

 [image: cover]

Front-End Tooling with Gulp, Bower, and Yeoman

 Stefan Baumgartner

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Leslie Trites
Review editor: Aleksandar Dragosavljević
Technical development editors: Nick Watts, Michael Williams
Project editor: Kevin Sullivan
Copyeditor: Linda Recktenwald
Proofreader: Melody Dolab
Technical proofreader: Johan Pretorius
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617292743

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the cover Illustration

 1. A modern workflow for web applications

 Chapter 1. Tooling in a modern front-end workflow

 Chapter 2. Getting started with Gulp

 Chapter 3. A Gulp setup for local development

 Chapter 4. Dependency management with Bower

 Chapter 5. Scaffolding with Yeoman

 2. Integrating and extending the platform

 Chapter 6. Gulp for different environments

 Chapter 7. Working with streams

 Chapter 8. Extending Gulp

 Chapter 9. Creating modules and Bower components

 Chapter 10. Advanced Yeoman generators

 Introduction to Node.js

 Index

 List of Figures

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the cover Illustration

 1. A modern workflow for web applications

 Chapter 1. Tooling in a modern front-end workflow

 1.1. A software developer’s workflow and task list

 1.1.1. Initialization phase tasks

 1.1.2. Development phase tasks

 1.1.3. Deployment phase tasks

 1.1.4. The human factor

 1.2. JavaScript tools and a new workflow

 1.2.1. Three types of code and their tools

 1.2.2. Node.js for JavaScript tools

 1.3. Scaffolding with Yeoman

 1.3.1. The benefits of a Yeoman as a scaffolding tool

 1.3.2. The concept behind generators

 1.4. Dependency management with Bower

 1.4.1. The benefits of Bower

 1.4.2. Bower’s dependency tree

 1.5. Gulp: the streaming build system

 1.5.1. The benefits of Gulp

 1.5.2. Build pipelines

 1.6. Summary

 Chapter 2. Getting started with Gulp

 2.1. Setting up Gulp

 2.1.1. The building blocks of Gulp

 2.1.2. The Gulp command-line interface

 2.1.3. The local Gulp installation

 2.2. Creating Gulpfiles

 2.2.1. A Gulp “Hello World” task

 2.2.2. Dealing with streams

 2.2.3. Readable and writeable streams with Gulp

 2.3. Handling tasks with Gulp plugins

 2.3.1. Transforming data

 2.3.2. Changing the file structure

 2.3.3. Chaining plugins

 2.4. Summary

 Chapter 3. A Gulp setup for local development

 3.1. The local development environment

 3.1.1. Grouping the tasks

 3.1.2. The reset step: a clean task

 3.1.3. Build and iteration

 3.2. The initial build step

 3.2.1. Dependency and execution chains

 3.2.2. Serial and parallel task execution

 3.2.3. Task execution functions for dependency chains

 3.2.4. Updates to your Gulpfile

 3.3. The iteration step

 3.3.1. Watch processes

 3.3.2. Using Browsersync for an on-demand server with live reload

 3.3.3. Updates to your Gulpfile

 3.4. Summary

 Chapter 4. Dependency management with Bower

 4.1. Dependency management basics

 4.1.1. Components and dependencies

 4.1.2. Dependency trees

 4.2. Flat dependency tree management with Bower

 4.2.1. Installation and update of a component

 4.2.2. Installation of components with dependencies

 4.2.3. Resolving dependency conflicts

 4.3. Integration with Gulp

 4.3.1. Wiring up dependencies to your application files with Gulp

 4.3.2. Including dependencies in our build chain with Gulp

 4.4. Summary

 Chapter 5. Scaffolding with Yeoman

 5.1. Yeoman generators

 5.1.1. Parts of a generator

 5.1.2. Calling generators

 5.2. Project templates

 5.2.1. Fixed parts

 5.2.2. Flexible parts

 5.2.3. Optional parts

 5.2.4. Restorable parts

 5.3. Yeoman’s assembly line

 5.3.1. Prompting

 5.3.2. Writing

 5.3.3. Installing

 5.4. Creating a generator

 5.4.1. Preparing the project template

 5.4.2. Providing the assembly instructions

 5.4.3. Bundling and testing

 5.5. Summary

 2. Integrating and extending the platform

 Chapter 6. Gulp for different environments

 6.1. Incremental builds and build caches

 6.1.1. Gulp’s built-in functionality

 6.1.2. Installing a build cache

 6.1.3. Handling file deletions

 6.2. Debugging original files through sourcemaps

