

 [image: manning]

 Build a Frontend Web Framework (From Scratch)

 Ángel Sola Orbaiceta

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editors: Toni Arritola and Ian Hough
 Technical editor: Arpit Sharma
 Review editor: Dunja Nikitović
 Production editor: Kathy Rossland
 Copy editor: Keir Simpson
 Proofreader: Mike Beady
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633438064

 Printed in the United States of America

 dedication

 To my wife, Jen, for her unwavering love and support, and to my parents, who instilled in me the importance of hard work and dedication. I also dedicate this book to the special family members and friends who support my technical writing, even when it’s a world apart from their understanding.

 contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 No framework

 1 Are frontend frameworks magic to you?

 1.1 Why build your own frontend framework?

 1.2 The framework we’ll build

 1.2.1 Features

 1.2.2 Implementation plan

 1.3 Overview of how a frontend framework works

 1.3.1 The developer’s side

 1.3.2 The browser side of an SPA

 1.3.3 The browser and server sides of an SSR application

 2 Vanilla JavaScript—like in the old days

 2.1 The assignment: A TODOs app

 2.2 Writing the application

 2.2.1 Project setup

 2.2.2 The HTML markup

 2.2.3 The JavaScript code

 Part 2 A basic framework

 3 Rendering and the virtual DOM

 3.1 Separating concerns: DOM manipulation vs. application logic

 3.2 The virtual DOM

 3.3 Getting ready

 3.4 Types of nodes

 3.5 Element nodes

 3.5.1 Conditional rendering: Removing null values

 3.5.2 Mapping strings to text nodes

 3.6 Text nodes

 3.7 Fragment nodes

 3.7.1 Implementing fragment nodes

 3.7.2 Testing the virtual DOM functions

 3.8 Components: The cornerstone of frontend frameworks

 3.8.1 What is a component?

 3.8.2 The virtual DOM as a function of the state

 3.8.3 Composing views: Components as children

 4 Mounting and destroying the virtual DOM

 4.1 Mounting the virtual DOM

 4.1.1 Mounting virtual nodes into the DOM

 4.1.2 Mounting text nodes

 4.1.3 Mounting fragment nodes

 4.1.4 Mounting element nodes

 4.1.5 Adding event listeners

 4.1.6 Setting the attributes

 4.1.7 A mountDOM() example

 4.2 Destroying the DOM

 4.2.1 Destroying a text node

 4.2.2 Destroying an element

 4.2.3 Destroying a fragment

 5 State management and the application’s lifecycle

 5.1 The state manager

 5.1.1 From JavaScript events to application domain commands

 5.1.2 The reducer functions

 5.1.3 The dispatcher

 5.1.4 Result

 5.2 Assembling the state manager into the framework

 5.2.1 The application instance

 5.2.2 The application instance’s renderer

 5.2.3 The application instance’s state manager

 5.2.4 Components dispatching commands

 5.2.5 Unmounting the application

 5.2.6 Result

 6 Publishing and using your framework’s first version

 6.1 Building and publishing the framework

 6.2 A short example

 6.3 Refactoring the TODOs app

 6.3.1 Defining the state

 6.3.2 Defining the reducers

 6.3.3 Defining the view

 7 The reconciliation algorithm: Diffing virtual trees

 7.1 The three key functions of the reconciliation algorithm

 7.2 Comparing two virtual DOM trees

 7.2.1 Finding the differences

 7.2.2 Applying the changes

 7.3 Changes in the rendering

 7.4 Diffing objects

 7.5 Diffing arrays

 7.6 Diffing arrays as a sequence of operations

 7.6.1 Defining the operations you can use

 7.6.2 Finding the sequence of operations: The algorithm

 7.6.3 An example by hand

 7.6.4 Implementing the algorithm

 8 The reconciliation algorithm: Patching the DOM

 8.1 Mounting the DOM at an index

 8.1.1 The insert() function

 8.1.2 Text nodes

 8.1.3 Element nodes

 8.1.4 Fragment nodes

 8.2 Patching the DOM

 8.2.1 The reconciliation algorithm

 8.2.2 Virtual node equality

 8.2.3 Subtree change

 8.2.4 Patching text nodes

 8.2.5 Patching element nodes

 8.2.6 Patching child nodes

 8.3 Publishing the framework’s new version

 8.4 The TODOs application

 8.4.1 Inspecting the DOM tree changes

 8.4.2 Using the paint-flashing tool (Chrome only)

 Part 3 Improving the framework

 9 Stateful components

 9.1 Anatomy of a stateful component

 9.1.1 The properties of a stateful component

 9.1.2 The methods of a stateful component

 9.2 Components as classes

 9.3 Components with state

 9.3.1 Updating the state and patching the DOM

 9.3.2 Result

 9.3.3 The component’s offset

 9.3.4 Patching the DOM using the component’s offset

 10 Component methods

 10.1 Component methods

 10.2 Binding event handlers to the component

 10.3 Mounting the DOM with a host component

 10.4 Patching the DOM with a host component

 11 Subcomponents: Communication via props and events

 11.1 Adding components as a new virtual DOM type

 11.1.1 Updating the elements getter

 11.1.2 Mounting component virtual nodes

 11.1.3 Destroying component virtual nodes

 11.1.4 Patching component virtual nodes

 11.1.5 A rendering optimization (optional)

 11.2 Events

 11.2.1 Saving the event handlers inside the component

 11.2.2 Extracting the props and events for a component

 11.2.3 Wiring the event handlers

 11.2.4 Emitting events

 12 Keyed lists

 12.1 The key attribute

 12.1.1 Component nodes equality

 12.1.2 Using the key attribute

 12.1.3 Removing the key attribute from the props object

 12.2 Extending the solution to element nodes

 12.3 Using the key attribute

 12.3.1 Mistake 1: Using the index as key

 12.3.2 Mistake 2: Using the same key for different elements

 12.4 The application instance

 12.5 Publishing the framework

 13 The component lifecycle hooks and the scheduler

 13.1 The component lifecycle

 13.2 Implementing the mounted and unmounted lifecycle hooks

 13.2.1 Hooks asynchronicity

 13.2.2 Hooks execution context

 13.2.3 Dealing with asynchronicity and execution context

 13.3 The scheduler

 13.3.1 A simple solution that doesn’t quite work

 13.3.2 Tasks, microtasks, and the event loop

 13.3.3 The event loop cycle

 13.3.4 The fundamentals of the scheduler

 13.3.5 Implementing a scheduler

 13.3.6 Scheduling the lifecycle hooks execution

 13.4 Publishing version 4 of the framework

 14 Testing asynchronous components

 14.1 Testing components with asynchronous behavior: nextTick()

 14.1.1 Testing a component with an asynchronous onMounted() hook

 14.1.2 The fundamentals behind the nextTick() function

 14.1.3 Implementing the nextTick() function

 14.2 Publishing version 4.1 of the framework

 14.3 Where to go from here

 appendix Setting up the project

 A.1 Where to find the source code

 A.1.1 Checking out the code for each chapter

 A.1.2 A note on the code

 A.1.3 Reporting problems in the code

 A.1.4 Fixing a bug yourself

 A.2 Solutions to the exercises

 A.3 Advanced topics

 A.4 Note on the technologies used

 A.4.1 Package manager: NPM

 A.4.2 Bundler: Rollup

 A.4.3 Linter: ESLint

 A.4.4 (Optional) Testing: Vitest

 A.4.5 Language: JavaScript

 A.5 Read the docs

 A.6 Structure of the project

 A.7 Finding a name for your framework

 A.8 Option A: Using the CLI tool

 A.9 Option B: Configuring the project from scratch

 A.9.1 The examples folder

 A.9.2 Creating the runtime package

 A.10 Publishing your framework to NPM

 A.10.1 Creating an NPM account

 A.10.2 Logging in to NPM

 A.10.3 Publishing your framework

 A.11 Using a CDN to import the framework

 index

 preface

