

 [image: cover]

 Android in Action, Third Edition

 W. Frank Ableson, Robi Sen, Chris King & C. Enrique Ortiz

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Troy Mott
Copyeditors: Benjamin Berg, Tiffany Taylor
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. What is Android? The big picture

 Chapter 1. Introducing Android

 Chapter 2. Android’s development environment

 2. Exercising the Android SDK

 Chapter 3. User interfaces

 Chapter 4. Intents and Services

 Chapter 5. Storing and retrieving data

 Chapter 6. Networking and web services

 Chapter 7. Telephony

 Chapter 8. Notifications and alarms

 Chapter 9. Graphics and animation

 Chapter 10. Multimedia

 Chapter 11. Location, location, location

 3. Android applications

 Chapter 12. Putting Android to work in a field service application

 Chapter 13. Building Android applications in C

 4. The maturing platform

 Chapter 14. Bluetooth and sensors

 Chapter 15. Integration

 Chapter 16. Android web development

 Chapter 17. AppWidgets

 Chapter 18. Localization

 Chapter 19. Android Native Development Kit

 Chapter 20. Activity fragments

 Chapter 21. Android 3.0 action bar

 Chapter 22. Drag-and-drop

 Appendix A. Installing the Android SDK

 Appendix B. Publishing applications

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. What is Android? The big picture

