

 [image: cover]

Programmer's Guide to Apache Thrift

 Randy Abernethy

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Cynthia Kane, Jennifer Stout
Technical development editor: Pim van Oerle
Review editor: Ozren Harlović
Project editor: Lori Weidert
Copyeditor: Katie Petito
Proofreader: Alyson Brener
Technical proofreader: Akon Dey
Typesetter: Gordan Salinovic
Illustrator: Chuck Larson
Cover designer: Marija Tudor

 ISBN 9781617296161

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

Dedication

 Dedicated to my mom, Kay. You are an inspiration to me in everything I do.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Apache Thrift overview

 Chapter 1. Introduction to Apache Thrift

 Chapter 2. Apache Thrift architecture

 Chapter 3. Building, testing, and debugging

 2. Programming Apache Thrift

 Chapter 4. Moving bytes with transports

 Chapter 5. Serializing data with protocols

 Chapter 6. Apache Thrift IDL

 Chapter 7. User-defined types

 Chapter 8. Implementing services

 Chapter 9. Handling exceptions

 Chapter 10. Servers

 3. Apache Thrift languages

 Chapter 11. Building clients and servers with C++

 Chapter 12. Building clients and servers with Java

 Chapter 13. Building C# clients and servers with .NET Core and Windows

 Chapter 14. Building Node.js clients and servers

 Chapter 15. Apache Thrift and JavaScript

 Chapter 16. Scripting Apache Thrift

 Chapter 17. Thrift in the enterprise

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Apache Thrift overview

 Chapter 1. Introduction to Apache Thrift

 1.1. Polyglotism, the pleasure and the pain

 1.2. Application integration with Apache Thrift

 1.2.1. Type serialization

 1.2.2. Service implementation

 1.3. Building a simple service

 1.3.1. The Hello IDL

 1.3.2. The Hello server

 1.3.3. A Python client

 1.3.4. A C++ client

 1.3.5. A Java client

 1.4. The communications toolkit landscape

 1.4.1. SOAP

 1.4.2. REST

 1.4.3. Protocol Buffers

 1.4.4. Apache Avro

 1.4.5. Strengths of Apache Thrift

 1.4.6. Take away

 Summary

 Chapter 2. Apache Thrift architecture

 2.1. Transports

 2.1.1. The transport interface

 2.1.2. Endpoint transports

 2.1.3. Layered transports

 2.1.4. Server transports

 2.2. Protocols

 2.3. Apache Thrift IDL

 2.3.1. User-defined types and serialization

 2.3.2. RPC services

 2.4. Servers

 2.5. Security

 Summary

 Chapter 3. Building, testing, and debugging

 3.1. Installing the Apache Thrift IDL compiler

 3.1.1. Platform installers

 3.1.2. VMs and containers

 3.1.3. Building from source

 3.2. The Apache Thrift source tree

 3.3. Apache Thrift tests

 3.4. Debugging RPC services

 3.4.1. Examining packets on the wire

 3.4.2. Unbuffered interfaces

 3.4.3. Interface misalignment

 3.4.4. I/O stack misalignment

 3.4.5. Instrumenting code

 3.4.6. Additional techniques

 Summary

 2. Programming Apache Thrift

 Chapter 4. Moving bytes with transports

 4.1. Endpoint transports, part 1: Memory & disk

 4.1.1. Programming with memory transports

 4.1.2. Programming with file transports

 4.2. The transport interface

 4.2.1. Basic transport operations

 4.3. Endpoint transports, part 2: Networks

 4.3.1. Network programming with TSocket

 4.4. Server transports

 4.4.1. Programming network servers with server transports

 4.4.2. The server transport interface

 4.5. Layered transports

 4.5.1. Message framing

 Chapter 5. Serializing data with protocols

 5.1. Basic serialization with the binary protocol

 5.1.1. Using the C++ TBinaryProtocol

 5.1.2. Using the Java TBinaryProtocol

 5.1.3. Using the Python TBinaryProtocol

 5.1.4. Takeaway

 5.2. The TProtocol interface

 5.2.1. Apache Thrift serialization

 5.2.2. C++ TProtocol

 5.2.3. Java TProtocol

 5.2.4. Python TProtocolBase

 5.3. Serializing objects

 5.3.1. Struct serialization

 5.3.2. Struct de-serialization

 5.3.3. Struct evolution

 5.4. TCompactProtocol

 5.5. TJSONProtocol

 5.6. Selecting a protocol

 Summary

 Chapter 6. Apache Thrift IDL

 6.1. Interfaces

 6.2. Apache Thrift IDL

 6.2.1. IDL file names

 6.2.2. Element names

 6.2.3. Keywords

 6.3. The IDL compiler

 6.3.1. Compilation phases and error messages

 6.3.2. Command line switches

 6.4. Comments and documentation

 6.5. Namespaces

 6.6. Built-in types

 6.6.1. Base types

 6.6.2. Container types

 6.6.3. Literals

 6.7. Constants

 6.7.1. C++ interface constant implementation

 6.7.2. Java interface constant implementation

 6.7.3. Python interface constant implementation

 6.8. Typedefs

 6.9. Enum

 6.10. Structures, unions, exceptions, and argument-lists

 6.10.1. Structs

 6.10.2. Fields

 6.10.3. Exceptions

 6.10.4. Unions

 6.11. Services

 Functions

 6.12. Including external files

 6.13. Annotations

 Summary

 Chapter 7. User-defined types

 7.1. A simple user-defined type example

 7.2. Type design

 7.2.1. Namespaces

 7.2.2. Constants

 7.2.3. Structs

 7.2.4. Base types

 7.2.5. Typedefs

 7.2.6. Field IDs and retiring fields

 7.2.7. Enums

 7.2.8. Collections

 7.2.9. Unions

 7.2.10. Requiredness and optional fields

 7.3. Serializing objects to disk

 7.4. Under the type serialization hood

 7.4.1. Serializing with write()

 7.4.2. De-serializing with read()

 7.5. Type evolution

 7.5.1. Renaming fields

 7.5.2. Adding fields

 7.5.3. Deleting fields

 7.5.4. Changing a field’s type

 7.5.5. Changing a field’s requiredness

 7.5.6. Changing a field’s default value

 7.6. Using Zlib compression

 7.6.1. Using Zlib with C++

 7.6.2. Using Zlib with Python

 Summary

 Chapter 8. Implementing services

 8.1. Declaring IDL services

 8.1.1. Parameter identifiers

 8.1.2. Parameter requiredness

 8.1.3. Default parameter values

 8.1.4. Function and parameter types

 8.2. Building a simple service

 8.2.1. Interfaces

 8.2.2. Coding service handlers and test harnesses

 8.2.3. Coding RPC servers

 8.2.4. Coding RPC clients

 8.3. Service interface evolution

 8.3.1. Adding features to a service

 8.4. RPC services in depth

 8.4.1. Under the hood

 8.4.2. One-way functions

 8.4.3. Service inheritance

 8.4.4. Asynchronous clients

 Summary

 Chapter 9. Handling exceptions

 9.1. Apache Thrift exceptions

 9.2. TTransportException

 9.2.1. C++ exception processing

 9.2.2. Java exception processing

 9.2.3. Python exception processing

 9.2.4. Error processing without exceptions

 9.3. TProtocolException

 9.4. TApplicationException

 9.5. User-defined exceptions

 9.5.1. User-defined exception IDL example

 9.5.2. C++ user-defined exception client

 9.5.3. C++ user-defined exception server

 9.5.4. Java user-defined exception client

 9.5.5. Python user-defined exception client

 Summary

 Chapter 10. Servers

 10.1. Building a simple server from scratch

 10.2. Using multithreaded servers

 10.3. Server concurrency models

 10.3.1. Connection-based processing

 10.3.2. Task-based processing

 10.3.3. Multithreading vs. multiprocessing

 10.3.4. Server summary by language

 10.4. Using factories

 10.4.1. Building I/O stacks with factories

 10.4.2. Processor and handler factories

 10.4.3. In/out factories

 10.4.4. Building servers with custom factories and transports

 10.5. Server interfaces and event processing

 10.5.1. TServer

 10.5.2. TServerEventHandler

 10.5.3. Building a C++ thread pool server with server events

 10.6. Servers and services

 10.6.1. Building multiservice servers

 10.6.2. Building a multiplexed Java threaded selector server

 Summary

 3. Apache Thrift languages

 Chapter 11. Building clients and servers with C++

 11.1. Setting up Apache Thrift for C++ development

 11.1.1. Apache Thrift C++ versions and Boost

 11.1.2. Building Apache Thrift C++ libraries

 11.1.3. Building Apache Thrift C++ libraries on Windows

 11.2. A simple client and server

 11.2.1. The Hello IDL

 11.2.2. Building a simple C++ client

 11.2.3. Creating a simple RPC server

 11.3. C++ transports, protocols, and servers

 11.3.1. C++ transports

 11.3.2. C++ protocols

 11.3.3. Runtime versus compile time polymorphism

 11.3.4. C++ servers

 11.4. The C++ TNonBlockingServer

 Summary

 Chapter 12. Building clients and servers with Java

 12.1. Setting up Apache Thrift for Java development

 12.1.1. Apache Thrift and SLF4J

 12.2. A simple client and server

 12.2.1. The Hello IDL

 12.2.2. Building a simple Java client

 12.2.3. Creating a simple RPC server

 12.2.4. Building with Ant

 12.2.5. Building with Maven

 12.3. Using Apache Thrift in other JVM languages

 12.4. Java transports, protocols, and servers

 12.4.1. Java transports

 12.4.2. Java protocols

 12.4.3. Java servers

 12.5. Asynchronous Java RPC

 Summary

 Chapter 13. Building C# clients and servers with .NET Core and Windows

 13.1. Setting up Apache Thrift on Windows

 13.2. A simple client and server

 13.2.1. Creating a Visual Studio RPC solution

 13.2.2. Creating the interface library

 13.2.3. Creating the RPC server

 13.2.4. Creating the RPC client

 13.2.5. Testing the RPC application

 13.3. C# transports, protocols, and servers

 13.3.1. C# transports

 13.3.2. C# protocols

 13.3.3. C# servers

 13.4. Long polling with named pipes

 13.4.1. A long polling interface

 13.4.2. Installing Apache Thrift support through NuGet

 13.4.3. Creating a named pipe server

 13.4.4. Building the long polling server

 13.4.5. Building a named pipe client

 Summary

 Chapter 14. Building Node.js clients and servers

 14.1. A simple client and server

 14.1.1. Generating client/server stubs

 14.1.2. Creating a Node.js server

 14.1.3. Creating a Node.js client

 14.2. Q

 14.3. Node.js servers

 14.4. Multiplexed services

 14.5. Apache Thrift IDL and Node.js

 14.5.1. Creating full-featured IDL handlers

 14.5.2. Creating a full-featured Node.js client

 Summary

 Chapter 15. Apache Thrift and JavaScript

 15.1. Apache Thrift JavaScript quick start

 15.2. A simple client and server

 15.2.1. Installing Apache Thrift for JavaScript

 15.2.2. The Hello World IDL

 15.2.3. The Hello World Node.js server

 15.2.4. The Hello World web client

 15.2.5. Running the Hello World example

 15.2.6. Node.js HTTP clients

 15.3. Asynchronous browser client calls

 15.4. RPC error handling

 15.5. Browser RPC and jQuery

 15.6. Apache Thrift and web security

 15.6.1. Cross Origin Resource Sharing (CORS)

 15.6.2. Content Security Policy (CSP)

 15.6.3. X-Frame-Options

 15.6.4. Transport security

 15.7. Using the WebSocket transport

 Summary

 Chapter 16. Scripting Apache Thrift

 16.1. Apache Thrift and Ruby

 16.1.1. A Ruby server

 16.1.2. A Ruby client

 16.1.3. Ruby features

 16.2. Apache Thrift and PHP

 16.2.1. A PHP program

 16.2.2. A PHP Apache Thrift client

 16.2.3. PHP features

 16.3. Apache Thrift and Perl

 16.4. Apache Thrift Perl clients

 16.5. Apache Thrift Perl servers

 16.5.1. Apache Thrift Perl features

 16.6. Apache Thrift and Python

 Summary

 Chapter 17. Thrift in the enterprise

 17.1. Polyglot systems

 17.2. Service tooling and considerations

 17.2.1. Services

 17.2.2. Interface comparisons

 17.3. Messaging

 17.4. Best practices

 17.4.1. IDL

 17.4.2. Interface evolution

 17.4.3. Service design

 17.4.4. Type design

 17.4.5. Coding practices

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

 Foreword

 I first met Randy on the Apache Thrift mailing lists, where we both grew from contributing enthusiasts to committers and finally
 to PMC members of the Apache Thrift project. Later on I met him a few times in person, and we formed a bond—the kind many
