

 [image:]

 Outlier Detection in Python

 Brett Kennedy

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical editor:

 	
 Aric LaBarr

 	
 Review editor:

 	
 Angelina Lazukić

 	
 Production editor:

 	
 Kathy Rossland

 	
 Copy editor:

 	
 Kari Lucke

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Ignacio Beltran Torres

 	
 Typesetter:

 	
 Tamara Švelić Sabljić

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633436473

 contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1.

 1 Introducing outlier detection

 1.1 Why do outlier detection?

 Financial fraud

 Credit card fraud

 Network security

 Detecting bots on social media

 Industrial processes

 Self-driving vehicles

 Healthcare

 Astronomy

 Data quality

 Evaluating segmentation

 1.2 Outlier detection’s place in machine learning

 1.3 Outlier detection in tabular data

 1.4 Definitions of outliers

 1.5 Trends in outlier detection

 1.6 How does this book teach outlier detection?

 2 Simple outlier detection

 2.1 One-dimensional numeric outliers

 z-score

 Interquartile range

 Median absolute deviation

 Modified z-score

 Visualization for numeric outliers

 Internal and external outliers

 Scoring outliers

 2.2 One-dimensional categorical outliers: Rare values

 2.3 Multidimensional outliers

 Types of multidimensional outliers

 Visualization for multidimensional data

 2.4 Rare combinations of categorical values

 Rare combinations using their absolute count

 Combinations that are rare given their marginal probabilities

 2.5 Rare combinations of numeric values

 2.6 Noise vs inliers and outliers

 2.7 Local and global outliers

 2.8 Combining the scores of univariate tests

 3 Machine learning-based outlier detection

 3.1 The curse of dimensionality

 Data sparsity

 Data appearing in the margins

 Distance calculations

 3.2 Types of algorithms

 Distance based

 Density based

 Cluster based

 Frequent item set based

 Model based

 3.3 Types of detectors

 Clean vs. contaminated training data

 Numeric vs. categorical

 Local vs. global detectors

 Scores vs. flags

 The time required for training and predicting

 The ability to process many features

 The parameters required

 4 The outlier detection process

 4.1 Outlier detection workflow

 4.2 Determining the types of outliers we are interested in

 Statistical outliers

 Specific outliers

 Known and unknown outliers

 4.3 Choosing the type of model to be used

 Selecting the category of outlier detector

 Rules-based approaches

 Classifier-based approaches

 4.4 Collecting the data

 4.5 Examining the data

 4.6 Cleaning the data

 4.7 Feature selection

 4.8 Feature engineering

 4.9 Encoding categorical values

 4.10 Scaling numeric values

 4.11 Fitting a set of models and generating predictions

 4.12 Evaluating the models

 4.13 Setting up ongoing outlier detection systems

 4.14 Refitting the models as necessary

 Part 2.

 5 Outlier detection using scikit-learn

 5.1 Introducing to scikit-learn

 5.2 Isolation Forest

 The KDD Cup dataset

 Using Isolation Forest on the KDD Cup dataset

 5.3 LocalOutlierFactor (LOF)

 5.4 One-class SVM (OCSVM)

 OneClassSVM class

 SGDOneClassSVM

 5.5 Elliptic Envelope

 Mahalanobis distance

 Example using the EllipticEnvelope class

 5.6 Gaussian mixture models

 5.7 BallTree and KDTree

 6 The PyOD library

 6.1 The PyOD common API

 6.2 Histogram-based Outlier Score (HBOS)

 6.3 Empirical Cumulative Distribution Function (ECOD)

 6.4 Copula-based outlier detection (COPOD)

 6.5 Angle-based outlier detection (ABOD)

 6.6 Clustering-based local outlier factor (CBLOF)

 6.7 Local correlation integral (LOCI)

 6.8 Connectivity-based outlier factor (COF)

 6.9 Principal component analysis (PCA)

 Univariate tests on the components

 PyODKernelPCA

 The PCA detector

 KPCA

 6.10 Subspace outlier detection

 6.11 FeatureBagging

 6.12 Cook’s Distance

 6.13 Using SUOD for faster model training

 6.14 The PYOD thresholds module

 7 Additional libraries and algorithms for outlier detection

 7.1 Example synthetic test sets

 7.2 The alibi-detect library

 7.3 The PyCaret library

 7.4 Local outlier probability (LoOP)

 7.5 Local distance-based outlier factor (LDOF)

 7.6 Extended Isolation Forest (EIF)

 7.7 Outlier Detection Using In-degree Number (ODIN)

 7.8 Clustering

 Mahalanobis distance per cluster

 Kernel density estimation per cluster

 Clustering with categorical data

 7.9 Entropy

 7.10 Association Rules

 7.11 Convex Hull

 7.12 Distance metric learning (DML)

 7.13 NearestSample

 Part 3.

 8 Evaluating detectors and parameters

 8.1 The effect of the number of neighbors

 2D plots of results

 1D plots of results

 8.2 Contour plots

 Examining parameter choices with contour plots

 Examining detectors with contour plots

 8.3 Visualizing subspaces in real-world data

 2D plots of results on real-world data

 Contour plots on real-world data

 8.4 Correlation between detectors with full real-world datasets

 8.5 Modifying real-world data

 Adding known anomalies

 Evaluation metrics

 Evaluating detectors using accuracy metrics

 Adjusting the training size used

 Adding extreme values

 8.6 Testing with classification datasets

 8.7 Timing experiments

 9 Working with specific data types

 9.1 Null values

 9.2 Special data types

 Phone numbers

 Addresses

 Email addresses

 ID/Code values

 Dates

 High-cardinality categorical columns

 9.3 Text features

 Extracting NLP features

 Topic modeling

 Clustering text values

 9.4 Encoding categorical data

 One-hot encoding

 Ordinal encoding

 Count encoding

 9.5 Scaling numeric values

 9.6 Binning numeric data

 9.7 Distance metrics

 Distance metrics for numeric data

 Gower’s distance metric for mixed data

 Distance metrics for categorical data

 Using categorical distance metrics for mixed data

 10 Handling very large and very small datasets

 10.1 Data with many features

 Dimensionality reduction

 Feature subspaces

 10.2 Data with many rows

 Training and predicting on data samples

 Testing models for stability

 Segmenting data

 Running in parallel vs in sequence

 Tools for working with large datasets

 10.3 Working with very small datasets

 11 Synthetic data for outlier detection

 11.1 Creating synthetic data to represent inliers

 Testing with realistic inlier data

 Using realistic synthetic inliers for training

 11.2 Generating new synthetic data

 Libraries to generate new synthetic data

 Using patterns between features

 Using GMMs

 11.3 Doping

 11.4 Simulations

 11.5 Training classifiers to distinguish real from fake data

 12 Collective outliers

 12.1 Purchases data

 12.2 Preparing the data

 12.3 Testing for duplicates

 12.4 Testing for gaps

 12.5 Testing for missing combinations

 12.6 Creating new tables to capture collective outliers

 Aggregating by entity

 Aggregating by two or more entity types

 Aggregating by time

 Aggregating by entity and time

 Merging in additional information

 12.7 Identifying trends

 12.8 Unusual distributions

 12.9 Rolling windows features

 12.10 Tests for unusual numbers of point anomalies

 13 Explainable outlier detection

 13.1 Introducing to XAI

 Interpretability vs. explainability

 Global vs. local explanations

 13.2 Post hoc explanations

 Feature importances

 Proxy models

 Plotting

 Counterfactuals

 General notes on post hoc explanations

 13.3 Interpretable outlier detectors

 Outlier detection on sets of 2D subspaces

 Bayesian Histogram-based Anomaly Detection

 CountsOutlierDetector

 DataConsistencyChecker

 14 Ensembles of outlier detectors

 14.1 Overview of ensembling for outlier detection

 14.2 Accuracy metrics with ensembles

 14.3 Methods to create ensembles

 Different model types

 Different preprocessing

 Different hyperparameters

 Sampling the original features

 Different engineered features

 Sampling rows

 14.4 Selecting detectors for an ensemble

 Manually inspecting the superset of many detectors

 Taking the consensus of many detectors

 Testing random subsets of detectors

 Greedy methods to identify a set of detectors

 Selecting detectors to minimize correlation

 14.5 Scaling scores

 Min-max scaling

 Z-scores (standard scaling)

 Robust scaling

 MAD scaling

 Ranking

 Box Cox

 14.6 Combining scores

 Mean vs maximum

 PyOD ensembling methods

 Variations of mean and maximum

 Weighting based on accuracy

 Stacked ensembles

 15 Working with outlier detection predictions

 15.1 Hand-labeling output

 Hand-labeling specific types of outliers

 Hand-scoring the outliers

 15.2 Examining the flagged outliers

 Manual inspection of the outliers

 Executing interpretable detectors

 Examining subspaces of features

 15.3 Automating the process of sorting outlier detection results

 Rules to sort the output of detectors

 Classifiers to sort the output of detectors

 Executing rules and classifiers on flagged outliers

 15.4 Semisupervised learning

 Using labeled data to create a stacked model

 XGBOD

 15.5 Regression testing

 Part 4.

 16 Deep learning-based outlier detection

 16.1 Introduction to neural networks

 16.2 PyOD

 Autoencoders

 Variational autoencoders

 Generative adversarial networks

 SO_GAAL

 MO_GAAL

 DeepSVDD

 Deep IF

 16.3 Image data

 Techniques for outlier detection with image data

 Astronomaly

 16.4 Alibi-detect

 16.5 Self-supervised learning for outlier detection with tabular data

 Introducing embeddings

 Embeddings for outlier detection

 Transfer learning

 Self-supervised methods for tabular data

 DeepOD

 17 Time-series data

 17.1 Cross-sectional, panel, and time-series data

 17.2 Types of time-series outliers

 Extreme values

 Contextual point outliers

 Outliers based on decomposition

 Ruptures

 Outliers based on tabular representations

 Forecasting-based time-series outlier detection

 Unusual shapes of windows in time lines

 Tabular outlier detection on windows of data

 Mulivariate time-series outliers

 17.3 Tools for time-series data

 Anomaly Detection Toolkit

 DeepOD

 Prophet

 index

 front matter

 preface

 This book is the result of many years of thinking about, and becoming fascinated by, the problem of outlier detection. I’ve worked in a number of jobs where outlier detection was a practical necessity of the work—for example examining financial data and performing social media analysis. So, there has been a very practical element to learning outlier detection. But outlier detection was also likely the most intellectually interesting area I worked on, even after many years of working in numerous other areas of data science.

 The general idea of outlier detection is fairly simple: finding the items in a dataset that are most unlike the others. But, in practice, it’s often quite difficult to do in an efficient and effective way, particularly where there are subtle outliers you’re interested in. Once executed, it’s difficult to determine if the items flagged as the most anomalous truly are the most anomalous. In fact, it can be difficult to even identify specifically why the items flagged are anomalous.

 This is a very challenging, and also extremely interesting, area. I ended up reading probably a couple hundred journal papers and spending a lot of time experimenting with different techniques on different types of data. The main difficulty I found was the absence of interpretable models. Despite the importance of interpretability in outlier detection, there are actually very few methods to create interpretable results. So I developed a couple of tools I’m still maintaining today: Counts Outlier Detector and Data Consistency Checker.

 I’ve continued to work with outlier detection and have been following advances in the field for some time, including recent progress in deep learning-based techniques for outlier detection.

 I tried to distill this knowledge the best I could into this book. I hope you enjoy.

 acknowledgments

 I wish to thank my family, who’ve watched me sit in a room and write chapter after chapter for many, many, many months. And thanks to those on the Manning editorial team, especially acquisition editor Jonathan Gennick, development editor Doug Rudder, and technical proofreader Ignacio Beltran Torres, who have been very supportive from the beginning and made this a better book. A huge thanks also goes to the Manning production team for shepherding this book into its final format.

 Thanks also to technical editor Aric LaBarr, who is a teaching associate professor in the Institute for Advanced Analytics. There he helps design the innovative program to prepare a modern workforce to wisely communicate and handle a data-driven future at the nation’s first master of science in analytics degree program.

 To all the reviewers: Adarsh Nair, Alejandro Cuevas Rivero, Anandaganesh Balakrishnan, Claudiu Schiller, Felipe Provezano Coutinho, Gabor Laszlo Hajba, George Carter, Graham Toppin, Jaromir D.B. Nemec, Jeremy Zeidner, Karan Gupta, Mariano Junge, Maxim Volgin, Michael Wang, Nguyen Tran Chau Giang, Oliver Korten, Peter Henstock, Rajiv Moghe, Sambasiva Andaluri, Sameet Sonawane, Sebastian Maier, Shantanu Neema, Siddharth Parakh, Srivathsan Srinivasagopalan, Thulasi Rangan Jayakumar, and Vidhya Vinay: your suggestions helped make this a better book.

 about this book

 This book will help you understand, first of all, the idea of outliers; it’s a more subtle concept than is obvious at first. It will then help you identify outliers in data. The difficult part, which we’ll also cover, is evaluating how well you’re able to identify the outliers in the data.

 We look at ways to try to find all (or as many as is practical) of the anomalies in a dataset. The book helps readers to look at data from different perspectives, to find the most relevant outliers for their needs. It also describes the main tools used today for outlier detection. It’s not possible to describe everything, but this is quite comprehensive. It provides a solid background in the tools available and gives you the background to assess any other tools you may find—and to develop your own tools wherever necessary.

