in figure 1.4, for example, because React Spectrum is a UI library, React Aria is an accessibility toolbox, and React Stately is a state flow library. All three are contained with the overall React Spectrum architecture, and all are created, maintained, and (mostly) controlled by Adobe. In the same way, you can find libraries created by Airbnb, Facebook, Microsoft, Amazon, Google, Twitter, Palantir, IBM, Hewlett-Packard, Pinterest, and quite a few others. The following sections discuss each group and list all the technologies included in figure 1.4.

 User interface

 This group is related to visual elements used in React applications. These elements are ready-to-use component collections (UI libraries), tools to help you write CSS in your React components more easily (CSS-in-JS), libraries to display complex data in beautiful ways using charts or interactive diagrams (data visualization), and packages to help you create animations and transitions (animation and effects):

 	 UI libraries —Tailwind CSS, Material UI, Ant Design, Chakra UI, Blueprint, Fluent, Semantic UI, Circuit UI, Headless UI, Grommet, Evergreen, Rebass, PrimeReact, React Spectrum, and Gestalt

 	 CSS-in-JS —Emotion, CSS Modules, styled-components, JSS, styled-JSX, Linaria, PostCSS-JS, Theme UI, Styled System, Stitches, vanilla-extract, Twin, nano-css, Fela, and Astroturf

 	 Data visualization —D3, Victory, Recharts, Nivo, Chart.js, Semiotic, Frappe Charts, react-vis, FusionCharts, ApexCharts, and visx

 [image: figure]

Figure 1.5 The React ecosystem with all the technologies not covered in this book removed. As you can see, this book aims for breadth, not depth, so it covers a bit of everything, with most of the focus on the productivity group.

 	 Animation and effects —React Spring, Framer Motion, Remotion, React Move, GreenSock Animation Platform, Popmotion, React AOS, react-tsparticles, Lottie, and React AnimaKit

 Architecture

 The architecture group contains mostly technologies related to the overall structure of your application or complex parts within the application. These logic-based packages help with managing data, controlling the flow of the application, working with remote data, managing complex forms, handling authentication and authorization, or ensuring accessibility and inclusivity:

 	 Data management —Redux (and RTK), zustand, Immer, MobX, Jotai, Recoil, Akita, Elf, Rematch, Hookstate, react-easy-state, Unstated, RxJS, Effector, Valtio, Easy Peasy, Kea, storeon, nanostores, PouchDB, Firebase, Supabase, Synergies, Flux, and Fluxible

 	 State flow —XState, Robot, React Stately, Overmind, useStateMachine, Zag, Little State Machine, and React Transition State

 	 Remote data —TanStack Query, SWR, Relay, Apollo Client, React-Fetching-Library, Redux Saga, Appsync, Axios, GraphQL, FeathersJS, Swagger, and GraphQL-Tools

 	 Authentication and authorization —JWT, Firebase Authentication, OAuth2, AWS Amplify, Auth0, Okta, Passport.js, OpenID, AWS Cognito, Keycloak, and React Auth Kit

 	 Accessibility —React Aria, axe-core, Reakit, and Downshift

 	 Form management —Formik, Yup, React Hook Form, React Final Form, and React-JSONSchema

 Productivity

 This final group is not directly included in the actual application; it’s related to creating, working with, or validating the application. The group includes libraries that create the basic setup and bundling, run React on the server, ensure a smooth developer experience across even large teams, test applications automatically, analyze and monitor application health, and document the application both internally and externally:

 	 Build and bundle —TypeScript, Create React App, webpack, Vite, esbuild, SWC, react-hot-loader, react-loadable, Loadable Components, Babel, Parcel, Snowpack, Rollup, Terser, TSdx, Neutrino, React Next Boilerplate, Rekit, Sucrase, npm, and Node.js

 	 Server-side rendering —Remix, Next.js, Redwood.JS, astro.build, Nest.js, React Helmet, React Router, Razzle, Qwik, Blitz, and After.js

 	 Testing libraries —Testing Library, Jest, Mock Service Worker, React Testing Library, Vitest, Enzyme, Mocha, Chai, Cypress, Sinon, Puppeteer, Playwright, Karma, Jasmine, and Selenium

 	 Developer experience —ESLint, Chrome DevTools, Prettier, Redux DevTools, React Developer Tools, typescript-eslint, and Editorconfig

 	 Analytics and monitoring —Istanbul, React Performance Devtool, and Bugsnag

 	 Documentation —Storybook, Docz, Styleguidist, Docusaurus, and Pitsby

1.4.2 Navigating the ecosystem

 Remember that you don’t need to know every single item in the ecosystem. Nobody does, not even me. But it’s a very good idea to know about all the categories and their purposes and to know at least a few technologies within each category.