 In 2007, when I began programming web applications, popular frameworks such as Vue, React, Svelte, and Angular didn’t exist, and Node JS was a few years from its debut. To make a web application interactive back then, you had to attach event listeners to HTML elements manually and update the Document Object Model (DOM) through code. This approach often felt repetitive and cumbersome. Fortunately, innovators, including Miško Hevery at Google, recognized the need for a more efficient solution and introduced AngularJS, a groundbreaking framework designed to liberate developers from direct DOM manipulation. Around the same time, frameworks such as Backbone.js and Knockout emerged. In the years that followed, we witnessed the rise of Ember, Elm, and React, marking the beginning of a flourishing era in the world of web development frameworks.

 It’s 2023 at the time of this writing, and we still see new and innovative frameworks being released. Such is the example of Qwik, also made possible by Miško Hevery. (What a legend!)

 My first encounter with Angular left me utterly astounded. I marveled at how, when the data within a component changed, the framework effortlessly updated the corresponding HTML. The speed at which this process occurred was nothing short of magical. It wasn’t until I delved into Vue a few years later, however, that I felt burning curiosity to comprehend the mechanics behind this sorcery.

 This experience occurred during my tenure as a frontend engineer at my current company. I decided to invest my learning time in dissecting Vue’s source code and unraveling its inner workings. I embarked on this journey by cloning Vue’s repository and meticulously traversing each commit, one step at a time. My objective was to comprehend how every subtle modification in the codebase contributed to the framework’s functionality. I was captivated by the elegantly written source code, which remains easy to follow even today. My admiration for Evan You, a true frontend hero, grew with each insight I gained. Acquiring profound understanding of Vue’s underlying mechanics proved to be invaluable for troubleshooting complex issues and making informed architectural decisions when crafting applications.

 I repeated the same exercise with Svelte and Mithril, and I learned a lot from it. Svelte was particularly interesting, as its approach is quite different. That framework is a compiler that transforms your code into JavaScript components that update the DOM directly; no virtual DOM is involved. Rich Harris, the creator of Svelte, is a genius.

 At one point, I posed a question to myself: Could I create a basic framework from scratch, not for the purpose of competing with industry giants or producing a production-ready solution, but solely for the sake of learning? Intrigued by the idea, I scoured the internet for resources, stumbling upon articles that discussed aspects such as the virtual DOM and rendering, but I found no comprehensive guide that would allow someone to build a framework entirely from the ground up. The thought struck me: “This would make an excellent book!” I would unquestionably purchase a book like that. So why not take on the challenge and write it myself?

 Thus, I embarked on the journey of creating a simple framework—one that mirrors the tools you’re accustomed to using in your daily work. I aimed to strike a balance between simplicity and real-world functionality. Although it may not have many advanced features or performance optimizations, this framework is a comprehensive one, offering insight into the core mechanics of frameworks. To ensure clarity, I dedicated myself to breaking intricate concepts into bite-size, understandable segments, supplementing the content with diagrams and detailed explanations when necessary, recognizing the intricate nature of frontend frameworks. Yet, as I delved deeper, I underestimated the enormity of the task, resulting in a book that is far more extensive than I initially envisioned. To keep it accessible, I pruned it down. After all, who wants to navigate an unwieldy 800-page tome? But I didn’t want to deprive you of valuable insights into the advanced topics I had to omit, such as routing and creating a template loader plugin for Vite. Therefore, I decided to include these supplementary chapters in the wiki section of the book’s GitHub repository, which you can find at http://mng.bz/gvYe.

 I hope that you embark on this journey with me and enjoy the ride at least as much as I enjoyed writing the book. Learning how something works under the hood by doing it yourself, from scratch, is one of the most rewarding experiences you can have as a developer.

 acknowledgments

 Writing a book is a very time-consuming task, and it’s rarely the effort of a single person. Despite being the author of this book, I’m not the only one who contributed to it. Other great professionals helped me along the way, and they deserve to be mentioned here.

 I’m very grateful to Manning’s team of extraordinary professionals who have helped me in the process of writing this book. First, I’m thankful to Eric Pillar and Brian Sawyer for getting in touch with me and giving me the opportunity to write this book. They liked the idea from the beginning and decided to give it a go. Brian was especially helpful in the early stages of giving shape to the idea, turning what could have been an arid technical book into one that’s more approachable and fun to read. If it weren’t for him, this book would be more of a technical dissertation on the inner workings of frontend frameworks and less of a practical guide to building one.

 I want to thank Toni Arritola, my development editor, for her patience and support. If this book does a good job of teaching you the concepts efficiently, it’s all thanks to her. I learned a lot from her experience in teaching effectively, something for which I’m very grateful. Thanks for showing me your tricks, Toni! I also want to thank Ian Hough, who was the development editor in the last stages of the book, for the fantastic job he did.

 I want to thank Arpit Sharma, my technical reviewer, for his invaluable feedback. Arpit is an engineer at OLX Group Berlin who has worked extensively on JavaScript and its related frameworks for the past 10 years in multiple organizations. He has a keen eye for JavaScript internals and web performance. Working with Arpit has been a pleasure.

 I want to thank Ivan Martinović for his help with the technical aspects of the book. Thanks, Ivan, for helping me with finding the proper formatting for the code snippets. Without your expertise in AsciiDoc, the listings in this book wouldn’t look as good as they do.

 Thank you to all the reviewers: Andres Sacco, Andrew Judd, Chris Shin, David Cabrero, Fatih Ozer, Fernando Bernardino, Francisco Rivas, Frans Oilinki, Giampiero Granatella, Gregorio Piccoli, Ian De La Cruz, Jaume López, Javid Asgarov, Jeremy Chen, Jon Humphrey, Jonathan Reeves, Justin Kahn, Kamwa Fosso Arcel Raulain, Ken W. Alger, Lin Zhang, Luke Kupka, Manoj Kumar M. Reddy, Matteo Battista, Mladen Ðurić, Muhammad Yousuf Tafhim, Nader Bahrami, Patrice Maldague, Petru Bocsanean, Prashant Sharma, Raul Ciotescu, Riccardo Marotti, Richard Meinsen, Rodney Weis, Rooparam Choudhary, and Stephan Max. Your suggestions helped make this book better.

 Many other incredible professionals at Manning helped me in the process of writing this book. I want to thank them all for their support and encouragement.