 It’s generally accepted that in outlier detection, no single algorithm will reliably detect all the outliers that may be useful to identify in any dataset. Consequently, it’s common to use multiple detectors. This highlights the value in learning many outlier detection tools (which you will in this book), but it also means there’s typically a need to create ensembles of detectors (which actually work a bit differently than with ensembles of predictive models). We go over the techniques to best create and use outlier detection ensembles.

 Explainability is also very important in outlier detection—generally much more so than with predictive models. For example, if an outlier detection system identifies what may be a security threat, fraud, scientific discovery, failing machinery—or anything else that will require investigation—to investigate this, it’s necessary to know what is unusual: why this was identified as anomalous. Despite this, there are few interpretable models available for outlier detection. The book, though, keeps interpretability [as well as explainable AI (XAI)] as a focus, so you can best understand why the items that were flagged as outliers by a detection system were flagged.

 The book covers text, time-series, and image data, but focuses on tabular data, as this is the format where we tend to do the most work in outlier detection (though outlier detection with text, video, audio, and other formats is also very common and important). Other formats (for example, time-series or network data) can often be converted to table format to identify outliers, and so a solid understanding of tabular outlier detection is generally important when doing outlier detection work of any type.

 Tabular data is also a very good format to work with when first working with outlier detection—it’s a good place to learn to understand the main challenges of outlier detection and the solutions to these. We then build on this understanding and look at more advanced methods, including some of the most cutting-edge techniques developed to date. Outlier detection with image data, for example, requires deep learning-based approaches, which we cover, applying these as well to tabular and time-series data.

 Who should read this book

 Anyone doing work in machine learning or data science will benefit from this book. Outlier detection is a common task and likely something that will come up from time to time for anyone working in these fields; it’s an important skill to have. Understanding outlier detection also helps practitioners better understand other areas of machine learning, such as prediction, clustering, and dimensionality reduction.

 For anyone doing data analysis work, outlier detection can be very useful. In fact, it can be argued that the two main tasks when working to understand a dataset are to first understand the general patterns in the data and second to understand the exceptions to these: that is, the outliers.

 In addition, anyone working in fields such as auditing, security, health care, bot detection, scientific research, or any other fields where it’s useful to understand the data available and to understand the anomalies in it will find this book quite useful.

 How this book is organized: A road map

 The book is divided into four parts. Part 1 covers the basic ideas of outlier detection: what outliers are, some techniques to find them, and managing outlier detection projects.

 	
 Chapter 1 covers the idea of outliers and some examples of where outlier detection may be used, along with high-level descriptions of how outlier detection may be applied to these cases. It looks at the subjective nature of outliers, provides some history of outlier detection, and describes the place of outlier detection in machine learning generally.

 	
 Chapter 2 introduces outlier detection with simple statistical methods such as z-score, which can find rare or extreme values in sequences of values.

 	
 Chapter 3 looks at tables of data and introduces some of the more common approaches to outlier detection, along with implementations in Python.

 	
 Chapter 4 looks at how outlier detection projects can execute from start to finish. This can sometimes be left out of the discussion but is necessary for an effective outlier detection process.

 Part 2 covers the main tools and algorithms for outlier detection in Python.

 	
 Chapter 5 introduces outlier detection with scikit-learn and the tools it provides.

 	
 Chapter 6 introduces the PyOD library, which is probably the most comprehensive library for outlier detection for numeric tabular data in Python.

 	
 Chapter 7 describes several other libraries, tools, and algorithms. These are also very useful and effective but more difficult to find than those in scikit-learn or PyOD. These help readers understand outlier detection itself better, help readers see how to develop their own detectors, and provide a set of tools that are useful in themselves.

 Part 3 covers the practical issues you’ll likely encounter when performing outlier detection, such as working with different types of data, very large datasets, time constraints, and memory limits. It also covers techniques to evaluate individual detectors and the outlier detection system as a whole. This includes techniques to create synthetic data, create ensembles, and to process and interpret the results, even where large numbers of outliers are flagged.

 	
 Chapter 8 covers techniques to identify the most useful detectors and best hyperparameters for any given project.

 	
 Chapter 9 looks at working with specific types of data (e.g., text data, dates, addresses), encoding categorical data, binning and scaling numeric data, and the distance metrics that are used by many algorithms.

 	
 Chapter 10 covers handling very large and very small datasets.

 	
 Chapter 11 describes techniques to generate synthetic data, which is often necessary to tune and to evaluate outlier detection systems. The chapter also covers simulations, which is a useful outlier detection technique in itself.

 	
 Chapter 12 introduces the idea of collective outliers: cases where no one item is necessarily unusual, but sets of items are collectively unusual. This includes where there are unusually many of certain things, where some things are completely absent, where events occur in unusual orders, and so on.

 	
 Chapter 13 describes how to make outlier detection understandable so that the outliers flagged can be understood and efficiently investigated.

 	
 Chapter 14 covers how to best use multiple detectors to identify the outliers in a dataset.

 	
 Chapter 15 describes how to efficiently process the output of outlier detection routines.

 Part 4 covers deep learning and two other modalities you may work with: image and time-series data.

 	
 Chapter 16 describes deep learning-based methods for tabular and image outlier detection.

 	
 Chapter 17 introduces outlier detection for time-series data.

 The book proceeds from chapter to chapter, with some assumption that you’re familiar with the material in the previous chapters, but you should be able to skip chapters that aren’t germane to the work you’re doing without any problems. I would recommend, though, reading at least the first five chapters to ensure the remaining chapters make sense. The exception is chapter 2, which you may skip if you’re already familiar with the techniques covered there; as these are often covered in statistics courses, this is quite possible.

 About the code

 Other than chapter 1, all chapters have a good collection of code examples, both in numbered listings and in line with normal text (formatted in a fixed-width font like this to separate it from ordinary text), to help you understand the concepts and to have code ready to use in your projects.

 Source code for the detectors and the longer examples is available at: https://github.com/Brett-Kennedy/OutlierDetectionInPython. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/outlier-detection-in-python. The complete code for the examples in the book is also available for download from the Manning website at https://www.manning.com/books/outlier-detection-in-python.

 Many of the source code examples require only NumPy and pandas, and many require scikit-learn or PyOD. These can all be installed with pip installs. Several other code listings use other libraries, but I’ve ensured that all are straightforward to install, either having a pip install or using a single .py file, and have included instructions on installing these.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 liveBook discussion forum

 Purchase of Outlier Detection in Python includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/outlier-detection-in-python/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 [image:]

 Brett Kennedy is a data scientist with over 30 years of experience in software development and over 10 in data science. He has worked in outlier detection related to financial auditing, fraud detection, and social media analysis. He previously led a research team focusing on outlier detection. He lives in Toronto with his spouse and two children.

 about the cover illustration

 The figure on the cover of Outlier Detection in Python, titled “Créole de Cayenne,” or “Cayenne Creole,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1.

 Part 1 covers the basic ideas of outlier detection: what outliers are, some techniques to find outliers in data, and how to manage outlier detection projects.

 In chapter 1, we cover the idea of outliers and provide some examples of where outlier detection may be used, along with high-level descriptions of how outlier detection may be applied to these cases. We look at the subjective nature of outliers, provide some history of outlier detection, and describe the place of outlier detection in machine learning generally.

 In chapter 2, we introduce techniques for outlier detection with simple statistical methods (such as z-score and interquartile range), which can find rare or extreme values in sequences of values. These techniques are straightforward but are often all that is necessary for outlier detection projects. Where more sophisticated techniques are necessary, these often build upon the ideas presented in this chapter.

 In chapter 3, we extend the discussion from one-dimensional series of values to tables of data and introduce some of the more common approaches to outlier detection for tabular data, along with implementations in Python.

 In chapter 4, we look at how outlier detection projects can execute from start to finish. This can sometimes be left out of the discussion with outlier detection but is necessary for an effective process.

 1 Introducing outlier detection

 This chapter covers

 	What outlier detection is

 	Some examples of places where outlier detection is used

 	A quick introduction to some approaches to outlier detection

 	The fundamental problem of outlier detection

 Outlier detection refers to the process of finding items that are unusual. For tabular data, this usually means identifying unusual rows in a table; for image data, unusual images; for text data, unusual documents, and similarly for other types of data. The specific definitions of “normal” and “unusual” can vary, but at a fundamental level, outlier detection operates on the assumption that the majority of items within a dataset can be considered normal, while those that differ significantly from the majority may be considered unusual, or outliers. For instance, when working with a database of network logs, we assume that the majority of logs represent normal network behavior, and our goal would be to locate the log records that stand out as distinct from these.

 Outlier detection plays a pivotal role in many fields. Its applications include fraud detection, network security, financial auditing, regulatory oversight of financial markets, medical diagnosis, and the development of autonomous vehicles. Although outlier detection often doesn’t garner the same attention as many other machine learning disciplines, such as prediction, generative AI, forecasting, or reinforcement learning, it holds a place of significant importance.

 It’s important to note that not all outliers are necessarily problematic, and in fact, many are not even interesting. But outliers often can be indicative of errors, hold special interest, or at least warrant further investigation. And it is a very common theme that, while many outliers may not be of interest—they are simply items that are statistically unusual—very often the converse is true: what we are looking for in data, possible fraud, errors, scientific discoveries, hardware failures, criminal activity, genetic variants, and so on, are outliers, and consequently specifically looking for outliers in data can be highly fruitful.

 In this book, we’ll go over examples of the uses for outlier detection, explain the various ways we can think about outliers, go through examples of identifying outliers in data, work through some of the challenges we often find in outlier detection, and describe how outlier detection projects typically work.

 Conceptually, the notion of identifying unusual items is fairly straightforward. However, in practice, it proves to be a surprisingly difficult task. We will delve into the complexities later on, but for now, let’s explore some of the applications of outlier detection.

 1.1 Why do outlier detection?

 Performing outlier detection is very often quite useful and can usually be applied anywhere we have a significant volume of data. As such, outlier detection is used broadly, so we cannot look at everywhere it’s used, but we’ll look at a few applications, which should provide some sense of how it works and where it can be used generally. One place where outlier detection is ubiquitous is finance, where it is used extensively by investors, fund managers, and regulators. It’s used particularly to find fraud but also to help identify, for example, stocks or funds that are out of line with expectations or normal market trends.

 Outlier detection is often used in video surveillance; it can be useful, for example, in situations where the same types of objects tend to be seen repeatedly and anything not normally seen may be of interest. With security video, this can relate to any unusual objects appearing where they are not normally seen; with traffic video, this may identify unusual trajectories, such as vehicles driving erratically. Outlier detection can be used to detect forgery, as forged documents may be unusual relative to legitimate documents. For years, e-commerce websites have been able to distinguish bots from legitimate users by looking at unusual behavior such as clicking at very high rates, viewing very large numbers of pages, or more subtle deviations from normal usage of the site, such as unusual mouse movements.

 In the next few sections, we’ll look closer at a few specific applications of outlier detection. This is, though, only a quick survey, and there are many other places where outlier detection is used. Nevertheless, outlier detection is probably still underutilized today, and many other fields can potentially benefit from its application. Going forward, we may see even greater use of outlier detection, as techniques to apply it to text, image, video, and audio have improved significantly over the past several years.

 1.1.1 Financial fraud

 There are many types of fraud. This section focuses on detecting financial fraud, but many of the techniques used to identify this are common to similar areas, such as tax or insurance fraud and anti-money laundering, as well as quite different types of fraud, for example with athletic performance or online games.

 In general, there are two broad classes of financial fraud:

 	
 The first is a lower level of fraud, where a company is bilked out of money or goods by staff or others, often suppliers or customers working in concert with staff.

 	
 The second is a higher level of financial fraud, committed by senior management, or the company itself, primarily in the form of misrepresenting its financial position to defraud investors, its bank, or potential buyers. Fraud may also be perpetrated by senior managers seeking bonuses tied to stock prices, artificially inflating their company’s earnings.

 A large portion of fraud is undetected. Further, for companies, fraud entails a serious risk of financial loss, as well as a large reputational risk, and consequently, the great majority of fraud that is detected goes unreported. With respect to lower-level fraud committed against companies, a 2022 study by the Association of Certified Fraud Examiners estimated that organizations lose 5% of their annual revenue to fraud. If your company isn’t checking for fraud, and specifically isn’t using outlier detection for this purpose, there’s a very good chance it could benefit from doing so.

 With respect to high-level fraud, University of Toronto professor of finance Alexander Dyck and others published a study in January 2023 examining the pervasiveness of corporate fraud. They state: “We estimate that on average 10% of large publicly-traded firms are committing securities fraud every year, with a 95% confidence interval of 7%–14%. Combining fraud pervasiveness with existing estimates of the costs of detected and undetected fraud, we estimate that corporate fraud destroys 1.6% of equity value each year, equal to $830 billion in 2021.” They also concluded only about a third of fraud is detected.

 There are a large number of forms of high-level financial fraud; a few examples are:

 	
 Smoothing—Smoothing seeks to make the year-after-year growth of the company more monotonically increasing, and often more linear, than it actually is, smoothing out the natural variations over time

 	
 Big bath fraud—Senior managers, who often receive large bonuses on profitable years, but no penalties on years with losses, seek to direct all losses for several years to a single year, where they take a big bath this year and collect bonuses all other years

 	
 Round-tripping—Goods are repeatedly bought and sold, or moved within the company, creating the illusion of there being more business activity than there is in reality

 	
 Bribery— Bribery can manifest in many forms. For example, it may lead to special treatment for certain customers, overuse of certain suppliers, or cancellation of projects.