 You will never need something from every category on every project. But when you do come across that new project that happens to need something special, it’s a big help to at least have an idea about the landscape in advance.

 It’s also a good idea to be able to use the ecosystem in figure 1.4 in reverse. When a new technology arises (which is bound to happen a few seconds after this book has been printed and then every week going forward), you should be able to look at the new piece of tech, quickly determine what it does, and mentally place it in the ecosystem diagram.

 Another good thing to keep in mind is that technologies within a single category aren’t necessarily equivalent alternatives. Often, the technologies are used together and augment one another. Some projects might use several technologies within a given category. You might use Jest, React Testing Library, Puppeteer, and Karma in a single project, and all of them are in the testing category.

 At other times, the technologies and libraries are direct competitors. It wouldn’t make sense to include both Material UI and Ant Design, for example, as they are two completely different and mostly overlapping UI libraries that for the most part have the same responsibility in an application. Then again, on a large project, you might have different libraries used in different parts; those libraries might not work together directly, but at least they don’t collide too terribly when they’re used separately.

 The manner in which libraries group together or function separately is also a critical aspect to consider when evaluating new technologies. A new technology might replace an existing item, such as zustand replacing Redux in the data management category (if you want to use zustand instead of Redux). But it might be a new augmentation to the existing libraries, such as Immer, that can be used with zustand or Redux (or many other data management libraries), as it’s a tool used within data management to write simpler immutable code, not the entire data management itself.

1.5 The technology stack

 The technologies used in a given project are often referred to as the technology stack, solution stack, or stack for that project. It’s a common term that you might even find listed directly in a job posting or on a startup’s website.

 We’ll cover where the concept of stacks comes from, as well as the contents of the Frontend React stack, how to quickly understand a stack as you join an existing project, and how to create your own stack for a new application.

 One interesting side note: Technology stack is the concept from which the term fullstack originates. A fullstack developer is someone who works on the entire technology stack, from frontend to backend, in a given project.

1.5.1 Why do we talk about a tech stack?

 In the realm of software development, the technology stack serves as a blueprint, guiding the construction of robust and efficient applications. This comprehensive outline details the combination of technologies, frameworks, and tools that form the foundation of a software project. Although it’s commonly employed in various domains, frontend development in particular benefits from a well-defined technology stack des-cription to streamline collaboration, ensure consistency, and maximize productivity.

 The creation of a technology stack involves carefully selecting the frontend technologies that best align with project requirements and goals. This task may include choosing a JavaScript framework like React, Angular, or Vue.js alongside supporting libraries, build tools, and testing frameworks. By documenting these choices clearly and concisely, development teams can communicate their technological preferences effectively and facilitate seamless collaboration among team members.

 A technology stack serves as a reference point for stakeholders in frontend development projects. It provides valuable insights into the tools and technologies employed, enabling effective project planning, resource allocation, and decision-making. For project managers, designers, developers, and quality assurance (QA) teams, a shared understanding of the technology stack description fosters a cohesive and efficient development process.

 For frontend development, a technology stack holds particular significance. It outlines the essential components required for UI creation, data management, state handling, routing, and more. This description encapsulates the frontend ecosystem, encompassing frontend frameworks, UI libraries, data management solutions, build tools, and other specialized technologies. By defining the frontend technology stack, developers can ensure consistency, scalability, and maintainability throughout the project’s life cycle.

 It’s crucial to acknowledge that the technology stack description is not static; it’s an evolving blueprint. This goes double for frontend projects, as the ecosystem advances at a much faster pace than most backend technology landscapes. As a frontend project progresses and matures, new requirements emerge, and technological advancements become available. Consequently, the technology stack needs to adapt to accommodate these changes. This dynamic nature reflects the agility required in modern frontend development. Teams must remain flexible, continuously evaluating and adjusting their technology stack to embrace innovation and ensure that their frontend product remains competitive and aligned with evolving user needs. In this way, the technology stack becomes a living document that grows and evolves alongside the frontend project it supports, empowering developers to harness the latest tools and techniques to deliver exceptional user experiences.

