

 [image: cover]

Functional Programming in Java: How functional techniques improve your Java programs

 Pierre-Yves Saumont

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Marina Michaels
Technical development editor: Mark Elston
Project editor: Janet Vail
Copyeditor: Andy Carroll
Proofreaders: Katie Tennant and Melody Dolab
Technical proofreader: Alessandro Campeis
Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 ISBN 9781617292736

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Why Functional Programming?

 Preface

 Acknowledgments

 About this Book

 Chapter 1. What is functional programming?

 Chapter 2. Using functions in Java

 Chapter 3. Making Java more functional

 Chapter 4. Recursion, corecursion, and memoization

 Chapter 5. Data handling with lists

 Chapter 6. Dealing with optional data

 Chapter 7. Handling errors and exceptions

 Chapter 8. Advanced list handling

 Chapter 9. Working with laziness

 Chapter 10. More data handling with trees

 Chapter 11. Solving real problems with advanced trees

 Chapter 12. Handling state mutation in a functional way

 Chapter 13. Functional input/output

 Chapter 14. Sharing mutable state with actors

 Chapter 15. Solving common problems functionally

 Appendix A. Using Java 8 functional features

 Appendix B. Monads

 Appendix C. Where to go from here

 Index

 List of Figures

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Why Functional Programming?

 Preface

 Acknowledgments

 About this Book

 Chapter 1. What is functional programming?

 1.1. What is functional programming?

 1.2. Writing useful programs with no side effects

 1.3. How referential transparency makes programs safer

 1.4. The benefits of functional programming

 1.5. Using the substitution model to reason about programs

 1.6. Applying functional principles to a simple example

 1.7. Pushing abstraction to the limit

 1.8. Summary

 Chapter 2. Using functions in Java

 2.1. What is a function?

 2.1.1. Functions in the real world

 2.2. Functions in Java

 2.2.1. Functional methods

 2.2.2. Java functional interfaces and anonymous classes

 2.2.3. Composing functions

 2.2.4. Polymorphic functions

 Exercise 2.1

 Solution 2.1

 2.2.5. Simplifying the code by using lambdas

 Exercise 2.2

 Solution 2.2

 2.3. Advanced function features

 2.3.1. What about functions of several arguments?

 Exercise 2.3

 Solution 2.3

 2.3.2. Applying curried functions

 2.3.3. Higher-order functions

 Exercise 2.4

 Solution 2.4

 2.3.4. Polymorphic higher-order functions

 Exercise 2.5 (hard)

 Solution 2.5

 Exercise 2.6 (easy now!)

 Solution 2.6

 2.3.5. Using anonymous functions

 2.3.6. Local functions

 2.3.7. Closures

 2.3.8. Partial function application and automatic currying

 Exercise 2.7 (very easy)

 Solution 2.7

 Exercise 2.8

 Solution 2.8

 Exercise 2.9 (very easy)

 Solution 2.9

 Exercise 2.10

 Solution 2.10

 2.3.9. Switching arguments of partially applied functions

 Exercise 2.11

 Solution 2.11

 2.3.10. Recursive functions

 Exercise 2.12

 Solution 2.12

 2.3.11. The identity function

 2.4. Java 8 functional interfaces

 2.5. Debugging with lambdas

 2.6. Summary

 Chapter 3. Making Java more functional

 3.1. Making standard control structures functional

 3.2. Abstracting control structures

 3.2.1. Cleaning up the code

 Exercise 3.1 (hard)

 Solution 3.1

 3.2.2. An alternative to if ... else

 Exercise 3.2

 Solution 3.2

 3.3. Abstracting iteration

 3.3.1. Abstracting an operation on lists with mapping

 3.3.2. Creating lists

 Exercise 3.3

 Solution 3.3

 3.3.3. Using head and tail operations

 Exercise 3.4

 Solution 3.4

 3.3.4. Functionally appending to a list

 3.3.5. Reducing and folding lists

 Exercise 3.5

 Solution 3.5

 Exercise 3.6

 Solution 3.6

 Exercise 3.7

 Solution 3.7

 Exercise 3.8

 Solution 3.8

 Exercise 3.9 (hard)

 Solution 3.9

 Exercise 3.10 (hard)

 Solution

 3.3.6. Composing mappings and mapping compositions

 3.3.7. Applying effects to lists

 3.3.8. Approaching functional output

 3.3.9. Building corecursive lists

 Exercise 3.11

 Solution 3.11

 Exercise 3.12

 Solution 3.12

 Exercise 3.13

 Solution 3.13

 Exercise 3.14

 Solution 3.14

 3.4. Using the right types

 3.4.1. Problems with standard types

 3.4.2. Defining value types

 3.4.3. The future of value types in Java

 3.5. Summary

 Chapter 4. Recursion, corecursion, and memoization

 4.1. Understanding corecursion and recursion

 4.1.1. Exploring corecursive and recursive addition examples

 4.1.2. Implementing recursion in Java

 4.1.3. Using tail call elimination

 4.1.4. Using tail recursive methods and functions

 4.1.5. Abstracting recursion

 4.1.6. Using a drop-in replacement for stack-based recursive methods

 4.2. Working with recursive functions

 4.2.1. Using locally defined functions

 4.2.2. Making functions tail recursive

 4.2.3. Doubly recursive functions: the Fibonacci example

 Exercise 4.1

 Solution 4.1

 Exercise 4.2

 Solution 4.2

 4.2.4. Making the list methods stack-safe and recursive

 Exercise 4.3

 Solution 4.3

 Exercise 4.4

 Solution 4.4

 Exercise 4.5 (hard)

 Solution 4.5

 4.3. Composing a huge number of functions

 Exercise 4.6

 Solution 4.6

 Exercise 4.7

 Solution 4.7

 Exercise 4.8

 Solution 4.8

 4.4. Using memoization

 4.4.1. Memoization in imperative programming

 4.4.2. Memoization in recursive functions

 Exercise 4.9

 Solution 4.9

 4.4.3. Automatic memoization

 4.5. Summary

 Chapter 5. Data handling with lists

 5.1. How to classify data collections

 5.1.1. Different types of lists

 5.1.2. Relative expected list performance

 5.1.3. Trading time against memory space, and time against complexity

 5.1.4. In-place mutation

 5.1.5. Persistent data structures

 5.2. An immutable, persistent, singly linked list implementation

 5.3. Data sharing in list operations

 Exercise 5.1

 Solution 5.1

 Exercise 5.2

 Solution 5.2

 Exercise 5.3

 Solution 5.3

 5.3.1. More list operations

 Exercise 5.4

 Solution 5.4

 Exercise 5.5

 Solution 5.5

 Exercise 5.6

 Solution 5.6

 5.4. Using recursion to fold lists with higher-order functions

 Exercise 5.7

 Solution 5.7

 Exercise 5.8

 Solution 5.8

 Exercise 5.9

 Solution 5.9

 Exercise 5.10

 Solution 5.10

 Exercise 5.11

 Solution 5.11

 Exercise 5.12

 Solution 5.12

 Exercise 5.13 (hard)