 6.2.1. What are sourcemaps?

 6.2.2. Built-in sourcemaps in Gulp

 6.2.3. The sourcemaps plugin

 6.3. Environment-specific switches

 6.3.1. The noop() task

 6.3.2. dev() and prod() selection functions

 6.3.3. Parsing command-line arguments

 6.4. Summary

 Chapter 7. Working with streams

 7.1. Handling different input types

 7.1.1. Passthrough streams

 7.1.2. Merge streams

 7.2. Handling variations in output

 7.2.1. Parameterized streams on a task level

 7.2.2. Stream arrays

 7.3. Additional streaming techniques

 7.3.1. Avoiding repetition with stream snippets

 7.3.2. Handling flow with stream queues

 7.3.3. Changing stream contents with Gulp filters

 7.4. Summary

 Chapter 8. Extending Gulp

 8.1. The Gulp plugin blacklist

 8.1.1. Verdict: not a Gulp plugin

 8.1.2. Verdict: use something else instead

 8.1.3. Verdict: does too much

 8.2. Integrating other stream-based tools

 8.2.1. Streams, buffers, and Vinyl file objects

 8.2.2. Integrating Browserify

 8.2.3. Transforming contents

 8.3. Integrate Promise-based tools

 8.3.1. How Promises work

 8.3.2. Promises in the Gulp task system

 8.4. Summary

 Chapter 9. Creating modules and Bower components

 9.1. Asynchronous module definition

 9.1.1. AMD—module definitions for the browser

 9.1.2. Refactoring to AMD

 9.2. CommonJS and Universal Module Definition

 9.2.1. CommonJS modules

 9.2.2. Universal Module Definition

 9.3. Defining and deploying Bower components

 9.3.1. Bower.json specification

 9.3.2. Deploying and registering components

 9.3.3. Private registries and components

 9.4. Summary

 Chapter 10. Advanced Yeoman generators

 10.1. Adding new files to existing projects

 10.1.1. The concept of sub-generators

 10.1.2. Assembly instructions for a sub-generator

 10.2. Improving the interface

 10.2.1. Editing existing files

 10.2.2. Dealing with user configurations

 10.3. Composing generators

 10.3.1. Generator composition with global generators

 10.3.2. Generator composition with dependencies

 10.4. Summary

 Introduction to Node.js

 A.1. Meet Node.js

 A.1.1. Node.js installation

 A.1.2. The Node.js ecosystem

 A.2. Global and local node modules via NPM

 A.2.1. Global versus local installation

 A.2.2. An example of global installation: LESS

 A.2.3. An example of local installation: Autoprefixer

 A.2.4. Temporarily replacing the global installation with a local one

 A.3. Distribution and versioning of modules

 A.3.1. The contents of a package.json file

 A.3.2. NPM version handling

 A.3.3. Creating modules and publishing

 A.4. Summary

 Index

 List of Figures

 List of Listings

Preface

 I fell in love with the web way back in my teenage years. And like every teenage love, this one had an enduring impact on
 me. The idea of having the web as this almost anarchic way of publishing, carrying open thoughts and free speech and allowing
 everybody to raise their voice (for good and for bad) fascinated me. And it allowed me to transform from a consumer into a
 producer.

 Digging the video game series “Dragon Quest” led me to spend around 11 years publishing over 1,500 pages of strategy guides
 online. A passion for literature and films prompted me to publish my thoughts in podcasts over the course of four years. And
 rumor has it that there are prototypes of unfinished video projects somewhere on my hard disk backups that thankfully never
 saw the light of day. Any hobby, any obsession of mine found a way onto the web. And the web was always kind enough to show
 great acceptance of my work.

 It was not until 2010—“the day Nintendo called” (literally)—that I realized my biggest hobby was actually not one of the several
 topics I had created content for. I was offered the chance to extend my writing on video games for a variety of products.
 While I was flattered, honored, and highly motivated to do so, I quickly realized that I would never be able to provide the
 same quality for projects that I didn’t care as much about. But I could enable others by focusing on the common denominator
 for all the projects I’d worked on: the technologies running these websites—HTML, CSS, and JavaScript.