1.5.2 Viewing the anatomy of a React stack

 You’ll often see React stacks boiled down to these five core layers (also illustrated in figure 1.6):

 	 Foundation layer (build tools, bundler, TypeScript, and so on)

 	 Data layer (data management and state flow)

 	 API layer (fetching libraries)

 	 UI layer (UI libraries and CSS-in-JS libraries)

 	 Testing layer (unit, integration, and end-to-end-testing)

 Optional parts of the React stack include information about developer experience tools and various utility libraries that are large enough to warrant their own mention.

 [image: figure]

Figure 1.6 The overall layers of a React application, with several examples of each. Note the dashed lines around the top two layers, which are the most likely ones to be left out.

 Note that each layer in the stack as described here may include more than one technology. When you’re describing the data layer, for example, you might have zustand, Immer, and XState in the mix in different parts of an application. And the foundation layer in particular will often include many different technologies.

 The level of detail you go into when describing a stack is up to you. The more detail, the denser the information is to your audience. If you want to give a high-level overview in a job listing, for example, saying “Next.js and TypeScript with Redux and Material UI” might be just fine. But if you’re introducing said new hire to the entire application, you’d want to add a lot more detail to get them to understand the system.

 If you’re using a fullstack React setup with server-side rendering (SSR), you might also include information about the database layer and development operations (colloquially known as DevOps) items as the bottom-most layers in the graphic. Figure 1.7 illustrates this stack. We’ll look at some example stacks later in this section, where we’ll get more specific.

 [image: figure]

Figure 1.7 We’ve added two new layers in darker gray at the bottom of the stack for SSR setup: the database layer and the DevOps layer. Note that we’re not restricting the database layer to actual databases but to anything that functions in that realm. The DevOps layer includes anything from hosting to deployment pipeline tools.

1.5.3 Joining a project

 A well-defined technology stack serves as a guiding light for onboarding new team members, especially in the realm of frontend development. When a new developer joins the team, they are often confronted with a codebase that may seem complex and unfamiliar. In such situations, the technology stack acts as a compass, providing clear direction and an overview of the tools, frameworks, and libraries that power the project. New hires can use this document to orient themselves quickly, understanding the key components they’ll be working with and how those components fit into the broader development ecosystem.

 The technology stack also plays a crucial role in streamlining the learning curve for new team members. By offering insights into the chosen technologies and their purposes, it accelerates the process of getting familiar with the codebase. New developers can refer to this outline to gain an understanding of the frontend framework in use, the styling methodology employed, the data management solutions implemented, and more. This foundational knowledge allows them to dive into the codebase with greater confidence, knowing where to focus their efforts and how various components interact. In essence, the technology stack becomes an essential tool for reducing the time it takes for new hires to contribute effectively to the project.

 As a new hire stepping into a team with a well-defined technology stack, a strategic approach to onboarding can significantly expedite your assimilation into the project. Don’t dive headfirst into the codebase; rather, begin by studying the technologies mentioned in the stack. Familiarize yourself with each technology, especially if you already have experience with related technologies. If you’re well versed in Redux but the project uses zustand, understanding that zustand serves as a Redux alternative gives you a head start. Instead of delving into zustand within the context of the specific codebase, you can focus on grasping the nuances of zustand itself, comparing its approach to that of Redux. This proactive knowledge-building approach empowers you to adapt swiftly to the technology stack in use.

 Additionally, exploring the documentation, tutorials, and resources related to the technologies before diving into the codebase can be immensely beneficial. These external resources offer valuable insights and best practices for working with the chosen technologies. By gaining a solid understanding of the stack components independently, you enhance your ability to navigate the codebase effectively. When you eventually delve into the code, you’ll find it easier to identify where and how these technologies are implemented, thanks to your existing knowledge.

 Moreover, this proactive approach allows you to be a quick learner when it comes to new technologies introduced within the project. When you encounter unfamiliar stack elements, you can draw on your foundational knowledge to grasp their purpose and utility. This knowledge enables you to adapt swiftly to changes or enhancements made to the stack as the project progresses. In essence, by preparing yourself with a strong foundation in the stack technologies, you position yourself as an agile learner who can readily explore and adapt to new tools and frameworks introduced in the project.

 It’s essential to prepare strategically for rapid learning and efficient onboarding in a project with a well-defined technology stack. To help you get started, here’s a practical to-do list that can significantly enhance your readiness:

 	 Review stack components —Begin by thoroughly reviewing the technology stack components mentioned in the stack; understand their roles and how they interact.

 	 Review related technologies —If you have experience with technologies related to those in the stack, such as Redux or MobX in the context of zustand, take time to refresh your knowledge.

 	 Explore documentation —Explore the official documentation and tutorials for the stack technologies. Familiarize yourself with their core concepts and use patterns.