 To detect fraud, audits are conducted on the financial records of the company, either by the company itself or by an external auditor. There are usually vastly too many records to check manually, so software tools are developed to check the records automatically, often using rules, which encode a number of simple tests that have been developed over the years. These include checking for rounded numbers (suggesting negotiated or estimated values), journal entries entered late at night, bulk entry of many identical entries, and so on. A slightly more complicated rule-based example may be: IF staff-level is “junior” and expense type is “meals and allowance” and amount > 100.00 THEN flag as suspicious.

 Normally fraud increases over time as the perpetrators become more confident, and so many tests also check for escalations of certain behaviors. These tests work and continue to be useful, as older and less-sophisticated forms of fraud continue to be attempted.

 However, fraud evolves over time, with people continuously developing new forms. And technology also keeps changing, which invariably creates new opportunities for fraud. One can never have a full set of rules that would catch everything. If we ever did, it would, in any case, soon become out of date. Thus, it’s necessary to execute not just rules, which each check for specific, known patterns, but also outlier detection. Outlier detection can identify anything unusual and so catches the unknown patterns related to new forms of fraud, as well as to older forms not yet coded in the existing set of rules.

 Outlier detection also allows audits to catch more subtle forms of fraud than can be realistically captured by rules. While forms of fraud such as smoothing may be suspected by simply checking if the year-after-year trend in earnings is unusually smooth, something like bribery may result in much more subtle deviations from previous behavior. These changes from the normal may also be gradual, taking place over extended periods of time. Outlier detection is often the only practical means to detect these.

 When examining financial transactions, most unusual transactions will not be fraud; many will simply be rare transactions, such as annual payments (payments that are unusual solely because they are made only once per year) that are not problematic and may be understood by the analysts in any case. But most fraud, unless fraud is rampant, will be unusual, and so any unusual records, or unusual sets of records, are highly valuable to test for fraud. Similarly, testing for unusual records can be very effective to detect errors, inefficiencies, and other issues.

 Another very powerful property of outlier detection is that it is capable of examining a dataset from thousands of angles exhaustively, without error and without bias. In the case of financial records, it’s possible to check an enormous number of ways in which there can be usual patterns in the journals. For example, an outlier detection routine may find where certain staff have spikes in purchase records tied to a specific supplier at the end of each month that other comparable staff do not have. This would be infeasible to test manually or to encode with rules, as the number of such tests would be unworkable. Outlier detection allows for far more comprehensive checks of records, as it is not necessary to specifically code each test.

 Still more advanced methods may be used to find more issues. Text analysis can examine memos, emails, contracts, patents, meeting minutes, and other documents. Time-series analysis can look for unusual trends or cycles in the data. Network analysis can examine the relationships and their evolution over time between staff, customers, suppliers, directors, related companies, and other entities. These can be difficult to set up and monitor but can also be necessary as fraud becomes more sophisticated over time. There has long been an arms race between those committing and those seeking to detect fraud, but outlier detection is a tool that can help tip the scales significantly toward identifying fraud, as it benefits greatly from data, which organizations now often possess an abundance of.

 1.1.2 Credit card fraud

 Credit card fraud refers to unauthorized use of a credit card, usually where the card was lost, stolen, or counterfeit. As the use of credit cards becomes more common, particularly for online purchases, credit card fraud has become correspondingly more frequent and is now surprisingly common. In the United States, approximately 7 cents of every $100 in transactions are fraudulent. Further, LexisNexis has reported a 140% increase in fraud since 2020. US retailers experience 1,740 fraud attempts each month on average, with slightly more than half of these attempts being successful. The year 2021 was the first in which successful fraud attempts outnumbered failed attempts. Given these trends, card fraud over the next 10 years is estimated to cost the industry $408 billion.

 The bulk of losses are absorbed by credit card providers. As with companies risking financial fraud, credit card providers are highly dependent on outlier detection, in their case to detect unauthorized use of cards. And, as with financial fraud, there are certain known patterns that can be specifically looked for, but it’s essential to also look for unusual behavior to flag anything the rules do not specifically cover. Outlier detection seeks to identify purchases, or sequences of purchases, that are somehow different from what is normal. As in most contexts, unusual behavior is not necessarily problematic, but problematic behavior will be unusual, at least in some way, making outlier detection an effective means to identify fraud.

 Some tests for credit card fraud are defined in ways that are general and not specific to any cardholder, such as checking for two store purchases geographically far apart within a short time window or checking for people signing up for a card using a nonexistent address, invalid phone number, or nonsensical email address. Many tests are also relative to the cardholder, checking for purchases that are unusual given their history. Tests may also consider the history of the merchant and the time of purchase and allow for special events such as Christmas and Black Friday. As with financial fraud, credit card fraud tends to follow certain behaviors. Often people with stolen cards will test the card first with a few innocuous, small purchases in a short period, followed by progressively larger purchases, often at a small set of specific locations.

 These tests are important, but it is impossible to write specific tests for every form of unusual behavior. Similar to financial fraud and the other areas we look at here, outlier detection is the only practical means to detect a very wide range of unusual patterns, including unusual patterns that have not yet been discovered or even conceived of. Having said that, an important application of outlier detection is discovering patterns that may be developed into rules. Although outlier detection is necessary, in many contexts (including where we wish to identify fraud), maintaining a good collection of rules is also important. Once relevant behaviors are identified by an outlier detection process, they may be encoded as rules to ensure the pattern is caught consistently going forward.

 Fraud analysis is becoming more sophisticated. It used to be common to have to notify credit card providers when traveling; otherwise, the provider may have blocked any transactions. Outlier detection was simpler at the time and has since improved significantly, now having no trouble with cardholders traveling between cities. But it is also struggling to keep up. The volume, complexity, and often subtlety of fraud (for example, where only a small number of small fraudulent purchases are made) is challenging. Fraudsters also have access to modern machine learning technology, including outlier detection, though not the data that credit card providers and large retailers possess.

 To further complicate matters, much of credit card fraud is done not by individuals but by organizations. Detecting this usually requires a sophisticated analysis, tracking the transactions of many cardholders and many merchants over time and searching for anything unusual. For this, we need to compare the set of transactions to either those of comparable groups of clients and merchants or the same clients and merchants for previous time periods. Outlier detection may detect unusual trends, spikes, or other anomalies. It may also detect where there are purchases that are each only slightly suspicious but where there are many of these, in some way related, within some time window.

 What’s important is to consider transactions in many different ways. As a simple example, we can check credit card transactions for unusual dollar values or unusual merchants, but a transaction may have neither. It may, however, have an unusual combination, such as hundreds of dollars at a restaurant where the cardholder would normally spend much less, possibly followed by other suspicious purchases. Modern outlier detection for fraud requires looking at substantially more complex relationships than this example, but the idea is similar: the more context, and the more history that is considered to assess the normality of a transaction, or set of transactions, the better we can identify anomalies.

 1.1.3 Network security

 Monitoring computer networks is necessary for a number of purposes, including security, detecting hardware and software failures, and detecting new trends in usage. Each of these is reliant on outlier detection. We consider, for the moment, specifically network intrusion, defined here as any unauthorized access to a network, usually with the goal of viewing, modifying, or deleting private data or disrupting the operations of the network. This, along with intrusion prevention (e.g., passwords, two-factor authentication) is the main tool to keep networks secure.

 As in the fraud cases mentioned previously, much of intrusion detection is based on rules that check for known patterns. Rules are often developed by intuition and by post hoc examination of logs after an event. Both are useful, but they also leave a gap, as these cannot cover all current and future threats. Much like fraud, network security threats are constantly evolving, with new variations on previous threats and completely new threats regularly appearing. Security professionals are perpetually having to deal with what are called zero-day threats—threats with no history and no warning. In these cases, outlier detection can be the most effective way to identify the threats. Outlier detection removes both the manual process and the ad hoc nature of developing rules and is, as a result, much more flexible and comprehensive. It allows us to detect issues even before they are known.

 Some threats are obvious from the beginning, such as denial of service attacks (where a service is sent massive numbers of requests, either shutting down the service or crowding out legitimate users), but many can be subtle and often unnoticed. As intrusion must be, in one manner or another, unusual, we are often best able to detect it by searching for activity deviating from the norm. Once any deviations are found, it’s necessary to identify the root causes (for example, some excessive traffic patterns may be port scans performed by attackers and others simply unscheduled backups), but the first step is very often finding the anomalies.

 Looking for anomalies, we can track hardware and operating system measurements such as processor temperature, number of processes, CPU usage, and disk requests. These can provide valuable information. In practice, all of these and much more could be relevant; much of outlier detection is examining data from many different angles, as records can appear normal in most senses and only stand out in specific contexts. But for simplicity, consider an analysis based simply on logs of system calls ordered by time.

 Any given system call may be somewhat suspicious (for example, changing file permissions) but not likely enough to cause an alert: if so, the operations would not be possible. Much of what’s being looked for is not individual actions but suspicious sequences of actions, usually within a short time window. Where there is a single suspicious system call, it is quite likely not an issue, but where there are many in a short time (or the sequence itself is very unusual), this is much more suspicious. This is more difficult to detect but is very often the only feasible way to identify inauthentic use of systems.

 1.1.4 Detecting bots on social media

 It is notoriously difficult to estimate the number of bots on any social media platform. For X (formerly known as Twitter), estimates have ranged greatly, with some estimates prior to Elon Musk’s purchase as low as 5% (including from Twitter itself) and others as high as 9% to 15%. Even at the lower end, this is a very large number of accounts. And bot accounts can often produce a disproportionate amount of traffic. Social media companies are constantly removing bogus accounts using a combination of outlier detection, other machine learning tools, rules, and human inspection.

 Though it is unknown how many bogus accounts are missed, as an indication that they were detecting a significant number, one project I worked on, analyzing Twitter (prior to being known as X) traffic through its public API, found that month after month, about 10% of the accounts we followed no longer existed. Some of these may have been closed by the users themselves, but we believed most were closed by Twitter.

 Like a lot of cases covered here, this is an adversarial situation and consequently the specific methods used by the platforms need to be kept confidential. We can never know precisely how financial regulators or network security systems function, and we cannot know precisely how these bots are detected. We do know though, through statements platforms have made, the detection of unusual behavior is a part of the process. The sheer volume of traffic makes it impossible to monitor traffic manually. Given this and the fact that new and creative forms of inauthentic behavior on social media are constantly being developed, the only feasible way to detect a reasonable amount is to look for behavior that diverges from normal. As bots and paid operatives are using the system in atypical ways, they will stand out as unusual in some regard.

 Despite the need for secrecy, Twitter was one of the most open of the major platforms, providing a free public API to collect tweets and making available a set of takedowns of information operations (operations where armies of bots or bogus accounts backed by real people are deployed for purposes such as propaganda, discrediting others, or stoking fear or distrust) publicly available. Takedowns are large collections of tweets by related accounts identified in specific operations (though without any indication of how these were identified), made available for researchers. Following these releases, there have been a significant number of academic papers on the subject, which present plausible and apparently effective ways to identify at least some inauthentic accounts. These include analysis of the user profiles, interactions with other users, the timelines of their actions, and the text content of their tweets, looking for outliers of various types.

 Researchers have found many anomalies in the takedowns including cases of large numbers of accounts created at once with very similar profiles and each following each other and cases of multiple accounts that regularly send unusually similar tweet content at roughly the same time as each other. Researchers have also found accounts that, apparently being used for different purposes at different times, changed language multiple times. Other accounts became hyperfocused on specific topics for periods of time (presumably trying to attract followers interested in these topics) and then gradually inserted more and more political discussion into their tweets, usually on very specific topics. Some of these accounts would then later switch to another, unrelated topic, again becoming hyperfocused on this for some time before again switching to a specific political topic.

 It is possible to specifically check for these patterns to identify bots, and it may be useful to encode checks for patterns similar to these as these specific patterns are found. However, it is not feasible to encode rules for every such possibility; it is far more practical to use outlier detection and take advantage of the fact that all of these behaviors are unusual.

 1.1.5 Industrial processes

 Outlier detection is common in many industrial processes such as manufacturing assembly lines, where it’s necessary to maintain consistently high-quality output, well-running machinery, and a safe workplace. In this context, and particularly in just-in-time environments, there may be very little room for errors or unscheduled maintenance, so early detection of issues is imperative.

 In industrial processes, unlike many other situations, the processes are normally stable and predictable. Anything unusual is quite likely a failure, or predictive of potential failures. Compared to other settings, there is much less of a concept of innocuous or irrelevant deviations; there is certainly no sense of deviations being potentially preferable to the norm. In these environments, outlier detection may capture, for example, unexpected levels of friction, leading to wearing down of parts, unusual voltages, or other anomalies that may lead to problems if left unattended. Where severe anomalies are detected, it may be necessary to send out alerts or, in more extreme cases, to slow down or stop the process. More often, though, any anomalies detected will be used to help predict when maintenance will be needed, so that this can be scheduled and conducted before there are risks of equipment failure.

 A difficulty here is that these systems can become victims of their success. Part of the purpose of monitoring for anomalies is to predict time until failure. Learning to predict upcoming failures from the data requires historical data with examples of failures (and the data that was observed just prior to these failures). But many systems will have little history of failure, particularly where monitoring is in place. Further, even if there was a significant history of machine failures, it could not cover all the potential faults, and certainly not with many examples of each. As a result, looking for anomalies—anything unusual within the process—can be the most feasible way to monitor the system and keep it running smoothly. This won’t flag imminent failures per se—only deviations from the norm—but in an environment where any deviations are suboptimal, checking for these is very important.