 Solution 5.13

 5.4.1. Heap-based recursive version of foldRight

 Exercise 5.14

 Solution 5.14

 Exercise 5.15

 Solution 5.15

 Exercise 5.16

 Solution 5.16

 5.4.2. Mapping and filtering lists

 Exercise 5.17

 Solution 5.17

 Exercise 5.18

 Solution 5.18

 Exercise 5.19

 Solution 5.19

 Exercise 5.20

 Solution 5.20

 Exercise 5.21

 Solution 5.21

 Exercise 5.22

 Solution 5.22

 5.5. Summary

 Chapter 6. Dealing with optional data

 6.1. Problems with the null pointer

 6.2. Alternatives to null references

 6.3. The Option data type

 6.3.1. Getting a value from an Option

 Exercise 6.1

 Solution 6.1

 Exercise 6.2

 Solution 6.2

 6.3.2. Applying functions to optional values

 Exercise 6.3

 Solution 6.3

 6.3.3. Dealing with Option composition

 Exercise 6.4

 Solution 6.4

 Exercise 6.5

 Solution 6.5

 Exercise 6.6

 Solution 6.6

 6.3.4. Option use cases

 Exercise 6.7

 Solution 6.7

 6.3.5. Other ways to combine options

 Exercise 6.8

 Solution 6.8

 Exercise 6.9

 Solution 6.9

 Exercise 6.10

 Solution 6.10

 6.3.6. Composing List with Option

 Exercise 6.11

 Solution 6.11

 Exercise 6.12

 Solution 6.12

 6.4. Miscellaneous utilities for Option

 6.4.1. Testing for Some or None

 6.4.2. equals and hashcode

 6.5. How and when to use Option

 6.6. Summary

 Chapter 7. Handling errors and exceptions

 7.1. The problems to be solved

 7.2. The Either type

 7.2.1. Composing Either

 Exercise 7.1

 Solution 7.1

 Exercise 7.2

 Solution 7.2

 Exercise 7.3

 Solution 7.3

 7.3. The Result type

 7.3.1. Adding methods to the Result class

 Exercise 7.4

 Solution 7.4

 7.4. Result patterns

 7.5. Advanced Result handling

 7.5.1. Applying predicates

 Exercise 7.5

 Solution 7.5

 Exercise 7.6

 Solution 7.6

 7.5.2. Mapping failures

 Exercise 7.7

 Solution 7.7

 7.5.3. Adding factory methods

 Exercise 7.8

 Solution 7.8

 7.5.4. Applying effects

 Exercise 7.9

 Solution 7.9

 Exercise 7.10

 Solution 7.10

 Exercise 7.11

 Solution 7.11

 7.5.5. Advanced result composition

 Exercise 7.12

 Solution 7.12

 Exercise 7.13

 Solution 7.13

 Exercise 7.14

 Solution 7.14

 7.6. Summary

 Chapter 8. Advanced list handling

 8.1. The problem with length

 8.1.1. The performance problem

 8.1.2. The benefit of memoization

 8.1.3. The drawbacks of memoization

 Exercise 8.1

 Solution 8.1

 8.1.4. Actual performance

 8.2. Composing List and Result

 8.2.1. Methods on List returning Result

 Exercise 8.2

 Solution 8.2

 Exercise 8.3

 Solution 8.3

 Exercise 8.4

 Solution 8.4

 8.2.2. Converting from List<Result> to Result<List>

 Exercise 8.5

 Solution 8.5

 Exercise 8.6

 Solution 8.6

 Exercise 8.7

 Solution 8.7

 8.3. Abstracting common List use cases

 8.3.1. Zipping and unzipping lists

 Exercise 8.8

 Solution 8.8

 Exercise 8.9

 Solution 8.9

 Exercise 8.10

 Solution 8.10

 Exercise 8.11

 Solution 8.11

 8.3.2. Accessing elements by their index

 Exercise 8.12

 Solution 8.12

 Exercise 8.13 (hard and optional)

 Solution 8.13

 8.3.3. Splitting lists

 Exercise 8.14

 Solution

 Exercise 8.15 (not so hard if you’ve done exercise 8.13)

 Solution 8.15

 8.3.4. Searching for sublists

 Exercise 8.16

 Solution 8.16

 8.3.5. Miscellaneous functions for working with lists

 Exercise 8.17

 Solution 8.17

 Exercise 8.18

 Solution 8.18

 Exercise 8.19

 Solution 8.19

 Exercise 8.20

 Solution 8.20

 Exercise 8.21

 Solution 8.21

 8.4. Automatic parallel processing of lists

 8.4.1. Not all computations can be parallelized

 8.4.2. Breaking the list into sublists

 Exercise 8.22

 Solution 8.22

 8.4.3. Processing sublists in parallel

 Exercise 8.23

 Solution 8.23

 Exercise 8.24

 Solution 8.24

 8.5. Summary

 Chapter 9. Working with laziness

 9.1. Understanding strictness and laziness

 9.1.1. Java is a strict language

 9.1.2. The problem with strictness

 9.2. Implementing laziness

 9.3. Things you can’t do without laziness

 9.4. Why not use the Java 8 Stream?

 9.5. Creating a lazy list data structure

 9.5.1. Memoizing evaluated values

 Exercise 9.1

 Solution 9.2

 9.5.2. Manipulating streams

 Exercise 9.2

 Solution 9.2

 Exercise 9.3

 Solution 9.3

 Exercise 9.4

 Solution 9.4

 Exercise 9.5

 Solution 9.5

 9.6. The true essence of laziness

 Exercise 9.6

 Solution 9.6

 9.6.1. Folding streams

 Exercise 9.7

 Solution 9.7

 Exercise 9.8

 Solution 9.8

 Exercise 9.9

 Solution 9.9

 Exercise 9.10

 Solution 9.10

 Exercise 9.11

 Solution 9.11

 Exercise 9.12

 Solution 9.12

 Exercise 9.13

 Solution 9.13

 Exercise 9.14

 Solution 9.14

 9.7. Handling infinite streams

 Exercise 9.15

 Solution 9.15

 Exercise 9.16

 Solution 9.16

 Exercise 9.17

 Solution 9.17

 Exercise 9.18

 Solution 9.18

 9.8. Avoiding null references and mutable fields

 Exercise 9.19

 Solution 9.19

 9.9. Summary

 Chapter 10. More data handling with trees

 10.1. The binary tree

 10.1.1. Balanced and unbalanced trees

 10.1.2. Size, height, and depth

 10.1.3. Leafy trees

 10.1.4. Ordered binary trees or binary search trees (BST)

 10.1.5. Insertion order

 10.1.6. Tree traversal order

 10.2. Implementing the binary search tree

 Exercise 10.1

 Solution 10.1

 Exercise 10.2

 Solution 10.2

 Exercise 10.3

 Solution 10.3

 Exercise 10.4

 Solution 10.4

 Exercise 10.5

 Solution 10.5

 10.3. Removing elements from trees

 Exercise 10.6

 Solution 10.6

 10.4. Merging arbitrary trees

 Exercise 10.7 (hard)