 	 Check online resources —Seek online resources, blogs, or video tutorials that provide insights into best practices and common challenges related to the stack.

 	 Seek external learning —If certain stack elements are new to you, consider completing online courses or tutorials that focus specifically on those technologies.

 	 Create practice projects —Experiment with small practice projects using the stack components independently. Create a simple app with React and zustand, for example, to gain hands-on experience.

 	 Study coding standards —Study any coding standards and practices mentioned in the technology stack to align your coding approach with the team’s expectations.

 	 Have peer discussions —Engage in discussions with your peers within the team to gather insights into how the stack is used in the project. Seek clarification on any queries or doubts you may have.

 	 Bookmark documentation —Organize and bookmark relevant sections of the stack documentation for quick reference during your initial work on the project.

 	 Seek mentorship —Don’t hesitate to reach out to experienced team members for guidance and mentorship as you prepare to dive into the codebase.

 By systematically tackling this to-do list, you’ll enter the project well prepared to use your knowledge of the technology stack, making the process of familiarizing yourself with the codebase smoother and more efficient.

1.5.4 Creating a stack from scratch

 Choosing the right stack for a React project can be challenging, as many options are available in the ecosystem. In this section, we’ll discuss some of the factors to consider when choosing stack components by looking at some example scenarios and suggesting specific technologies for them.

 The most important decision is the foundation layer of your application. This decision is the hardest to change at a later stage in development but of course still doable then, so don’t get too stuck on it. Building on said foundation, you expand with technologies that solve your particular pain points in the easiest way possible.

 One crucial balancing act rests at the center of creating a stack for a new project: familiarity matters, but new technologies surpass existing ones. If your team knows TanStack, it doesn’t matter if some other data-fetching library might technically be a better fit for a given new project. Your team will work a lot faster in a library they’re familiar with than in a completely new one. On the other hand, if you don’t challenge yourself, you’ll never evolve, and as technologies go stale or become outdated, you’ll never learn about the new and simpler/better/faster tools replacing them.

 Dancing on this balancing beam is at the center of the role of the team architect who’s creating the technology stack. Where should we stick with what we know, and when should we challenge ourselves? These decisions don’t exist just at the birth of a new project; they pop up continuously. Sometimes, you have to replace a given technology in your stack with a new one despite the growing pains it will inevitably introduce, simply because you have to keep up with the times. Let’s go through some scenarios and see how we can solve them with a good choice of technologies.

 Scenario: A medium-size e-commerce platform

 You’re tasked with revamping a medium-size e-commerce platform to improve performance, scalability, and user experience. For this kind of project, you want a stack that’s proved itself time and time again, and you want to move fast and build things quickly. One good choice for a project like this one would be what we might call The Popular Stack:

 	 Next.js as the foundation

 	 RTK as the data management library

 	 TanStack as the data-fetching library

 	 Material UI with MUI as the styling library

 The Popular Stack offers the familiarity of Next.js for server-side rendering, TanStack for efficient data fetching, RTK for state management, and Material UI for a polished UI. This stack provides the tools needed to enhance the platform’s speed and user interface, ensuring an excellent shopping experience.

 Scenario: A personal portfolio website

 You’re a solo developer looking to create a personal portfolio website that showcases your skills and projects. For this kind of project, you’re free to play around, but you also want to use the latest and greatest tools out there, both to show off your skills and to stay ahead of the competition. The stack for such a project will always be changing with the times, but one possible candidate is what we’ll call The Indie Stack:

 	 Vite at the foundation

 	 Zustand as the data management library

 	 Tailwind CSS as the styling library

 The Indie Stack is perfect for this scenario. Vite offers rapid development with blazing-fast bundling, zustand simplifies state management, and Tailwind CSS allows for quick and attractive styling. This stack empowers you to showcase your work efficiently and aesthetically.

 Scenario: Maintaining a legacy enterprise dashboard

 Your team is responsible for maintaining a legacy enterprise dashboard built using older technologies. The stack for such a project was determined a long time ago, and you just have to play along. Refactoring this to a new stack is nigh on impossible as the project is huge. For now, you’re stuck with The Old School Stack:

 	 Create React App (CRA) as the foundation

 	 Redux as the data management library

 	 Axios as the data-fetching library

 	 CSS Modules as the styling library

 The Old School Stack, with CRA for stability, Axios for data fetching, Redux for state management, and CSS Modules for maintainable styling, is still a good choice. It ensures compatibility with existing code while leaving an open door for gradual modernization.