 Special thanks to my brother, Pablo (whose artistic name is Paul Alone), for his music, which has been the soundtrack of this book. I’ve listened to his songs on repeat for hours while writing. They helped me focus, and I found inspiration in them when I needed it most. (His song “Quería” is playing right now.)

 Finally, I thank all my colleagues at Glovo, who were very supportive while I was writing this book. Thanks to all of you who bought the MEAP and gave me feedback about it. I appreciate it.

 about this book

 Build a Frontend Web Framework (From Scratch) is a hands-on guide designed to lead you through the creation of your own frontend framework, closely mirroring the tools you routinely use in your professional life. My primary goal is to unveil the inner workings of frameworks, enabling you to harness their power more effectively. But the book isn’t just about education; it’s also about reveling in the journey!

 Frontend frameworks are intricate pieces of software, and this book was crafted with your learning in mind. Each concept is methodically deconstructed into easily digestible segments, supplemented by diagrams and comprehensive explanations. I aim to equip you with everything you need to construct your own framework.

 Who should read this book

 You may be a frontend developer (at any level of seniority) who’s curious enough to want to understand how the tool they use every day works under the hood. Or you may be a coding enthusiast who wants to spend a few weekends using JavaScript to code a frontend framework for the fun of it—and for the learning experience, of course.

 The book assumes that you have a basic understanding of JavaScript and HTML, as well as some experience with frontend frameworks. For the topics that are a bit more advanced, I’ve included links to external resources where you can learn more about them, as well as more detailed explanations. The book is written so that developers at all levels of experience should be able to follow along.

 How this book is organized: A road map

 This book is divided into three parts. Part 1 introduces frontend frameworks and shows you how to code a simple application by using vanilla JavaScript.

 	 Chapter 1 covers how frontend frameworks work from 30,000 feet.

 	 Chapter 2 introduces the application you’ll rewrite throughout the book. In this chapter, you start by coding the application with vanilla JavaScript.

 Part 2 teaches you how to create the simplest possible frontend framework that renders components and handles the state of the application.

 	 Chapter 3 covers what the virtual DOM is and how it works. In this chapter, you implement the h() function to create virtual DOM nodes.

 	 Chapter 4 covers how to render the virtual DOM to the real DOM, creating the HTML elements and appending them to the browser’s document. You implement the mountDOM() function for this task, and you use destroyDOM() to remove the elements from the DOM when the component is unmounted.

 	 Chapter 5 shows you how to implement a simple state management system that updates the DOM when the state of the application changes.

 	 Chapter 6 explains how to package and publish your framework’s first version to NPM.

 	 Chapter 7 covers the first part of the reconciliation algorithm, comparing two virtual DOM trees to find out what changes need to be made in the real DOM to make it match the virtual DOM.

 	 Chapter 8 covers the second part of the reconciliation algorithm, updating the real DOM to make it match the virtual DOM. In this chapter, you implement the updateDOM() function to apply the changes to the real DOM.

 In part 3, you make components manage their own state, communicate with other components, and run code as part of their lifecycle (when they’re mounted and unmounted from the DOM).

 	 Chapter 9 explains how to define components that manage their own state and render themselves to the DOM. You implement the defineComponent() function to create component prototypes.

 	 Chapter 10 covers how components can implement functionality inside their prototype’s methods.

 	 Chapter 11 covers how components can include other components inside their view and how they communicate with one another.

 	 Chapter 12 shows why it’s so important to use a unique identifier when rendering lists of components and how to tweak your reconciliation algorithm to use hints that improve performance.

 	 Chapter 13 analyzes how asynchronous code executes in the browser and uses that knowledge to create a scheduler that executes the component’s lifecycle methods (also known as hooks).

 	 Chapter 14 shows how to test components written with your framework, especially the ones that use asynchronous code.

 	 Appendix A covers configuring the NPM project where you’ll be writing the code for your framework. I show you how to set it up yourself, but you can use a command-line-interface tool I created to scaffold the project.

 Some extra chapters didn’t fit into the book. You’ll find this extra material in the wiki section of the book’s GitHub repository: http://mng.bz/gvYe. The topics in that section are advanced ones that you may want to explore to continue improving your framework. The extra chapters cover topics such as creating slots to insert external content into components, creating a single-page application router, and writing a template compiler to transform HTML templates into render functions for your components. When you finish the chapters in this book, know that more content is waiting for you to help you continue learning.

 About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, code is also in bold to highlight code that you need to add in an existing code fragment. Code that’s struck through like this is code that you need to remove from an existing code fragment.

 In this book, you’ll create your framework’s code incrementally. You’ll modify the code you wrote in previous chapters, removing some parts and adding new ones. This is why using bold and strikethrough is so important: that formatting helps you identify what code you need to add and what code you need to remove. Suppose that you’ve written the following code for a function called createTextNode():

 function createTextNode(vdom, parentEl) {
 const textNode = document.createTextNode(vdom.value)
 vdom.el = textNode

 parentEl.append(textNode)
}

 If I want you to modify that code so that the function accepts a third parameter called index and to modify the function’s last line to call an insert() function instead of using the append() method of the parentEl element, this is how I’ll format the code:

 function createTextNode(vdom, parentEl, index) {
 const textNode = document.createTextNode(vdom.value)
 vdom.el = textNode

 parentEl.append(textNode)
 insert(textNode, parentEl, index)
}

 As you can see, the first line includes the new index parameter in bold, meaning that you need to add it to the function’s signature in your existing code. The previous last line is struckthrough, meaning that you need to remove it from your existing code and instead write the new line in bold.

 Source code for the examples in this book is available for download from the publisher’s website at https://www.manning.com/books/build-a-frontend-web-framework-from-scratch. You can also find it on the book’s GitHub repository at https://github.com/angelsolaorbaiceta/fe-fwk-book. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/build-a-frontend-web-framework-from-scratch.

 liveBook discussion forum

 Purchase of Build a Frontend Web Framework (From Scratch) includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/build-a-frontend-web-framework-from-scratch/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful dialogue between individual readers and between readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest that you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible on the publisher’s website as long as the book is in print.

 Other online resources

 Coding a frontend web framework from scratch is as complex as it is fun. Covering all the details in a single book of a reasonable size isn’t an easy task, so I had to leave out some advanced topics. You’ll find this extra material on the wiki space of the book’s GitHub repository at http://mng.bz/gvYe.

 The book contains exercises to test your knowledge and help you practice what you’ve learned. The answers to those exercises are also available in the wiki section of the book’s GitHub repository at http://mng.bz/eoR9.

 I suggest that as you read the book, you have the Mozilla Developer Network (MDN) documentation open in your browser. You’ll need to refresh your knowledge of the Document API, and you’ll probably need to look up some of the methods you’ll be using to manipulate the DOM. You can find the documentation at http://mng.bz/ppE5.

 Sometimes, you might want to dive deeper into a topic that I cover briefly in the book. When I want to learn how something related to HTML works or how JavaScript executes in the browser, my ultimate source is the HTML specification, which you can find at https://html.spec.whatwg.org. To learn specifics about the JavaScript language, I recommend the ECMAScript specification, which you can find at https://tc39.es/ecma262. As a frontend developer, you should always have these references at hand.

 about the author

 Ángel Sola Orbaiceta is a senior software engineer with more than 10 years of experience building all kinds of software, from native desktop applications to backend services and frontend web applications. Mechanical engineer by training but software engineer by passion, Ángel is a curious person who loves to learn how things work from first principles and to share his knowledge with others. In his spare time, you’ll likely find him hanging out with friends, cooking food from all over the world, or reading a book—most likely a popular science book or a dystopian novel.