 Solution 10.7

 10.5. Folding trees

 10.5.1. Folding with two functions

 Exercise 10.8

 Solution 10.8

 10.5.2. Folding with a single function

 Exercise 10.9

 Solution 10.9

 10.5.3. Which fold implementation to choose

 Exercise 10.10 (hard)

 Solution 10.10

 10.6. Mapping trees

 Exercise 10.11

 Solution 10.11

 10.7. Balancing trees

 10.7.1. Rotating trees

 Exercise 10.12

 Solution 10.12

 Exercise 10.13

 Solution 10.13

 10.7.2. Balancing trees using the Day-Stout-Warren algorithm

 Exercise 10.14

 Solution 10.14

 10.7.3. Automatically balancing trees

 Exercise 10.15

 Solution 10.15

 10.7.4. Solving the right problem

 10.8. Summary

 Chapter 11. Solving real problems with advanced trees

 11.1. Better performance and stack safety with self-balancing trees

 11.1.1. The basic tree structure

 11.1.2. Inserting an element into the red-black tree

 Exercise 11.1

 Solution 11.1

 11.2. A use case for the red-black tree: maps

 11.2.1. Implementing Map

 Exercise 11.2

 Solution 11.2

 11.2.2. Extending maps

 Exercise 11.3

 Solution 11.3

 11.2.3. Using Map with noncomparable keys

 Exercise 11.4

 Solution 11.4

 11.3. Implementing a functional priority queue

 11.3.1. The priority queue access protocol

 11.3.2. Priority queue use cases

 11.3.3. Implementation requirements

 11.3.4. The leftist heap data structure

 11.3.5. Implementing the leftist heap

 Exercise 11.5

 Solution 11.5

 11.3.6. Implementing the queue-like interface

 Exercise 11.6

 Solution 11.6

 Exercise 11.7

 Solution 11.7

 11.4. A priority queue for noncomparable elements

 Exercise 11.8

 Solution 11.8

 Exercise 11.9

 Solution 11.9

 Exercise 11.10

 Solution 11.10

 11.5. Summary

 Chapter 12. Handling state mutation in a functional way

 12.1. A functional random number generator

 12.1.1. The random number generator interface

 12.1.2. Implementing the random number generator

 Exercise 12.1

 Solution 12.1

 Exercise 12.2

 Solution 12.2

 12.2. A generic API for handling state

 12.2.1. Working with state operations

 Exercise 12.3

 Solution 12.3

 Exercise 12.4

 Solution 12.4

 12.2.2. Composing state operations

 Exercise 12.5

 Solution 12.5

 Exercise 12.6

 Solution 12.6

 12.2.3. Recursive state operations

 Exercise 12.7

 Solution 12.7

 Exercise 12.8

 Solution 12.8

 12.3. Generic state handling

 Exercise 12.9

 Solution 12.9

 12.3.1. State patterns

 12.3.2. Building a state machine

 Exercise 12.10

 Solution 12.10

 Exercise 12.11

 Solution 12.11

 12.3.3. When to use state and the state machine

 12.4. Summary

 Chapter 13. Functional input/output

 13.1. Applying effects in context

 13.1.1. What are effects?

 13.1.2. Implementing effects

 Exercise 13.1

 Solution 13.1

 13.1.3. More-powerful effects for failures

 Exercise 13.2

 Solution 13.2

 13.2. Reading data

 13.2.1. Reading data from the console

 Exercise 13.3

 Solution 13.3

 13.2.2. Reading from a file

 Exercise 13.4

 Solution 13.4

 13.2.3. Testing with input

 13.3. Really functional input/output

 13.3.1. How can input/output be made fully functional?

 13.3.2. Implementing purely functional input/output

 13.3.3. Combining IO

 Exercise 13.5

 Solution 13.5

 13.3.4. Handling input with IO

 Exercise 13.6

 Solution 13.6

 Exercise 13.7

 Solution 13.7

 13.3.5. Extending the IO type

 Exercise 13.8

 Solution 13.8

 13.3.6. Making the IO type stack-safe

 Exercise 13.9

 Solution 13.9

 13.4. Summary

 Chapter 14. Sharing mutable state with actors

 14.1. The actor model

 14.1.1. Asynchronous messaging

 14.1.2. Handling parallelization

 14.1.3. Handling actor state mutation

 14.2. Building the actor framework

 14.2.1. Limitations of this actor framework

 14.2.2. Designing the actor framework interfaces

 14.2.3. The AbstractActor implementation

 14.3. Putting actors to work

 14.3.1. Implementing the ping-pong example

 14.3.2. A more serious example: running a computation in parallel

 14.3.3. Reordering the results

 14.3.4. Fixing the performance problem

 14.4. Summary

 Chapter 15. Solving common problems functionally

 15.1. Using assertions to validate data

 15.2. Reading properties from file

 15.2.1. Loading the property file

 15.2.2. Reading properties as strings

 15.2.3. Producing better error messages

 15.2.4. Reading properties as lists

 15.2.5. Reading enum values

 15.2.6. Reading properties of arbitrary types

 15.3. Converting an imperative program: the XML reader

 15.3.1. Listing the necessary functions

 15.3.2. Composing the functions and applying an effect

 15.3.3. Implementing the functions

 15.3.4. Making the program even more functional

 15.3.5. Fixing the argument type problem

 15.3.6. Making the element-processing function a parameter

 15.3.7. Handling errors on element names

 15.4. Summary

 Appendix A. Using Java 8 functional features

 A.1. The Optional class

 A.2. Streams

 Appendix B. Monads

 Appendix C. Where to go from here

 C.1. Choosing a new language

 C.1.1. Haskell

 C.1.2. Scala

 C.1.3. Kotlin

 C.1.4. Frege

 C.1.5. What about dynamically typed functional languages?

 C.2. Staying with Java

 C.2.1. Functional Java

 C.2.2. Javaslang

 C.2.3. Cyclops

 C.2.4. Other functional libraries

 C.3. Further reading

 Index

 List of Figures

 List of Listings

Why Functional Programming?