 Scenario: A financial services web application

 You’re developing a comprehensive web application for a financial services company. For this scenario, you want something that’s trustworthy, secure, and scalable and that won’t ruffle any feathers in senior management. You can’t go wrong with The Enterprise Stack:

 	 Pure React plus TypeScript as the foundation

 	 Apollo as the data-fetching and management library

 	 Styled-components as the styling library

 The Enterprise Stack, combining React with TypeScript for strong typing, Apollo for managing complex data fetching and storage, and styled-components for consistent and maintainable styling, ensures robustness and scalability for handling financial transactions securely.

 Scenario: Rapid prototyping of a collaborative task management tool

 Your startup is building a collaborative task management tool, and you need to prototype the core features quickly to attract potential investors and users. For this task, you want something that has a lot of magic built in and can very easily scale up and move fast. You don’t mind if the design looks a bit derivative, as speed and features—and making early investors satisfied with the progress—are more important than a unique user interface. You should check out The Prototype Stack:

 	 Remix as the foundation

 	 Supabase as the backend

 	 Stale-While-Revalidate (SWR) as the data-fetching library

 	 Ant Design as the styling library

 The Prototype Stack, featuring Remix for fast server rendering, Supabase for rapid backend development, SWR for scalable data fetching, and Ant Design for a polished, feature-rich UI, allows you to create a functional prototype swiftly, demonstrating the product’s potential to stakeholders.

 Summary

 	 This book addresses the gaps in practical, large-scale React application development, covering essential topics for improved skills, teamwork, and continuous learning in the evolving React ecosystem.

 	 This book offers comprehensive scope, hands-on focus, and emphasis on best practices to teach advanced React development, guiding readers through nine realms of React to become confident, skilled professionals.

 	 The React ecosystem is extensive, comprising various libraries and tools for enhancing React applications’ performance and functionality.

 	 This book explores popular libraries and tools in the React ecosystem, emphasizing practical, hands-on development and best practices.

 	 Readers will gain a comprehensive understanding of the React ecosystem, allowing them to select the right tools for their projects and build high-quality React applications.

 	 A technology stack (also known as a solution stack or simply stack) is central to software development, guiding the selection of technologies, frameworks, and tools for a project.

 	 A well-defined technology stack enhances collaboration, reduces onboarding time for new team members, and provides a blueprint for efficient project development, with specific layers that encompass foundational elements, data management, API use, UI components, and testing.

 	 The choice of a React stack components depends on project requirements and familiarity with the technologies, with options ranging from established stacks like The Popular Stack for e-commerce platforms to innovative stacks like The Indie Stack for personal portfolio websites, each tailored to specific project goals and constraints.

2 Advanced component patterns

 This chapter covers

 	Providing global state with the Provider pattern

 	Managing complex component structures with the Composite pattern

 	Creating clean components with the Summary pattern

 The construction world, with projects ranging from sky-touching skyscrapers to peaceful neighborhood homes, adheres to a universal set of principles. In both architecture and construction, regardless of project size, there is a steadfast commitment to core engineering principles, which include designing load-bearing structures, selecting appropriate materials, and ensuring overall stability and safety.

 In the digital realm, React development is committed to its own set of construction principles. Although the outer aesthetics and specific materials may differ, the underlying architectural principles remain constant.

 Within React, as in software design in general, these principles are embodied in design patterns. This chapter will take an in-depth look at three foundational patterns used in modern React applications:

 	 Provider

 	 Composite

 	 Summary

 Much like the blueprints and load-bearing structures in physical construction, these patterns, shown in figure 2.1, provide the framework for building stable and scalable React projects.

 [image: figure]

Figure 2.1 The three design patterns that we'll take a closer look at in this chapter, illustrated as though they're construction blueprints. I’ll go over each illustration in detail in the appropriate section.

 Consider figure 2.1 to be a metaphorical construction diagram that introduces these crucial patterns. Throughout this chapter, we will explore how these patterns enable you to construct resilient React applications that are capable of withstanding various challenges.

 Just as architects and builders across the globe rely on consistent physical and engineering principles, React developers use patterns to create a diverse array of interactive experiences. By adhering to these foundational strategies, you can build React applications that are as varied and innovative as the world’s architectural wonders. So gear up with your hard hat and tools and embark on a journey through the intricate construction site of React’s advanced component patterns, where solidity and stability guide us to create robust digital structures.

 Note The source code for the examples in this chapter is available at https://reactlikea.pro/ch02.