 [image: figure]

 about the cover illustration

 The figure on the cover of Build a Frontend Web Framework (From Scratch) is “Insulaire Nord Est de l’Asie” or “Islander North East Asia,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 No framework

 This first part comprises two introductory chapters. The first chapter offers a high-level overview of frontend frameworks, providing a foundational understanding without delving into specifics.

 In the second chapter, you’ll embark on a hands-on journey to create a TODO application using vanilla JavaScript with no framework assistance. If you’ve never built an interactive frontend application without a framework, this exercise will provide insight into the intricacies of connecting the Document Object Model (DOM) and JavaScript code manually. You’ll also appreciate the challenge of modifying the DOM programmatically whenever the application’s state changes.

 The essence of a framework lies in automating these tasks, which allows you to concentrate on your application’s logic. By mastering the manual process, you’ll gain a deeper appreciation of the indispensable role that a framework plays in your development workflow.

1 Are frontend frameworks magic to you?

 This chapter covers

 	Why you should build your own frontend framework

 	The features of the framework we’ll build together

 	How frontend frameworks work

 Have you ever wondered how the frontend frameworks you use work internally? Are you curious about how they decide when to re-render a component and why they update only the parts of the Document Object Model (DOM) that change? Isn’t it interesting that a single HTML page can change its content without reloading and that the URL in the browser’s address bar changes without requesting the new page from a server? The inner workings of frontend frameworks are fascinating, and there’s no better way to learn about them than to build one from scratch. But why would you want to learn how frontend frameworks work? Isn’t it enough just to know how to use them?

 Good cooks know their tools; they can use knives skillfully. Great chefs go beyond that skill, however: they know the different types of knives, when to use each type, and how to keep the blades sharp. Carpenters know how to use a saw to cut wood, but great carpenters also understand how a saw works and can fix it if it breaks. Electrical engineers not only understand that electricity is the flow of electrons through a conductor, but also deeply understand the instruments that they use to measure and manipulate it. They could build a multimeter, for example, and if their multimeter broke, they could disassemble it, figure out what went wrong, and repair it.

 As a developer, you have a frontend framework in your toolbox. Do you know how it works, or is it magic to you? If the framework broke—say, you found a bug—would you be able to find its source and fix it? When a single-page application (SPA) changes the route in the browser’s URL bar and renders a new page without requesting it from the server, do you understand how that happens?

1.1 Why build your own frontend framework?

 The use of frontend frameworks is on the rise; it’s uncommon to write pure-vanilla JavaScript applications nowadays, and rightly so. Modern frontend frameworks boost productivity and make building complex interactive applications a breeze. Frontend frameworks have become so popular that there are jokes about the unwieldy number of them at our disposal. (In the time it took you to read this paragraph so far, a new frontend framework was created.) Some of the most popular frontend frameworks even have their own fan groups, with people arguing about why theirs is the best. Let’s not forget that frontend frameworks are tools—means to an end—and that the end is to build applications that solve real problems.

 Framework vs. library

 Frameworks and libraries are different. When you use a library, you import its code and call its functions. When you use a framework, you write code that the framework executes. The framework is in charge of running the application, and it executes your code when an appropriate trigger happens. Conversely, you call the library’s functions when you need them.

 Angular is an example of a frontend framework, whereas React claims to be a library that you can use to build user interfaces (UIs). For convenience, I’ll refer to both frameworks and libraries as frameworks in this book.

 All of the most popular frameworks currently available—such as Vue, Svelte, Angular, and React—are exceptional. Why should you create your own frontend framework when so many great options are already available? Well, aside from the satisfaction and enjoyment of building a complex software piece from scratch, you have a few practical reasons to consider. Let me tell you a little story about a personal experience to illustrate this fact.

 When I was little, I went to a cousin’s house to hang out. He was a few years older than me, and he was a handyman, with cabinets full of cables, screwdrivers, and other tools. I’d spend hours observing how he fixed all kinds of appliances. Once, I brought a remote-control car along so we could play with it. He stared at it for some time and then asked a question that took me by surprise: “Do you understand how this thing works?” I didn’t; I was just a kid with zero electronics knowledge. Then he said, “I like to know how the stuff I use works. So what do you say we take it apart and see what’s inside?” I still think about that experience sometimes.

 Now let me ask you a question similar to the one that my cousin asked me. You use frontend frameworks every day, but do you understand how they work? You write the code for your components and then hand it over to the framework, which does its magic. When you load the application into the browser, it works. It renders the views and handles user interactions, always keeping the page updated (in sync with the application’s state). For most frontend developers—including me years ago—how this magic happens is a mystery. Is the frontend framework that you use a mystery to you?

 Sure, most of us have heard about that thing called the “virtual DOM.” We’ve heard about a “reconciliation algorithm” that selects the smallest set of changes required to update the browser’s DOM. We also know that SPAs modify the URL in the browser’s address bar without reloading the page, and if you’re the curious kind of developer, you may have read about how the browser’s history API (http://mng.bz/ZRdR) achieves this task. But do you understand how all these things work together? Have you disassembled and debugged the code of the framework you use? Don’t feel bad if you haven’t. Most developers haven’t, including some very experienced ones. This reverse-engineering process isn’t easy; it requires lots of effort (and motivation).

 In this book, you and I—together as a team—will build a frontend framework from scratch. This framework will be simple but complete enough to demonstrate how frontend frameworks work. From then on, what the framework does will no longer be a mystery to you. This project will be lots of fun as well.

1.2 The framework we’ll build

 I like to set expectations early, so here goes: we won’t build the next Vue or React in this book. After you finish the book, you may be able to do that yourself by filling in the missing details and optimizing a couple of things here and there. The framework we’ll build can’t compete with the mainstream frameworks, but that’s not the objective anyway. The objective of this book is to teach you how these frameworks work in general so that what they do isn’t magic to you anymore. You don’t need to build the most advanced framework in the world to achieve this goal. You’d need a book four times as thick as this one, and writing that kind of framework wouldn’t be as much fun. (Did I mention that writing your own framework is fun?)

 The framework we’ll build borrows ideas from a few existing frameworks, most notably Vue (https://vuejs.org), Mithril (https://mithril.js.org), Svelte (https://svelte.dev), React (https://react.dev), Preact (https://preactjs.com), Angular (https://angular.io), and Hyperapp (https://github.com/jorgebucaran/hyperapp). Our goal is to build a framework that’s simple but includes the typical features of a frontend framework. I also want it to represent some of the relevant concepts behind the source code of the most popular frameworks.