 Functional programs contain no assignment statements, so variables, once given a value, never change. More generally, functional
 programs contain no side-effects at all. A function call can have no effect other than to compute its result. This eliminates
 a major source of bugs, and also makes the order of execution irrelevant—since no side-effect can change an expression’s value,
 it can be evaluated at any time. This relieves the programmer of the burden of prescribing the flow of control. Since expressions
 can be evaluated at any time, one can freely replace variables by their values and vice versa—that is, programs are “referentially
 transparent.” This freedom helps make functional programs more tractable mathematically than their conventional counterparts.

 John Hughes “Why Functional Programming Matters”

 I call it my billion-dollar mistake ... My goal was to ensure that all use of references should be absolutely safe, with checking
 performed automatically by the compiler. But I couldn’t resist the temptation to put in a null reference, simply because it
 was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused
 a billion dollars of pain and damage in the last forty years.

 Tony Hoare

 Program testing can be a very effective way to show the presence of bugs, but is hopelessly inadequate for showing their absence.

 Edsger W. Dijkstra

 Testing by itself does not improve software quality. Test results are an indicator of quality, but in and of themselves, they
 don’t improve it. Trying to improve software quality by increasing the amount of testing is like trying to lose weight by
 weighing yourself more often.

 Steve McConnell

 The proper use of comments is to compensate for our failure to express ourselves in code.

 Robert C. Martin

 In programming the hard part isn’t solving problems, but deciding what problems to solve.

 Paul Graham

 Object oriented programming makes code understandable by encapsulating moving parts. Functional programming makes code understandable
 by minimizing moving parts.

 Michael Feathers

 I have always found that plans are useless, but planning is indispensable.

 Dwight D. Eisenhower

 There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies
 and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.

 Tony Hoare

 If we’d asked the customers what they wanted, they would have said “faster horses.”

 Henry Ford

 Whereas some declarative programmers only pay lip service to equational reasoning, users of functional languages exploit them
 every time they run a compiler, whether they notice it or not.

 Philip Wadler “How to declare an imperative”

 We were not out to win over the Lisp programmers; we were after the C++ programmers. We managed to drag a lot of them about
 halfway to Lisp.

 Guy Steele

 People “get” types. They use them all the time. Telling someone he can’t pound a nail with a banana doesn’t much surprise
 him.

 Unknown

 TDD replaces a type checker ... in the same way that a strong drink replaces sorrows.

 byorgey

 Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible,
 you are, by definition, not smart enough to debug it.

 Brian W. Kernighan and P. J. Plauger

 As soon as we started programming, we found to our surprise that it wasn’t as easy to get programs right as we had thought.
 Debugging had to be discovered. I can remember the exact instant when I realized that a large part of my life from then on
 was going to be spent in finding mistakes in my own programs.

 Maurice Wilkes (1949)

Preface

 Writing programs is fun and rewarding. Programming is an activity that many people would do for fun, and yet are paid for.
 In this sense, a programmer is a bit like an actor, a musician, or a professional football player. It seems like a dream until
 you, as a programmer, begin to have real responsibilities. Writing games or office applications isn’t really a big deal from
 this point of view. If your application has a bug, you simply fix it and release a new version. But if you write applications
 that people depend on, and if you can’t simply release a new version and have your users install it themselves, it’s another
 story. Of course, Java isn’t meant for writing applications for monitoring nuclear plants or flying airplanes, or any system
 in which a simple bug could put human life at risk. But if your application is used to manage internet backbones, you wouldn’t
 like a nasty bug to be discovered one day before the Olympic Games open, causing a TV transmission failure for a whole country.
 For such applications, you want to be sure that your program can be proven correct.

 Most imperative programs can’t be proven correct. Tests only allow us to prove programs incorrect when they fail. Successful
 tests don’t prove much. What you release are programs that you weren’t able to prove incorrect. With single-threaded programs,
 extensive tests may let you show that your code is mostly correct. But with multithreaded applications, the number of possible
 condition combinations makes that impossible. Clearly, we need a different way to write programs. Ideally, it would be a way
 that allows us to prove that a program is correct. Because this is generally not fully possible, a good compromise is a clear
 separation between parts of the program that can be proven correct and parts that can’t. This is what functional programming
 techniques offer.

 Functional programming has about as many definitions as there are functional programmers. Some say that functional programming
 is programming with functions. This is true, but it doesn’t help you understand the benefits of this programming paradigm.
 More important is the idea that functional programming involves pushing abstraction to the limit. This allows a clear separation
 between the parts of a program that can be proven correct and the other parts whose output depends on external conditions.
 This way, functional programs are programs that are less prone to bugs, and in which bugs can only reside in specific, restricted
 areas.

 Many techniques can be employed to reach this goal. The use of immutable data, although not specific to functional programming,
 is such a technique. If data can’t change, you won’t have any (bad) surprises, no stale or corrupted data, no race conditions,
 no need for locking on concurrent accesses, and no risk of deadlocks. Immutable data can be shared without risk. You don’t
 need to make defensive copies, and you don’t risk forgetting to do so. Another technique is abstracting control structures
 so that you don’t have to write the same structures again and again, multiplying the risk of messing with loop indexes and
 exit conditions. Completely removing the use of null references (whether implicit or explicit) will free you from the infamous
 NPE (NullPointerException). With all these techniques (and more), you can be confident that if your program compiles, it’s
 correct (meaning that it has no implementation bugs). This doesn’t remove all possibility of bugs, but it makes things much
 safer.

 Computers have used the imperative paradigm from the beginning, based on mutating values in registers. Java, like many other
 programming languages known as “imperative languages,” seems to rely heavily on this paradigm, but this isn’t essential. If
 you’re an experienced Java programmer, you might be surprised to hear that you can write useful programs without ever changing
 the value of a variable. This isn’t a mandatory condition for functional programming, but it’s so comfortable that functional
 programmers nearly always use immutable data. You might also have difficulty believing that you can write applications without
 ever using an if ... else structure or a while or for loop. Again, avoiding such structures isn’t a condition for using the functional paradigm, but you can avoid them if you
 want, and this leads to much safer programs. So even if Java is generally seen as an “imperative language,” it’s not. No language
 is imperative, and no language is functional. Believing that they are is like thinking that English is better for business
 texts while Italian would be better for singing opera, French for love poetry, and German for philosophy (or whatever combinations
 you can imagine). Differences may exist, but they’re mostly cultural, and the same is true for programming languages. Java
 is an imperative language because most Java programmers are imperative programmers, and the Java culture is mostly imperative.
 In contrast, Haskell programs are generally written in a functional style because programmers choose this language with functional
 programming in mind. But it’s possible to write imperative programs in Haskell, and it’s possible to write functional programs
 in Java. The difference is that Haskell is more “functional-friendly” than Java.