2.1 The Provider pattern

 In this section, we delve into the Provider pattern, building on your existing knowledge of React context. We’ll explore how to use the Provider pattern to manage multiple related values, such as state values and their corresponding setters. This approach (figure 2.2) represents a significant advancement beyond basic use of React context, offering enhanced flexibility and efficiency in state management.

 [image: figure]

Figure 2.2 This illustration highlights the initial step of using the Provider pattern to handle multiple related values. It shows a basic context setup wherein the provider (light gray background) encapsulates both state values and updaters (dashed boxes), providing a comprehensive view of how we extend the conventional use of React context. The context consumer (dark gray background) can be at any depth inside the component tree below the consumer but can still easily access the values and updaters provided by the context (dashed arrows).

 Our exploration is structured to facilitate hands-on discovery through the following stages:

 	 Context with multiple values —Starting with a straightforward example, we’ll see how to wrap a child component in a provider that handles multiple related state values and setters. This foundational step showcases the basic extension of React context beyond singular data points.

 	 Dedicated component for context management —Next, we evolve our approach by creating a dedicated component for the provider. This refinement addresses the intricacies of managing multiple state aspects and illustrates a more structured and maintainable way to handle complex contexts.

 	 Selectability for performance optimization —Finally, we introduce selectability to our Provider pattern. This advanced technique focuses on minimizing re-renders, especially for components with stable content. It demonstrates how selective data flow can significantly enhance the performance of your React applications.

 By the end of this section, you will not only have deepened your understanding of React context but also gained practical skills by implementing the Provider pattern for complex state management. This journey from basic implementation to sophisticated techniques will empower you to optimize your React applications, ensuring that they are both performant and maintainable.

2.1.1 Inventing a provider

 A common approach is to use a context as a delivery mechanism for stateful values and setters. Suppose that we have a website with dark mode and light mode and a button in the header that can toggle between the two modes. All relevant components look at the current state and change their design depending on this state value.

 We want to put two things in the state: a value that tells us whether we are in dark mode (isDarkMode) and a function that allows a button to toggle between the two modes (toggleDarkMode). We can put these two values in a single object and stuff that object into the context as the value. Figure 2.3 shows this system, which we’ll implement in listing 2.1.

 [image: figure]

Figure 2.3 A document tree sketch of our website with a dark mode/light mode toggle. Note how we pass in an object to the context provider (dashed box), which we can deconstruct and use wherever we need either of the two values in the components below the provider in the document tree.

Listing 2.1 Dark mode with context

 import { useContext, useState, createContext, memo } from "react";
const DarkModeContext = createContext({}); #1
function Button({ children, ...rest }) {
 const { isDarkMode } = #2
 useContext(DarkModeContext); #2
 const style = {
 backgroundColor: isDarkMode ? "#333" : "#CCC",
 border: "1px solid",
 color: "inherit",
 };
 return (
 <button style={style} {...rest}>
 {children}
 </button>
);
}
function ToggleButton() {
 const { toggleDarkMode } = useContext(DarkModeContext); #3
 return <Button onClick={toggleDarkMode}>Toggle mode</Button>;
}
const Header = memo(function Header() {
 const style = {
 padding: "10px 5px",
 borderBottom: "1px solid",
 marginBottom: "10px",
 display: "flex",
 gap: "5px",
 justifyContent: "flex-end",
 };
 return (
 <header style={style}>
 <Button>Products</Button>
 <Button>Services</Button>
 <Button>Pricing</Button>
 <ToggleButton />
 </header>
);
});
const Main = memo(function Main() { #4
 const { isDarkMode } = #5
 ↪ useContext(DarkModeContext); #5
 const style = {
 color: isDarkMode ? "white" : "black",
 backgroundColor: isDarkMode ? "black" : "white",
 margin: "-8px",
 minHeight: "100vh",
 boxSizing: "border-box",
 };
 return (
 <main style={style}>
 <Header />
 <h1>Welcome to our business site!</h1>
 </main>
);
});
export default function App() {
 const [isDarkMode, setDarkMode] = #6
 useState(false); #6
 const toggleDarkMode = #6
 () => setDarkMode((v) => !v); #6
 const contextValue = { #7
 isDarkMode, #7
 toggleDarkMode #7
 };
 return (
 <DarkModeContext.Provider
 value={contextValue} #8
 >
 <Main />
 </DarkModeContext.Provider>
);
}

 #1 This time, we initialize our context with an empty object. We always have a context at the root of the application, so the default values will never be used.

#2 In these two locations, we use only the isDarkMode flag from the context.

#3 In the toggle button, we use only the toggleDarkMode function from the context.