 programmers are familiar with—while working on a piece of open source software across two continents.

 Isn’t it funny how that works? At the same time there are heavy conflicts in certain areas of the world, countless open source
 projects are bringing people together, to communicate freely and build bridges—across oceans, across continents, and across
 cultures. And if there is any Apache project that best fits this picture of communication and connections, it’s probably Apache
 Thrift.

 When I became aware of Apache Thrift for the first time, I quickly realized its potential. This RPC and serialization framework
 is a powerful and enabling technology. It’s easy to use and extremely flexible, and it supports a wide range of target languages
 and dialects—more than 20 at the time of this writing. Besides establishing connections across languages, Thrift also supports
 the application developer by crossing platform boundaries.

 The consequences of this new freedom for developers are overwhelming. For the first time, we’re in a position where we can
 literally choose the right tool for the job, on the platform we find most suitable, without having to think too much about
 how we can integrate it all. This fact alone lets Thrift fit very well in today’s microservice, cloud-native world.

 There’s a good chance that you bought this book to find out how you can unleash the nearly unparalleled capabilities of the
 Apache Thrift framework for your projects. You want to know about the possibilities, use cases, and applications, or how the
 serialization part could help you with your message-queue–based system. You want to see examples and code and have them explained.

 This book gives you all the answers. Randy did a great job creating it, preparing and fine-tuning countless examples to keep
 pace with the latest developments of the Apache Thrift project. What you hold in your hand is the single most comprehensive
 publication about Apache Thrift available today.

 JENS GEYER
SENIOR SOFTWARE ENGINEER, VSX VOGEL SOFTWARE GMBH

 Preface

 I’ve been in technology, often in coding roles, for about 30 years. During the dot-com era, I created an institutional equities
 trading platform that turned into a broker-dealer transacting somewhere around a billion US dollars a day. Needless to say,
 making sure the technology ran smoothly was a constant concern.

 At that company we created technology bits in the line of trading with C++. Building the web-based frontend bits required
 some JavaScript. When we turned our hands to creating the internal monitoring and support systems, Active Server Pages, and,
 later, C# were the easiest tools to use. As much as possible, we wanted the language-based systems to interact, rather than
 have to reinvent bits from one language to the other ourselves.

 The platform was based on Windows NT (later Windows 2000), and the RPC elements of the platform were COM+ and described in
 MS IDL, Microsoft’s interface definition language. While I had used IDL on Unix systems in the past, this was the first big
 thing I had done in IDL. As the project developed, I became more and more enamored with the engineering processes the IDL
 abstraction enforced on our organization.

 Everything central to the system was represented in IDL, including messages used to place orders and report executions. Interfaces
 that described the ways in which you could interact with the market data system or the order entry system were concisely defined
 in a beautifully abstract way. When we hired new engineers, the first thing we asked them to do was dig into the IDL. It was
 the best way to understand this vast platform without ever clouding or fixing our ideas with implementation code.

 Our architecture meetings also focused on the IDL, because the interfaces and structure of the overall platform were critical
 but the implementation really wasn’t. If you got the implementation wrong, you could rewrite it without impacting anyone else.
 If you got the interface wrong, the problem would propagate and often becoming debilitating.

 There were challenges as well. My wish list included, as time rolled on, the ability to interoperate with Linux systems. Given
 that these were the “Linux is a cancer” days at Microsoft, that wasn’t happening. I also wanted to be able to evolve our IDL
 without having to rebuild the world each time. A critical flaw in many distributed system technologies is that they don’t
 allow one element to be updated without also updating all of those interacting with it.

 Fast-forward to 2009: I was preparing to architect and develop another trading platform, and I reflected on my IDL wish list.
 Was it possible that somewhere out there in the cybersphere someone had open-sourced my dream technology for distributed computing?
 It wasn’t long before I discovered Apache Thrift. I was stunned. Here was a system that worked with every commercially viable
 programming language and platform, included a compact but elegant IDL, and, most importantly, supported a critical set of
 features enabling interface evolution. I’ve been an Apache Thrift fan ever since.

 In today’s world of microservices and cloud-native systems, where new services are deployed multiple times a day, not having
 interfaces that support evolution and backward compatibility is a nonstarter. Apache Thrift delivers elegance, evolution,
 and the performance necessary to support the real-time needs of multiple microservices collaborating where a single monolith
 once prevailed.

 The only thing missing was a book.

 Acknowledgments

 While documenting a comprehensive serialization and RPC framework that operates across more than 20 programming languages
 was no small task, imagine what it took to create such a thing! My most profound thanks must first and foremost go to the
 Apache Thrift developers.

 I must also thank my family for putting up with me writing chapters and committing patches in the middle of family gatherings
 and holidays over the course of several years. Thanksgiving and Christmas holidays turned into chapter-production activities,
 and no one yelled at me for staring at my laptop for hours while the family played Risk, Settlers of Catan, or what have you.

 I owe a special thanks to the folks at Manning. I have to be the biggest laggard they have ever dealt with. No matter how
 late I was, they were as professional and supportive as a firm could be. In particular I’d like to thank Jenny Stout, who
 is not only a wonderful person but a great editor; Akon Dey, for his fantastic technical insights; and Kevin Sullivan, for
 driving the book to completion and helping me with all the final issues necessary to button up the book.

 I’d also like to give a huge thank you to the reviewers who took the time to read the chapters and provide invaluable feedback,
 including Barry Alexander, Carlos Saltos, Chris Snow, Daniel Bryant, Ezra Simeloff, Georges Clerc, Jerry Goodnough, Palak
 Mathur, Raphaël P. Barazzutti, Ray Morehead, Robin Coe, Rock Lee, and Thomas Lockney. Jens Geyer was without doubt my most
 stalwart sounding board, providing detailed and thoughtful commentary and guidance from beginning to end. Roger Meier made
 sure I didn’t miss important topics along the way and shared some of his compelling Apache Thrift IoT projects. Ben Craig
 kept me honest; when I couldn’t get a good example done, Ben would push me to patch Thrift so that I could. He also saved
 me from falling into the pit between C++98 and C++11 or committing concurrency crimes. Jake Farrell, the PMC chair, provided
 encouragement and bore the burden of pushing new Apache Thrift versions out the door while the book developed, managing the
 complex set of package releases that grows with every new language.

 About this book

 Programmer’s Guide to Apache Thrift was written to make learning how to use Apache Thrift drastically easier. Open source projects are famous for substandard
 documentation, and Apache Thrift has traditionally been a poster child for this stereotype. In retrospect, I can see why this
 is the case! This book and the accompanying source code repository should help newbies get started quickly and enable old
 hands to design better interfaces.

Who should read this book

 Programmer’s Guide to Apache Thrift is for anyone serious about mastering Apache Thrift. Both beginners and experienced Apache Thrift developers will find valuable
 bits of insight and useful reference material, making it easier to develop quality, extensible interfaces in Apache Thrift.

How this book is organized

 The book has 17 chapters divided into three parts:

 	
Part 1 imparts introductory concepts, basic architecture knowledge and Apache Thrift set up, and basic debugging insights. Developers
 new to Apache Thrift should probably read this part thoroughly, while current Apache Thrift users may want to simply skim
 it.

 	
Part 2 covers the Apache Thrift system layer by layer, working from the lowest layer, transports, through to the highest layer,
 servers. Programmers seeking an in-depth understanding of Apache Thrift should read this part end to end. Those interested
 in a higher-level understanding of Apache Thrift can skim the chapters here, with perhaps a deeper dive into chapter 6, which covers the Apache Thrift IDL in detail.

 	
Part 3 provides language-based walk-throughs that not only demonstrate the use of Apache Thrift in some of the most popular programming
 languages, but also continue the journey through use cases and features. Part 3 ends with chapter 17, which looks at Apache Thrift serialization in messaging systems, contrasts Apache Thrift IDL with other popular interfaces,
 such as REST/HTTP, and finally digs into Apache Thrift RPC performance. I would recommend everyone read the chapters on the
 languages they’re interested in, as well as Chapter 17, which provides important summary information and Apache Thrift best practices.

About the code

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight changes from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Numbered markers 1 accompany many of the listings, and mark particular lines and elements discussed in the text.

 Source code for the examples in this book is available for download from the publisher’s website at https://www.manning.com/books/programmers-guide-to-apache-thrift or on GitHub at http://github.com/randyabernethy/thriftbook.

liveBook discussion forum

 Purchase of Programmer’s Guide to Apache includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/programmers-guide-to-apache-thrift/discussion.

 You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion. Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

Online resources

 Need additional help?

 	The Apache Thrift mailing lists and IRC chat are both useful resources (https://thrift.apache.org/mailing).

 	The Thrift tag at StackOverflow (stackoverflow.com/questions/tagged/thrift) is a great place both to ask questions and to help others. Helping someone else is a great way to learn!

 About the author

 RANDY ABERNETHY is a partner at RX-M LLC, a leading cloud-native systems consultancy. He has been an Apache Thrift user for almost a decade
 and is currently an Apache Thrift committer and PMC member. He has a passion for distributed systems technology and markets,
 frequently working with clients in the capital markets and financial services spaces.