 I quit my day job as a scientist in the field of image processing—which I never actually liked—and called myself a web developer
 from that day on. I was lucky enough to get hired by a local web agency and finally get paid for the work I loved so much.
 That was by far the best decision I’ve ever made. Shortly after, I had the opportunity to lead some of the best front-end
 development teams you can find on the planet. The thing that I found the most challenging with all of them was bringing code
 conventions, project structure, and automation to every team member in the most efficient and unobtrusive manner. These technologies
 should be a joy to use, not a chore. We tried many things, but had the first real breakthrough when tools like Yeoman came
 on the scene. From then on, every new project needed a good setup with a JavaScript build tool, a dependency manager, and
 a scaffolding tool.

 With this book, my long relationship with the web has come full circle. It takes my love for publishing on the web to a meta
 level by publishing about web technologies—not only on the web, but in print, a thing that was unimaginable for me years ago.

 The web’s impact on me continues to this day. Through it, I’ve found friends all over the world. It has given me the chance
 to travel to other cities and countries. And it was even the way I found my wife. I look forward to the things to come.

Acknowledgments

 You might think that writing a book is one of the loneliest occupations possible. The reality is quite the opposite.

 Of all the persons involved, Lesley Trites deserves first mention. As my development editor at Manning, she provided invaluable
 feedback and proved to be the perfect companion on my writing endeavors. She single-handedly taught me how to write. If it
 weren’t for her, this book would not be in the shape it is right now.

 Speaking of people at Manning, my technical editors Johan Pretorious and Nick Watts were a joy to work with! Thank you for
 sanity-checking my ideas.

 Thanks also to the reviewers who contributed valuable feedback throughout the writing process: Andy Knight, David DiMaria,
 Giancarlo Massari, Harinath Mallepally, Jason Gretz, Jeroen Benckhuijsen, Johan Pretorius, Mario Ruiz, Nikander and Margriet
 Bruggeman, Palak Mathur, Tanya Wilke, Unnikrishnan Kumar, and Zorodzayi Mukuya.

 Alexander Zaytsev, Lars Johansen, and Jens Klinger held the spirit of open source high and kept improving my Gulp examples
 on GitHub as the book progressed.

 Addy Osmani taught me everything I know about front-end workflows. I learned open source through the guidance of Sebastian
 Gierlinger and Blaine Bublitz.

 Thomas Pink and Thomas Heller are not only the best colleagues imaginable, but also kept improving my build tool skills by
 asking the right questions. Their urge for improvement and their concrete real-world examples provided context and a solid
 foundation for this book.

 Cheers to my “Working Draft” podcast friends Christian Schaefer, Peter Kröner, Rodney Rehm, Anselm Hannemann, and Hans-Christian
 Reinl, who are always up for fun and challenging discussions and gave me necessary looks over the rim of the teacup. The same
 goes for the rest of the “Klassenfahrt” gang: Fabian Beiner, Sven Wolfermann, Sebastian Golasch, Der Pepo, Robert Weber, Marc
 Hinse, Bianca Kastl, Joschi Kuphal, Marc Thiele, Khalil Lechelt, Frederic Hemberger, Tobias Baldauf, Tom Arnold, and Maik
 Wagner. Without you, I would have never come this far.

 People imagine that writers of romance spend weeks and weeks writing in a chalet in the French Provence. To satisfy the cliché,
 I was glad to be hosted by my parents-in-law, Hans and Marianne, every other weekend at their house in the Austrian Innviertel.
 I also want to thank my parents, Hans and Rosi, for taking care of me on the weekends in between. Thank you all for your support!

 Last, but not least, I want to thank my wonderful wife, Doris. Her patience, love, and care are second to none. Doris, I owe
 you a lot.

About this Book

 Front-end Tooling with Gulp, Bower, and Yeoman was written with a strong focus on a broad concept of development workflows. The book ties together three phases that a developer
 enters when working on new and existing web projects: initialization, development, and deployment. For each phase, this book
 details the requirements and take-aways and introduces a tool suited to this job.