 Industrial processes may collect video, audio, or other types of data to monitor the process, but much of what is collected will be sensor readings collected at regular time intervals. Machines often have many sensors, tracking metrics such as temperature and pressure. These sensors themselves have failures, which it is also necessary to monitor for. Sensors, when they are close to failure or stressed, may produce what are referred to as data artifacts, which are unusual values, or anomalies. Here the source is not the process being monitored but the collection process itself. This is a common theme in outlier detection: where we have anomalous values, it’s not always clear at first if this is a data artifact or a truly unusual reading.

 The anomalies may be what are called point anomalies—a single reading that is unusual, typically an unusually high or unusually low value. They may also be what are called contextual anomalies or collective anomalies. Here contextual anomalies refer to readings that are unusual given some context: the readings from other sensors or previous readings from the same sensor. Using multiple sensors and cross-referencing them can be useful to find some types of anomalies—for example, finding unusual combinations of readings. Or, where two sensors are normally independent, or normally in sync, finding unusual associations over time between the two would be an anomaly.

 It’s common to have one-time issues in industrial processes. These are not completely without concern, but given a large number of sensors, there will be many issues of some severity, but under a threshold, and these may not trigger any immediate action. They can, though, be logged. If these low-level anomalies become more common, they may then become a concern. Systems can monitor the number of point anomalies per minute, hour, or some appropriate period and set a threshold, beyond which alerts are sent or the process is halted. This threshold may be set based on a history of the normal number of point anomalies per period. Consequently, while it’s not always feasible to address every anomaly, it is very useful to monitor for patterns in the unusual readings, such as periodicity or trends. Any unexpected but repeating or escalating pattern is particularly of interest. In addition, if there is an issue later, having these anomalies in the logs may help identify patterns to specifically monitor for going forward.

 As the readings are effectively time-series data, outlier detection methods specific to time series can be effective at finding points of concern. An example may be a temperature reading rising and falling unusually often within a time interval, even where no individual temperature reading is itself necessarily unusual for that sensor. There are various ways to check for this, but one is to collect the temperature readings from a comparable sensor over a long period, or the same sensor over prior periods, and model what are normal fluctuations over time. See figure 1.1 as an example, showing both unusually high fluctuations (at 200 seconds) and low fluctuations (at 800 seconds). Both would be flagged as anomalies.

 [image:]

 Figure 1.1 Temperature readings from sensor data presented as a time series. The x-axis tracks time in seconds and the y-axis tracks the temperature. There is an unusually high level of fluctuation at 200 seconds and an usually low level at 800 seconds.

 To use outlier detection, there needs to be a set of data to compare against, which represents the ideal, or at least typical, functioning. This may be created, for example, immediately after maintenance, when it is known the processes are running normally. Given this, any readings, or sequences of readings, that diverge significantly are possibly of concern. How many to investigate is a question any time we work with outlier detection. In all contexts, this boils down to a question of balancing false positives (where we predict that there is an issue though there is none) with false negatives (where we predict none though there is an issue).

 1.1.6 Self-driving vehicles

 Unlike many other examples, self-driving vehicles are a case where mistakes can be catastrophic, and highly robust systems need to be put in place to ensure safety. Self-driving vehicles look for anomalies in different forms; one very important application of outlier detection is checking for anomalies with respect to vision. Autonomous vehicles have multiple cameras, which they use to help identify other vehicles, pedestrians, and other entities. A risk for these vehicles is that they may detect an object, misclassify it, and be overconfident in their classification. In the worst case, they may have high confidence that a person (perhaps wearing a costume or in some other way quite different from any of the images of pedestrians the vehicle was trained to identify) is an inanimate object with no chance of moving. Or they may see a vehicle of a type that has not previously been seen and believe it is something other than a vehicle.

 The systems are trained to recognize many different types of objects and can do so with high accuracy when encountering these objects, but they can become confused when presented with different types of objects than they were trained to recognize. The systems may be trained well to recognize motorcycles, dogs, people on skateboards, people with baby strollers, trees, fire hydrants, traffic signs, and hundreds or thousands of other types of objects. But it isn’t possible to train autonomous vehicles to recognize every type of object they may encounter. In one well-known example, one of Google’s self-driving cars was fooled by a woman in an electric wheelchair chasing a duck with a broom. Not only is it infeasible to test every such possibility, it probably isn’t even possible to think of more than a fraction of the possible things they may encounter.

 In these cases, vehicles often predict that the object seen is an example of an object type they were trained on: the one that is most similar visually (though not necessarily similar in a practical way) to the actual object. But they can predict this with much higher confidence than is warranted. To address this, outlier detection systems can be run in parallel with the vision systems. The outlier detection process can flag any objects seen that are unusual relative to the data the system was trained on. This allows the vehicle to be more cautious and more open to other explanations of the objects identified visually.

 1.1.7 Healthcare

 Healthcare is another field where outlier detection has proven useful in research as well as in practice. A common application is analyzing 2D and 3D images—for example, to find tumors, cancerous masses, or other concerns. As these, fortunately, are not common in images, they can stand out as anomalies. In many cases, it is difficult to create a classifier to specifically look for issues such as these, but it can be feasible and productive to simply search for anything highly unusual in the images. Another application is examining time-series data from patient measurements, such as heartbeat, blood pressure, and blood sugar, identifying any irregularities in these as possibly concerning. Outlier detection can also be applied to checks for misdiagnosis, identifying cases that are outside the norm for the diagnosed condition.

 Outlier detection is important in healthcare partially due to the vast amount we still don’t understand in medicine, related, for example, to genetic dispositions, drug interactions, and the roles of bacteria. If these were perfectly understood, we would have specific things to look for in medical data; it may be a very long list, but we could nevertheless compile this and search for these. As it is, however, we often don’t know exactly what to look for, and searching for anything anomalous may be the most tractable approach for research or diagnosis, or at least may be an important component. This is particularly true as there can be quantities of information far too large for people to manually inspect. Further, the data frequently contains subtle patterns that are difficult for people to reliably notice, especially when they are novel and people are not conditioned to looking for them. This is where outlier detection systems can perform especially well; this is what outlier detection is specifically designed to do and can perform with very large quantities of data.

 1.1.8 Astronomy

 Outlier detection is a useful tool in science and occasionally a source of scientific discovery. Often in scientific research, we are looking for very rare objects or rare events, as these are often the least-understood and most interesting. As such, many fields make use of outlier detection; it is used, for example, for examining results from the Large Hadron Collider. Astronomy is also an interesting example. Outlier detection tools can, for example, identify anomalies in images collected from telescopes: things we haven’t seen before or rarely see, and these may lead to new discoveries or a better understanding of rare phenomena.

 Historically, we’ve been able to identify anomalies manually. For example, pulsars were discovered by manually combing through observation data and recognizing there were outliers in the data. This led to the recognition of this new phenomenon—we had no concept of pulsars before this. But after many years of many people working in these areas, these types of discoveries are becoming much more difficult. What we do have, though, much like many other fields, is massive quantities of data—in this case, petabytes per day collected from telescopes around the world and in space. The volume of data is phenomenal. Single observations can be a terabyte, covering millions of galaxies. So, though manual inspection is largely no longer feasible to make new discoveries, automated processes are well situated to examine the data. In some cases, outlier detection can be the only practical means to process it. Other machine learning processes may be possible in principle, but very often we are interested in identifying the most unusual images as the data of the most interest, which outlier detection is perfectly suited for.

 An example of one specific application of outlier detection in astronomy is processing images of transients: cases where the brightness of an object varies temporarily. The great majority are routine, well-understood events, but they can also occasionally be very interesting. A single telescope may witness tens of millions of these per night. Consequently, an application of outlier detection is simply filtering these down to a more manageable number than can be analyzed by astronomers, keeping only the most unusual. This can help find rare but known events, such as neutron star mergers or, preferably, events that are completely unexpected. Often, we wish to do this in real time, in order to direct more resources to areas of the sky where there are observations, often short-lived, that may warrant the most interest.

 1.1.9 Data quality

 Data quality is a major issue in most organizations and affects many business processes and forms of analysis. Anecdotally, I’ve heard quite a number of stories of people attempting to work on machine learning projects for organizations and finding it all but impossible due to the state of the data. It’s common for organizations to have huge collections of data, often in SQL or spreadsheet formats, created over long periods of time and with varying levels of consistency and documentation. Although there is very often a sufficient volume of data for useful analysis, it can be difficult to maintain a high level of data quality, and often data is not of sufficient quality to be useful for analysis.

 Among the issues we may have are cases where the definitions of features, or code values within features, change over time; where there are errors from merging tables, normalizing, denormalizing, or aggregating data; or converting from long to wide (or wide to long) formats. The data may include missing or estimated values. Data may be collected from different divisions or regions that track and store data differently. Data that is manually entered inevitably has some rate of errors. Even data purchased from other firms can contain errors, or the meaning of the data may be misunderstood. Within spreadsheets particularly, the data quality can be questionable. It can be very difficult to review spreadsheets, and there are often coding errors, cases where formulas are not applied to all cells consistently, or other issues.

 Given the data available, there are several tasks organizations may wish to do, including producing reports and dashboards, budgeting, basic benchmarking (e.g., comparing different subsets of the data to each other), data mining (more complex discovery of patterns in the data), or predictive machine learning. Where data quality is poor enough, these are impossible. Worse, the data may appear plausible, with the issues undetected, leading to invalid and misleading analysis.

 The two most feasible ways to detect data quality issues are, as in the cases previously, to define rules and to run outlier detection. Writing rules consists of creating scripts specifying the valid range of values in each column, how the columns relate to each other, and so on, which requires a strong understanding of each feature in each table. Writing such rules can be far more time-consuming, error-prone, and difficult to maintain than it’s worth. Outlier detection can be much more practical in some situations as it doesn’t require any predetermined idea of what should be in the data. Outlier detection has some limitations here: it will flag many records that are not errors, just unusual, and it will miss errors if they are too common to be unusual, but it can be extremely useful to identify issues.

 Checking for data quality can be done before running any analysis, but it’s usually better, if possible, to run well before then, when the data is first collected or when it is first moved into its current form. At this point, any issues are much easier to assess, and also to fix. Over time, people tend to leave organizations or not remember how the data was collected and formatted. Some problems may persist over time, accumulating in the data and becoming more difficult to address, making correcting the data more difficult if outlier detection and other checks on the data are not performed early.

 1.1.10 Evaluating segmentation

 The last example we’ll look at for now is evaluating the quality of data segmentation. This example is less obvious than the others, but hopefully it gives a sense of the range of problems outlier detection can be used for; outlier detection can very often be used effectively even in situations where we do not necessarily think of using it.

 Data will often be divided into segments for more meaningful consideration. As an example, stocks or funds are routinely grouped together into segments to facilitate comparison. To assess a fund’s performance in a meaningful way, it is useful to have a set of similar funds to compare to. A 2023 study by BlackRock concluded the segmentation done, even by prominent organizations such as Morningstar and Lipper, could be questioned. To determine this, the authors used an interesting outlier detection technique, useful for testing any kind of segmentation. They calculated, for each fund, its outlier score (an estimate of the “outlierness” of an item; in this case, a fund) relative to its assigned segment. That is, they measured how unusual each fund was relative to the segment it was placed in. They then considered if each of the funds were, instead, placed in other segments and measured their outlierness relative to these. Doing this, they found a number of funds that would be better placed in other segments (these funds were less unusual relative to these other segments than the segment they were actually placed in), at least using their measure of similarity. Based on this, it was reasonable to conclude that many were, and may still be, misclassified. Misclassified funds can lead to misleading evaluations of the funds, poorer choices for investments, and lost income. Interestingly, they also found that there was an inverse association between outlierness and returns: the more inappropriate a segment the stocks were placed in, the worse they performed relative to that segment.

 Now that we’ve seen some examples of where outlier detection can be used and some of the considerations associated with outlier detection, we’ll look at the discipline of outlier detection itself, particularly how it fits in with other areas of machine learning.

 1.2 Outlier detection’s place in machine learning

 Outlier detection is a machine learning technique, which means it learns from data, as opposed to using rules crafted by people. More specifically, outlier detection is one of the main fields in an area of machine learning known as unsupervised machine learning. To explain what that means, we’ll first explain another, better-known area of machine learning, called supervised machine learning. In that setting, we are given a set of data, possibly a spreadsheet of records, collection of text documents, time sequence of instrument readings, or audio files. What makes a problem supervised is the data includes what are called labels.

 As an example, assume we have a collection of several hundred images, each with a label. The labels will in some way describe each of the images. For example, the images may be pictures of animals, and the labels may refer to the type of animal: cat, dog, and hamster. Given this, a supervised machine task would be to create a predictor. This predictor, more specifically, is referred to as a classifier if the labels represent categories (also known as classes); the classifier will learn to predict the class labels from the images (in this case predicting the type of animal in a given picture). And the predictor is referred to as a regressor if the labels are numeric values (for example, if we had labels representing a numeric quality of the pictures, such as the number of distinct animals in the picture); the regressor will learn to predict these numeric values from the images. The labels here are said to supervise the learning process.

 However, often when we are working with data there are no labels, just the data itself. As a similar example, we may have a collection of images, again of animals, though without the labels and may wish to better understand this collection.

 It is not possible with image data, but with tables of numeric data, such as accounting records or scientific measurements, we could use traditional statistics to analyze the data, which is essentially summarization: looking for the means, standard deviations, and other statistics that can concisely describe a dataset. These are very useful but can be limited. Beyond traditional statistics, we can do more sophisticated analysis, based on machine learning. In the absence of any labels for the data, this is the domain of unsupervised machine learning: providing advanced analysis on data using only the data itself. The main forms of unsupervised learning are clustering and outlier detection, though there are other forms as well.