#4 We memoize the main component.

#5 In these two locations, we use only the isDarkMode flag from the context.

#6 In the main application component, we define the two values that go into our context.

#7 We put these two values together in a single object.

#8 We use this single object as the value for our context provider.

 Example: dark-mode

 This example is in the ch02/dark-mode folder. You can use that example by running this command in the source folder:

 $ npm run dev -w ch02/dark-mode

 Alternatively, you can go to this website to browse the code, see the example in action in your browser, or download the source code as a zip file: https://reactlikea.pro/ch02-dark-mode. You can observe this website in figure 2.4.

 Note In React 19, context providers are created in JSX by typing <MyContext value={...}> rather than <MyContext.Provider value={...}>. Furthermore, contexts can be consumed by using the use() function rather than the useContext() hook. The new use() function is not a regular hook and does not have to obey hook rules, so it can be used conditionally, but it doesn’t give you any additional capability—only a different API. Creating and using contexts are otherwise the same in React 19 except for these slight syntax simplifications. I will be using the old syntax throughout this book.

 [image: figure]

Figure 2.4 Our website in both light mode and dark mode. Both examples look pretty decent and even somewhat chic!

 The important things to note here are how we give this context two different properties in the definition of the <App /> component in listing 2.1 and how we memoize the first components inside the context provider in the definition of <Main />. This memoization is very important because our main App component will re-render every time the context changes, which is every time the dark mode flag toggles (because the state updates). We don’t want all the other components to re-render just because the context does, however. In this instance, the Main component consumes the context, so it will re-render every time the context updates, but the Header does not consume the context, so it should not re-render. With our use of memoization, it doesn’t, which is perfect.

 We don’t have to stop there. We can put a whole bunch of properties and functions in the context value.

2.1.2 Creating a dedicated provider component

 The previous version of the dark mode application in listing 2.1 is fully functional, but we can do a bit better. The main application component is a bit crowded with the state value, toggle function, and context provider, so let’s clean it up. Instead of this code,

 function App() {
 const [isDarkMode, setDarkMode] = useState(false);
 const toggleDarkMode = () => setDarkMode((v) => !v);
 const contextValue = { isDarkMode, toggleDarkMode };
 return (
 <DarkModeContext.Provider value={contextValue}>
 <Main />
 </DarkModeContext.Provider>
);
}

 suppose that we have this code:

 function App() {
 return (
 <DarkModeProvider>
 <Main />
 </DarkModeProvider>
);
}

 First, the second component is much more elegant. We remove the logic about what goes inside the actual context from the main application, but we also get one additional benefit: this new <App /> component is not stateful, so it never re-renders. Because it never re-renders, it never causes <Main /> to re-render.

 Before, <App /> was stateful and caused re-renders of the Main component, so we had to wrap that component in memo() to avoid unnecessary re-renders, but we don’t have to anymore. One additional optimization we can make is to simplify these calls:

 const ... = useContext(DarkModeContext);

 We can create a custom hook that returns the context contents, so this line becomes

 const ... = useDarkMode();

 With both changes, we get the result in the following listing.

Listing 2.2 Dark mode with a dedicated provider

 import { useContext, useState, createContext, memo } from "react";
const DarkModeContext = createContext({});
function Button({ children, ...rest }) {
 const { isDarkMode } = useDarkMode(); #1
 ...
}
function ToggleButton() {
 const { toggleDarkMode } = useDarkMode(); #1

 return <Button onClick={toggleDarkMode}>Toggle mode</Button>;
}
const Header = memo(function Header() {
 ...
});
function Main() { #2
 const { isDarkMode } = useDarkMode(); #1
 ...
}
function DarkModeProvider({ children }) { #3
 const [isDarkMode, setDarkMode] = useState(false);
 const toggleDarkMode = () => setDarkMode((v) => !v);
 const contextValue = { isDarkMode, toggleDarkMode };
 return (
 <DarkModeContext.Provider value={contextValue}>
 {children}
 </DarkModeContext.Provider>
);
}
function useDarkMode() { #4
 return useContext(DarkModeContext);
}
export default function App() {
 return (
 <DarkModeProvider> #5
 <Main /> #5
 </DarkModeProvider> #5
);
}

 #1 Uses the custom hook to access the context contents

#2 Defines the main component without memoization

#3 Creates a new dedicated provider component that wraps its children in the context provider

#4 Creates a new custom hook to access the provided context

#5 Returns a much more elegant JSX in the root app component

 Example: dark-mode-dedicated

 This example is in the ch02/dark-mode-dedicated folder. You can use that example by running this command in the source folder:

 $ npm run dev -w ch02/dark-mode-dedicated

 Alternatively, you can go to this website to browse the code, see the example in action in your browser, or download the source code as a zip file: https://reactlikea.pro/ch02-dark-mode-dedicated.