 In modern web development, tools tend to have a short lifespan, and seem to come and go as often as a new day dawns. A writing
 time of over a year might as well be a decade in JavaScript land. This provided quite a challenge, but was also a reason to
 not make the tools themselves the center of attention. Instead, each technology in this book can be easily exchanged with
 a well-suited counterpart, with all the key concepts still intact. On the other hand, the covered tools were picked not with
 an eye on trends, but for a touch of sustainability. These tools have a broad reach, an established user base, and a general-purpose
 application area. These characteristics should help keep this book relevant in the years to come.

Who should read this book

 Front-end Tooling with Gulp, Bower, and Yeoman is for front-end web developers who want to introduce process automation and tooling into their daily workflows. This book
 establishes a workflow pattern suited for both beginners and experienced front-end developers. While there are plenty of tutorials
 and blog articles out there for every one of the mentioned tools, this book ties all the tools together into one workflow
 and goes far beyond the surface of the tools’ functionalities.

Roadmap

 The book is divided two parts with five chapters in each.

 The first part deals with a new workflow for front-end developers and their dedicated tools. While this part describes how
 to set up the workflow with three distinct tools, it also deals with the overall concepts of front-end development workflows.
 Reading this part in order is recommended.

 	
Chapter 1 shows the day-to-day challenges for a front-end developer and establishes a workflow built upon three types of tools to overcome
 these challenges.

 	
Chapter 2 gives insights into the first kind of tool, the build tool, which helps to automate low-level code modification tasks and
 provides a high-level interface. The build tool Gulp provides the basis for this chapter.

 	
Chapter 3 introduces dependency and execution chains. Here the tasks from the previous chapter get combined into a series of executions
 that allow you to set up a local development environment.

 	In chapter 4, dependency management is introduced. The chapter shows the difference between flat and nested dependency trees and their
 pros and cons for front-end development. Bower is the selected dependency management tool for this chapter.

 	The first iteration of the front-end workflow comes to an end in chapter 5, where the processes established in chapters 2 through 4 are made reusable through the scaffolding tool Yeoman.

 After reading part 1, you should be able to use the three aforementioned tools to adapt the proposed workflow for your own needs. (All described
 tools use Node.js as their runtime. An appendix is provided for developers new to Node.js who want to take a peek under the
 hood.)

 Whereas in part 1 the tools Gulp, Bower, and Yeoman are easily exchangeable with respective counterparts, part 2 dives deep into the inner workings of these three tools specifically. Each chapter is meant to boost productivity of the
 established workflow and showcase why the selected tools are so unique and helpful.

 	In chapter 6, Gulp features such as incremental builds and pipeline switches are used to create output for different deployment environments.

 	
Chapter 7 goes deep into the underlying technology of Gulp—file object streams—to make similar pipelines reusable for different input
 and output scenarios.

 	
Chapter 8 gives insight into Gulp’s plugin ecosystem and how redundancy and loss of quality can be avoided when selecting new pieces
 for build pipelines. It also shows how tools outside the plugin space can be integrated with Gulp’s task and streaming APIs.

 	
Chapter 9 swings back to dependency managers. It introduces the concept of modules and shows different module definition systems. Modules
 provide an easy way to integrate dependencies into the main application.

 	
Chapter 10 concludes the book with another look at the scaffolding tool Yeoman. With the use of Yeoman’s sub-generators, scaffolding
 becomes a useful process not only for the ignition of a new project, but throughout development.

 Part 2 is meant to make you an expert in each one of the tools. The examples build on each other, but the concepts and details can
 be consumed on their own.

Code conventions and downloads

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight elements that have changed from previous steps in the chapter, such as when a new feature adds to an existing
 line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman.

 The examples are also available on GitHub at https://github.com/frontend-tooling. The project “sample-project-gulp” has solutions for each chapter inside a branch.

Author Online

 Purchase of Front-End Tooling with Gulp, Bower, and Yeoman includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contributions to the AO remain voluntary (and unpaid). We suggest you ask the author challenging questions, lest his
 interest stray!

Online resources

 Need additional help?

 	The Gulp.js tag on Stack Overflow (http://stackoverflow.com/questions/tagged/gulp) provides a great resource of questions and answers. The audience is friendly and knowledgeable and provides good solutions
 to special cases.