 About the cover illustration

 The figure on the cover of Programmer’s Guide to Apache Thrift is captioned “L’agent d’affaires.” The illustration is taken from a collection of works by many artists, edited by Louis
 Curmer and published in Paris in 1841. The title of the collection is Les Français peints par eux-mêmes, which translates as The French People Painted by Themselves. Each illustration is finely drawn and colored by hand, and the rich variety of drawings in the collection reminds us vividly
 of how culturally apart the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Isolated from each
 other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by pictures from collections such as this one.

Part 1. Apache Thrift overview

 Apache Thrift is an open source, cross-language serialization and remote procedure call (RPC) framework. With support for
 more than 20 programming languages, Apache Thrift can play an important role in many distributed application solutions. As
 a serialization platform, it enables efficient cross-language storage and retrieval of a wide range of data structures. As
 an RPC framework, Apache Thrift enables rapid development of complete cross-language services with little more than a few
 lines of code.

 Part 1 of this book will help you understand how Apache Thrift fits into modern distributed application models, while imparting
 a high-level understanding of the Apache Thrift architecture. Part 1 will also get you started with basic Apache Thrift setup and debugging and includes a look at building a simple cross-language
 “hello world” service.

Chapter 1. Introduction to Apache Thrift

 This chapter covers

 	Using Apache Thrift to unify polyglot systems

 	Simplifying the creation of high-performance networked services

 	Introducing the Apache Thrift modular serialization system

 	Creating a simple Apache Thrift cross-language microservice

 	Comparing Apache Thrift with other cross-language communications frameworks

 Modern software systems live in a networked world. Network communications are critical to the tiniest embedded systems in
 the Internet of Things through to the weightiest of relational databases anchoring traditional multitier applications. As
 new software systems increasingly embrace dynamically scheduled, containerized microservices, lightweight, high-performance,
 language-agnostic network communications are ever more important.

 But how to wire all these things together, the old and the new, the big and the small? How do we package a message from a
 service written in one language in such a way that a program written in any other language can read it? How do we design services that are fast enough for high-performance,
 backend cloud systems but accessible by frontend scripting technologies? How do we keep things lightweight to support efficient
 containers and embedded systems? How do we create interfaces that can evolve over time without breaking existing components?
 How do we do all of this in an open, vendor-neutral way, and, perhaps most important, how can we do it all precisely once,
 reusing the same communications primitives across a broad platform? For companies such as Facebook, Evernote, and Twitter,
 the answer is Apache Thrift.

 This chapter introduces the Apache Thrift framework and its role in modern distributed applications. We’ll look at why Apache
 Thrift was created and how it helps programmers build high-performance, cross-language services. To begin, we’ll consider
 the growing need for multi-language integration and examine the role Apache Thrift plays in polyglot application development.
 Next, we’ll look at the two key functions of Apache Thrift, serialization and RPC, and walk through the construction of a
 simple Apache Thrift service. At the end of the chapter we’ll compare Apache Thrift to several other tools offering similar
 features to help you determine when Apache Thrift might be a good fit.

1.1. Polyglotism, the pleasure and the pain

 The number of programming languages in common commercial use has grown considerably in recent years. In 2003, 80% of the Tiobe
 Index (http://www.tiobe.com/index.php/tiobe_index) was attributed to six programming languages: Java, C, C++, Perl, Visual Basic, and PHP. In 2013, it took nearly twice as
 many languages to capture the same 80%, adding Objective-C, C#, Python, JavaScript, and Ruby to the list (see figure 1.1). In early 2016 the entire Tiobe top 20 didn’t add up to 80% of the mind share. In Q4 2015, Github reported 19 languages
 all having more than 10,000 active repositories (http://githut.info/), adding Swift, Go, Scala, and others to the list.

 Figure 1.1. The Tiobe Index uses web search results to track programming language popularity (http://www.tiobe.com).

 [image:]

 Increasingly, developers and architects choose the programming language most suitable for the task at hand. A developer working
 on a Big Data project might decide Clojure is the best language to use; meanwhile, folks down the hall may be doing front-end
 work in TypeScript, while programmers in the basement might be using C with embedded systems (no aversion to sunlight implied).
 Years ago, this type of diversity would be rare at a single company; now it can be found within a single team.

 Choosing a programming language uniquely suited to solving a particular problem can lead to productivity gains and better
 quality software. When the language fits the problem, friction is reduced, programming becomes more direct, and code becomes
 simpler and easier to maintain. For example, in large-scale data analysis, horizontal scaling is instrumental to achieving
 acceptable performance. Functional programming languages such as Haskell, Scala, and Clojure tend to fit naturally here, allowing
 analytic systems to scale out without complex concurrency concerns.

 Platforms drive language adoption as well. Objective-C exploded in popularity when Apple released the iPhone, and Swift is
 following suit. Go is the language of the booming container ecosystem, responsible for Docker, Kubernetes, etcd, and other
 essentials. Those programming for the browser will have teams competent with Java-Script or TypeScript, while the game and
 GUI world still often codes in C++ for top-performing graphics. These choices are driven by history as well as compelling
 technology underpinnings. Even when such groups are internally monoglots, languages mix and mingle as they collaborate across
 business boundaries.

 Many organizations who claim monoglotism make use of a range of support languages for testing and prototyping. Dynamic programming
 languages such as Groovy and Ruby are often used for testing, while Lua, Perl, and Python are popular for prototyping, and
 PHP has a long history with the web. Build systems such as the Groovy-based Gradle and the Ruby-based Rake also provide innovative
 capabilities.

 The polyglot story isn’t all wine and song, however. Mastering a programming language is no small feat, not to mention the
 tools and libraries that come with it. As this burden is multiplied with each new language, firms may experience diminishing
 returns. Introducing multiple languages into a product initiative can have numerous costs associated with cross-language integration,
 developer training, and complexity when building and testing. If managed improperly, these costs can quickly overshadow the
 benefits of a multi-language strategy.

 One of the key strengths of Apache Thrift is its ability to simplify, centralize, and encapsulate the cross-language aspects
 of a system. Apache Thrift offers broad support, in tree, for polyglot application development. Every language mentioned previously
 is supported by the Apache Thrift project, more than 20 languages in all, and growing (see table 1.1). This unrivaled direct support for existing languages and the Apache Thrift community’s rapid addition of support for new
 languages can help organizations maximize the potential of polyglotism while minimizing the downsides. The more our programs
 mirror the dialog on the floor of the United Nations General Assembly, the more we’ll need professional translators such as
 Apache Thrift to streamline communications.

 Table 1.1. Languages supported by Apache Thrift

 	
AS3

 	C
 	C++
 	C#

 	D
 	Dart
 	Delphi
 	Erlang

 	Go
 	Haskell
 	Haxe
 	Java

 	JavaScript
 	Lua
 	Node.js
 	Objective-C

 	OCaml
 	Perl
 	PHP
 	Python

 	Ruby
 	Rust
 	Smalltalk
 	TypeScript

1.2. Application integration with Apache Thrift

 Whether your application uses multiple platforms and languages or not, it’s likely that its operations span multiple processes
 over networks and time. At times these processes will need to communicate, either through a file on disk, through a buffer
 in memory, or across networks. Two central concerns are associated with inter-process communications:

 	Type serialization

 	Service implementation

 Let’s consider each in turn.

 1.2.1. Type serialization

 Serialization is a basic function in any cross-platform/language exchange. For example, imagine an application for the music
 industry that uses NATS as a messaging system to move song data between processes (see figure 1.2). Using NATS, the team can send/receive messages rapidly between their remote processes written in Java and Python. The question
 is, can the programs read the musical messages when sent by another language? Python objects are represented differently in
 memory than Java objects. If a Python program sent the raw memory bits for its music track data to a Java program, fireworks
 would ensue.

 Figure 1.2. Apache Thrift can be used to serialize data in cross-platform messaging scenarios.

 [image:]

 To solve this problem, we need a data serialization layer on top of the messaging platform. Why not send everything back and
 forth in JSON, one might ask? Using a standard format such as JSON is part of a solution; however, we must still answer questions
 such as: how are data fields ordered when sending multi-field messages, what happens when fields are missing, and what does
 a language that doesn’t directly support a data type do when receiving that data type? These and many other questions cannot be answered by a data layout specification such as JSON, YAML, or XML. Different languages frequently produce different,
 though legally formatted, documents for the same dataset.

IDL and types

 Apache Thrift provides a modular serialization framework that addresses these issues. With Apache Thrift, developers define
 abstract data types in an Interface Definition Language (IDL). This IDL can then be compiled into source code for any supported
 language. The generated code provides complete serialization and deserialization logic for all of the user’s defined types.
 Apache Thrift ensures that types written by any language can be read by any other language. The following listing shows Apache
 Thrift IDL type definitions for a hypothetical music application.

 Listing 1.1. Apache Thrift IDL type definitions

 namespace * music

enum PerfRightsOrg {
 ASCAP = 1
 BMI = 2
 SESAC = 3
 Other = 4
}

typedef double Minutes

struct MusicTrack {
 1: string title
 2: string artist
 3: string publisher
 4: string composer
 5: Minutes duration
 6: PerfRightsOrg pro
}

 Some people complain that creating IDL is an extra step, slowing the development process. I’ve found that it’s the opposite.
 IDL forces you to carefully consider your interfaces in isolation, free of noisy implementation code. This may be the most
 important time you spend on a system design. IDL is also lightweight, easy to modify and experiment with, and often useful
 as a communications tool on the business side.

 Users may say schemaless systems are more flexible and that IDL is brittle. The truth is, whether you document your schema
 or not, you still have a schema if you’re reading and interpreting data. Implied (undocumented) schemas can be the source
 of fairly treacherous application errors and create a burden on developers who need to interact with the data or extend the
 system. If you have no definition for the data layout you read and write except the code that reads and writes it, it will
 be slow going when you want to extend the system. How many bits of code throughout the system depend on this implied schema?
 How do you change such a thing?

 The popularity of NoSQL systems, many of which are schemaless, creates another role for IDL. You can now document your types
 in a single place and use those types in service calls, with messaging systems and in storage systems such as Redis, MongoDB,
 and others.

 Several systems reverse the process and generate their schema from a given coded solution. Annotation-driven systems, such
 as Java’s JAX-RS, can work this way. This approach makes it easy to allow implementation details to bias the interface definition,
 straining portability and clarity. It’s generally much more work to modify implementation code than it is to modify IDL. Also,
 you have no guarantee that another vendor’s code generator will create compatible code from a foreign schema. This is a problem
 any time multiple vendors are involved in a communications solution.

 Apache Thrift sidesteps many of these problems by providing a single source of truth, the IDL. Apache Thrift supplies vendor-independent
 support for a single IDL across a wide array of programming languages, and the Apache Thrift cross-language test suit is constantly
 at work verifying interoperability as the framework grows.

Interface evolution

 IDL creates a contract that all parties can rely upon and that code generators can use to create working serialization operations,
 ensuring the contract is adhered to. Yet IDL schemas need not be brittle. Apache Thrift IDL supports a range of interface
 evolution features which, when used properly, allow fields to be added and removed, types to be changed, and more.