 When clustering data, we find sets of items that appear to be similar to each other. A clustering algorithm, given the collection of images of animals, would examine the pictures and divide them into some small set clusters, based on perhaps the animal’s color, the background color, if their legs were visible, and other properties of the pictures. This would be done such that each cluster is internally consistent (the images in each cluster are similar to each other) and the different clusters are unlike each other.

 Outlier detection, on the other hand, identifies the most unusual items in a dataset. This is based on something quite powerful: learning the fundamental patterns of a given set of data, what constitutes normal for this data, and what items diverge most strongly from these patterns.

 Prediction and outlier detection do different things—both useful but quite different. Where labels are available, it can often be more useful to create a predictive model than to perform unsupervised analysis such as clustering or outlier detection. We can train a classifier to learn what types of images represent dogs, cats, and hamsters. Then, given any new pictures of a dog, cat, or hamster, the classifier can predict what type of animal it is. However, what a classifier cannot do well is recognize when it is given an unusual picture, perhaps a picture of something not in one of the three classes it was trained to predict, such as a parrot. A classifier will also not be able to recognize where it receives a picture of, say, a dog, but an unusual picture of a dog. These are problems outlier detectors can solve: recognizing what data we may be faced with, if any, is unusual.

 Outlier detectors and predictors are two tools for two tasks, though we will explore cases where each can aid the other and where both can be used together to create more effective systems than either predictive models or outlier detectors could on their own. Many cases, though, including the previous examples, such as fraud detection, network security, advances in astronomy and other sciences, and many other tasks, are only feasible using outlier detection.

 1.3 Outlier detection in tabular data

 The main focus of this book is tabular data. In business contexts, this is the most common form of data, and it is likely the form of data that many data scientists will work with the most. It is also the type of data with the most history of outlier detection and with the richest and most mature set of tools available. We will, however, cover other modalities (forms of data), specifically text, time series, and image data in chapters 9, 16, and 17. While these modalities are quite different from tabular data, a common approach to outlier detection for other modalities is to convert the data to a tabular format and perform standard tabular data outlier detection on this. Other approaches, specific to deep learning, also exist and will be covered as well in chapter 16.

 Where we work with other types of data, projects largely face the same general considerations and challenges as with tabular data, though these challenges and their solutions can be easier to understand with table data. So starting with tabular data will provide a good background for these modalities as well.

 There is a wealth of tabular data worth examining, including scientific, weather, medical, economic, and server log data, to name only a few sources. Businesses often store vast quantities of (largely tabular) data that they know has more value than they currently get from it. There is far too much to go through manually, but there is useful information in there if we can get to it.

 The purposes for examining data described earlier (fraud detection, security, identifying issues or possible future issues, data consistency, keeping vision systems and other machine learning systems running in a sensible manner, and so on) are very important. But it’s also useful to simply extract human-understandable knowledge from the data available. This is important in many environments including business and scientific settings. To a large degree, this means identifying just two key things: the general patterns in the data and the unusual elements in it—the exceptions to the general patterns, the outliers. That is, outlier detection can be a useful step in understanding data. Outlier detection, by identifying the most unusual items present, gives a sense of the range of what’s possible in the data. With some of the items discovered by outlier detection, we will be surprised that they exist at all. It can provide insights into a business (or other source of data) not otherwise possible.

 1.4 Definitions of outliers

 We’ve been discussing outliers, and you hopefully now have a good intuitive sense of what they are. In general, they are items that are significantly different from the majority of other items they may be compared to. (I’m generally using the term anomaly in this book synonymously though also often to indicate a single unusual property of an item: the individual oddities that make an item an outlier.)

 We’ll try to define here more precisely what outliers are, but as you’ll see, this is only possible to a degree. Outliers are a nebulous concept. This has some advantages, as it allows us to approach outlier detection from many different vantages, but it also carries a lot of vagueness. Part of this stems from the fact that the context makes a great deal of difference. What is noise in one context is signal in another.

 There are a few definitions that you will often see if you ever read the academic literature—each useful, but each a little hand-wavy. Grubbs in 1969 stated

 An outlying observation, or outlier, is one that appears to deviate markedly from the other members of the sample in which it occurs.

 Barnett and Lewis (1994) used the following definition:

 An observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data.

 This broadens the concept of outliers as it adds the idea of collective outliers as well as single items (e.g., single credit card purchases) being unusual; a set of several (e.g., a series of credit card purchases over a few hours) may be an outlier, even if each item in the set is typical. One of the most-cited definitions of outliers is from Hawkins (1980):

 An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.

 This definition can be debated, but it is based on an important idea: that there is some process, or set of processes, generating the data and that they operate within certain bounds. Other data, generated by other processes, can become included in a dataset and would then be considered anomalous. For example, consider the processes at a business, including purchasing office supplies and making rent payments. Each process will generate a set of expenses, which may be included in an expenses table. If the rent payments are much larger and far less common, they may be considered outliers, albeit completely legitimate. There may also be a staff member who is entering inaccurate records or possibly committing fraud. As these are distinct processes, they create records that are inherently different, even if only subtly so.

 A central theme of outlier detection is that, despite the common need to identify unusual data points and despite these intuitive definitions, no universally accepted definition of specifically what qualifies as “unusual” exists. This means it’s very difficult to nail down what items should be flagged as outliers. Consequently, one fundamental characteristic of outlier detection is that it’s notoriously difficult. With no labels, there is no systematic way to evaluate any outliers flagged, and without a concrete definition, there is no definite way to create labels. Outlier detection is, then, highly subjective.

 In practice, to identify outliers we use algorithms, known as detectors, specifically designed for outlier detection. Many of these are simple methods—for example, based on standard deviations (which can help flag unusually small or unusually large numeric values) and others that are more involved. Some are much more involved, based on behavioral analysis, time sequences, Markov models, neural networks, or other approaches. Many are available in Python libraries, including scikit-learn; some are described in academic literature or other sources. In the upcoming chapters, we’ll go through several of these, but for now the main point is that most of these algorithms can be reasonably easily understood and each has a strong intuitive appeal, but each is different and each identifies different—and sometimes very different—items as outliers. Algorithms each have their own unique focus and approach. Each can be valuable within specific contexts, but none are definitive.

 As we proceed through this book, I will try to make clear why a multitude of outlier detection algorithms exist; why this multiplicity is the most appropriate response to a problem that, by its very nature, lacks precise definition; and how you can effectively apply these algorithms to identify outliers within the datasets you work with. This is what makes outlier detection a fascinating problem as well as highly practical.

 Based on this, I’d like to propose a practical definition of outliers, which I believe is quite useful. Similar to Einstein’s definition of time, we can define an outlier as

 An outlier is that which an outlier detector flags.

 This is, of course, circular, but there is a logic to it. The idea is: for any sensible outlier detection algorithm that is implemented without errors, whatever it flags is, by definition, an outlier. This pragmatic approach puts the onus on the detection algorithms to define what they will flag, but the detectors are, in effect, doing this in any case, though they are guided by the general definitions cited previously.

 Take figure 1.2 for example. This shows eight pictures of mugs. We can ask ourselves: which pictures are unusual? To say with any certainty, we would need many more examples than this, but just looking at eight pictures, we can start to see the many ways we could consider some as unusual. They differ in the color of the mug, the angle of the picture, the lighting, the position of the handle, and so on. Different people could look at these and reasonably come to different conclusions. Some may argue that they are all mugs, and so none are unusual. Others may say that the one in the bottom left is clearly a different mug than the others so could be considered unusual, and so on. An outlier detector, as a software application, may look at quite different things than a person would, possibly catching differences a person would miss or differences a person would see but not find relevant. The outliers, though, may in fact be very relevant if the outlier detection is being performed to prepare the data for another image-processing task.

 Despite the diversity of legitimate ways to identify outliers in any collection, we have been able to develop well-functioning systems that can be used for important applications, often in a way that is essential.

 [image:]

 Figure 1.2 Eight images of mugs. Each is different, and a reasonable argument could likely be made for any one of them to be considered anomalous relative to the other seven.

 1.5 Trends in outlier detection

 It is somewhat oversimplified, but we can think of outlier detection as having gone through three major stages, starting with traditional, simple statistical methods (for example, based on standard deviations) going back many decades. These were straightforward and could be computed by hand for small datasets but were limited to finding unusually small or large values in single sequences of numbers and don’t extend well to tables of data.

 These were followed by machine learning-based methods, largely from the last 30 or so years, developed as computer hardware improved, digitized data became common, and machine learning techniques improved. I’ll refer to these here as traditional machine learning to distinguish them from the third major stage, which has advanced significantly in the last several years: the development of deep learning-based methods—methods based on deep neural networks. This has been crucial in some areas; outlier detection with vision, text, or audio would not be possible without deep learning. All three forms of outlier detection now play a valuable role in analyzing data and searching for anomalies and will be covered in this book.

 Since their development, machine learning-based approaches have drastically changed outlier detection with tabular and time-series data, allowing for much more computationally expensive but sophisticated and powerful techniques. The examples described earlier, such as fraud detection, network security, bot detection, and so on, would not be feasible without machine learning methods.

 Methods for time-series and tabular data have been largely stable for years. There have been steady, small improvements, but they have been fundamentally stable. As such, traditional machine learning-based outlier detection methods may also be considered reasonably mature. They have been used widely for many years, and we have a decent sense of their power and their limitations.

 Where we have the most opportunity to improve traditional machine learning-based outlier detection with tabular data is with improving the collection and sharing of data. As outlier detection is based on data, it benefits from the explosion in data we are now producing and collecting. We now have a wealth of data to compare against, which allows us to develop a better sense of what is normal and what is not, which allows outlier detectors to be much more sensitive and accurate. A great deal of this data, though, is proprietary, owned by single organizations. The implication of this is larger organizations have the ability to perform outlier detection in a way smaller organizations cannot. Nevertheless, even smaller organizations can work with outlier detection in a very practical and useful way assuming a reasonable amount of data. For instance, there are many outlier detection algorithms available, and many of these are now well understood and have solid open-source implementations. So long as data is available, there are no real barriers to performing outlier detection.

 As deep learning has advanced markedly in the last several years, largely focusing on vision and text, advances have spilled over to tabular, time-series, and network data, providing a new set of tools for these data modalities as well. While the preferred methods for tabular data remain traditional machine-learning methods, this may not always be true. With tabular data, we’re starting to see deep learning methods become competitive with traditional methods, though they are much more computationally expensive and less interpretable. We may see further improvements in the near future, allowing them to surpass the current state of the art. I suspect, as would probably most, that most major advances in outlier detection in the next few years will be related to deep learning.

 A major advantage of deep learning approaches is that they allow us to take advantage of much larger quantities of data that we could benefit from with traditional machine learning. Deep neural networks, by their nature, are able to continue to learn as larger and larger volumes of data are collected, while more traditional machine learning tools tend to level off at a certain point, learning little new information when given access to more data.

 An area that has received some attention, though not as much as it deserves, is explainable artificial intelligence (XAI) for outlier detection. This is starting to improve as the need for XAI becomes more apparent and advances in XAI for predictive models are applied to outlier detection. It’s an area we’ll look into in this book. It’s very important in many contexts as it answers the question: why did the outlier detector flag the items it flagged as anomalous?

1.6 How does this book teach outlier detection?

 In this book, we’ll go over in more detail what outliers are and how we can think about them. This is a more difficult question than we may suspect at first, but it is important to work through. We’ll go through many coding examples, which will explain the concepts involved and how to apply them effectively for outlier detection. We’ll cover a broad range of approaches, which should allow you to understand well the breadth of options available and be able to think even outside these, to other approaches where necessary. That is, we’ll equip you with the knowledge to think through solutions to outlier detection problems even in the rare cases the standard tools aren’t sufficient.

 All examples are in Python, using some NumPy, pandas, and scikit-learn, though nothing advanced. If you’re new to Python, you may want to check out chapters 3 to 6 of Manning’s Python for Data Science and Machine Learning (https://mng.bz/4pVw). You may also wish to familiarize yourself, at least quickly, with NumPy and pandas if you have not already. Some background in statistics is also useful, but we assume only an understanding of basic concepts such as normal distributions, means, medians, and standard deviations. No other background is necessary, and we’re assuming no previous knowledge of outlier detection.

 The book starts with statistical methods, covers traditional machine learning, and finally covers deep learning approaches, applied to tabular data as well as to text, image, and time-series data. The book covers combining detectors into ensembles of detectors, evaluating outlier detection, applying XAI techniques to outlier detection, and running ongoing outlier detection projects.

 We’ll give you the background to develop your own outlier detection code where necessary but will focus on established open-source libraries, particularly scikit-learn and PyOD. These include the state-of-the-art models and will be, at least with tabular data, the ones you would use the most frequently.

 Summary

 	
 Outlier detection is an area of unsupervised machine learning, which involves extracting information and patterns from unlabeled data.

 	
 Outliers are items significantly different from the majority of other items to which they can be compared.

 	
 Outlier detection is a highly subjective notion with no precise definition, but it is nevertheless very useful.

 	
 Outliers are not necessarily problems or interesting items, but usually problems and interesting items are outliers, making outlier detection a very useful process.

 	
 Outlier detection can be applied to tabular data, images, text, video, audio, network, and other types of data.

 	
 Outlier detection is used now in many fields and is likely applicable in many more.

 	
 Python provides a rich set of tools for outlier detection.