 Not all frameworks use the virtual DOM abstraction, but a big portion of them do. (Svelte in particular considers it to be pure overhead, and the reasons are simply brilliant; I recommend that you read their blog post at http://mng.bz/RmjZ). I chose our framework to implement a virtual DOM that’s representative of the framework you’re likely using today. In essence, I chose the approach that I thought would result in the greatest learning for you. I’ll cover the virtual DOM in detail in chapter 3, but in a nutshell, it’s a lightweight representation of the DOM that’s used to calculate the smallest set of changes required to update the browser’s DOM. The HTML markup

 <div class="name">
 <label for="name-input">Name</label>
 <input type="text" id="name-input" />
 <button>Save</button>
</div>

 would have a virtual DOM representation like figure 1.1, for example. (Note that the saveName() event handler in the figure doesn’t appear in the HTML markup. Event handlers typically aren’t shown in the HTML markup; they’re added programmatically.) I’ll be using figures a lot throughout the book to illustrate how the virtual DOM and the reconciliation algorithm work. The reconciliation algorithm is the process that decides what changes need to be made to the browser’s DOM to reflect the changes in the virtual DOM, which is the topic of chapters 7 and 8.

 [image: figure]

Figure 1.1 A virtual DOM representation of HTML markup

 Your framework will have some shortcomings that make it a less-than-ideal choice for complex production applications, but it will still be a good fit for your latest side project. The framework will support only the standard HTML namespace (http://mng.bz/27Bg), which means that Scalable Vector Graphics (SVG) won’t be supported. Most of the popular frameworks support this namespace, but we’ll leave it out for simplicity.

1.2.1 Features

 The framework you’ll have by the time you finish the book will have the following features, which you’ll build from scratch:

 	 A virtual DOM abstraction

 	 A reconciliation algorithm that updates the browser’s DOM

 	 A component-based architecture in which each component does the following:

 	 Holds its own state

 	 Manages its own lifecycle

 	 Re-renders itself and its children when their states change

 If you decide that you want to continue learning, you can find extra chapters in the book’s GitHub repository (appendix A). These chapters cover the following advanced features:

 	 An SPA router that updates the URL in the browser’s address bar without reloading the page

 	 Slots for rendering content inside a component

 	 HTML templates that are compiled into JavaScript render functions

 	 Server-side rendering

 	 A browser extension that debugs the framework

 As you can see, the framework will be a fairly complete framework—not a full-blown framework like Vue or React, but enough to demonstrate how those frameworks function. The neat thing is that you’ll build the framework line by line, so you’ll understand how everything fits together. I’ll use lots of figures to help you understand concepts that may be hard to grasp. I recommend that you write the source code yourself as you read the book. Try to understand it line by line, take your time, debug it, and make sure that you understand the decisions and trade-offs that we’ll make along the way.

 Figure 1.2 shows the architecture of the framework we’ll build. It depicts all the parts of the framework and shows how they interact.

 [image: figure]

Figure 1.2 Architecture of the framework we’ll build

 I’ll revisit this figure throughout the book, making sure to highlight each part of the framework as we build it. You don’t need to understand all the details of the architecture right now, but it’s good to have a high-level understanding. By the end of the book, this figure will make a lot of sense to you: you’ll recognize every part because you’ll have built each one yourself.

1.2.2 Implementation plan

 As you can imagine, you can’t build everything in a single chapter. You want to break it down into smaller pieces so that you can focus on one thing at a time. Figure 1.3 shows the implementation plan for the framework; it resembles a kanban board, with each sticky note representing the work of one or more chapters. You’ll pick up a sticky note in each chapter.

 [image: figure]

Figure 1.3 Implementation plan for the framework we’ll build

 You’ll start by implementing a simple example application using vanilla JavaScript, which will help you understand how frameworks can simplify the code of a frontend app. (After you’ve suffered the “pain,” you’ll be in a better position to appreciate the benefits of a framework.)

 Stateless components and global application state

 When you have a better understanding of the benefits of frameworks, you’ll extract parts of the application’s view to stateless components modeled by pure functions that return the virtual DOM representation of their view. The application will hold the entire state of the application and pass it to the components, which allows you to focus on the DOM reconciliation algorithm—likely the most complex part of the framework.

 Stateful components

 Next, you’ll allow components to have their own state, which makes state management much simpler. The application will no longer need to hold the entire state; state will be split among components instead. Pure functions will turn into classes that implement a render() method, and each component will be its own little application with its own lifecycle.

 Subcomponents

 You’ll add support for subcomponents, which allow you to split the application into smaller pieces. A component can pass information to its children via props, which are similar to the arguments of a function. Components can also communicate with their parents via events to which the parent can subscribe.

 Lifecycle hooks

 You’ll add lifecycle hooks to the components. These hooks make it possible to execute code at certain moments, such as when the component is mounted into the DOM. An example lifecycle hook might fetch data from a remote server when the component is mounted.

 Testing

 Every application must be tested, so how do you write unit tests for an application using our framework? You’ll learn how to test the application’s components and how to handle asynchronous events or lifecycle hooks.

1.3 Overview of how a frontend framework works

 Now that you know what you’ll build and have a plan, let’s take a quick look at how frontend frameworks work. This section reviews how a frontend framework works when observed from the outside. (You’ll learn about the internals throughout the rest of the book.) We’ll start from the viewpoint of the developer—someone who’s using the framework to build an application. Then we’ll take the browser’s perspective.

1.3.1 The developer’s side

 A developer starts creating a project by using the framework’s command-line interface (CLI) tool or by installing the dependencies and configuring the project manually. Reading the framework’s documentation is important, as every framework works differently.

 In a web application, developers create components that define part of the application’s view and how the user interacts with it. Components are written in HTML, CSS, and JavaScript code. Most frameworks use single-file components (SFCs), in which all the component’s code (HTML, CSS, and JavaScript) lives in a single file. A notable exception is Angular, which uses three files for each component: one for the HTML, one for the TypeScript code, and one for the CSS. This arrangement allows the developer to keep the languages separate and potentially get better syntax support from their IDE, but it may be inconvenient to jump between files to see the entire component.

 React and Preact use JSX—an extension of JavaScript—instead of writing HTML directly. Other frameworks (including Vue, Svelte, and Angular) use HTML templates with directives to add or modify the behavior of DOM elements, such as iterating over and displaying an array of items or showing specific elements conditionally. The following code snippet shows how you’d show a paragraph conditionally in Vue:

 <p v-if="hasDiscount">
 You get a discount!
</p>

 The v-if directive is a custom directive that Vue provides to show an element conditionally. Other frameworks use slightly different syntaxes, but all of them give the developer a way to show or hide elements based on the application’s state. For the sake of comparison, here’s how you’d do the same thing in Svelte

 {#if hasDiscount}
<p>
 You get a discount!
</p>
{/if}

 and in React

 {hasDiscount && <p>You get a discount!</p>}

 When the developer is satisfied with the application, they need to bundle the code into fewer files than originally written so that the browser can load the application by making fewer requests to the server. The files can also be minified —made smaller by removing whitespace and comments and by giving variables shorter names. The process of turning the application’s source code into the files that are shipped to the users is called building.

 Before we can deploy a frontend application to production, we need to build it. Most of the work of building an application with a specific framework is done by the framework itself. The framework typically provides a CLI tool that we can use to build the application by running a simple NPM script such as npm run build.

 NOTE An application can be built in many ways, resulting in a wide variety of bundle formats. Here, I’ll explain a build process that encapsulates some of the most common practices.