 Support for interface evolution greatly simplifies the task of ongoing software maintenance and extension. Modern engineering
 sensibilities such as microservices, Continuous Integration (CI), and Continuous Delivery (CD) require systems to support
 incremental improvements without impacting the rest of the platform. Tools that supply no form of interface evolution tend
 to “break the world” when changed. In such systems, changing an interface means all the clients and servers using that interface
 must be rewritten and/or recompiled, then redeployed in a big bang.

 Apache Thrift interface evolution features allow multiple interface versions to coexist seamlessly in a single operating environment.
 This makes incremental updates viable, enabling CI/CD pipelines and empowering individual Agile teams to deliver business
 value at their own cadence.

 	

 Continuous Integration (CI) and Continuous Delivery (CD)

 Continuous integration is an approach to software development wherein changes to a system are merged into the central code
 base frequently. These changes are continuously built and tested, usually by automated systems, providing developers with
 rapid feedback when patches create conflicts or fail tests. Continuous Delivery takes CI one step further, migrating successfully
 merged code to evaluation/staging systems and ultimately into production, many times per day. The goal of continuous systems
 is to take many small risks and provide immediate feedback rather than taking large risks and delaying feedback over long
 release cycles. The longer integration is delayed, the more patches are involved, making it more difficult to identify and
 repair conflicts and bugs.

 	

Modular serialization

 Apache Thrift provides pluggable serializers, known as protocols, allowing you to use any one of several serialization formats
 for data exchange, including binary for speed, compact for size, and JSON for readability. The same contract (IDL) can remain
 in place even as you change serialization protocols. This modular approach allows custom serialization protocols to be added
 as well. Because Apache Thrift is community managed and open source, you can easily change or enhance functionality and push
 it upstream when needed (patches are always welcome at the Apache Thrift project).

 1.2.2. Service implementation

 Services are modular application components that provide interfaces accessible over a network. Apache Thrift IDL allows you
 to define services in addition to types (see listing 1.2). Like types, IDL services can be compiled to generate stub code. Service stubs are used to connect clients and servers in
 a wide range of languages.

 Listing 1.2. /ThriftBook/part1/hello/sail_stats.thrift

 service SailStats {
 double get_sailor_rating(1: string sailor_name)
 double get_team_rating(1: string team_name)
 double get_boat_rating(1: i64 boat_serial_number)
 list<string> get_sailors_on_team(1: string team_name)
 list<string> get_sailors_rated_between(1: double min_rating,
 2: double max_rating)
 string get_team_captain(1: string team_name)
}

 Imagine you have a module that tracks and computes sailing team statistics and that this module is built into a Windows C++
 GUI application designed to visualize wind flow dynamics. As it happens, your company’s web dev team wants to use the sail
 stats module to enhance a client-facing, Node.js-based web application on Linux. Faced with multiple languages and platforms
 and the “laziness” axiom (wanting to write as little code as possible), Apache Thrift could be a good solution (see figure 1.3).

 Figure 1.3. The Apache Thrift RPC framework enables cross-platform services.

 [image:]

 With Apache Thrift we could repackage the sail stats functions as a microservice and provide the Node.js programmers with
 access to the service through an easy-to-use Node.js client stub. To create the sail stats microservice we need only define
 the service interface in IDL, compile the IDL to create client and server stubs for the service, select one of the prebuilt
 Apache Thrift servers to host the service, and then assemble the parts.

Prebuilt server shells

 It’s important to note that, unlike standalone serialization solutions, Apache Thrift comes with a complete set of server
 shells, ready to use, in almost all the supported languages. This sidesteps the difficult and repetitive process of building
 custom network servers. The prebuilt Apache Thrift servers are also small and focused, providing only the functionality necessary to host Apache Thrift services. A typical Apache Thrift server will consume an order of magnitude
 less memory than an equivalent Tomcat deployment. This makes Apache Thrift servers a good choice for containerized microservices
 and embedded systems that don’t have the resources necessary to run full-blown web or application servers.

 	

 Microservices and Service Oriented Architecture (SOA)

 The microservice and SOA approaches to distributed application design break applications down into services, which are remotely
 accessible, autonomous modules composed of a set of closely related functions. Such systems provide their features over language-agnostic
 interfaces, allowing clients to be constructed in the most appropriate language and on the most appropriate platform, independent
 of the service implementation. These services are typically (and in the best case) stateless and loosely coupled, communicating
 with clients through a formal interface contract. Services may be internal to an organization or support clients across business
 boundaries. The distinction between SOA services and microservices is subtle, but most agree that microservices are a subset
 of SOA services in which the services are more atomic and independently deployable.

 	

Modular transports

 Apache Thrift also offers a pluggable transport system. Apache Thrift clients and servers communicate over transports that
 adapt Apache Thrift data flows to the outside world. For example, the TSocket transport allows Apache Thrift applications
 to communicate over TCP/IP sockets. You can use prebuilt transports for other communications schemes, such as named pipes
 and UNIX domain sockets. Custom transports are easy to craft as well. Apache Thrift also supports offline transports that
 allow data to be serialized to disk, memory, and other devices.

 A particularly elegant aspect of the Apache Thrift transport model is support for layered transports. Protocols serialize
 application data into a bit stream. Transports read and write the bytes, making any type of manipulation possible. For example,
 the TZLibTransport is available in many Apache Thrift language libraries and can be layered on top of any other transport
 to achieve high-ratio data compression. You can branch data to loggers, fork requests to parallel servers, encrypt, and perform
 any other manner of manipulation with custom-layered transports.

1.3. Building a simple service

 To get a better understanding of the practical aspects of Apache Thrift, we’ll build a simple “hello world” microservice.
 The service will be designed to supply various parts of our enterprise with a daily greeting, exposing a single “hello_func”
 function that takes no parameters and returns a greeting string. To see how Apache Thrift works across languages, we’ll build
 clients in C++, Python, and Java.

 1.3.1. The Hello IDL

 Most projects involving Apache Thrift begin with careful consideration of the interface components involved. Apache Thrift
 IDL is similar to C in its notation and makes it easy to define types and services shared across systems. Apache Thrift IDL
 is plain text saved in files with a “.thrift” extension (see the following listing).

 Listing 1.3. /ThriftBook/part1/hello/hello.thrift

 service HelloSvc { 1
 string hello_func() 2
}

 Our hello.thrift IDL file declares a single service interface called HelloSvc 1 with a single function, hello_func() 2. The function accepts no parameters and returns a string. To use this interface we can compile it with the Apache Thrift
 IDL compiler. The IDL compiler binary is named “thrift” on UNIX-like systems and “thrift.exe” on Windows. The compiler expects
 two command line arguments, an IDL file to compile and one (or more) target languages to generate code for. Here’s an example
 session that generates Python stubs for HelloSvc:

 /ThriftBook/part1/hello$ ls -l
-rw-r--r-- 1 root root 88 Feb 16 17:01 hello.thrift
/ThriftBook/part1/hello$ thrift --gen py hello.thrift 1
/ThriftBook/part1/hello$ ls -l
drwxr-xr-x 4 root root 4096 Feb 17 00:16 gen-py 2
-rw-r--r-- 1 root root 88 Feb 16 17:01 hello.thrift

 In the previous session the IDL compiler is invoked with the --gen py switch 1, which causes the compiler to create a gen-py directory 2 to house the emitted Python code for your hello.thrift IDL. The directory contains client/server stubs for all the services
 and serialization code for all the user-defined types in the IDL file.

 1.3.2. The Hello server

 Now that we have our support code generated, we can implement our service and use a prebuilt Apache Thrift server to house
 it. The following listing provides a sample server coded in Python.

 Listing 1.4. /ThriftBook/part1/hello/hello_server.py

 [image:]

 At the top of our server listing we use the built-in Python sys module to add the gen-py directory to the Python Path. This
 allows us to import the generated service stubs for our HelloSvc service 1.

 Our next step is to import several Apache Thrift library packages. TSocket provides an endpoint for our clients to connect
 to, TTransport provides a buffering layer, TBinaryProtocol will handle data serialization, and TServer will give us access
 to the prebuilt Python server classes 2.

 The next block of code implements the HelloSvc service itself through the Hello-Handler class. This class is called a handler
 in Apache Thrift because is handles all of the calls made to the service. All the service methods must be represented in the
 Handler class; in our case this is the hello_func() method 3. In real projects, almost all of your time and effort is spent here, implementing services. Apache Thrift takes care of the
 wiring and boilerplate code.

 Next we create an instance of our handler and use it to initialize a processor for our service. The processor is the server-side
 stub generated by the IDL compiler that turns network service requests into calls to the appropriate handler function 4.

 The Apache Thrift library offers endpoint transports for use with files, memory, and various network types: the example here
 creates a TCP server socket endpoint to accept client connections on TCP port 9090 5. The buffering layer ensures that we make efficient use of the underlying network, transmitting bits only when an entire
 message has been serialized 6. The binary serialization protocol transmits our data in a fast binary format with little overhead 7.

 Apache Thrift provides a range of servers to choose from, each with unique features. The server used here is an instance of
 the TSimpleServer class, which, as its name implies, provides the most basic server functionality 8. Once constructed, we run the server by calling the serve() method 9.

 The following example session runs our Python server:

 /ThriftBook/part1/hello$ ls -l
drwxr-xr-x 4 randy randy 4096 Jan 27 02:34 gen-py
-rw-r--r-- 1 randy randy 732 Jan 27 03:44 hello_server.py
-rw-r--r-- 1 randy randy 99 Jan 27 02:24 hello.thrift
/ThriftBook/part1/hello$ python hello_server.py

 The Python server took approximately seven lines of code, excluding imports and the service implementation. The story is similar
 in C++, Java, and most other languages. This is a basic server, but the example should help you see how much leverage Apache
 Thrift gives you when it comes to quickly creating cross-language microservices.

 1.3.3. A Python client

 Now that we have our server running, let’s create a simple Python client to test it, as shown in the following listing.

 Listing 1.5. /ThriftBook/part1/hello/hello_client.py

 [image:]

 The Python client begins by importing the same HelloSvc module used by the server, but the client will use the client-side
 stubs for the hello service 1. We’ll also import three modules from the Apache Thrift Python library. The first is TSocket, which is used on the client
 side to make a TCP connection to the server socket 2; as you may guess, the client must use a client-side transport compatible with the server transport. The next import pulls
 in TTransport, which will provide a network buffer 3, and the TBinaryProtocol import allows us to serialize messages to the server 4. Again, this must match the server implementation.

 Our next block of code initializes the TSocket with the host and port to connect to 5. We’ll wrap the socket transport in a buffer 6 and finally wrap the entire transport stack in the TBinaryProtocol 7, creating an I/O stack that can serialize data to and from the server.

 The I/O stack is used by the client stub, which acts as a proxy for the remote service 8. Opening the transport causes the client to connect to the server 9. Invoking the hello_func() method on the Client object serializes our call request with the binary protocol and transmits it over the socket to the
 server, then deserializes the returned result 10. The program prints out the result 11 and then closes the connection using the transport close() method 12.