 So the question is, “Should you use Java for functional programming”? Surprisingly (given the subject of this book) the answer
 is no. With the freedom to choose any language, I’ll say that you shouldn’t chose Java for this purpose. But you generally
 won’t have this freedom. Most of the negative comments I received when writing articles about using Java for functional programming
 were along the lines of “You should not use Java for this. This is not the way Java was intended to be used,” or “Why are
 you using Java for this? Better to use Haskell, or Scala, or whatever.”

 In reality, you generally don’t have a choice of language. If you work in a company, you probably have to use the corporate
 language, or at least the one chosen by your team for the project you’re working on. Haskell is never an option from this
 point of view. Often, you’ll have no choice but to use Java. And if you’re in a position to choose the language, you likely
 won’t have any choice besides using a language you know, or using a language that allows the reuse of some legacy code, or
 a language that suits the environment, or some other condition. This book is aimed at you, the Java programmer who has no
 real choice other than using Java, although you want to benefit from the safety of functional programming.

 Using functional programming techniques in Java will often cause you to go against so-called “best practices.” Many of these
 practices are, in fact, useless, and some are very bad practices indeed. Never catching errors is one of them. As a Java programmer,
 you probably learned that you shouldn’t be catching OOME (Out Of Memory Error) or other kinds of errors you can’t deal with.
 Maybe you even learned that you shouldn’t catch NPEs (NullPointerExceptions) because they indicate bugs, and you should let
 the application crash and fix it. Unfortunately, neither OOME nor NPE will crash the application. They’ll only crash the thread
 in which they occur, leaving the application in some indeterminate state. Even if they occur in the main thread, they’ll possibly
 fail to crash the application if some non-daemon threads are running. This “best practice” was true when all applications
 were single-threaded. It’s now a very bad practice. You should catch all exceptions, although possibly not in a try ... catch block. In functional programming, the mantra is, “Always catch, never throw.”

 There are many other best practices that will be challenged during our functional programming journey. One of them, although
 not directly related to Java or imperative programming, is, “Don’t reinvent the wheel.” Think about it. Once, someone invented
 the wheel. At that time, it was probably something roughly circular made of some rigid material and turning on an axle. The
 wheel has been reinvented many times since then. If it hadn’t, you’d have no cars, no trains, and nearly nothing using wheels.
 So you should continue trying to reinvent the wheel again and again. Not only will this give us better wheels in the future,
 but it’s challenging, rewarding, and fun. (And if you believe that modern cars have circular wheels, you’d better think again.
 No car could ever run on circular wheels!)

Acknowledgments

 I would like to thank the many people who participated in making this book possible.

 First, a big thank you to my developmental editor, Marina Michaels. Besides your wonderful work on the manuscript, it’s been
 a real pleasure to work with you.

 A big thank you, too, to Mark Elston, my technical editor, and to Alessandro Campeis, my technical proofreader, both of whom
 helped me make this book much better than I could have done alone.

 To all the reviewers, MEAP readers, and everyone else who provided feedback and comments, thank you! This book would not be
 what it is today without your help. Specifically, I’d like to thank the following people who all took the time to review and
 comment on the book: Aditya Kumar, Al Krinker, Andy Kirsch, Andy Knight, Anthony Moralez, Arun Allamsetty, Barry Kern, Boris
 Vasile, Bruce Hernandez, Charles Feduke, Chris Kirk, David Drummond, Davide Fiorentino lo Regio, Erwin van Eijk, Gualtiero
 Testa, Ivan Milosavljević, Jan Vorwerk, Jérôme Baton, Joshua McAdams, Julian Templeman, Maria Gemini, Norbert Kuchenmeister,
 Philippe Charrière, Piotr Bzdyl, Rambabu Posa, Sebastian Hähnel, Sebastian Metzger, Simeon Leyzerzon, Tarin Gamberini, Ursin
 Stauss, William Wheeler, Zach Schwartz and Zorodzayi Mukuya.

About this Book

 This isn’t a book about Java. This book is about functional programming, which is a different way to write software programs.
 “Different” means different from the “traditional” way of writing software, which is called the imperative paradigm. This
 book is about applying the functional paradigm to Java programming.

 There’s no such thing as a “functional language.” There are only languages that are more-or-less functional-friendly. Although
 I use Java in this book, you can apply all the principles I teach to any other language. Only the way in which you implement
 these principles would be different. You can write functional programs in any language, even those said not to be functional
 at all; you can similarly write imperative programs with the most functional-friendly languages.

 With the release of Java 8, some functional features have been added to the Java language. But just as this book isn’t about
 Java, it’s also not about these specific Java 8 features. In this book, I make heavy use of some of these features, and I
 mostly ignore others. If your goal is to learn how to use the functional features of Java 8, this is not the right book. Urma,
 Fusco, and Mycroft’s Java 8 in Action (Manning, 2014) would be a much better choice.

 On the other hand, if you want to learn what functional programming is, how to build functional data structures, and how the
 functional programming paradigm will help you write better programs (sometimes using the Java 8 features and sometimes avoiding
 them), this is the book for you.

Audience

 This book is intended for readers with some programming experience in Java. A good understanding of Java generics is necessary.
 If you find yourself not understanding a Java construction (such as generic constants implemented as methods, or parameterized
 method calls), don’t be afraid: I’ll explain what they mean and why they’re needed.

 You don’t need to have prior experience in functional programming, or to be aware of the mathematical theory that underlies
 it. Chapter 2 will act as a reminder of what a function is, and that’s it. No other math will be used.

 I present all functional techniques in relation to their imperative counterparts, so I expect you to have experience with
 imperative programming in Java.

How to use this book

 This book is intended to be read sequentially, because each chapter builds upon the concepts learned in the previous ones.
 The only exceptions are chapters 14 and 15, in which what you’ll learn in chapters 12 and 13 isn’t used. This means you can skip chapters 12 and 13 if you want; they present more-advanced techniques that are useful to know but that you might prefer not to use in your own
 programs.

 I’ve used the word “read,” but this book isn’t intended to just be read. Very few sections are theory only. To get the most
 out of this book, read it at your computer keyboard, solving the exercises as you go. Each chapter includes a number of exercises
 with the necessary instructions and hints to help you arrive at the solution. All the code is available as a separate free
 download from GitHub (http://github.com/fpinjava/fpinjava) and from the publisher’s website at https://www.manning.com/books/functional-programming-in-java. Each exercise comes with a proposed solution and JUnit tests that you can use to verify that your solution is correct.

 The code comes with all the necessary elements for the project to be imported into IntelliJ (recommended), NetBeans, or Eclipse,
 although at the time of this writing, Eclipse (Mars 4.5.1) is not yet fully compatible with Java 8. Projects may be imported
 “from source” or using Gradle. Any version of Gradle may be used, because Gradle is able to download the correct version automatically.