 2 Simple outlier detection

 This chapter covers

 	Statistical methods to find outliers in single columns

 	More flexible methods based on histograms, kernel density estimation, and nearest neighbors measurements

 	Methods to combine scores from multiple statistical tests

 	An introduction to multidimensional outliers

 In this chapter, we begin to take a look at specific methods to identify outliers. We start with statistical methods, defined here simply as methods that predate machine learning methods and that are based on statistical descriptions of data distributions, such as standard deviations and interquartile ranges. They are designed specifically to find extreme values, the unusually small and large values in sequences of numeric values. These are the easiest outlier tests to understand and provide a good background for the machine learning-based approaches we will focus on later. Statistical methods do have some significant limitations. They work on single columns of data and often don’t extend well to tables. They also often assume specific data distributions, typically that the data is Gaussian, or at least nearly. At the same time, these methods are simpler to understand than methods we will look at later, but they still introduce well some of the complications inherent with outlier detection.

 Another reason to look at statistical methods is that they are often sufficient to identify the outliers in a dataset, or at least the most significant outliers. For example, if a table contains several extremely small or large values, then the rows containing these are likely to be the most unusual rows in the table, and it may not be necessary to search for more subtle outliers.

 Identifying the extreme values will also allow us to remove these before performing further outlier detection. Occasionally datasets have a few extreme values that overwhelm everything else, and it can often be worthwhile to check a dataset quickly for these values before going on to more thorough outlier detection, setting these aside as known outliers.

 Within a table, each column will have a specific datatype, usually numeric, categorical, string, or date (or time or datetime). Categorical columns contain nonnumeric values that have no natural order. These are usually string values, but I’m distinguishing these from string columns, treating categorical features as having relatively low cardinality (a small set of distinct values, each repeated many times). A string column, on the other hand, tends to have longer text, and generally each value is unique. Table 2.1 shows an example of a table of staff expenses. The Staff ID, Department, and Account columns are examples of categorical columns, while the Amount column is numeric.

 Table 2.1 Staff expenses

 	
 Row

 	
 Staff ID

 	
 Department

 	
 Account

 	
 Date of expense

 	
 Date submitted

 	
 Time submitted

 	
 Amount

 	
 1

 	
 9000483

 	
 Sales

 	
 Meals

 	
 02/03/2023

 	
 02/03/2023

 	
 09:10:21

 	
 12.44

 	
 2

 	
 9303332

 	
 Marketing

 	
 Travel

 	
 02/03/2023

 	
 02/03/2023

 	
 10:43:35

 	
 41.90

 	
 3

 	
 9847421

 	
 Engineering

 	
 Meals

 	
 02/03/2023

 	
 02/03/2023

 	
 10:56:04

 	
 643.99

 	
 4

 	
 9303332

 	
 Marketing

 	
 Supplies

 	
 02/03/2023

 	
 02/03/2023

 	
 11:12:09

 	
 212.00

 For now we’ll look primarily at the two most common types of data in tabular data—numeric and categorical—covering date and string values in chapter 9. There are statistical tests for numeric data, which may be applied to each numeric column, and tests for categorical data, which may be applied to each categorical column.

 2.1 One-dimensional numeric outliers

 The simplest form of outliers are one-dimensional outliers—that is, values that are unusual with respect to their column (simply considering each column as an unordered sequence of values) without considering any other columns. With numeric columns, these are usually the very large and very small values. In the Amount column of table 2.1, for example, the value 643.99 may be considered an outlier relative to that column if it is significantly larger than other values in that column.

 2.1.1 z-score

 Given a sorted sequence of values—say, 0, 1, 1, 1, 4, 5, 5, 6, 9, 34—it’s straightforward to determine that 34 is unusually large. But how can we formalize this? Is there a set of guidelines we can use that will work generally on any sequence of numbers?

 The simplest approaches are to flag any values over a predefined threshold or to flag any above a predefined percentile. In this example, we may set a fixed threshold value of, say, 20. This approach is not strictly data-driven, but realistically it would be based on our previous experience with similar data so would have some empirical basis. This can work well in many situations where we have reliable knowledge about what data to expect. This does, though, break down if we don’t yet have a good baseline for what should be considered normal.

 Using a predefined percentile, we could choose to select any in the top, say, 1% of values. Again, this would work well in some cases but would fail here as there are well under 100 items; it would also fail where the values are all fairly similar, with no real outliers. In that case, it would flag the top 1% of items, regardless of how normal or abnormal they are. Also, in cases where there are outliers, there may be a logical cutoff in the data, as with the case of 34 in our previous example, where we can reasonably say some values are outliers and the rest are not. If we choose a percentile without examining the data, the percentile chosen may be before the logical cutoff, resulting in some inliers being reported as outliers, or after the natural cutoff, resulting in some outliers being missed.

 To address some of these issues, we can use the z-score test, which learns from the data itself which values are unusual relative to the others. This is very commonly used, and if you’re familiar with any of the methods described here, chances are it’s the z-score. Given a set of numeric values, we calculate the z-score of each value as the number of standard deviations from the mean. The z-score of each value is calculated as

 [image:]

 In the previous example, the mean is 6.6; the std dev is 10.04; and the z-scores of each item are –0.66, –0.56, –0.56, –0.56, –0.26, –0.16, –0.16, –0.06, 0.24, 2.73.

 Using the z-score test, we identify any values where the absolute value of the z-score is over a given threshold. This does require setting a threshold, but as z-scores are unitless and widely used, we can draw on our experience using them in many other places. A common threshold is 3.0, though this is simply a convention, and other thresholds may suit your needs better. In this case, using 3.0 would flag none of the values, though 34 (with a z-score of 2.73) is close and would likely be flagged given a larger dataset if most values are still in the 0.0 to 10.0 range.

 Figure 2.1 shows a set of ideal distributions: Gaussian, exponential, and beta, as well as one real-world distribution from the publicly available datasets on OpenML (https://openml.org), the Whole_weight column from the abalone dataset. This appears to have a roughly log-normal distribution, which is common in real-world data (log-normal distributions are somewhat similar to normal distributions but are more skewed so not symmetric, with longer tails to the right). The plots include vertical lines marking the thresholds where values would be flagged as outliers, using z-scores below –3.0 and above 3.0. Although z-scores may be applied to any distribution, the method does assume the data is reasonably close to a Gaussian distribution.

 With asymmetric distributions such as beta or log-normal distributions, the coefficients used for upper limits may not be appropriate for lower limits. In the case of log-normal distributions, we may wish to take the log of all values and treat the data as normal before testing for outliers. In the case of exponential distributions with no negative values, there is no concept of unusually small values and only very large may be tested for.

 [image:]

 Figure 2.1 Four distributions with vertical lines indicating the points +/– 3.0 standard deviations from the mean

 Swamping and masking

 A major issue with the z-score method is that it’s not robust to outliers. The presence of outliers in the data affects the estimation of the mean and standard deviation and so affects the ability to find other outliers. Specifically, the z-score method allows for masking and swamping effects. See figure 2.2, which represents a single sequence of values in a swarm plot.

 [image:]

 Figure 2.2 A swarm plot with at least one outlier, point A. Depending on the presence of A, points B and C may or may not be flagged as outliers, as A can affect the mean and standard deviation.

 Masking occurs where the presence of one or more outliers causes other values to not be recognized as outliers, as the more extreme outliers skew the mean and standard deviations calculated. This is shown in figure 2.2, where point B is not flagged as an outlier but would be if A were not present. Swamping is the opposite effect: point A swamps point C here, as C is considered an outlier only given A in the dataset. Again, the extreme outlier affects the mean and standard deviation, this time such that values on the other side of the mean are more readily flagged as outliers.

 Though the effects of swamping and masking can be particularly strong with z-score calculations, the effects may be seen with most outlier detection tools: the presence of outliers can undermine the ability to properly identify other outliers. Most other methods in common usage, though, are much more robust to outliers. We should be aware of these effects in outlier detection generally but particularly where we use means and standard deviations in our work. Although more robust and more general options are available, z-scores do have the appeal of simplicity, as well as a long history, so they will probably be in use for some time.

 A similar but more robust measure uses the trimmed mean, where the mean and standard deviation are calculated after removing the top and bottom, for example, 1% of values, ideally leaving a more representative set, with the outliers removed. Alternatively, to deal with the possible presence of outliers, we may iteratively remove outliers one at a time (or in small batches), recalculate the mean and standard deviation, and continue with the remaining data. This, as you may assume, is prohibitive on large datasets and unnecessary with more modern outlier detection approaches. Outlier detection is often an iterative process, and often outliers are removed from a dataset to create a cleaner set to establish normal data more effectively, but iteratively removing in this manner (to identify one outlier at a time) is now seldom done.

 Expected and unexpected outliers

 For any given distribution, we can think of the outliers as being of two types. Some values are extreme but only to the extent we would expect to see, and some values are much more extreme than we would expect to see even once. Height, for example, follows a normal distribution. In most contexts, a record of a person having a height over 7' would be an outlier, but an outlier that would be expected given enough data points. A height of 70', on the other hand, is impossible and could only be a data error. With many distributions, including normal, values can only reach a certain distance from the mean.

 In data science, we rarely assume any specific distribution in the data, but where data is reasonably believed to be Gaussian (the data appears to be unimodal, symmetric, and roughly bell-shaped), this does have the nice property that probabilities are associated with each z-score, and we can use these to help set appropriate thresholds given the context. Similarly, for example with log-normal distributions, we have established knowledge of the probabilities associated with each distance from the mean.

 With other distributions as well, there are expected and unexpected values: there are extreme values that would be rare and considered outliers but are conceivable, and there are points beyond that that are either data errors or that indicate that our understanding of the data is incorrect. In fact, if we find any unexpected outliers, after examining these we may find that they are not data errors and such values are actually possible. A useful side effect of outlier detection is it can improve our understanding of what is conceivable in the data.

 Given that we do not know the true distributions and must infer these from the data, we don’t know which types of outliers we have when we encounter them, though in some cases we would be more interested in unexpected outliers, values beyond what may be normally presumed possible. In some cases, these may be possible to distinguish given some domain knowledge. Where it is possible to distinguish these, flagging only them will reduce overreporting and may flag only the truly interesting values. However, more often we are interested in any outliers in the data and, with respect to setting a threshold, are motivated more by balancing false positives and false negatives than distinguishing types of outliers; however, the distinction is also often very important.

 If we are interested in flagging only values that are beyond what would be expected to ever occur in the data, where we do not have knowledge of any natural limits, only the data itself, we need to estimate the underlying distribution and take the data size into account. Given a Gaussian distribution, for example, and using an absolute z-score of 3.0 as the cutoff, we expect about 1 in every 370 observations to be beyond this. With Gaussian data, in a sample of 1,000 observations, we would expect about 3 values beyond 3.0 standard deviations, with even more being fairly likely. With large enough datasets, we would expect some values even 5 or 6 standard deviations from the mean, but with only 1,000 observations, we would not, and such values are more noteworthy. However, if any such values are found, this does not necessarily imply data artifacts or other unexpected anomalies; it is more likely that the estimate of the distribution was incorrect.

 2.1.2 Interquartile range

 A preferred, and also very standard, method to identify extreme values uses the interquartile range (IQR). The main appeal of IQR is that it is much more robust to outliers than z-scores. Like z-scores, the IQR method finds values far from the average, relative to the normal variance of the data, though it uses median for the average, as opposed to mean, and IQR for the variance, instead of standard deviation.

 To calculate the IQR, we first calculate the first and third quartiles (that is, the values at the 25th and 75th percentiles). We then subtract these to get the IQR. See figure 2.3 (left). This indicates the quartiles as Q1 and Q3 and also shows the calculated thresholds for outliers.

 The thresholds for outliers are defined as Q1 – (2.2 × IQR) and Q3 + (2.2 × IQR). The coefficient of 2.2 is now fairly standard, but other values may be used. In fact, John Tukey, who developed the test, used 1.5, and this was the norm for some time and is still often used. To calculate the thresholds, we can use code such as

 import pandas as pd
import numpy as np

data = pd.Series(np.random.normal(size=10_000))
q1 = data.quantile(0.25)
q3 = data.quantile(0.75)
iqr = q3 - q1
iqr_lower_limit = q1 - (2.2 * iqr)
iqr_upper_limit = q3 + (2.2 * iqr)

 Variations on the interquartile range are sometimes used, with a common one being the interdecile range (IDR). See figure 2.3 (right). Here, the IDR is calculated as D9 (the 9th decile, or 90th percentile) minus D1 (the 1st decile, or 10th percentile), with outliers defined as D1 – ϕ IDR and D9 + ϕ IDR. As with the IQR, coefficients (indicated here as ϕ) may be used to avoid under- or overreporting, but a coefficient of 1.0 works reasonably well.

 [image:]

 Figure 2.3 Gaussian data showing the IQR (on the left) and IDR (on the right), along with vertical lines indicating the points beyond which values would be considered outliers based on the IQR with a coefficient of 2.2 or the IDR with a coefficient of 1.0

 2.1.3 Median absolute deviation

 The median absolute deviation (MAD) is another measure of spread, similar to the IQR and more robust, again, to outliers. Though implementations are available, including in the popular SciPy library, the algorithm is simple, and I provide code to calculate this in listing 2.1. To get the MAD for a set of data, we first calculate the median for the data. We then take, for every point, the absolute difference from the median, and then take the median of these differences.