 Here’s a sample session running the above client (the Python server must be running in another shell to respond):

 /ThriftBook/part1/hello$ ls -l
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
/ThriftBook/part1/hello$ python hello_client.py
[Client] received: Hello from the python server

 While it takes more work than your run of the mill “hello world” program, a few lines of IDL and a few lines of Python code
 have allowed us to create a language-agnostic, OS-agnostic, and platform-agnostic service API with a working client and server.
 Not bad.

 1.3.4. A C++ client

 To broaden your perspective and demonstrate the cross-language aspects of Apache Thrift, let’s build two more clients for
 the hello server, one in C++ and one in Java. We’ll start with the C++ client.

 First we need to compile the service definition again, this time generating C++ stubs:

 /ThriftBook/part1/hello$ thrift --gen cpp hello.thrift 1
/ThriftBook/part1/hello$ ls -l
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift

 Running the IDL compiler with the --gen cpp switch 1 causes it to emit C++ files in the gen-cpp directory, roughly equivalent to those generated for Python, producing C++ headers
 (.h) and source files (.cpp). The gen-cpp/HelloSvc.h header 1 contains the declarations for our service, and the gen-cpp/HelloSvc.cpp source file contains the implementation of the service
 stub components.

 The code for a HelloSvc C++ client with the same functionality as the Python client appears in the following listing.

 Listing 1.6. /ThriftBook/part1/hello/hello_client.cpp

 [image:]

 [image:]

 Our C++ client code is structurally identical to the Python client code. With few exceptions, the Apache Thrift meta-model
 is consistent from language to language, making it easy for developers to work across languages.

 The C++ main() function corresponds line for line with the Python code with one exception; hello_func() doesn’t return a string conventionally, rather it returns the string through an out parameter reference 3.

 The Apache Thrift language libraries are generally wrapped in namespaces to avoid conflicts in the global namespace. In C++
 all of the Apache Thrift library code is located within the “apache::thrift” namespace. The using statements here provide implicit access to the necessary Apache Thrift library code 1.

 Apache Thrift strives to maintain as few dependencies as possible to keep the development environment simple and portable;
 however, exceptions do exist. For example, the Apache Thrift C++ library relies on the open source Boost library. In this
 example, several objects are wrapped in boost::shared_ptr 2. Apache Thrift uses shared_ptr to manage the lifetimes of almost all of the key objects involved in C++ service operations.

 Those familiar with C++ will know that shared_ptr has been part of the standard library since C++11. While the sample code
 is written in C++11, Apache Thrift supports C++98 as well, requiring the use of the Boost version of shared_ptr (C++98 support
 will likely be dropped in the future, moving all Boost namespace elements to the std namespace).

 The following listing shows a Bash session that builds and runs the C++ client.

 Listing 1.7. Bash session running C++ client

 $ ls -l
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 641 Mar 26 22:36 hello_client.cpp
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
$ g++ --std=c++11 hello_client.cpp gen-cpp/HelloSvc.cpp -lthrift 1
$ ls -l
-rwxr-xr-x 1 randy randy 136508 Mar 26 22:38 a.out
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 641 Mar 26 22:36 hello_client.cpp
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
$./a.out 2
[Client] received: Hello thrift, from the python server

 Here we use the Gnu C++ compiler to build the hello_client.cpp file into an executable program 1. Clang, Visual C++, and other compilers are also commonly used to build Apache Thrift C++ applications.

 For the C++ build we must compile the generated client stubs found in the HelloSvc.cpp source file. During the link phase
 the “–lthrift” switch tells the linker to scan the standard Apache Thrift C++ library to resolve the TSocket and TBinaryProtocol
 library dependencies (this switch must follow the list of .cpp files when using g++ or it will be ignored, causing link errors).

 Assuming the Python Hello server is still up, we can run our executable C++ client and make a cross-language RPC call. The
 C++ compiler builds our source into an a.out file that produces the same result as the Python client when executed 2.

 1.3.5. A Java client

 As a final example let’s put together a Java client for the service. Our first step is to generate Java stubs for the service,
 as shown in the following listing.

 Listing 1.8. Generating Java stubs

 /ThriftBook/part1/hello$ thrift --gen java hello.thrift 1
/ThriftBook/part1/hello$ ls -l
-rwxr-xr-x 1 randy randy 136508 Mar 26 23:07 a.out
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 2 randy randy 4096 Mar 26 23:23 gen-java
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 641 Mar 26 22:36 hello_client.cpp
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift

 The –-gen java switch causes the IDL compiler to emit Java code for our interface in the gen-java directory 1, creating a HelloSvc class with nested client and server stub classes. The following listing provides the source for a Java
 client that parallels the prior Python and C++ clients.

 Listing 1.9. /ThriftBook/part1/hello/HelloClient.java

 import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.TException;

public class HelloClient {
 public static void main(String[] args) throws TException {
 TSocket trans = new TSocket("localhost", 9090);
 TBinaryProtocol protocol = new TBinaryProtocol(trans);
 HelloSvc.Client client = new HelloSvc.Client(protocol);

 trans.open();
 String str = client.hello_func();
 System.out.println("[Client] received: " + str);
 trans.close();
 }
}

 In typical Java form, the main() method lives inside a class with the same name as the containing file and the rest of the code is a rehash of the previous
 clients. The one noticeable difference is that the Java client has no buffering layer above the endpoint transport because
 the socket implementation in Java is based on a stream class that buffers internally, so no additional buffering is required.

 The following listing shows a build and run session for the Java client.

 Listing 1.10. Build and run session for the Java client

 [image:]

 [image:]

 The Java compile includes three dependencies; the first is the Apache Thrift Java library jar 1. The IDL-generated code for our service also depends on SLF4J, a popular Java logging façade. The slf4j-api jar 2 is the façade and the slf4j-nop jar 3 is the nonoperational logger that discards logging output. The Java files generate byte code in .class files for our HelloClient
 class as well as the HelloSvc class 4.

 To run our Java HelloClient class under the JVM we must modify the Java class path as we did in the compilation step, adding
 the current directory and the gen-java directory, where the HelloClient class and HelloSvr class files will be found 5. Running the client produces the same result we saw with Python and C++.

 Beyond running standard build tools in our respective languages, it didn’t take much effort to produce our Apache Thrift server
 and the three clients. In short order, we’ve built a microservice that can handle requests from clients created in a wide
 range of languages. Now that we’ve seen how basic Apache Thrift programs are created, let’s look at how Apache Thrift fits
 into the overall application integration landscape.

 	

 The Apache Thrift tutorial

 In addition to the code examples included with this text, the Apache Thrift source tree provides a tutorial. The tutorial
 is based on a central tutorial IDL file defining a calculator service from which client and server samples in each language
 are built. This tutorial is simple but demonstrates many of the capabilities of Apache Thrift in every supported language.
 The tutorials can be found under the tutorial directory below the root of the Apache Thrift source tree. Each language-specific
 tutorial is found in a subdirectory named for the language. A Makefile is provided to build the tutorial examples in languages
 that require compilation. The source tree also provides many tests throughout the tree, all of which provide useful examples.

 /thrift/tutorial$ ls

 as3 c_glib cpp csharp d

 dart delphi erl gen-html go

 haxe hs java js netcore

 nodejs ocaml perl php py.tornado

 py.twisted py rb rs shared.thrift

 tutorial.thrift

 	

1.4. The communications toolkit landscape

 SOAP, REST, Protocol Buffers, and Apache Avro are perhaps the technologies most often considered as alternatives to Apache
 Thrift, though many others exist. Each technology is unique and each has its place. The following sections provide a brief
 overview of the key players in the software communications landscape, followed by a summary of the features fielded by Apache
 Thrift and a discussion of where Apache Thrift fits in the milieu.

 1.4.1. SOAP

 Simple Object Access Protocol (SOAP) is a W3C recommendation (https://www.w3.org/TR/2007/REC-soap12-part1-20070427/) specifying a Service Oriented Architecture (SOA)-style remote procedure call (RPC) system over HTTP. SOAP relies on XML
 for carrying its payload between the client and server and is typically deployed over HTTP, though other transports can also
 be used. Optimizations are available that attempt to reduce the burden of transmitting XML, and SOAP has versions that use
 JSON, among other offshoots. Related technologies, such as XML-RPC, operate on similar principles. Unlike RESTful services,
 which directly use HTTP headers, verbs, and status codes, SOAP and XML-RPC systems tunnel function calls through HTTP POST
 operations, missing out on most of the caching and system layering benefits found in RESTful services.

 The key benefit of HTTP-friendly technologies is their broad interoperability. By transmitting standards-based text documents
 (XML, JSON, and others) over the ubiquitous HTTP protocol, almost any application or language can be engaged. Human-readable
 XML/JSON payloads also greatly simplify prototyping, testing, and debugging. On the downside, each language, vendor, and,
 often, each company provide their own scheme for generating stubs. You have no guarantees that code generated by different
 SOAP WSDL (Web Service Description Language) tools will collaborate.

 SOAP was one of the principle technologies used during the evolution of Service Orientation and is still widely used in older
 systems. SOAP offers a number of WS-* standards established by the Oasis standards body, addressing authentication, transactions,
 and other concerns (https://www.oasis-open.org/standards). Few new SOAP services appear to be coming online, and most considering SOAP today find REST simpler, faster at scale, and
 more compelling as a public API solution.

 1.4.2. REST

 REST is an acronym for REpresentational State Transfer, a term coined by Dr. Roy Fielding in his 2000 dissertation (https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm). REST is the typical means for web browsers to retrieve content from web servers. RESTful web services use the REST architectural
 style to leverage the infrastructure of the web. The well-understood and widely supported HTTP protocol gives REST-based services
 broad reach. REST-based services typically use the JSON format for payload transmission, making client/server requests human-readable
 and easy to work with.

 RESTful services are unique in that their interfaces are based on resources accessed through URIs and manipulated through
 HTTP verbs, such as GET, PUT, POST, and DELETE. When done well, this is referred to as a Resource Oriented Architecture (ROA). ROAs produce significant benefits when scaling
 over the web. For example, standard web-based caching systems can cache resources acquired using the GET verb, firewalls can make more intelligent decisions about HTTP delivered traffic, and applications can leverage the wealth
 of technology associated with existing web server infrastructure. HTTP headers can negotiate payload formats, cache expirations,
 security features, and more. In-browser clients can leverage the native features of the browser, and the list goes on.

 One concern with ROA is that monolithic applications are composed of modules that expose functions or methods internally.
 Module operations don’t typically map naturally to resource-based interfaces. This can make decomposing a monolith into RESTful
 microservices more work than decomposing the same code into RPC-based microservices.

 When developers refer to APIs or services today, they’re usually talking about REST APIs/services. The RESTful approach has
 become nearly ubiquitous when it comes to implementing public interfaces. The ecosystem is vast and the developer skills are
 widespread. REST, however, does have its drawbacks.

 It’s important to keep in mind that REST is an architectural style, not a standard or a technology framework. Two different
 teams might build the same REST service in different and incompatible ways. While this might be said of any solution, it’s
 particularly true of REST due to the broad set of perspectives on how REST should be done and the several toolkits, schema
 mechanisms, and documentation systems in use. For example, the RESTful world offers at least three competing platforms for
 service definition and code generation: RAML, Swagger, and API Blueprint, though the more recent Swagger-based Open API Initiative
 (OAI) appears like it may unify the space.