 Please note that you’re not expected to understand most of the concepts presented in this book by just reading the text. Doing
 the exercises is probably the most important part of the learning process, so I encourage you not to skip any exercises. Some
 might seem quite difficult, and you might be tempted to look at the proposed solutions. It’s perfectly OK to do so, but you
 should then come back to the exercise and do it without looking at the solution. If you only read the solution, you’ll probably
 have problems later trying to solve more-advanced exercises.

 This approach doesn’t require much tedious typing, because you have nearly nothing to copy. Most exercises consist of writing
 implementations for methods, for which you are given the environment and the method signature. No exercise is longer than
 a dozen lines of code; the majority are around four or five lines long.

 Once you finish an exercise (which means when your implementation compiles), just run the corresponding test to verify that
 it’s correct.

 One important thing to note is that each exercise is self-contained with regard to the rest of the chapter, so code created
 inside a chapter is duplicated from one exercise to the next. This is necessary because each exercise is often built upon
 the preceding one, so although the same class might be used, implementations differ. As a consequence, you shouldn’t look
 at an exercise before you complete the previous ones, because you’ll see the solutions to yet-unsolved exercises.

 You can download the code as an archive, or you can clone it using Git. I highly recommend cloning, since the code is subject
 to change, and it’s much more efficient to update your code with a simple pull command than to re-download the complete archive.

 The code for exercises is organized in modules with names that more or less reflect the chapter titles, rather than the chapter
 numbers. As a result, IDEs will sort them alphabetically, rather than in the order in which they appear in the book. To help
 you figure out which module corresponds to each chapter, I’ve provided a list of the chapters with the corresponding module
 names in the README file accompanying the code (http://github.com/fpinjava/fpinjava).

Setting expectations

 Functional programming is no more difficult than imperative programming. It’s just different. You can solve the same problems
 with both paradigms, but translating from one to the other can sometimes be inefficient. Learning functional programming is
 like learning a foreign language. Just as you can’t efficiently think in one language and translate to another, you can’t
 think imperatively and translate your code to the functional approach. And just as you have to learn to think in a new language,
 you have to learn to think functionally. Learning to think functionally doesn’t come with reading alone; it comes with writing
 code. So you have to practice.

 This is why I don’t expect you to understand what’s in this book just by reading it, and why I provide so many exercises;
 you must do the exercises to fully grasp the concepts of functional programming. This isn’t because the topic is so complex
 that it isn’t possible to understand it through reading alone, but because if you could understand it just by reading (without
 doing the exercises), you probably wouldn’t need this book.

 For all these reasons, the exercises are key to getting the most out of this book. I encourage you to try solving each exercise
 before you continue reading. If you don’t find a solution, try again rather than going directly to the solution I provide.
 If you have a hard time understanding something, ask questions on the forum (see the next section). Asking questions and getting
 answers on the forum will not only help you, it will also help the person answering the question (along with others who have
 the same question). We all learn by answering questions (mostly our own questions, by the way) much more than by asking them.

Author Online

 Purchase of Functional Programming in Java includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and other users, or even provide help to other users. To access the
 forum and subscribe to it, point your web browser to https://forums.manning.com/forums/functional-programming-in-java. This Author Online page provides information on how to get on the forum once you’re registered, what kind of help is available,
 and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary. I, as the author of this book, will be monitoring this forum and will answer
 questions as promptly as possible.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

Chapter 1. What is functional programming?

 This chapter covers

 	The benefits of functional programming

 	Problems with side effects

 	How referential transparency makes programs safer

 	Reasoning about programs with the substitution model

 	Making the most of abstraction

 Not everybody agrees on a definition for functional programming (FP). In general terms, functional programming is a programming
 paradigm, and it’s about programming with functions. But this doesn’t explain the most important aspect: how FP is different
 from other paradigms, and what makes it a (potentially) better way to write programs. In his article “Why Functional Programming
 Matters,” published in 1990, John Hughes writes the following:

 Functional programs contain no assignment statements, so variables, once given a value, never change. More generally, functional
 programs contain no side effects at all. A function call can have no effect other than to compute its result. This eliminates
 a major source of bugs, and also makes the order of execution irrelevant—since no side effect can change an expression’s value,
 it can be evaluated at any time. This relieves the programmer of the burden of prescribing the flow of control. Since expressions
 can be evaluated at any time, one can freely replace variables by their values and vice versa—that is, programs are “referentially
 transparent.” This freedom helps make functional programs more tractable mathematically than their conventional counterparts.[1]

 1

John Hughes, “Why Functional Programming Matters,” from D. Turner, ed., Research Topics in Functional Programming (Addison-Wesley, 1990), 17–42, www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf.

 In the rest of this chapter, I’ll briefly present concepts such as referential transparency and the substitution model, as
 well as other concepts that together are the essence of functional programming. You’ll apply these concepts over and over
 in the coming chapters.

1.1. What is functional programming?

 It’s often as important to understand what something is not, as to agree about what it is. If functional programming is a
 programming paradigm, there clearly must be other programming paradigms that FP differs from. Contrary to what some might
 think, functional programming isn’t the opposite of object-oriented programming (OOP). Some functional programming languages
 are object-oriented; some are not.

 Functional programming is sometimes considered to be a set of techniques that supplement or replace techniques found in other
 programming paradigms, such as

 	First-class functions

 	Anonymous functions

 	Closures

 	Currying

 	Lazy evaluation

 	Parametric polymorphism

 	Algebraic data types

 Although it is true that most functional languages do use a number of these techniques, you may find, for each of them, examples
 of functional programming languages that don’t, as well as non-functional languages that do. As you’ll see when studying each
 of these techniques in this book, it’s not the language that makes programming functional. It’s the way you write the code.
 But some languages are more functional-friendly than others.

 What functional programming may be opposed to is the imperative programming paradigm. In imperative programming style, programs
 are composed from elements that “do” something. “Doing” something generally implies an initial state, a transition, and an end state. This is sometimes called state mutation. Traditional imperative-style programs are often described as a series of mutations, separated with condition testing. For
 example, an addition program for adding two positive values a and b might be represented by the following pseudo code:

 	
if b == 0, return a

 	
else increment a and decrement b

 	
start again with the new a and b

 In this pseudo code, you can recognize the traditional instructions of most imperative languages: testing conditions, mutating
 variables, branching, and returning a value. This code may be represented graphically by a flow chart, such as figure 1.1.

 Figure 1.1. A flow chart representing an imperative program as a process that occurs in time. Various things are transformed and states
 are mutated until the result is obtained.

 [image:]

 On the other hand, functional programs are composed of elements that “are” something—they don’t “do” something. The addition
 of a and b doesn’t “make” a result. The addition of 2 and 3, for example, doesn’t make 5. It is 5.