 To determine if a point is an outlier using the MAD, we calculate how far the point is from the median (using the absolute difference). We then divide this by the MAD to determine how far from the median it is relative to the other points in the data. This gives us the MAD score for the point, which is the ratio of this point’s deviation from the median to the normal deviation. To determine if a point is an outlier, we check if the MAD score is over a prespecified threshold. In this example, we again use the abalone dataset, with one inserted outlier, with a value of 4.0.

 Listing 2.1 Calculating the MAD

 import pandas as pd
import numpy as np
import statistics
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt

def calc_MAD(data): ①
 median = statistics.median(data)
 deviations = [abs(x - median) for x in data]
 median_deviation = statistics.median(deviations)
 mad_scores = [abs(x - median) / median_deviation for x in data]
 return mad_scores

data = fetch_openml("abalone", version=1, parser='auto') ②
data = pd.DataFrame(data.data, columns=data.feature_names)

fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(10, 3))

pd.Series(data['Whole_weight']).hist(bins=50, ax=ax[0]) ③
ax[0].set_title("Whole_weight")

mad_scores = calc_MAD(data['Whole_weight']) ④
pd.Series(mad_scores).hist(bins=50, ax=ax[1])
ax[1].set_title("Distribution of MAD Scores")

mad_scores = calc_MAD(np.concatenate([data['Whole_weight'], [4.0]])) ⑤
pd.Series(mad_scores).hist(bins=50, ax=ax[2]) ⑥
ax[2].set_title("MAD Scores given an outlier")

plt.tight_layout()
plt.show()

 ① Defines a general method to calculate the MAD for a list of data

 ② Collects the data

 ③ Plots the actual data

 ④ Plots the distribution of MAD scores

 ⑤ Adds an outlier to the data

 ⑥ Replots the distribution of MAD scores

 Figure 2.4 presents the distribution values (left), of scores using the MAD calculation (center), and scores given an inserted outlier (right). There is a steady decrease in MAD scores as points become further from the median, with the outlier standing out with a score over 8.5. Often scores of 3.0 are used as the threshold for outliers, but this can vary.

 [image:]

 Figure 2.4 The distribution of MAD scores with and without one inserted outlier. The outlier receives the highest MAD score, slightly over 8.5.

 2.1.4 Modified z-score

 The modified z-score is generally considered a variation on the z-score but is actually much more similar to the MAD:

 [image:]

 The coefficient, 0.6745, is used to make the formula equivalent to the z-score for Gaussian data, as 0.675 is the 0.75th quantile of the standard normal distribution. With the modified z-score, usually 3.0 or 3.5 is used as the threshold.

 2.1.5 Visualization for numeric outliers

 Examining plots, even without the previously discussed methods or other statistical methods, is actually a simple form of outlier detection in itself, where outliers are identified visually. This is less precise and more labor-intensive than statistical methods but can be good enough when there’s a small number of series to examine. It does exacerbate the subjective nature of outlier detection, but it can also be more flexible when we are faced with unusual distributions. Figure 2.5 shows several distributions from OpenML datasets: att1 from the mfeat-karhunen table, A14 from credit-approval, Dattr from satimage, and Feature_9 from vowel. Visually examining these, one sensible choice may be to set 1,300 (or a similar value) as the threshold for A14 and to determine the others do not contain outliers. However, visualization is not intended to be precise, and different people looking at the same data will draw different thresholds.

 It is also often useful to examine the data using a log scales, as this can provide another useful view of the data, especially as many real-world datasets are log-normal in nature.

 [image:]

 Figure 2.5 Examples of real-world data distributions

 2.1.6 Internal and external outliers

 The statistical methods discussed previously are intended to identify extreme values and will miss another type of outlier we may be interested in, known as internal outliers. See figure 2.6, which shows the hue-mean feature from the segment dataset on OpenML as an example. Internal outliers are less common than extreme values, as they can appear only in multimodal distributions or distributions with gaps. These do, though, occur fairly often, and the previously discussed methods, as they assume a single average and single variance, are not intended for multimodal distributions.

 [image:]

 Figure 2.6 The hue-mean feature is bimodal and contains some values between the two main clusters, close to zero, which may be considered internal outliers.

 While in some cases you may be interested only in external outliers (extreme values), in other cases, you may be interested in any unusual values. In fact, as extreme values can often be expected to some extent, internal outliers may actually be more interesting. For example, in a company where most purchases are for small items, in the $10 range, or larger items, in the $500 range, a rare purchase of $100 could stand out as unusual: quite likely legitimate but unusual.

 There are a number of ways to detect internal outliers, including

 	
 Histograms

 	
 Kernel density estimation (KDE)

 	
 Nearest neighbors calculations

 These three methods are more flexible to unusual distributions than the previous methods and are often preferable generally, though each of z-score, IQR, and MAD are well used as well.

 Histograms

 Histograms are possibly the easiest method to identify internal outliers and are useful generally with unusual distributions. The idea of histograms is to divide the space into a set of equal-width bins and calculate the count of each bin. This provides a concise description of any arbitrary distribution and can be used to determine outlier values; we may determine which bins have unusually low counts and flag any values within those bins as outliers. As most distributions have the lowest counts at their extremes, this tends to flag values in the left-most and right-most bins but, where appropriate, can flag bins in the middle as well. Using histograms does require determining an appropriate number of bins, which can be challenging.

 An example using histograms is shown in listing 2.2. This uses panda’s cut() method to create the bins, using 10 bins. For simplicity, it flags any bins with a count under 10. Pandas also provides a qcut() method, which provides equal-count bins. This is often useful as well; though it will provide bins with an equal number of items and the count method we are using here cannot be used, it is also possible to find the unusually sparse regions by comparing the bin widths.

 Listing 2.2 Using histograms to identify outliers

 import pandas as pd
from sklearn.datasets import fetch_openml
import statistics
import matplotlib.pyplot as plt

data = fetch_openml('segment', version=1, parser='auto') ①
data = pd.DataFrame(data.data, columns=data.feature_names)

histogram = pd.cut(
 data['hue-mean'], bins=10, retbins=True)[0] ②
counts = histogram.value_counts().sort_index() ③

rare_ranges = [] ④
for v in counts.index:
 count = counts[v]
 if count < 10:
 rare_ranges.append(str(v))

rare_values = [] ⑤
for i in range(len(data)):
 if str(histogram[i]) in rare_ranges:
 rare_values.append(data['hue-mean'][i])

fig, ax = plt.subplots()
plt.hist(data['hue-mean'], bins=10, density=True)
for rare_value in rare_values: ⑥
 ax.axvline(rare_value, color='red', linestyle='-.')
plt.xticks([statistics.mean([x.left, x.right]) for x in counts.index])
ax.set_xticklabels(range(10))
plt.show()

 ① Collects the data

 ② Creates a histogram to represent one of the columns

 ③ Gets the count of values in each bin

 ④ Creates a list of the bins with few values

 ⑤ Creates a list of the values in the bins with few values

 ⑥ Draws a red vertical line at the position of each outlier

 Figure 2.7 displays the histogram. This is the same data as in figure 2.6 but fit into 10 bins. From the histogram, we can see the relative frequency of each bin. Bin 1 has many records, and values here would be strong inliers. Bins 4, 6, and 7 have few records, and values here can likely be considered outliers. Values in bin 0 may be mild outliers. Figure 2.7 also draws a dashed vertical line at each point in the data that is flagged as an outlier using the code in listing 2.2 (this flags records appearing in bins with counts under 10). We can see it flagged the internal outliers but missed the external outliers. This can be adjusted by using different numbers of bins and a more robust calculation of the threshold than a predefined value.

 [image:]

 Figure 2.7 The segment data divided into 10 histogram bins. The x-axis indicates the bins. The height of each bar indicates the number of records in the bin. Dashed vertical lines indicate values flagged as outliers: those in bins with unusually low counts. We can see a number of outliers in bin 4 and in bin 7 (both bins with quite low counts). Bin 6 has no records and so no outliers. This method can identify internal outliers though it is sensitive to the number of bins.

 KDE

 KDE works similarly to histograms, but instead of dividing the space into bins, it attempts to estimate the density as a continuous function at each point along the number line. To calculate the KDE, the algorithm creates a small kernel, which is a small shape such as a triangle, box, or Gaussian where each datapoint is located. These are then summed up vertically along the range. So where there are several data points close to each other, their kernels will overlap, and when summed together, this region will have high probability density estimates. In more sparse regions, where there are few points, only a small number of kernels will be summed together, giving low probability estimates. Where there are no datapoints, there will be no kernels, and the probability estimate will be zero. This is more robust than histograms, as it is based on many small kernels, each centered on a data point, as opposed to a relatively small set of bins. It also avoids the need to set the number of bins, though it is sensitive to the width of the kernels used.

 An example is shown in figure 2.8 using KDE to estimate the distribution given 10 points (drawn along the x-axis). The three panes show examples using three different widths for the kernels. In each case, a Gaussian is drawn, centered on each point, so there are 10 Gaussians. These are summed to give the KDE estimate, shown as the dashed line in each case. The wider the bandwidth (the width of each kernel), the smoother the final KDE. In the left pane, a narrow bandwidth is used, and the final KDE is variable. The middle pane uses a wider bandwidth and the right pane a bandwidth that is wider still, which results in a very smooth KDE—likely too smooth, as it loses any sense of the sparse regions between the points.

 [image:]

 Figure 2.8 Given a dataset, here containing 10 points, KDE can estimate the distribution by creating a small kernel—in this case, a Gaussian shape—at each point and summing these. The three panes show the effect of adjusting the widths of the kernel. With narrow kernels, there is less summing of the kernels; the final KDE estimate resembles the individual kernels and fits the data tightly. With wider kernels, the KDE estimate becomes smoother. We wish to find a balance with an appropriate bandwidth. In this case, the first or second panes or somewhere in between may work best.

 The code in the following listing gives an example of plotting a histogram using seaborn, which has an option to include a KDE estimate of the distribution.

 Listing 2.3 Seaborn histplots with KDE enabled

 import pandas as pd
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt
import seaborn as sns

data = fetch_openml('segment', version=1, parser='auto')
data = pd.DataFrame(data.data, columns=data.feature_names)
sns.histplot(data['hue-mean'], kde=True)
plt.show()

 The output is shown in figure 2.9. The KDE is a smooth, continuous estimation of the distribution.

 [image:]

 Figure 2.9 Using seaborn to draw a KDE estimate of a data series

 An example using KDE for outlier detection is provided in listing 2.4. We use the KernelDensity class provided by scikit-learn, and Gaussian as the kernel shape. Once we create a KernelDensity object, we can use it to estimate the density at any point along the line, which we do for each point in the data.

 Once we have a KDE estimate for each data point, we again have the challenge of determining which of these are unusually low. In this example, we take the IQR of the scores. This is an example of another important application of statistical methods; they are often used to identify the unusually large scores produced by other outlier detection tools.

 Listing 2.4 Using KDE to identify outliers

 import pandas as pd
from sklearn.datasets import fetch_openml
from sklearn.neighbors import KernelDensity
import matplotlib.pyplot as plt

data = fetch_openml('segment', version=1, parser='auto') ①
data = pd.DataFrame(data.data, columns=data.feature_names)

X = data['hue-mean'].values.reshape(-1,1) ②
kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X)
kde_scores = pd.Series(kde.score_samples(X))

q1 = kde_scores.quantile(0.25) ③
q3 = kde_scores.quantile(0.75)
iqr = q3 - q1
threshold = q1 - (2.2 * iqr)
rare_values = [data['hue-mean'][x] for x in range(len(data))
 if kde_scores[x] < threshold]

fig, ax = plt.subplots() ④
plt.hist(data['hue-mean'], bins=200)
for rare_value in rare_values: ⑤
 ax.axvline(rare_value, color='red', linestyle='-.')
plt.show()

 ① Collects the data

 ② Creates a KDE estimate of one feature

 ③ Calculates a threshold for KDE estimates using IQR

 ④ Draws the distribution of the data

 ⑤ Draws vertical lines at each point in a region with an unusually low KDE estimate

 Figure 2.10 shows the points identified as outliers using this method, drawing vertical bars at these points.

 [image:]

 Figure 2.10 Data from the segment data set with outliers found using KDE scores shown with dashed vertical lines. The outliers are in low-density areas, far from most other data.

 k-Nearest Neighbors

 The k-nearest neighbors (KNN) method is based on the idea that outliers are farther from most other points than is normal. To identify outliers, KNN measures the distance from each point to the set of points nearest to it. It doesn’t normally consider the distance of each point to all other points, as this is computationally expensive and actually may not work well in all distributions. It instead calculates the distance to a small number, defined as k, other points. The reasoning is: if there are two points close to each other but very far from the majority of other points, we’d probably still consider them outliers, even though they each have one other point they are close to—similarly for a group of three or four points. But if a point is close to many other points, we would likely consider it an inlier. In the segment dataset, there are 2,310 points in total, so if a point is close to 100 other points, it may reasonably be considered an inlier, even without calculating its distance to the 2,210 other points—similarly (probably) for a point close to 50 other records. What threshold we set is a judgment call. In listing 2.5, we set k to 25.

 To implement this, we use a data structure provided by scikit-learn called BallTree, which is an efficient structure to calculate and store the distances between each pair of points in a dataset. Here we simply provide the BallTree the full dataset and then call query() to get the pairwise distances. The query() method returns, for all points, an array of distances to their k nearest points. It also returns the indexes of the nearest neighbors, but for this task, we just need the distances. We set k = 26, as the query() method will always return an array with the first element representing the distance of the point to itself, which will always be zero; as we’re interested in the distance to 25 other points, we set k one higher.