 Several communications models are not addressed by REST. REST is, by definition, a client/server architecture and, in practice,
 it’s implemented over HTTP, a request/response-based protocol. REST doesn’t address serialization concerns or support messaging
 or data streaming.

 One of the most important issues with RESTful interfaces is their overhead in backend systems. The advent of HTTP/2 (https://http2.github.io/) does much to address the overhead associated with HTTP header and JSON text transmission; however, no amount of external
 optimization is likely to allow a REST service to perform at the level of a purpose-built binary solution such as Apache Thrift.
 In fact, Protocol Buffers and Thrift were created by Google and Facebook respectively to alleviate the performance issues
 associated with RESTful services in high-load server systems.

 1.4.3. Protocol Buffers

 Google Protocol Buffers (PB) (https://developers.google.com/protocol-buffers/) and Apache Thrift are similar in function, performance, and from a serialization and IDL standpoint. They were built by
 different companies (but by several of the same people) to do the same thing. Official Google Protocol Buffer language support
 is limited to Java, Python, Objective-C, C++, Go, Ruby, and C#. This is a moving target and support for new languages is added
 over time. Protocol Buffers are used by a large community of developers.

 Google Protocol Buffers focuses on providing a monolithic integrated message serialization system through the main project.
 Several RPC-style systems for Protocol Buffers are available in other projects, in particular, the HTTP/2-based gRPC (grpc.io).
 The gRPC system trades web platform integration through HTTP/2 for speed; Apache Thrift and Protocol Buffer TCP-based services
 typically run 4-6 times faster. Many developers feel the modular serialization and transport features of the Apache Thrift
 framework and the in-tree language and server support provide an advantage. Others prefer the simple integrated serialization
 scheme offered by PB.

 Another difference between the platforms is support for transmission of collections. Apache Thrift supports transmission of
 three common container types: lists, sets, and maps. Protocol Buffers supplies a repeating field feature rather than support
 for containers, producing similar capabilities through a lower-level construct. Newer versions of PB add map simulation with
 several restrictions. Protocol Buffers supports signed and unsigned integers, while Apache Thrift supports only signed integers.
 Apache Thrift, however, supports unions and other minor IDL features not found in Protocol Buffers.

 Protocol Buffers are robust, well-documented, and backed by a large corporation, which contrasts with the community-driven
 nature of Apache Thrift. This is evident most clearly in the quality of the documentation for the two projects, Google’s being
 noticeably superior (and I’m being kind).

 1.4.4. Apache Avro

 Apache Avro (https://avro.apache.org/) is a serialization framework designed to package the serialization schema with the data serialized. This contrasts with
 Apache Thrift and Protocol Buffers, both of which describe the schema (data types and service interfaces) in IDL. Apache Avro
 interprets the schema on the fly while most other systems generate code to interpret the schema at compile time. In general,
 combining the schema with the data works well for long-lived objects serialized to disk. However, such a model can add complexity
 and overhead to real-time RPC style communications. Arguments and optimizations can be made to turn these observations on
 their head, but most practical use of Apache Avro has been focused on serializing objects to disk; Avro isn’t used for RPC
 in the wild.

 	

 Apache Thrift versions

 The Thrift framework was open sourced by Facebook in 2007 and became an Apache Software Foundation incubator project in 2008:

 	0.2.0
 	released 2009-12-12

 	0.3.0
 	released 2010-08-05

 	0.4.0
 	released 2010-08-23

 	0.5.0
 	released 2010-10-07

 Project moved to top-level status in 2010:

 	0.6.0
 	released 2011-02-08

 	0.6.1
 	released 2011-04-25

 	0.7.0
 	released 2011-08-13

 	0.8.0
 	released 2011-11-29

 	0.9.0
 	released 2012-10-15

 	0.9.1
 	released 2013-07-16

 	0.9.2
 	released 2014-11-16

 	0.9.3
 	released 2015-10-11

 	0.10.0
 	released 2017-01-06

 	0.11.0
 	released 2017-12-03

 	0.12.0
 	released 2019-01-04

 	

 1.4.5. Strengths of Apache Thrift

 The strength of the Apache Thrift platform lies in the completeness of its package, its performance and flexibility, as well
 as the expressiveness of its IDL. Apache Thrift was created to provide cross-language capabilities comparable to REST but
 with dramatically improved performance and a significantly smaller footprint.

Performance

 To get a sense for the relative performance of several of the communications approaches described here, look at the test results
 in figure 1.4 (these tests are created and covered in detail in chapter 17). The chart displays the time required to make one million API calls to a single service implemented with several communications
 technologies. All of the servers were coded in Java and the same client, also coded in Java, was used in all cases, though
 the necessary bindings are used to call the service backend under test. Each bar shows the number of seconds the requests
 took to complete against a different implementation running on the same machine. The tests were performed in isolation over
 the local loopback on a system with no other activity. Multiple runs of each test were completed and no outliers were discovered.
 The sole service function accepts a string and returns a small struct. The service implementation is identical in all cases,
 performs no logic, and returns a static struct to highlight the service and serialization overhead.

 Figure 1.4. Time to complete 1 million service requests for various Java servers

 [image:]

 The first bar shows the elapsed time for the service when implemented with SOAP. A standard Java SOAP service coded in JAX-WS,
 deployed on Tomcat 7, was used for the test. The serialization overhead associated with XML and the load incurred by Tomcat
 and HTTP make this the worst performer in the group, at more than 350 seconds.

 The second bar shows the results of the same test but against a REST service created with Java and JAX-RS. Though the comparison
 normalizes as many variables as possible, REST-based services are defined with HTTP verbs and IRIs, not functions. The implementation
 here is a simple GET request (no caching), passing the input string as a query parameter and receiving the resultant struct in a JSON payload.
 This is noticeably faster than the SOAP example at about 300 seconds, largely due to the lack of a caller payload, improved
 serialization performance of JSON over XML, and the significantly smaller JSON reply payload.

 The last three bars are Apache Thrift server cases. The first is as close to an apples-to-apples comparison with the REST
 example as can be had with Apache Thrift. An Apache Thrift server was created with the same one method service, packaged as
 a servlet, deployed on Tomcat, and configured to use the JSON protocol over an HTTP transport. The result is a significant
 improvement in performance. This is attributable to the serialization benefits produced by the purpose-built Apache Thrift
 client/server stubs, among other efficiencies.

 The real performance gains arrive when Tomcat and HTTP are left behind. The final two bars show the performance of compiled
 Apache Thrift servers running over TCP with JSON and Compact protocols respectively. Both are an order of magnitude faster
 and an order of magnitude smaller in memory.

 While your mileage will vary with different languages, different levels of concurrency, different server shells, different
 services, and different frameworks, the previous example case provides a frame of reference and explains why many firms have
 moved large-scale backend services away from REST/SOAP and/or JSON serialization when under pressure for performance. Migrating
 to Apache Thrift from REST or SOAP could enable the same hardware to support 10 times the traffic. Backend systems using a
 microservice approach often require multiple backend services to collaborate to complete a client request, prioritizing backend
 service repressiveness.

 Certain developers contemplate REST with payloads serialized using Protocol Buffers or Apache Thrift; however, this doubles
 the toolkit burden and complexity, misses out on the significant benefits to be had by eliminating HTTP, and gives up the
 endearing “human-readable payload” property typically associated with REST. It’s an altogether unsatisfying combination.

 When it comes to performance, Apache Thrift offers a complete package with near REST-class interoperability, significantly
 improved performance, and the widest range of protocol and transport choices. See figure 1.5.

 Figure 1.5. Apache Thrift balances performance with reach and flexibility.

 [image:]

Reach

 Apache Thrift offers support in tree for a comprehensive set of programming languages but also an impressive range of platforms.
 Apache Thrift can be a good fit for embedded systems, offering support for Java’s Compact Profile and small footprint servers
 for C++ and other languages.

 Apache Thrift is a natural fit for typical enterprise development environments, with support for Java/JVM and C#/CLR/.Net
 Core on Windows, Linux, and OSX. Apache Thrift is also a perfect fit for cloud-native systems, offering small footprint servers
 in many languages perfect for container packaging. See figure 1.6.

 Figure 1.6. Apache Thrift is an effective solution in embedded, enterprise, and web technology environments.

 [image:]

 Apache Thrift integrates well with the world of the web also, including native support for languages such as JavaScript and
 TypeScript. Apache Thrift offers HTTP, TLS, WebSocket, and JSON support. Mobile solutions on IOS and Android are also easy
 to build with support for Objective-C and Java.

 1.4.6. Take away

 You have many viable communications schemes to choose from today and they all have their place. As a default API option and
 particularly if you want broad accessibility over the public internet, REST may be your best choice. If speed is your priority,
 you can write your own native binary protocol or use something edgy like Cap’n Proto (https://capnproto.org). If you are principally serializing to disk, look at Apache Avro. If you want a solid, name-brand, high-speed serialization
 system, consider Flat-Buffers (https://google.github.io/flatbuffers), or if you need RPC services as well, perhaps Protocol Buffers and GRPC will fit the bill.

 However, if you want...

 	
Servers and Serialization—A complete serialization and service solution in tree

 	
Modularity—Pluggable serialization protocols and transports with a range of provided implementations

 	
Performance—Lightweight, scalable servers with fast and efficient serialization

 	
Reach—Support for an impressive range of languages, protocols, and platforms

 	
Rich IDL—Language-independent support for expressive type and service abstractions

 	
Flexibility—Integrated type and service evolution features

 	
Community Driven Open Source—Apache Software Foundation hosted and community managed

 . . . in one package, then Apache Thrift belongs at the top of your consideration list. In the next chapter we’ll look at
 the architecture of Apache Thrift and examine transports, protocols, and servers in more detail.

Summary

 Here are the most important points to take away from this chapter:

 	Apache Thrift is a cross-language serialization and service implementation framework.

 	Apache Thrift supports a wide array of languages and platforms.

 	Apache Thrift makes it easy to build high performance services.

 	Apache Thrift is a good fit for service-oriented and microservice architectures.

 	Apache Thrift is an Interface Definition Language (IDL)–based framework.

 	IDLs allow you to describe interfaces and generate code to support the interfaces automatically.

 	IDLs allow you to describe types used in messaging, long-term storage, and service calls.

 	Apache Thrift includes a modular serialization system, providing several built-in serialization protocols and support for
 custom serialization solutions.

 	Apache Thrift includes a modular transport system, providing built-in memory disk and network transports, yet makes it easy
 to add additional transports.

 	Apache Thrift supports interface evolution, empowering CI/CD environments and Agile teams.