 The difference might not seem important, but it is. The main consequence is that each time you encounter 2 + 3, you can replace
 it with 5. Can you do the same thing in an imperative program? Well, sometimes you can. But sometimes you can’t without changing
 the program’s outcome. If the expression you want to replace has no other effect than returning the result, you can safely
 replace it with its result. But how can you be sure that it has no other effect? In the addition example, you clearly see
 that the two variables a and b have been destroyed by the program. This is an effect of the program, besides returning the result, so it’s called a side effect. (This would be different if the computation were occurring inside a Java method, because the variables a and b would be passed by value, and the change would then be local and not visible from outside the method.)

 One major difference between imperative programming and FP is that in FP there are no side effects. This means, among other
 things,

 	No mutation of variables

 	No printing to the console or to any device

 	No writing to files, databases, networks, or whatever

 	No exception throwing

 When I say “no side effects,” I mean no observable side effects. Functional programs are built by composing functions that take an argument and return a value, and that’s it. You don’t care about what’s happening inside the functions, because, in theory, nothing is happening ever. But in practice, programs are written for computers that aren’t
 functional at all. All computers are based on the same imperative paradigm; so functions are black boxes that

 	Take an argument (a single one, as you’ll see later)

 	Do mysterious things inside, such as mutating variables and a lot of imperative-style stuff, but with no effect observable
 from outside

 	Return a (single) value

 This is theory. In practice, it’s impossible for a function to have no side effects at all. A function will return a value
 at some time, and this time may vary. This is a side effect. It might create an out-of-memory error, or a stack-overflow error,
 and crash the application, which is a somewhat observable side effect. And it will cause writing to memory, registering mutations,
 thread launching, context switching, and other sorts of things that are indeed effects observable from outside.

 So functional programming is writing programs with no intentional side effects, by which I mean side effects that are part of the expected outcome of the program. There should also be as few non-intentional
 side effects as possible.

1.2. Writing useful programs with no side effects

 You may wonder how you can possibly write useful programs if they have no side effects. Obviously, you can’t. Functional programming
 is not about writing programs that have no observable results. It’s about writing programs that have no observable results
 other than returning a value. But if this is all the program does, it won’t be very useful. In the end, functional programs
 have to have an observable effect, such as displaying the result on a screen, writing it to a file or database, or sending
 it over a network. This interaction with the outside world won’t occur in the middle of a computation, but only when you finish
 the computation. In other words, side effects will be delayed and applied separately.

 Take the example of the addition in figure 1.1. Although it’s described in imperative style, it might yet be functional, depending on how it’s implemented. Imagine this
 program is implemented in Java as follows:

 public static int add(int a, int b) {
 while (b > 0) {
 a++;
 b--;
 }
 return a;
}

 This program is fully functional. It takes an argument, which is the pair of integers a and b, it returns a value, and it has absolutely no other observable effect. That it mutates variables doesn’t contradict the requirements,
 because arguments in Java are passed by value, so the mutations of the arguments aren’t visible from outside. You can then
 choose to apply an effect, such as displaying the result or using the result for another computation.

 Note that although the result might not be correct (in case of an arithmetic overflow), that’s not in contradiction with having
 no side effects. If values a and b are too big, the program will silently overflow and return an erroneous result, but this is still functional. On the other
 hand, the following program is not functional:

 public static int div(int a, int b) {
 return a / b;
}

 Although this program doesn’t mutate any variables, it throws an exception if b is equal to 0. Throwing an exception is a side effect. In contrast, the following implementation, although a bit stupid, is functional:

 public static int div(int a, int b) {
 return (int) (a / (float) b);
}

 This implementation won’t throw an exception if b is equal to 0, but it will return a special result. It’s up to you to decide whether it’s OK or not for your function to return this specific
 result to mean that the divisor was 0. (It’s probably not!)

 Throwing an exception might be an intentional or unintentional side effect, but it’s always a side effect. Often, though,
 in imperative programming, side effects are wanted. The simplest form might look like this:

 public static void add(int a, int b) {
 while (b > 0) {
 a++;
 b--;
 }
 System.out.println(a);
}

 This program doesn’t return a value, but it prints the result to the console. This is a desired side effect.

 Note that the program could alternatively both return a value and have some intentional side effects, as in the following
 example:

 public static int add(int a, int b) {
 log(String.format("Adding %s and %s", a, b));
 while (b > 0) {
 a++;
 b--;
 }
 log(String.format("Returning %s", a));
 return a;
}

 This program isn’t functional because it uses side effects for logging.

1.3. How referential transparency makes programs safer

 Having no side effects (and thus not mutating anything in the external world) isn’t enough for a program to be functional.
 Functional programs must also not be affected by the external world. In other words, the output of a functional program must
 depend only on its argument. This means functional code may not read data from the console, a file, a remote URL, a database,
 or even from the system. Code that doesn’t mutate or depend on the external world is said to be referentially transparent.

 Referentially transparent code has several properties that might be of some interest to programmers:

 	It’s self-contained. It doesn’t depend on any external device to work. You can use it in any context—all you have to do is
 provide a valid argument.

 	It’s deterministic, which means it will always return the same value for the same argument. With referentially transparent
 code, you won’t be surprised. It might return a wrong result, but at least, for the same argument, this result will never
 change.

 	It will never throw any kind of Exception. It might throw errors, such as OOME (out-of-memory error) or SOE (stack-overflow error), but these errors mean that the
 code has a bug, which is not a situation you, as a programmer, or the users of your API, are supposed to handle (besides crashing
 the application and eventually fixing the bug).

 	It won’t create conditions causing other code to unexpectedly fail. For example, it won’t mutate arguments or some other external
 data, causing the caller to find itself with stale data or concurrent access exceptions.

 	It won’t hang because some external device (whether database, file system, or network) is unavailable, too slow, or simply
 broken.

 Figure 1.2 illustrates the difference between a referentially transparent program and one that’s not referentially transparent.

 Figure 1.2. Comparing a program that’s referentially transparent to one that’s not

 [image:]

1.4. The benefits of functional programming

 From what I’ve just said, you can likely guess the many benefits of functional programming:

 	Functional programs are easier to reason about because they’re deterministic. One specific input will always give the same
 output. In many cases, you might be able to prove your program correct rather than extensively testing it and still being
 uncertain whether it will break under unexpected conditions.

 	Functional programs are easier to test. Because there are no side effects, you don’t need mocks, which are generally required
 to isolate the programs under test from the outside.

 	
Functional programs are more modular because they’re built from functions that have only input and output; there are no side
 effects to handle, no exceptions to catch, no context mutation to deal with, no shared mutable state, and no concurrent modifications.