 Building the application involves a few steps:

 	 The template compiler transforms the template for each component into JavaScript code. This code, executed in the browser, creates the component’s view.

 	 The components’ code, split into multiple files, is transformed and bundled into a single JavaScript file, app.bundle.js. (For larger applications, it’s common to have more than one bundle and to lazy-load them—that is, load them only when they’ll become visible to the user.)

 	 The third-party code used by the application is bundled into a single JavaScript file, vendors.bundle.js. This file includes the code for the framework itself, along with other third-party libraries.

 	 The CSS code in the components is extracted and bundled into a single CSS file: bundle.css. (As before, larger applications may have more than one CSS bundle.)

 	 The HTML file that will be served to the user (index.html) is generated or copied from the static-assets directory.

 	 The static assets (such as images, fonts, and audio clips) are copied to the output directory. Optionally, they can be preprocessed to optimize images or convert audio files to a different format.

 A typical build process results in four files (or more, in the case of larger apps):

 	 app.bundle.js with the application’s code

 	 vendors.bundle.js with the third-party code

 	 bundle.css with the application’s CSS

 	 index.html—the HTML file that will be served to the user

 These files are uploaded to a server, and the application is ready to be served to the user. When a user requests the website, the HTML, JS, and CSS files are statically served.

 NOTE When a file is statically served, the server doesn’t need to do anything before sending it to the user. The server simply reads the file from disk and sends it. By contrast, when the application is rendered on the server, the server generates the HTML file before sending it to the user’s browser.

 Figure 1.4 shows a diagram of the build process. Note that a typical build process is more complex than the one shown in the figure, but this illustration is enough to explain the concepts. I’ve included a step that transforms the JavaScript code. This generic step applies to any transformation that needs to be made before the code is bundled, such as transpiling it by using Babel (https://babeljs.io) or TypeScript (https://www.typescriptlang.org).

 [image: figure]

Figure 1.4 A simplified diagram of a frontend application’s build process

 Let’s see what happens in the browser after these files are loaded. The flow is slightly different depending on whether the application server-side rendered (SSR) or statically served as an SPA. Let’s start with the slightly simpler latter case.

1.3.2 The browser side of an SPA

 In an SPA, the server responds with a mostly empty HTML file that’s used to load the application’s JavaScript and CSS files. Then the framework uses the Document API to create and update the application’s view. A router makes sure that the entire application isn’t reloaded when the user navigates to a different URL; rather, the view is updated to show the new content. The router also updates the URL in the browser’s address bar to give the user a nice experience. The following sections describe this process step by step.

 Step 1: Loading the HTML file

 When the user navigates to the application by writing its URL, the browser requests the page’s HTML file (1), which is returned by the server (2), as illustrated in figure 1.5.

 [image: figure]

Figure 1.5 SPA requesting the mostly empty HTML page

 The browser loads the HTML file and parses it. This HTML, which is mostly empty, is used to load the JavaScript and CSS bundles declared in the <script> and <link> tags. These bundles are the application and vendor bundles we talked about in the previous section.

 Step 2: Loading the JavaScript and CSS files

 The browser loads the JavaScript and CSS files referenced in the HTML file (3) and parses the JavaScript code, as depicted in figure 1.6.

 [image: figure]

Figure 1.6 The browser loads the JavaScript and CSS files referenced in the HTML.

 The browser is still blank at this point. It has rendered the HTML file, but this file’s <body> element is mostly empty—except maybe for a <div id="app"> tag that some frameworks use to render the app. The view of an SPA is created dynamically by the framework’s JavaScript code.

 Step 3: Creating the application’s view (mounting the app)

 The framework JavaScript code (living in the vendors bundle) finds the components defined in the application’s code that need to be rendered (4) and creates the application’s view (5), as depicted in figure 1.7. This initial rendering is called mounting the application.

 [image: figure]

Figure 1.7 The framework creates the application’s view using the Document API.

 The framework uses the Document API to create the application’s HTML programmatically. The Document API allows HTML elements to be created programmatically through JavaScript. Let’s take a quick detour to see how this process works. Given an empty HTML <body> element like

 <body></body>

 a paragraph can be created programmatically and appended to the document like so:

 const paragraph = document.createElement('p')
paragraph.textContent = 'Hello, World!'
document.append(paragraph)

 This process results in the following HTML:

 <body>
 <p>Hello, World!</p>
</body>

 Step 4: Handling user interactions

 Going back to how SPAs work, what happens when the user interacts with the application? When the user interacts with the application (6), the framework handles the event and updates the view accordingly, as depicted in figure 1.8. The framework handles the event from the browser by executing the event handling code defined in the application’s code (7) and then updating the view to reflect the changes in the application’s state (8).

 [image: figure]

Figure 1.8 SPA handling user interactions

 The framework is responsible for updating only the parts of the HTML that need to be updated. This process is called patching the DOM.

 DEFinition A single change that the framework makes in the DOM is called a patch. The process of updating the view to reflect the changes in the application’s state is called patching the DOM.

 Making changes in the document is expensive, so a well-implemented framework minimizes the number of changes to the document required to make it reflect the updates. By expensive, I mean that the browser needs to repaint and reflow the document to reflect the changes—a process that consumes resources.

 TIP To better understand why changing the DOM is expensive in terms of computation, I recommend that you read “Render-tree Construction, Layout, and Paint” at http://mng.bz/1JlX. This article explains how the browser renders the document and gives you an overview of everything that happens under the hood.

 How this task is achieved varies greatly across frameworks. Some frameworks use a virtual DOM (as ours will) to compare the current state of the document with the desired state and apply only the necessary changes; others take a completely different approach. To learn more about how some frameworks update the view, check the following sidebar.

 How some frameworks update the view

 Svelte understands the ways in which the view can be updated at compilation time, and it produces JavaScript code to update the exact parts of the view that need to be patched for each possible state change. Svelte is remarkably performant because it does the least work in the browser to update the view.

 Angular runs a change detection routine, comparing the last state it used to render the view with the current state, every time it detects that the state might have changed. Changes to the state of a component typically happen when an event listener runs, when data is requested from a server via an HTTP request, or when macrotasks (such as setTimeout()) or microtasks (such as Promise.then()) are executed. Angular makes this detection possible thanks to zone.js (https://angular.io/guide/zone), an execution context that’s aware of the asynchronous tasks running at any given time. With zone.js, Angular can detect when a macrotask or microtask is executed and run the change detection routine. The web page “Event loops: microtasks and macrotasks” (https://javascript.info/event-loop) is a wonderful resource for learning more about the JavaScript event loop and the difference between the micro- and macrotask queues.) Most other widely used frameworks—including Vue, React, Preact, and Inferno—use a virtual DOM representation of the view. So by comparing the last-known virtual DOM with the virtual DOM after the state has changed, they compute the minimum changes required to update the HTML. React makes this virtual DOM comparison every time a component changes the state, using either setState() or the useState() hook’s mechanism. Vue takes a remarkably smart approach, including a reactivity layer that the developer can use to define the application’s state. These reactivity primitives wrap regular JavaScript objects (including arrays and sets) and primitives (such as strings, numbers, and booleans); they automatically detect when values change and notify the components that use those values that they need to re-render.