Chapter 2. Apache Thrift architecture

 This chapter covers

 	Introducing the Apache Thrift cross-language service architecture

 	Explaining how endpoint transports support device independence

 	Adding generic I/O features to Apache Thrift using layered transports

 	Understanding Apache Thrift serialization protocols and their features

 	Using the Apache Thrift IDL and the IDL compiler

 	Understanding the features of the RPC server library

 In the first chapter, we discussed Apache Thrift’s place in the distributed application development landscape and created
 a set of programs demonstrating a simple cross-language service. In this chapter, we take a sweeping look at the overall Apache
 Thrift framework. We’ll break down the framework into layers, examining each layer in turn. Understanding how the facets of
 Apache Thrift function and fit together at a high level will allow us to dig into the topics in part II of this book with
 a solid conceptual understanding of Apache Thrift overall.

 The Apache Thrift Framework can be organized into five layers (see figure 2.1):

 	The RPC Server library

 	RPC Service Stubs

 	User-Defined Type Serialization

 	The Serialization Protocol library

 	The Transport library

 Figure 2.1. The Apache Thrift framework

 [image:]

 Applications requiring a common way to serialize data structures for storage or messaging may need nothing more than the bottom
 three layers of this model.

 The top two layers include the Apache Thrift library of RPC servers and the IDL compiler-generated service stubs, adding RPC
 support to the stack.

 Apache Thrift is conceptually an object-oriented framework, though it supports object-oriented and non-object-oriented languages.
 The Transport, Protocol, and Server libraries are often referred to as class libraries, though they may be implemented in
 other ways in non-object oriented languages. The classes within the Apache Thrift libraries are typically named with a leading
 capital T, for example, TTransport, TProtocol, and TServer.

2.1. Transports

 At the bottom of the stack we have transports (see figure 2.2). The Apache Thrift transport library insulates the upper layers of Apache Thrift from device-specific details. In particular,
 transports enable protocols to read and write byte streams without knowledge of the underlying device. This allows support for new devices and middleware systems to be added to the platform
 without impacting the upper layers of software.

 Figure 2.2. Apache Thrift transports

 [image:]

 For example, imagine you developed a set of programs to move stock price quotations over the Sockets networking API. After
 the application is deployed, the requirements expand and you’re asked to add support for stock price transmission over an
 AMQP messaging system as well.

 With Apache Thrift, the expanded capability will be fairly easy to implement. The new AMQP code can implement the existing
 Apache Thrift Transport interface, allowing the upper layers of code to use either the Socket solution or the AMQP solution
 without knowing the difference (see figure 2.3).

 Figure 2.3. Multiple I/O targets can be used interchangeably if they expose a common interface, such as TTransport.

 [image:]

 The modular nature of Apache Thrift transports allows them to be selected and changed at compile time or runtime, giving applications
 plug-in support for a range of devices (see figure 2.4).

 Figure 2.4. Abstract transport interface

 [image:]

 2.1.1. The transport interface

 The Apache Thrift transport layer exposes a simple byte-oriented I/O interface to upper layers of code. This interface is
 typically defined in an abstract base class called TTransport. Table 2.1 describes the TTransport methods present in most language implementations. Each Apache Thrift language implementation has
 its own subtleties. Apache Thrift language library implementations tend to play to the strengths of the language in question,
 making a level of variety across implementations the norm.

 For example, certain languages define transport interfaces with additional methods for performance or other purposes. A case
 in point, the C++ language TTransport interface defines borrow() and consume() methods, which enable more efficient buffer processing. The examples here focus on the conceptual architecture of Apache
 Thrift.

 Table 2.1. The TTransport interface

 	
 Method

 	
 Description

 	open()
 	Prepares the transport for I/O operations

 	close()
 	Shuts down the transport

 	isOpen()
 	Returns true if the transport is open, false otherwise

 	read()
 	Reads bytes from the transport

 	readAll()
 	Reads an exact number of bytes from the transport (blocking or erroring if they aren’t available)

 	write()
 	Writes bytes to the transport (the transport may buffer the operation)

 	flush()
 	Forces any buffered bytes to be written to the underlying device

 2.1.2. Endpoint transports

 In this book we refer to Apache Thrift transports that write to a physical or logical device as “endpoint transports.” Endpoint
 transports are always at the bottom of an Apache Thrift transport stack and most use cases require precisely one endpoint
 transport.

 Apache Thrift languages supply endpoint transports for memory, file, and network devices. Memory-oriented transports, such
 as TMemoryBuffer, are often used to collect multiple small write operations that are later transmitted as a single block.
 File-based transports, such as TSimpleFileTransport, are often used for logging and state persistence.

 The most important Apache Thrift Transport types are network-oriented and used to support RPC operations. The most commonly
 used Apache Thrift network transport is TSocket. The TSocket transport uses the Socket API to transmit bytes over TCP/IP (see
 figure 2.5).

 Figure 2.5. Interprocess communications using the TSocket endpoint transport

 [image:]

 Other devices and networking protocols can be exposed through the TTransport interface as well. For example, many Apache Thrift
 language libraries provide HTTP transports to read and write using the HTTP protocol. Building a custom transport for an unsupported network protocol or device isn’t typically difficult, and doing so enables the entire framework to operate
 over the new endpoint type.

 2.1.3. Layered transports

 Because Apache Thrift transports are defined by the generic TTransport interface, client code is independent of the underlying
 transport implementation. This gives transports the ability to overlay anything, even other transports. Layering allows generic
 transport behavior to be separated into interoperable and reusable components.

 Imagine you’re building a banking application that makes calls to a service hosted by another company and you need to encrypt
 all of the bytes traveling between your client and the RPC server. If you create a layered transport to provide the encryption,
 the client and server code could use your new encryption layer on top of the original network transport. The benefits of isolating
 this new encryption feature in a layered transport are several, not the least of which is that it can be inserted between
 the existing client code and old network transport with potentially no impact. The client code will see the encryption transport
 layer as another transport. The network endpoint transport will see the encryption transport as another client.

 The encryption transport can be layered on top of any endpoint transport, allowing you to encrypt network I/O as well as file
 I/O and memory I/O. The layering approach allows the encryption concern to be separated from the device I/O concern.

 In this book we refer to all Apache Thrift transports that aren’t endpoint transports as “layered transports.” Layered transports
 expose the standard Apache Thrift TTransport interface to clients and depend on the TTransport interface of the layer below.
 In this way one or more transport layers can be used to form a transport stack (see figure 2.6).

 Figure 2.6. Layered transport stack

 [image:]

 A commonly used Apache Thrift layered transport is the framing transport. This transport is called TFramedTransport in most
 language libraries and it adds a four-byte message size as a prefix to each Apache Thrift message. This enables more efficient message processing in certain scenarios, allowing a receiver to read the
 frame size, and then provide buffers of the exact size needed by the frame.

 	

 Note

 Clients and servers must use compatible transport stacks to communicate. If the server is using a TSocket transport, the client
 will need to use a TSocket transport. If the server is using a TFramedTransport layer on top of a TSocket, the client will
 have to use a TFramedTransport layer on top of a TSocket. Apache Thrift doesn’t have a built-in runtime transport or protocol
 discovery mechanism, though custom discovery systems can be created on top of Apache Thrift.

 	

 Another important feature offered by layered transports is buffering. The TFramedTransport implicitly buffers writes until
 the flush() method is called, at which point the frame size and data are written to the layer below. The TBufferedTransport is an alternative
 to the TFramedTransport that can provide buffering when framing isn’t needed. Several languages build buffering into the endpoint
 solution and don’t provide a TBufferedTransport (Java is an example).

 2.1.4. Server transports

 When two processes connect over a network to facilitate communications, the server must listen for clients to connect, accepting
 new connections as they arrive. The abstract interface for the server’s connection acceptor is usually named TServerTransport.
 The most popular implementation of TServerTransport is TServerSocket, used for TCP/IP networking. The server transport wires
 each new connection to a TTransport implementation to handle the individual connection’s I/O. Server transports follow the
 factory pattern with TServerSockets manufacturing TSockets, TServerPipes manufacturing TPipes, and so on (see figure 2.7).

 Figure 2.7. Server transport and I/O transports

 [image:]

 Server transports typically have only four methods (see table 2.2). The listen() and close() methods prepare the server transport for use and shut it down, respectively. Clients cannot connect before listen() is invoked or after close() is invoked. The accept() method blocks until a client connection arrives. When a client initiates a connection, the server accept() method returns a TTransport wired to the connection that is then used to support normal RPC operations with the client. The
 interrupt() method breaks the server transport out of the blocking accept() call, causing it to return.

 Table 2.2. The TServerTransport interface

 	
 Method

 	
 Description

 	accept()
 	Accepts a waiting connection and returns an I/O transport wired to the new connection

 	close()
 	Stops listening and closes down the server transport

 	interrupt()
 	Breaks the server transport out of a blocking accept() call

 	listen()
 	Enables the server transport to accept connections

2.2. Protocols

 In the context of Apache Thrift, a protocol is a means for serializing types. Apache Thrift RPC doesn’t support every type
 defined in every language. Rather, the Apache Thrift type system includes all the important base types found in most languages
 (int, double, string, and so on), as well as a few heavily used and widely supported container types (map, set, list). All
 protocols must be capable of reading and writing all the types in the Apache Thrift type system.

 Protocols sit on top of a transport stack (see figure 2.8). Labor is divided between the transport that’s responsible for manipulating bytes and the protocol that’s responsible for
 working with data types. Transports see only opaque byte streams; protocols turn data types into byte streams (see figure 2.9) and vice versa.

 Figure 2.8. Apache Thrift protocols

 [image:]

 Figure 2.9. Serialization stack

 [image:]

 For example, if you want to store an integer into a disk file on one system and make it readable on another system, you need
 to ensure that the integer is stored in an agreed-upon byte order. Either the most significant or least significant byte must
 be first. The choice between these two options is made by the serialization protocol. The transport simply writes the bytes
 supplied to disk in the order presented.

 Apache Thrift provides several serialization protocols, each with its own goals:

 	
The Binary Protocol—Simple and fast

 	
The Compact Protocol—Smaller data size without excessive overhead

 	
The JSON Protocol—Standards-based, human-readable, broad interoperability

 The Binary Protocol is the default Apache Thrift protocol, and at the time of initial release, it was the only protocol. The
 Binary Protocol requires minimal CPU overhead, essentially writing the desired types into the byte stream as they are, after
 attending to byte ordering, type normalization, and a few other tasks. Thus, a 64-bit integer is going to take up about 64
 bits on the wire when using the Binary Protocol.

 The Compact Protocol is designed to minimize the size of the serialized representation of data. The Compact Protocol is fairly
 simple but does use more CPU in the process of shuffling bits into smaller spaces. In cases where I/O is the bottleneck and
 CPU abounds (a common situation), this is a good protocol to consider.

 The JSON Protocol converts inputs into JSON formatted text. Of the three common Apache Thrift protocols, JSON is likely to
 produce the largest representation on the wire and consume the most CPU. The advantages of JSON are broad interoperability
 and human readability.

 Apache Thrift languages typically provide an abstract protocol interface, called TProtocol, adhered to by all concrete protocol
 implementations. This interface defines methods for reading and writing each of the Apache Thrift types as well as compositional
 methods used to serialize containers, user-defined types, and RPC messages.