2.1.3 Avoiding rendering everything

 The context provider in the preceding example has a minor suboptimal problem: all components consuming a specific context will re-render when any value inside that context changes. This situation occurs because now our context is a complex object with multiple properties, but React doesn’t care; it sees only that the context value changes, so every component using that context will be re-rendered.

 Our toggle component never needs to re-render, however, because it uses a function that can be memoized to be completely stable. The reason is that the toggleDarkMode function does not depend on the current value of the context. Unfortunately, we cannot tell React to re-render only a specific component when specific properties of a context update. At least, we cannot do that yet. That capability was expected to come with React 19 beta but didn’t make it; it’s hopefully coming in a future update.

 If we want to avoid re-rendering every context consumer unnecessarily, we need to use an external library. One such library, called use-context-selector, allows us to not use an entire context every time. Instead, we can specify the specific attribute of the context that we are interested in (we select the relevant property—hence, the selector part of the name). Then React will re-render our component only when that specific property changes.

 To use the use-context-selector package correctly, we also need to create our context with this package. We cannot use the regular context as created by createContext in the React package; we have to use the createContext function provided by the use-context-selector package. The custom hook for accessing the context takes a selector function, like so:

 function useDarkMode(selector) {
 return useContextSelector(DarkModeContext, selector);
}

 We pass this new argument, selector, straight to the useContextSelector hook. This custom hook still makes sense, as it removes the need to reference the context every time. Let’s implement this updated and more optimized version of our dark mode–toggling website in the following listing.

Listing 2.3 Dark mode with context selector

 import { useState, useCallback, memo } from "react";
import { #1
 createContext, #1
 useContextSelector, #1
} from "use-context-selector"; #1
const DarkModeContext = createContext({});
function Button({ children, ...rest }) {
 const isDarkMode = #2
 useDarkMode((ctx) => ctx.isDarkMode); #2
 ...
}
function ToggleButton() {
 const toggle = useDarkMode((ctx) => ctx.toggle); #3
 return <Button onClick={toggle}>Toggle mode</Button>;
}
const Header = memo(function Header() {
 ...
});
function Main() {
 const isDarkMode = #3
 useDarkMode((ctx) => ctx.isDarkMode); #3
 ...
}
function DarkModeProvider({ children }) {
 const [isDarkMode, setDarkMode] = useState(false);
 const toggle = #4
 useCallback(() => setDarkMode((v) => !v), []); #4
 const contextValue = { isDarkMode, toggle }; #5
 return (
 <DarkModeContext.Provider value={contextValue}>
 {children}
 </DarkModeContext.Provider>
);
}
function useDarkMode(selector) { #6
 return useContextSelector(#6
 DarkModeContext, #6
 selector #6
); #6
}
export default function App() {
 return (
 <DarkModeProvider>
 <Main />
 </DarkModeProvider>
);
}

 #1 We have changed only a few things this time around. First, we imported two functions from the use-context-selector package.

#2 Whenever we need a value from the context, we use the new useDarkMode hook, which now takes a selector.

#3 Whenever we need a value from the context, we use the new useDarkMode hook, which now takes a selector.

#4 To avoid re-renders, we memoize our toggle function by using useCallback.

#5 We create and initialize the context value the same as before from the two parts.

#6 In the useDarkMode hook, we need to pass the selector argument to that new useContextSelector hook from the third-party package.

 Example: dark-mode-selector

 This example is in the ch02/dark-mode-selector folder. You can use that example by running this command in the source folder:

 $ npm run dev -w ch02/dark-mode-selector

 Alternatively, you can go to this website to browse the code, see the example in action in your browser, or download the source code as a zip file: https://reactlikea.pro/ch02-dark-mode-selector.

 The result is the same website we had before with the same functionality, but now the ToggleButton never re-renders because it uses only a stable value from the context. Because the context never updates, there’s no need to re-render the component. The two components listening for the isDarkMode flag inside the context will still re-render every time the flag updates because we select that exact property in the useDarkMode hooks in those two components.

 This approach might seem like an overoptimization at this point because we’re talking about whether a single component updates a few extra times or not. In a large application with many contexts, however, these extra updates add up quickly! So if you are using contexts to share common functionality throughout your application, you should be using useContextSelector