 Step 5: Navigating among routes

 The last step we need to cover is how the framework handles navigation among routes. When the user clicks a link (9), the framework’s router prevents the default behavior of reloading the page; instead, it renders the component that’s configured for the new route (10 and 11). The router is also in charge of changing the URL (12) to reflect the new route. Figure 1.9 illustrates this process.

 [image: figure]

Figure 1.9 SPA navigation among routes

 An SPA works with a single HTML file in which the HTML markup code is updated programmatically by the framework, so new HTML pages aren’t requested to the server when the user navigates to a different route. SPAs are called single-page applications because a single HTML file is involved. The illusion of multiple pages is created by the framework, which renders the components that are configured for each route.

 The complete flow of an SPA

 Figure 1.10 depicts the complete flow of an SPA, including all the steps described earlier but showing them more schematically.

 [image: figure]

Figure 1.10 The complete flow of an SPA rendered in the browser

1.3.3 The browser and server sides of an SSR application

 Now that you know how SPAs work, let’s compare them with SSR applications. SSRs are web applications that render the HTML markup on the server and send it to the browser. Therefore, a backend is required to handle requests and render the HTML pages. In the browser, the frontend code is responsible for handling user interactions and updating the view to reflect the changes in the application’s state, as in an SPA. But when the user navigates to a different route, the browser requests a new HTML page from the server instead of updating the HTML markup programmatically. Let’s see how an SSR application works step by step.

 Step 1: Loading an HTML page

 When the user types the application’s URL into their browser, the browser asks the server for the HTML file (1). The server sends back a complete page that is created each time someone requests it. To create the page, the server uses the application’s router to figure out which components to show based on the requested route; then it instantiates those components (2). Next, each component loads data from other servers or databases and executes its mounting code before being rendered. Finally, the components are turned into HTML (3) and sent to the user (4). Figure 1.11 illustrates this process.

 [image: figure]

Figure 1.11 SSR application requesting an HTML page from the server

 Even though the file looks like a static HTML file to the user, the server generates the page each time it’s requested. The HTML file served to the user displays already-rendered HTML markup, so the framework doesn’t need to use the Document API to generate it programmatically. But the HTML coming from the server lacks the event handlers defined in the application code, so the application doesn’t respond to user interactions. This situation is where the hydration process comes into play.

 DEFIniTION Hydration is the process by which the framework matches HTML elements with their corresponding virtual DOM nodes and attaches event handlers to make the HTML markup interactive in the browser. The hydration algorithm binds the browser’s HTML to each component’s virtual DOM, allowing for dynamic updates.

 Step 2: Hydrating the HTML page

 The HTML document instructs the browser to load the application JavaScript files and CSS stylesheets (5)—the same as in the case of an SPA. When the JavaScript code is parsed, the framework code needs to connect the existing HTML—produced in the server—to the component’s virtual DOM, as well as attach event handlers (6). Figure 1.12 depicts the hydration process.

 [image: figure]

Figure 1.12 The framework hydrates the HTML page.

 Step 3: Handling user interactions

 After the framework’s hydration process makes the page responsive, the user can interact with it. When the user interacts with the page (7), the framework’s event handlers are triggered (8), and as in an SPA, the framework patches the parts of the HTML that need to be updated (9). All this processing happens in the browser, so the server isn’t involved, as you can see in figure 1.13.

 [image: figure]

Figure 1.13 SSR application handling user interactions

 What happens when the user navigates to a different route? The flow is a bit different from flow in the case of SPAs.

 Step 4: Navigating between routes

 When the user clicks a link (10), the browser changes the URL (the framework doesn’t do anything on the browser side this time), and the page is reloaded (11). A new HTML page is requested from the server (12), and the process starts again from step 1 (figure 1.14).

 [image: figure]

Figure 1.14 SSR application navigating among routes

 As you can see, navigating among pages is quite different in an SSR application than in an SPA. In the case of SPAs, the server isn’t involved in the process. With SSRs, pages are generated in the server.

 The complete flow of an SSR application

 Figure 1.15 shows the complete flow of an SSR application, including all the steps described earlier but in a more schematic way.

 [image: figure]

Figure 1.15 The complete flow of an SSR application—rendered in the server and hydrated in the browser

 Now that you’ve seen how both SPAs and SSRs work, what about building a simple application yourself, without using a framework? That experience will show you what it was like to write web applications before frontend frameworks appeared.

 Summary

 	 Building a frontend framework from scratch is a great way to learn how frameworks operate.

 	 Frontend frameworks bundle the application’s code into a single JavaScript file, the third-party dependencies into another file, and the CSS styles into yet another file. If the application is large, the framework might split the application’s code into multiple bundles that are loaded lazily (as needed).

 	 The Document API allows HTML elements to be created programmatically, using JavaScript. Frontend frameworks use the Document API to create the application’s view.

 	 SPAs consist of a single HTML file that’s loaded by the browser and updated by the framework to reflect the application’s state. When the route changes, the framework changes the view; the browser doesn’t reload the page.

 	 The hydration process connects the existing HTML markup, rendered in the server, to the component’s state and event listeners.

2 Vanilla JavaScript—like in the old days

 This chapter covers

 	Building an application using vanilla JavaScript and HTML

 	Creating DOM elements programmatically

 	Using the Document API to manipulate the DOM

 Before you can understand the benefits of using a frontend framework, you need to understand the problems that it solves, and there’s no better way to gain this understanding than to write an application without a framework. That is, you should do the framework’s job yourself. The objective of this chapter is to make you suffer the pain of writing applications without a framework so that you can build some appreciation for the job that frameworks do for you.

 In the old days (I’m not that old, but technology evolves fast), developers wrote applications using only vanilla JavaScript and HTML. JQuery was the best we had; it provided a nice API to interact with the Document Object Model (DOM), hiding the browser differences. But we still had to write code down to the level of working with the DOM, and to be fair, the work wasn’t that bad. That is, it wasn’t bad until we used our first modern frontend framework (Angular, in my case). Now there’s no going back. We’ve been there. We know how much simpler it’s become to write JavaScript applications.

 You’re probably accustomed to writing applications that use the power of a framework—something you should keep doing if you get paid to ship applications quickly—so it may be hard for you to realize the problems that the framework solves. Or maybe, like me, you’re from the pre-framework era but haven’t written an application without a framework in a long time, in which case this chapter will be good for refreshing your memory. If your case is the former, I’m positive that when the framework is taken away from you, you’ll quickly realize why you used it in the first place. Suppose that you always find your working space clean and tidy, but you rarely appreciate it because you’re used to seeing it that way—until the cleaning personnel get sick and you have to clean up yourself. You suddenly realize that vacuuming every corner of the office is an arduous task and removing dust from the shelves and behind your computer—let alone cleaning the bathroom—is a pain. Only when you realize how much you value working in a clean, tidy environment do you start to truly appreciate the job that cleaning personnel do.