 	Functional programming makes composition and recombination much easier. To write a functional program, you have to start by
 writing the various base functions you need and then combine these base functions into higher-level ones, repeating the process
 until you have a single function corresponding to the program you want to build. As all these functions are referentially
 transparent, they can then be reused to build other programs without any modifications.

 Functional programs are inherently thread-safe because they avoid mutation of shared state. Once again, this doesn’t mean
 that all data has to be immutable. Only shared data must be. But functional programmers will soon realize that immutable data
 is always safer, even if the mutation is not visible externally.

1.5. Using the substitution model to reason about programs

 Remember that a function doesn’t do anything. It only has a value, which is only dependent on its argument. As a consequence, it’s always possible to replace
 a function call, or any referentially transparent expression, with its value, as shown in figure 1.3.

 Figure 1.3. Replacing referentially transparent expressions with their values doesn’t change the overall meaning.

 [image:]

 When applied to functions, the substitution model allows you to replace any function call with its return value. Consider
 the following code:

 public static void main(String[] args) {
 int x = add(mult(2, 3), mult(4, 5));
}
public static int add(int a, int b) {
 log(String.format("Returning %s as the result of %s + %s", a + b, a, b));
 return a + b;
}
public static int mult(int a, int b) {
 return a * b;
}
public static void log(String m) {
 System.out.println(m);
}

 Replacing mult(2, 3) and mult(4, 5) with their respective return values doesn’t change the signification of the program:

 int x = add(6, 20);

 In contrast, replacing the call to the add function with its return value changes the signification of the program, because the log method will no longer be called, and no logging will happen. This might be important or not; in any case, it changes the
 result of the program.

1.6. Applying functional principles to a simple example

 As an example of converting an imperative program into a functional one, we’ll consider a very simple program representing
 the purchase of a donut with a credit card.

 Listing 1.1. A Java program with side effects

 [image:]

 In this code, the charging of the credit card is a side effect [image:]. Charging a credit card probably consists of calling the bank, verifying that the credit card is valid and authorized, and
 registering the transaction. The function returns the donut [image:].

 The problem with this kind of code is that it’s difficult to test. Running the program for testing would involve contacting
 the bank and registering the transaction using some sort of mock account. Or you’d need to create a mock credit card to register
 the effect of calling the charge method and to verify the state of the mock after the test.

 If you want to be able to test your program without contacting the bank or using a mock, you should remove the side effect.
 Because you still want to charge the credit card, the only solution is to add a representation of this operation to the return
 value. Your buyDonut method will have to return both the donut and this representation of the payment.

 To represent the payment, you can use a Payment class.

 Listing 1.2. The Payment class

 public class Payment {

 public final CreditCard creditCard;
 public final int amount;
 public Payment(CreditCard creditCard, int amount) {
 this.creditCard = creditCard;
 this.amount = amount;
 }
}

 This class contains the necessary data to represent the payment, which consists of a credit card and the amount to charge.
 Because the buyDonut method must return both a Donut and a Payment, you could create a specific class for this, such as Purchase:

 public class Purchase {

 public Donut donut;
 public Payment payment;

 public Purchase(Donut donut, Payment payment) {
 this.donut = donut;
 this.payment = payment;
 }
}

 You’ll often need such a class to hold two (or more) values, because functional programming replaces side effects with returning
 a representation of these effects.

 Rather than creating a specific Purchase class, you’ll use a generic one that you’ll call Tuple. This class will be parameterized by the two types it will contain (Donut and Payment). The following listing shows its implementation, as well as the way it’s used in the DonutShop class.

 Listing 1.3. The Tuple class

 public class Tuple<T, U> {

 public final T _1;
 public final U _2;

 public Tuple(T t, U u) {
 this._1 = t;
 this._2 = u;
 }
}
public class DonutShop {

 public static Tuple<Donut, Payment> buyDonut(CreditCard creditCard) {
 Donut donut = new Donut();
 Payment payment = new Payment(creditCard, Donut.price);
 return new Tuple<>(donut, payment);
 }
}

 Note that you’re no longer concerned (at this stage) with how the credit card will actually be charged. This adds some freedom
 to the way you build your application. You could still process the payment immediately, or you could store it for later processing.
 You could even combine stored payments for the same card and process them in a single operation. This would allow you to save money by minimizing the bank fees for the credit card service.

 The combine method in the following listing allows you to combine payments. Note that if the credit cards don’t match, an exception is
 thrown. This doesn’t contradict what I said about functional programs not throwing exceptions. Here, trying to combine two
 payments with two different credit cards is considered a bug, so it should crash the application. (This isn’t very realistic.
 You’ll have to wait until chapter 7 to learn how to deal with such situations without throwing exceptions.)

 Listing 1.4. Composing multiple payments into a single one

 package com.fpinjava.introduction.listing01_04;

public class Payment {

 public final CreditCard creditCard;
 public final int amount;

 public Payment(CreditCard creditCard, int amount) {
 this.creditCard = creditCard;
 this.amount = amount;
 }

 public Payment combine(Payment payment) {
 if (creditCard.equals(payment.creditCard)) {
 return new Payment(creditCard, amount + payment.amount);
 } else {
 throw new IllegalStateException("Cards don't match.");
 }
 }
}

 Of course, the combine method wouldn’t be very efficient for buying several donuts at once. For this use case, you could simply replace the buyDonut method with buy-Donuts(int n, CreditCard creditCard), as shown in the following listing. This method returns a Tuple<List<Donut>, Payment>.

OEBPS/009fig01_alt.jpg
public class DonutShop {

public static Donut buyDonut (CreditCard creditCard) {
Donut donut = new Donut () ;
creditCard. charge (Donut .price) ; <)) Charges the credit card as a side effect
return donut; <@ Returns the donut
}
}

OEBPS/num-01.jpg

OEBPS/01fig02_alt.jpg
Objects Database

Input (argument) ——>] Program —— output (resulr)

Keyboard Screen

File

Areferentially transparent program doesn't interfere with the outside world apart from
an argument as input and outputting a result. Its result only depends on its argument.

Erception
Ghjects / Database
tnput (argunent) ——» Frogram | output (result)
Reyborrd Sereen
Fils

A program that isn't referentiall transparent may read data from or write it to elements in the
outside world, log to fle, mutate external objects, read from keyboard, print to screen, and s0 on.
Its result is unpredictable.

OEBPS/01fig03_alt.jpg
The expression 3 x 2 may be replaced with its value:

The expression 4 x 5 may be replaced with its value:

3x2 4x5
6 [4x5
6 20

=26

OEBPS/common01.jpg

OEBPS/01fig01.jpg
e

No

Remove 1 from b

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/num-02.jpg
(2]

OEBPS/cover.jpg
Functional Programming in

How functional techniques improve your Java programs

Pierre-Yves Saumont

W annine