 	The Yeoman website (http://yeoman.io/) is not only the hub page for the Yeoman tool itself, but also a good resource with links to tutorials and guides for all
 of the workflow’s tools.

 	There are a lot of Gulp and Yeoman tutorials on my blog: https://fettblog.eu. They are concise and to the point, and tackle more-specific challenges.

About the Author

 [image:]

 STEFAN BAUMGARTNER lives and works in Linz, Austria. He is a passionate web developer and speaker and organizes tech meetups and conferences
 in his hometown. His research areas include web performance, automation, architectures, and progressive enhancement. He loves
 Italian cuisine and enjoys the occasional Belgian beer after work.

About the cover Illustration

 The figure on the cover of Front-End Tooling with Bower, Gulp, and Yeoman is captioned “Man in Medieval Dress.” The illustration by Paolo Mercuri (1804–1884) is taken from “Costumes Historiques,”
 a multivolume compendium of historical costumes from the twelfth, thirteenth, fourteenth, and fifteenth centuries assembled
 and edited by Camille Bonnard and published in Paris in the 1850s or 1860s. The nineteenth century saw an increased interest
 in exotic locales and in times gone by, and people were drawn to collections such as this one to explore the world they lived
 in—as well as the world of the distant past.

 The colorful variety of Mercuri’s illustrations in this historical collection reminds us vividly of how culturally apart the
 world’s towns and regions were a few hundred years ago. In the streets or in the countryside people were easy to place—sometimes
 with an error of no more than a dozen miles—just by their dress. Their station in life, as well as their trade or profession,
 could be easily identified. Dress codes have changed over the centuries, and the diversity by region, so rich at one time,
 has faded away. Today, it is hard to tell apart the inhabitants of one continent from another, let alone the towns or countries
 they come from, or their social status or profession. Perhaps we have traded cultural diversity for a more varied personal
 life—certainly a more varied and faster-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of many centuries ago, brought back to life
 by Mercuri’s pictures.

Part 1. A modern workflow for web applications

 This first part is dedicated to front-end development workflows and tooling. In these chapters, you’ll learn about the daily
 challenges a front-end developer has to face, and will implement a workflow to overcome those challenges by using three tools.

 Chapter 1 introduces the proposed workflow and details which types of tools are necessary to manage all the tasks ahead.

 Chapter 2 starts with the first tool: the build tool, Gulp. With Gulp, you’ll set up automation for testing as well as compilation
 for JavaScript and CSS files.

 Chapter 3 builds on the tasks from chapter 2 and organizes them in execution chains. Additionally, you’ll set up a live-reloading development server, which updates the
 build files to a full-fledged local development environment.

 Chapter 4 introduces the second tool: the dependency-management tool, Bower. You’ll learn about components and dependency trees and
 will use Bower to keep third-party software at ease.

 In Chapter 5, all the efforts from the previous chapters are combined and packaged with the third tool: the scaffolding tool, Yeoman.
 With Yeoman, you’ll be able to roll out development-ready project templates for your future projects.

Chapter 1. Tooling in a modern front-end workflow

 This chapter covers

 	Tedious and repetitive tasks of a front-end developer

 	Scaffolding boilerplate code

 	Dependency management

 	Build tools and task runners

 	A combined toolchain and workflow for front-end development

 This is a great time to be a front-end developer. Browsers are more advanced than ever, and with the new technologies of the
 HTML5 era come numerous new possibilities. JavaScript isn’t a toy language anymore and is used for a large variety of applications.
 The fat client—running the majority of an application’s code directly in the browser, and thus the front end—is embraced and
 considered a good development strategy for web applications.

 With JavaScript being taken seriously, developers face challenges in delivering the best possible code for their platforms—running
 authoring tools, bundling files, minifying applications, optimizing images...the list goes on. To meet all those expectations you need proper tooling.

 In this chapter, we look at which non-coding tasks you have to tackle in your day-to-day workflow and how tools can help you
 as front-end developers. We divide those tasks into three categories and look at three tools to conquer them all:

 	A build system, such as Gulp, allows you to run a multitude of file-transforming processes at the click of a button.

 	A dependency manager, such as Bower, helps you keep an eye on versions of different libraries you use frequently, notifying
 you of conflicts and, in some cases, solving them on their own.