 A key feature of the Apache Thrift type system is its support for user-defined types in the form of structs. Apache Thrift
 structs are IDL-based composite types built from a set of fields. The fields can be of any legal Apache Thrift type, including
 base types, containers, and other structs.

 Apache Thrift messages are the envelopes used to deliver RPC calls and responses over transports. These messages are implemented
 as specialized Apache Thrift structs.

 Table 2.3 lists several of the typical TProtocol methods that define the Apache Thrift type system. Each write method listed here has
 a corresponding read method with the same suffix (for example, writeBool()/readBool()). (See chapter 5 for a complete TProtocol listing.)

 Table 2.3. Abbreviated TProtocol interface

 	
 Method

 	
 Description

 	writeBool()
 	Serializes a Boolean value

 	writeByte()
 	Serializes a byte value

 	writeI16()
 	Serializes a 16-bit integer value

 	writeI32()
 	Serializes a 32-bit integer value

 	writeI64()
 	Serializes a 64-bit integer value

 	writeDouble()
 	Serializes a double precision floating point value

 	writeString()
 	Serializes a string value

 	...
 	

2.3. Apache Thrift IDL

 Combining Apache Thrift Protocols and Transports provides a way to serialize doubles, lists of strings, and other such generic
 data representations. While useful, most applications also deal in user-defined data types. For example, a stock trading application
 may deal in trade reports, a social platform may deal in status updates, and a flight simulator may deal in telemetry.

 Interface Definition Languages (IDLs) can be used to define application-level types and service interfaces, enabling tools
 to generate code to automate serialization for these types. Rather than hand-coding the serialization of a Trade Report for
 a stock trading program, you can describe the trade type in IDL and let the Apache Thrift IDL Compiler generate the serialization
 code for you.

 Apache Thrift IDL is implementation language independent. The IDL compiler reads IDL files and can output serialization code
 and RPC client/server stubs in any of the Apache Thrift target languages (see figure 2.10).

 Figure 2.10. IDL compilation

 [image:]

 Imagine you’re writing a program for the California Fisheries Bureau in Python and you want to call a server maintained by
 the Seattle Ocean Research Center to retrieve Halibut catch levels, but you discover the server is written in Java. If the
 server was coded with an Apache Thrift API you could compile the server interface IDL for Python and then use the Python stubs
 to call the Java server directly.

 The following listing shows an example of what such an interface definition might look like.

 Listing 2.1. ~/thriftbook/arch/halibut.thrift

 struct Date { 1
 1: i16 year
 2: i16 month
 3: i16 day
}

service HalibutTracking { 2
 i32 get_catch_in_pounds_today()
 i32 get_catch_in_pounds_by_date(1: Date dt, 2: double tm)
}

 The service defined in the IDL file above is called HalibutTracking 2. This service depends on the user-defined type Date 1. To compile the IDL into language-specific code, the IDL compiler is invoked with a switch indicating the target language
 to generate code for. The command thrift –-gen java halibut.thrift will output a set of Java files designed to enable serialization of the Date type and client/server RPC stubs to support the HalibutTracking service. The command thrift –-gen py halibut.thrift would generate stubs for the same interface in Python.

 2.3.1. User-defined types and serialization

 User-defined types (UDTs) are an important aspect of external interfaces. While it’s possible to compose the get_catch_in_pounds_by_date() method in our above example with discrete year/month/day parameters, the Date type is much more expressive, reusable, and concise. Apache Thrift IDL allows user-defined types to be created with the “struct”
 keyword.

 The IDL compiler generates language-specific types from IDL types; for example, the struct keyword will cause the IDL compiler
 to produce a class in C++, a record in Erlang, and a package in Perl. These generated types have built-in serialization capabilities,
 making it easy to serialize them using any Apache Thrift protocol/transport stack (see figure 2.11). To keep things generic, the IDL compiler code output examples below use pseudo code, approximating the output you might
 see for any given language.

OEBPS/01fig03_alt.jpg
Node s code

Apache Thift
server shell

[

Apache Thrift supplies all of the
components necessary to turn a

set of functions into a network-based
microservice accessible from a range
of platforms and languages.

OEBPS/01fig01_alt.jpg
2003 Tiobe Index top four quintiles

2013 Tiobe Index top four quintiles

Language | Rating | Cumulative Language | Rating | Cumulative
Java 23.08% 23.08% c 17.81% 17.81%
c 18.47% 41.55% Java 16.66% 3447%
Cor 15.56% 57.12% Objective-C | 10.36% 44.82%
Perl 9.42% 66.54% C+t 8.82% 53.64%
(Visual) Basic | 7.81% 74.35% PHP. 5.99% 59.63%
PHP. 4.76% 79.11% c# 5.78% 65.41%

(Visual) Basic | 4.35% 69.76%
Python 4.18% 73.94%
Perl 227% 7621%
JavaScript 1.65% 77.87%
Ruby 1.48% 79.35%

OEBPS/01fig02_alt.jpg
Python

program
on 32.6it
Windows

Apache

Thiittype
sorialzation

Messaging platform
(NATS, RabbitMO, AWS
5Qs, Apache Qpid, etc)

Apache.

Thrifttype
serialization

Java

program

on 64-bit
RHEL

OEBPS/common2.jpg

OEBPS/arrow.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/f0013-01.jpg
import sys
sys.path.append("gen-py")
from hello import Hellosve @

from thrift.transport import TSocket (2]

from thrift.transport import TTransport (3]

from thrift.protocol import TBinaryProtocol [4])
trans = TSocket.TSocket("localhost", 9090) (5]

trans = TTransport.TBufferedTransport (trans) (6]
proto = TBinaryProtocol.TBinaryProtocol (trans) (7
client = HelloSvc.Client (proto) (2]

trans.open () (]
msg = client.hello_func() [0}
print (*[Client] received: %s* % msg) 1]

trans.close() 43

OEBPS/f0012-01.jpg
ST e id
sys.path.append (“gen-py")

£rom hello import Hellosve

from thrift.transport import TSocket
£rom thrift.transport import TTransport
£rom thrift.protocol import TRinaryProtocol
€rom thrift.server import TServer

“lass HelloHandler:
def hello_tunc(sel):
print (- (Server) Handling client request)
return "Hello from the python server®

nandler = Hellokandler () |0
proc = Hellosvc. Processor (handler)

trans_svr = TSocket.TServerSocket (port=3090) L]

Crans_tac « Thransport.Teu feredTxansportFactory ())

proto_tac - TinaryProtocol . ThinaryProtocolFactory ())

server = TServer.TSimpleServer(proc, trans_svr, trans_fac, proto_fac) @

e eerus o

OEBPS/02fig06_alt.jpg
Thrift transport stack

TFramedTransport
(layered transport)

TSocket
(end point transport)

OEBPS/cover.jpg
PROGRAMMER'S GUIDETO

Thrlft

Randy Abernethy

Jons Geyer

[| YT

OEBPS/02fig05_alt.jpg
‘Sending process

TSocket
(end point transport)

Recelving process

TSocket
(end point transport)

OEBPS/02fig08_alt.jpg
Service stubs
[H [
User types

| S—

Device
(file/memory/net/...)

. Apache Thrift class libraries
IDL compiler-generated code

OEBPS/02fig07_alt.jpg
TServerSocket

' Connections

TSocket

TSocket

TSocket

OEBPS/02fig10.jpg
IDL
compiler

OEBPS/02fig09_alt.jpg
Protocol
(type serialization)

Thrift serialization stack

Transport
(byte transmission)

OEBPS/02fig04.jpg
Upper layers

Transport
interface

Transport
implementation

OEBPS/02fig03_alt.jpg
Trade writer

Sockets API

AMQP API

OEBPS/ch01ex06-1.jpg
int main() {
auto trans_ep = make_shared<TSocket>("localhost®, 9090);
auto trans_buf = make_shared<TBufferedTransport>(trans_ep);

auto proto = make_shared<TBinaryProtocol> (trans_buf) ;
HelloSvcClient client (proto);

trans_ep->open() ;

std::string msg; 9
client.hello_func(msg) ;
std::cout << '[Client] received: " << msg << std::endl;
trans_ep->close() ;

OEBPS/ch01ex06-0.jpg
P UGN Tgsn-cies/ HR L BEvE s
#include <thrift/transport/TSocket.h>

#include <thrift/transport/TBufferTransports.h>
#include <thrift/protocol/TBinaryProtocol.h>
#include <boost/make_shared.hpp>

#include <iostream>

#include <string>

using namespace apache::thrift::transport; /0
using namespace apache: :thrift::protocol;
using boost::make_shared; (2]

OEBPS/ch01ex10-1.jpg
~Tw-r-- randy randy 657 Mar 30 00:04 HelloClient.java
~rw-r- randy randy 384 Mar 29 23:48 hello_client.py
~rw-r- randy randy 535 Mar 26 16:50 hello_server.py
~rw-r- randy randy 95 Mar 26 16:28 hello.thrift

/ThriftBook /partl/hello$ java -cp /usr/local/lib/libthrift-1.0.0.Jar:\
/usz/share/java/s1£4;-api. Jazrs\
/usz/share/java/s1£4]-nop. Jars\

N s

HelloClient
1 Tent] Secelvel: BalYe Phcilh. Trom the Pvthon Setvae

OEBPS/ch01ex10-0.jpg
/ThriftBook/partl/hellos javac -cp /usr/local/lib/libthrift-1.0.0.jar:\ @

/usz/share/java/s1£43-api. jar:\ o
/usx/share/java/s1eei-nop.axr \ <
HelloClient.java gen-java/Hellosve.java <
/Thei £eBook/parti/hellos 18 -1 o

~rwxe-xr-x 1 randy randy 136508 Mar 26 23:07 a.out
drwxe-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxe-xr-x 2 randy randy 4096 Mar 26 23:34 gen-java
drwxe-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
1
1

randy randy 1080 Mar 30 00:04 HelloClient.class
Tt veidhe | 809 e 49 RNAE FallE mETeaE . ton

OEBPS/01fig05_alt.jpg
Custom

Extreme
performance

‘Apache Thiift

High performance

Broad reach

REST

Extreme
reach

OEBPS/01fig04_alt.jpg
4005
3505
3005
2505
2005
1505
100
505
0s

Service performance comparnson

SOAP (JAXWS), RESTWAX- ApacheTnril, ApacheTni, Apache Thif,
Tomcat7HTTP, RSUersey2), Tomcal7,HTTP, TCP,JSON TCP,Compact
XML Tomeat 7, HTTP, SN

1SON

OEBPS/02fig01_alt.jpg
B Apache Thrift class libraries

IDL compiler—generated code

Service stubs
[i [
User types

Device
(file/memory/netl...)

OEBPS/01fig06_alt.jpg
Apache Thiift range of applicability

Embedded:

Compact frameworks,
C, Cr, ete.

Enterprise:

Microservices,
Java, C#, etc.

Web:
Scripting languages,
HTTP, SSL, etc.

OEBPS/02fig02_alt.jpg
Service stubs
[i I
User types

T

Device
(file/memory/net...)

[Apache Thrift class libraries
[] 1bL compiler—generated code