 Given the array of distances, we wish to convert this into a single number, which will represent the outlierness of the point. Usually, to do this, we take either the mean or max distance, though other functions are sometimes used as well. In this case, we use the max function, which means we’re calculating the distance to the kth nearest point for each point. Doing this, we’re actually using a distance metric sometimes referred to as kth-nearest neighbor (kthNN). Here a point close to even 24 points, but far from its 25th closest neighbor, would receive a high score. Given this, if there are any small, isolated clusters, with 1 to 24 points, the points in them will receive high outlier scores. But any larger clusters (of 25 or more points) will receive low scores.

 Listing 2.5 Using k nearest neighbors to identify outliers

 import pandas as pd
from sklearn.datasets import fetch_openml
from sklearn.neighbors import BallTree

data = fetch_openml('segment', version=1, parser='auto')
data = pd.DataFrame(data.data, columns=data.feature_names)
X = data['hue-mean'].values.reshape(-1, 1)
tree = BallTree(X, leaf_size=2) ①
dist, ind = tree.query(X, k=26) ②
max_dist_arr = pd.Series([max(x) for x in dist]) ③

 ① Creates a BallTree and calculates the distances between each pair of records

 ② Retrieves the distances to the 25 nearest neighbors for each record

 ③ For each record, finds the distance to the 25th nearest neighbor

 As with histogram counts and KDE estimates, this returns a set of scores that are well ranked but aren’t immediately interpretable, and it’s not clear what the best cutoff is. Figure 2.11 (left) shows the distribution of kthNN scores. To save space, we did not show the distribution of scores for the histograms or KDE scores, but normally we would examine the distribution of scores for any outlier test. As is normal, most scores are close to zero, as most points are not outliers. It is difficult to see the full distribution, so we focus just on the tail in the center plot by drawing only those records with a kthNN score over 0.05. Here we can see a reasonable cutoff probably around 0.2. Using this, the final set of values flagged are shown in the right plot.

 A similar approach to k-nearest neighbors (KNN) is to cluster the data and flag any points far from the nearest cluster center. In fact, k-means clustering is a quite similar algorithm, used for clustering, as is KNN, used for prediction; kthNN may be viewed as the outlier detection version of these.

 [image:]

 Figure 2.11 The distribution of scores using KNN with k = 26 (left), the scores again, showing only those over 0.05 for clarity (center), and the locations of outlier values based on the KNN scores (right)

 2.1.7 Scoring outliers

 As opposed to setting a threshold and providing a binary label (inlier/outlier) for each value, we could instead simply give each value a score. In the previous methods, this is straightforward: we simply return the z-score, KDE estimate, and so on depending on the method used. It is then up to the consumer of the outlier detection routine to choose a suitable threshold if binary labels are needed. This can be a useful approach and is what is done by most machine learning outlier detectors. An obvious benefit of this is that calling routines receive a ranked order of the outliers, and so some sense of their outlierness, even where their scores aren’t easily interpretable. Another benefit is it can facilitate combining the scores of many detectors, as is very common in outlier detection. Using the scores, we have more information to work with.

 We now have a decent introduction to outlier detection with sequences of numeric values and are ready to take a look at categorical columns.

 2.2 One-dimensional categorical outliers: Rare values

 Categorical columns are actually treated quite a bit differently than numeric columns, and you may find them a little easier or a little trickier to work with. The goal is to find values that are unusually rare. Unlike numeric features, there is no concept of internal outliers, so we are simply looking for values that are both rare and rarer than most other values.

 Instead of working with each individual value, we work with the counts of each distinct value. Let’s take a look at the distributions of a few categorical features from the SpeedDating table on OpenML, the dining, age_o, importance_same_religion, and pref_o_attractive columns, shown in figure 2.12. These have a bar for each unique value (the specific values are not listed here), sorted from most to least frequent, and display the count of each on the y-axis. These are fairly representative of the sort of shapes we see with real-world data, with a significant difference between the most and least frequent classes. More uniform distributions are rare, though they can be seen at times as well. Working with count values, there is no concept of clusters or gaps: there is simply a single count for each distinct value. We may, though, where the values are sorted, see significant drops in frequencies from one value to the next.

 The question here is: where do we set a threshold: at what point do we say that any values having a count less than this threshold are outliers?

 A naïve first approach may be to flag any value occurring less than some predefined number times, say with counts of 10 or less. This can work well where the counts of each value can be estimated well ahead of time but would not work in the general case where we do not know in advance how many of each distinct value to expect.

 [image:]

 Figure 2.12 The distributions of four categorical features from the SpeedDating dataset

 We could also consider flagging the N rarest values—say the three least-common values. This can also break down easily, as we cannot know ahead of time how many rare values there will be. In the cases shown in figure 2.12, we can see where this may under- or overreport for different distributions of counts. With importance_same_religion, for example, likely all of the values are reasonably common and none are outliers, making it odd to flag the N rarest values for any N. The others probably do have outliers, but there may not be any value of N that will work consistently for any distribution. Any overly simple system to set a threshold would likely break down for at least one of the four example distributions.

 We could flag any value representing less than 1% of the rows. This has some appeal, as we likely do not wish to report any values occurring more than about 1% of the time, but it can overreport, as there may be numerous values with counts under 1%. In the pref_o_attractive case in figure 2.12, such a test may flag many values, possibly many more than we would wish. With features with higher cardinality, this problem becomes more common: there will be many values that are somewhat rare—so much so that having a rare value doesn’t qualify a point as an outlier. If there are, say, 2,000 rows with 1,000 unique values, all about equally common, and so each with a count of about 2, this method may flag almost every value. We wish to flag values that are both rare and unusually rare. While those methods are intuitive, they do fail to work in the general case. We’ll look next at some more viable options.

 To start, we may calculate the number of unique values and then consider what the count would be for each value if these were evenly distributed. Doing this, for each value, we take the ratio of the actual count over the count expected under a uniform distribution. This gives a useful normalized score for each value, similar to the count but in a more meaningful format. It does still require a threshold if we wish to label each value as inlier or outlier, but, as this is a unitless value, we may set a general threshold, not dependent on the current data.

 We may also compute the count of each value relative to the count of the mode value. This may appear unstable, as it relies on the count of the most frequent value being meaningful, but it actually works fairly well. This method is similar to the previous method, normalizing each value by the mode as opposed to the mean. Using the median is also possible.

 Another approach is to evaluate the cumulative counts. We start by sorting the unique values from least to most frequent and then calculate the cumulative sum (the sum of all smaller counts plus the current count) for each value. We then flag values under some threshold, such as 1%. This is a robust method that often works quite well. An example is provided in listing 2.6 using the age_o feature and 0.5% as the threshold for the cumulative count.

 Listing 2.6 Determining the count threshold for outliers using cumulative counts

 import pandas as pd
import numpy as np
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt
import seaborn as sns

data = fetch_openml('SpeedDating', version=1, parser='auto') ①
data = pd.DataFrame(data.data, columns=data.feature_names)

col_name = 'age_o'
data[col_name] = \
 data[col_name].fillna(data[col_name].median()).\
 astype(np.int64) ②

vc = data[col_name].value_counts() ③
cumm_frac = [vc.values[::-1][:x+1].sum() / len(data) ④
 for x in range(len(vc))]
cumm_frac = np.array(cumm_frac)
num_rare_vals = np.where(cumm_frac < 0.005)[0].max() ⑤
cut_off = vc.values[::-1][num_rare_vals]
min_count = vc[cut_off]

plt.subplots(figsize=(10, 2))
s= sns.barplot(x=vc.index, y=vc.values, order=vc.index, color='blue')
s.axvline(len(vc) - num_rare_vals - 0.5)
s.set_title(col_name)
plt.show()

 ① Collects the data

 ② Fills null values

 ③ Gets the count of each unique value

 ④ Gets the cumulative count of each unique value

 ⑤ Finds the values with low cumulative counts

 The results are shown in figure 2.13. This flags all values such that their cumulative sum is under 0.5%.

 [image:]

 Figure 2.13 The counts of each value of age_o sorted most-to-least frequent, with a cutoff for unusual values calculated based on cumulative sums, drawn between the fourth and third last values

 Another effective method is to apply a statistical test, such as MAD, to the set of counts and use this to flag any unusually small counts. This can break down, though, where there are very few distinct values, which can occur even in very large tables: the cardinality of some columns can be quite small. In these cases, setting a minimum percentage may be the most appropriate approach.

 For more reliable solutions, we may wish to employ multiple checks—for example, requiring for any value to be flagged: a MAD score under a given threshold and its cumulative count also under a threshold.

 2.3 Multidimensional outliers

 The previously discussed techniques are useful to identify and score the unusual values within a single set of values. However, in data science we typically work with tables of data and wish to flag not unusual values but unusual rows. Outliers based on single features are an important element of finding unusual rows and are referred to as univariate outliers, but also very important are outliers based on multiple features, referred to as multivariate outliers. These are combinations of values that are not unusual on their own but their combination is rare. Nailing down univariate outliers, as we’ve seen, is surprisingly difficult—multivariate outliers are, as one might expect, even more so. This is due to several reasons, including that there is an explosion in the number of combinations to consider and that associations between the features need to be taken into consideration.

 In the expenses in table 2.1 (repeated here as table 2.2), our goal is to identify not the unusual times, amounts, or accounts per se but the unusual purchases. Doing this requires assessing each of these features both individually and together. We may flag each of the rows shown due to having unusual single values (univariate outliers): unusual amounts, times, and so on, as shown in bold. We can also look for unusual combinations of values (multivariate outliers)—for example, dollar values that are normal generally but not normal for the account, or dollar values that are normal for the account, say meals, but not for the time of day, with lunch expenses possibly being normally more moderate than dinner expenses. In this example, we may have rows that are not unusual when considering any single, or even pair of features, but only when considering all three of account, time, and amount.

 Table 2.2 Staff expenses

 	
 Row

 	
 Staff ID

 	
 Department

 	
 Account

 	
 Date of expense

 	
 Date submitted

 	
 Time submitted

 	
 Amount

 	
 1

 	
 9000483

 	
 Sales

 	
 Meals

 	
 02/03/2023

 	
 02/03/2023

 	
 09:10:21

 	
 12.44

 	
 2

 	
 9303332

 	
 Marketing

 	
 Travel

 	
 02/03/2023

 	
 02/03/2023

 	
 10:43:35

 	
 41.90

 	
 3

 	
 9847421

 	
 Engineering

 	
 Meals

 	
 02/03/2023

 	
 02/03/2023

 	
 10:56:04

 	
 643.99

OEBPS/OEBPS/Images/CH02_F04_Kennedy3.png
175
150
125

‘Whole_weight Distribution of MAD scores oo L coores glvenianioutler,
250
200 300
150
200

OEBPS/OEBPS/Images/CH02_F03_Kennedy3.png
600
500

400

QR with Gaussian data

DR with Gaussian data

600
500
400
300
200
100

OEBPS/OEBPS/Images/CH02_F02_Kennedy3.png

OEBPS/OEBPS/Images/CH02_F05_Kennedy3.png
attl

Al4

140

120

)

250 500

750 1000 1250 1500 1750 2000
Feature_9

OEBPS/OEBPS/Images/CH02_F08_Kennedy3.png
Narrow bandwidth

Moderate bandwidth

'Wide bandwidth

0

i
i
i

a

030
025
5020
Zoss
S o0
005

N

0.00.

N,

OEBPS/OEBPS/Images/CH02_F09_Kennedy3.png
Count

500

400

300

200

-1 0
hue-mean

OEBPS/OEBPS/Images/Brett_Kennedy.png

OEBPS/OEBPS/Images/CH02_F07_Kennedy3.png

OEBPS/OEBPS/Images/CH02_F06_Kennedy3.png
300

250

200

150

100

50

hue-mean

OEBPS/OEBPS/Images/cover.jpeg
Brett Kennedy

/'I MANNING

OEBPS/OEBPS/Images/CH02_F10_Kennedy3.png

OEBPS/OEBPS/Images/CH02_F11_Kennedy3.png
Maximum distances Maximum distances zoomed in Original data with outiers

2 | i [

o - i i
15 | [

o D ! i
m i i

/| i

200 50 il 1
s i

P

. . gl . H !

oI SRS R T e ARG ISR s s I T T

OEBPS/OEBPS/Images/CH02_F12_Kennedy3.png
2000
1750
1500
1250
1000
750
500
250

3000

2500

2000

1500

1000

500

dining

age_o

importance_same_religion

1000

800

600

400

200

pref_o_attractive

1600
1400
1200
1000
800
600
400
200

OEBPS/OEBPS/Images/CH02_F13_Kennedy3.png
1000
750
500
250

age_o

27 26 23 24 25 28 22 29 30 21 32 33 34 31 35 20 36 42 19 38 39 18 55 37

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F01_Kennedy3.png
9 °
a ¥

aumesadwal

2
8

1000

800

600

400

200

OEBPS/OEBPS/Images/CH01_F02_Kennedy3.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F04_Kennedy3-EQ02.png
dified 7- _ 0.6745 (value — median)
modified z-score = —————-———

OEBPS/OEBPS/Images/CH02_F00_Kennedy3-EQ01.png
value — mean

std dev

z-score =

OEBPS/OEBPS/Images/CH02_F01_Kennedy3.png
Gaussian

Exponential

1500

1000

500

-2 o 2 4 6
Whole_weight

10

300

200

100

0.0000.025 0.050 0.075 0.100 0.125 0.150

-05 00 05 10 15
Whole_weight

2.0

25