 	A scaffolding tool, such as Yeoman, provides you with the essential project files to get things going. Yeoman allows you to
 create new applications and modules by entering a single command in your command prompt.

 These three tools encompass the idea of front-end tooling: a set of software providing the necessary tools to get your application
 up, running, and deployed. In this book, you’ll learn how to set up these tools for you and your coworkers. You’ll dive deep
 into each of those technologies and see how they can be combined to create a tailored workflow for your needs.

1.1. A software developer’s workflow and task list

 Taking a look at the typical software development workflow, you can easily identify three phases developers go through when
 coding (see figure 1.1):

 Figure 1.1. The three phases of development workflow

 [image:]

 	
Initializing— In any software development process, this is the starting point. It’s where you set up your project or add new files to an
 existing project.

 	
Development— This is the phase where you write code. Should you need more modules or want to refactor some code into a new file, you have
 to go back to the initializing phase. If everything is well, you move on to the next phase.

 	
Deployment— Your code is ready. It’s time to create an executable bundle and deploy it. For web development, this means deploying HTML,
 JavaScript, and CSS to your web server. From there you can return to the development phase (fixing bugs or adding new features
 to existing code) or to the initialization phase (creating new modules).

 Although every software development process has those phases in common, the tasks a developer performs during those phases
 differ from technology to technology. Also, the most tedious of those tasks are those that are not directly related to the
 coding part but are mostly concerned with setup, structure, and optimized output. Figure 1.2 shows typical tasks for a JavaScript project.

 Figure 1.2. Tasks for each development phase

 [image:]

 The initializing phase has to do with setting up folders and applying boilerplate code. You also download and add third-party
 libraries. Development is about authoring tools like preprocessors (LESS) or JavaScript tools. Many tasks are done in the
 deployment phase.

 Figure 1.2 depicts numerous tasks, and we’ll explore them in detail in the following section. Don’t feel overwhelmed by the numbers
 of duties you’ll face on the next few pages. You’re here to find a pleasant and easy solution for them via automation. To
 see what you’re dealing with, let’s examine those tasks in detail.

 1.1.1. Initialization phase tasks

 During initialization, the tasks aren’t necessarily JavaScript-specific but are more generic to be suitable for any programming
 language. To get things started, you create a project structure and the first files to start coding.

Set up a known and reliable project structure

 Based on your experience with other projects, you know how you like to structure your code and your files. You’ll most likely
 use the same structure in the next project, maybe with some little improvements here and there. If you’re familiar with the
 way your folders and files are organized, you’ll easily find your way through the territory of your new project.

Apply reusable patterns/boilerplate code

 Boilerplate code is code that can be included in a project with little or no alteration. As a developer you’re just filling
 in the blanks. Boilerplate code not only saves you time in writing code, it also ensures that certain often-used, standard
 code is included and in the right place. Boilerplate code prevents you from starting with a blank page and helps you get started
 more easily.

Install third-party software/libraries

 Libraries like jQuery provide you with basic functionality and a good framework on which to set your projects. We often call
 those libraries dependencies, which means that an application’s successful execution depends on using those libraries.

 1.1.2. Development phase tasks

 Entering the development phase, the scope of your tasks gets more specific toward front-end and JavaScript development.

Use code-authoring tools

 One trend that hit front-end development pretty hard in recent years was the many ways of code authoring. Instead of writing
 with the native languages of the web (JavaScript, CSS, and HTML), you write your code in a different language, which provides
 new syntax or features not available in the original, helping you to write more sophisticated code. But the browser can’t
 interpret all of those languages directly, so you have to compile your program into understandable and runnable code. You
 run code-authoring tools in the development phase as well as in the deployment phase.

Perform quality control

 The code you write should be of high quality: readable, understandable, of low complexity, and without code smells.[1] You can ensure this quality by following coding conventions and using code style checkers. Tools like JSLint and JSCS check
 your code against a ruleset of different indicators and alert you if your code doesn’t pass. Quality control happens in both
 the development and deployment phases.

OEBPS/01fig02_alt.jpg

OEBPS/xixfig01.jpg

OEBPS/01fig01_alt.jpg

OEBPS/common01.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg

OEBPS/common02.jpg

OEBPS/cover.jpg