OEBPS/OEBPS/Images/1-3.png
Chapter 2

“Suffer the pain"

Vanilla JavaScript
to-do application

Chapters 3 & 4
Virtual DOM

Mounting and
unmounting

Chapters 9 & 10

Stateful
components

No more pure
functions

Chapter 13

Component
lifecycle hooks
and the
scheduler

No framework

Chapter 5

The state
management
system

Chapters 11 & 12

Subcomponents
(props and events)
and keyed lists

Chapter 14

Testing async
components

Chapters 7 & 8

Virtual DOM Basic
reconciliation framework
algorithm

A better

framework

OEBPS/OEBPS/Images/1-10.png
without reloading the page.

[000

v

— 12. Framework changes the URL

1. User requests page.

(€ > ¢ (Mos/mwwmyappcomiobe__)

6. User interacts with the
page. An event is emitted.

T

*

D

2. Server responds with (mostly empty)
HTML file.

html

. I
3. Browser loads js and .css files. /

9. User clicks a link. A
navigation event is emitted.

v
5. Framework creates the
HTML programmatically.
- -
)
is
css
Application bundle
8. Framework patches the parts
of HTML that change:
11. Framework replaces the
current view with the new one. 4. Framework reads the
view's components. js
Vendors bundle

7. Framework executes the event
handlers defined in the application.

10. Framework’s router selects the
view that needs to be rendered.

OEBPS/cover.jpg

OEBPS/OEBPS/Images/manning_m.jpg

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/cover.jpg

OEBPS/OEBPS/Images/1-11.png
ooo

« o ¢ (htips/mwww.myapp.com)

1. User requests page. =

The HTML file references /'
html the

>
4. Server responds with the
full HTML.
-
—_— .
\ The fully rendered html Running
HTML file app
! I 2. Backend instantiates the
] Browser storage 1 components for the page.
: i
(-
: <link rel="stylesheet” href="app.bur |
! N - . 3. Components are rendered v
g <script sr app.bundle.js"></scrip into an HTML string.
| <script src="vendors.bundle.js"></s)
' ——
'
'
'
'
|

i
i
and .css bundles.]

OEBPS/OEBPS/Images/1-14.png
ooo

E 2 E

htips://www.myapp.com/abc

§ <—— 10. User clicks a link. A

navigation event is emitted.

Browser storage

js
| —fcss

js

Application bundle

Vendors bundle

,

11. Browser updates the URL and
reloads the page.

12. Browser requests the new page to the server.

The server receives the request, /

and the process starts from step 1.

This HTML file will be replaced by

| L—" the new one coming from the server.

Running
app

OEBPS/OEBPS/Images/1-4.png
Source files Third-party libraries Static assets

Code Markup Styles index.ntml Images, etc.

Template
compiler

Assets
copying

JavaScript
transformer

Style
bundler

JavaScript
bundler

Result

bundle.css index.html Other assets

app.bundle.js vendors.bundle.js

OEBPS/OEBPS/Images/1-5.png
oo0o

« > C https://www.myapp.com
1. User requests page.
- —
Loading... 2. Server responds with HTML file.
- e
The HTML file references

<link rel="stylesheet" href="app.bundle.css"> the .js and .css bundles.
<script src="app.bundle.js"></script>
<script src="vendors.bundle.js"></script>

The HTML file is loaded into the browser.

OEBPS/OEBPS/Images/1-6.png
oo0o

« > C https://www.myapp.com

Loading...

Application bundle

3. Browser loads .js and .css files.

\ Blank browser. Nothing has

been rendered yet (except
the mostly empty HTML file).

Application and vendor bundles
are loaded into the browser.

js

Vendors bundle

OEBPS/OEBPS/Images/1-8.png
oo0o

« - ¢ (htips:/fwww.myapp.com

6. User interacts with the
page. An event is emitted.

R

Idle server \
\ Only the parts that change in the

HTML are patched (re-rendered).

html

Browser storage

-

js
css

1
1

- F-- 7.Framework executes the event handlers
defined in the application.

8. Framework patches the parts of the HTML
that change.

js

Application bundle

Vendors bundle

OEBPS/OEBPS/Images/1-9.png
oo0o

« > C https://www.myapp.com/abc —

R <— 9. User clicks a link. A

navigation event is emitted.

12. Framework changes the URL
without reloading the page.

The navigation happens without /

requesting a new page to the server.

------------ F-- 10. Framework’s router selects the
view that needs to be rendered.

11. Framework replaces the current view
with the new one.

Browser storage S
[AN
D
js
css js
html Application bundle Vendors bundle

OEBPS/OEBPS/Images/1-7.png
000

« > ¢ (htips/www.myapp.com Idle server\

\ The first render happens when

the framework mounts the app.

html Application bundle Vendors bundle

-
) 1
' 1
! Browser storage ___________ I it -- 4. Framework reads the view's components.
| |
1
: B : 5. Framework creates the HTML programmatically.
'
: |
| |
' . 1
| 18 i
i css js]
| |
{ 1
\ '

OEBPS/OEBPS/Images/1-13.png
ooo

« o ¢ (htips/mwww.myapp.com)

7. User interacts with the
page. An event is emitted.

-«

Idle server\

\ Only the parts that change in the

HTML are patched (re-rendered).

-y [

|

Browser storage e e - - 8. Framework executes the event handlers

J] defined in the application.

|

1 9. Framework patches the parts of the HTML

1 that change.

) i
js 0
Ccss js 1
|
html || Application bundle [| Vendors bundle 1

OEBPS/OEBPS/Images/Orbaiceta.png

OEBPS/OEBPS/Images/1-2.png
Browser

coo

& o ¢ (otpsswwwmyapp.com)

Render

w cycle

Parent element

Application Component

Private Private

isMounted
vdom
hostEl
parentComponent
dispatcher

— subscriptions

component
parentEl

Triggers

mount (parentEl)

t
unmount () patch ()

props
state
Dispatcher

get elements
get firstElement
get offset

subscribe (name, handler)
afterEveryCommand (handler)

dispatch(name, payload)

updateProps (props)
updateState (state)

async onMounted ()
async onUnmounted ()

emit (eventName, payload)
render ()
mount (hostEl, index)
unmount ()

<<custom methods>>

OEBPS/OEBPS/Images/1-15.png
o0oo

« > C https://www.myapp.com /abc

10. User clicks a link. A
/ navigation event is emitted.

% 7. User interacts with the

page. An event is emitted.

R

5. Browser loads .js and .css files.

html

Running
app

2. Backend instantiates the
components for the page.

®

6. Framework hydrates the components.

9. Framework patches the parts of the

HTML that change.

1. User requests page.
— 11. Browser updates the URL and
reloads the page.
4. Server responds with the
full HTML. —
-
—_— |
js

css

3. Components are rendered v

into an HTML string. =1

Application bundle

js

Vendors bundle

8. Framework executes the event handlers
defined in the application.

OEBPS/OEBPS/Images/1-1.png
class: "name"

for: "name-input" type: "text" click: saveName

id: "name-input"

Text Text

"Name" "Save"

OEBPS/OEBPS/Images/1-12.png
ooo

« o ¢ (htips/mwww.myapp.com)

5. Browser loads .js and .css files.

6. Framework hydrates the components.

is

Browser storage
js
css
html Application bundle

Vendors bundle

Application and vendor bundles
are loaded into the browser.

Running
app