 Chapter 1. Introducing Android

 1.1. The Android platform

 1.2. Understanding the Android market

 1.2.1. Mobile operators

 1.2.2. Android vs. the feature phones

 1.2.3. Android vs. the smartphones

 1.2.4. Android vs. itself

 1.2.5. Licensing Android

 1.3. The layers of Android

 1.3.1. Building on the Linux kernel

 1.3.2. Running in the Dalvik VM

 1.4. The Intent of Android development

 1.4.1. Empowering intuitive UIs

 1.4.2. Intents and how they work

 1.5. Four kinds of Android components

 1.5.1. Activity

 1.5.2. Service

 1.5.3. BroadcastReceiver

 1.5.4. ContentProvider

 1.6. Understanding the AndroidManifest.xml file

 1.7. Mapping applications to processes

 1.8. Creating an Android application

 1.9. Android 3.0 for tablets and smartphones

 1.9.1. Why develop for Android tablets?

 1.9.2. What’s new in the Android 3.0 Honeycomb platform?

 1.10. Summary

 Chapter 2. Android’s development environment

 2.1. Introducing the Android SDK

 2.1.1. Core Android packages

 2.1.2. Optional packages

 2.2. Exploring the development environment

 2.2.1. The Java perspective

 2.2.2. The DDMS perspective

 2.2.3. Command-line tools

 2.3. Building an Android application in Eclipse

 2.3.1. The Android Project Wizard

 2.3.2. Android sample application code

 2.3.3. Packaging the application

 2.4. Using the Android emulator

 2.4.1. Setting up the emulated environment

 2.4.2. Testing your application in the emulator

 2.5. Debugging your application

 2.6. Summary

 2. Exercising the Android SDK

 Chapter 3. User interfaces

 3.1. Creating the Activity

 3.1.1. Creating an Activity class

 3.1.2. XML vs. programmatic layouts

 3.1.3. Exploring the Activity lifecycle

 3.1.4. The server connection

 3.2. Working with views

 3.2.1. Exploring common views

 3.2.2. Using a ListView

 3.2.3. Multitasking with Handler and Message

 3.2.4. Creating custom views

 3.2.5. Understanding layout

 3.2.6. Handling focus

 3.2.7. Grasping events

 3.3. Using resources

 3.3.1. Supported resource types

 3.3.2. Referencing resources in Java

 3.3.3. Defining views and layouts through XML resources

 3.3.4. Externalizing values

 3.3.5. Providing animations

 3.4. Exploring the AndroidManifest file

 3.5. Summary

 Chapter 4. Intents and Services

 4.1. Serving up RestaurantFinder with Intent

 4.1.1. Defining Intents

 4.1.2. Implicit and explicit invocation

 4.1.3. Adding external links to RestaurantFinder

 4.1.4. Finding your way with Intent

 4.1.5. Taking advantage of Android-provided activities

 4.2. Checking the weather with a custom URI

 4.2.1. Offering a custom URI

 4.2.2. Inspecting a custom URI

 4.3. Checking the weather with broadcast receivers

 4.3.1. Broadcasting Intent

 4.3.2. Creating a receiver

 4.4. Building a background weather service

 4.5. Communicating with the WeatherAlertService from other apps

 4.5.1. Android Interface Definition Language

 4.5.2. Binder and Parcelable

 4.5.3. Exposing a remote interface

 4.5.4. Binding to a Service

 4.5.5. Starting vs. binding

 4.5.6. Service lifecycle

 4.6. Summary

 Chapter 5. Storing and retrieving data

 5.1. Using preferences

 5.1.1. Working with SharedPreferences

 5.1.2. Preference access permissions

 5.2. Using the filesystem

 5.2.1. Creating files

 5.2.2. Accessing files

 5.2.3. Files as raw resources

 5.2.4. XML file resources

 5.2.5. External storage via an SD card

 5.3. Persisting data to a database

 5.3.1. Building and accessing a database

 5.3.2. Using the sqlite3 tool

 5.4. Working with ContentProvider classes

 5.4.1. Using an existing ContentProvider

 5.4.2. Creating a ContentProvider

 5.5. Summary

 Chapter 6. Networking and web services

 6.1. An overview of networking

 6.1.1. Networking basics

 6.1.2. Clients and servers

 6.2. Checking the network status

 6.3. Communicating with a server socket

 6.4. Working with HTTP

 6.4.1. Simple HTTP and java.net

 6.4.2. Robust HTTP with HttpClient

 6.4.3. Creating an HTTP and HTTPS helper

 6.5. Web services

 6.5.1. POX: putting it together with HTTP and XML

 6.5.2. REST

 6.5.3. To SOAP or not to SOAP, that is the question

 6.6. Summary

 Chapter 7. Telephony

 7.1. Exploring telephony background and terms

 7.1.1. Understanding GSM

 7.1.2. Understanding CDMA

 7.2. Phone or not?

 7.3. Accessing telephony information

 7.3.1. Retrieving telephony properties

 7.3.2. Obtaining phone state information

 7.4. Interacting with the phone

 7.4.1. Using Intents to make calls

 7.4.2. Using phone number–related utilities

 7.4.3. Intercepting outbound calls

 7.5. Working with messaging: SMS

 7.5.1. Sending SMS messages

 7.5.2. Receiving SMS messages

 7.6. Summary

 Chapter 8. Notifications and alarms

 8.1. Introducing Toast

 8.2. Placing your Toast message

 8.3. Making a custom Toast view

 8.4. Introducing notifications

 8.4.1. The Notification class

 8.4.2. Notifying a user with a simple button press

 8.5. Making a custom notification view

 8.6. Introducing alarms

 8.6.1. Creating a simple alarm example

 8.6.2. Using notifications with alarms

 8.7. Summary

 Chapter 9. Graphics and animation

 9.1. Drawing graphics in Android

 9.1.1. Drawing with XML

 9.1.2. Exploring XML drawable shapes

 9.2. Creating animations with Android’s Graphics API

 9.2.1. Android’s frame-by-frame animation

 9.2.2. Programmatically creating an animation

 9.3. Introducing OpenGL for Embedded Systems

 9.3.1. Creating an OpenGL context

 9.3.2. Drawing a rectangle with OpenGL ES

 9.3.3. Three-dimensional shapes and surfaces with OpenGL ES

 9.4. Introducing RenderScript for Android

 9.4.1. RenderScript advantages and disadvantages

 9.4.2. Building a RenderScript application

 9.5. Summary

 Chapter 10. Multimedia

 10.1. Introduction to multimedia and Stagefright

 10.1.1. Stagefright overview

 10.2. Playing audio

 10.3. Playing video

 10.4. Capturing media

 10.4.1. Understanding the camera

 10.4.2. Capturing audio

 10.4.3. Recording video

 10.5. Summary

 Chapter 11. Location, location, location

 11.1. Simulating your location within the emulator

 11.1.1. Sending in your coordinates with the DDMS tool

 11.1.2. The GPS Exchange Format

 11.1.3. The Google Earth Keyhole Markup Language

 11.2. Using LocationManager and LocationProvider

 11.2.1. Accessing location data with LocationManager

 11.2.2. Using a LocationProvider

 11.2.3. Receiving location updates with LocationListener

 11.3. Working with maps

 11.3.1. Extending MapActivity

 11.3.2. Using a MapView

 11.3.3. Placing data on a map with an Overlay

 11.4. Converting places and addresses with Geocoder

 11.5. Summary

 3. Android applications

 Chapter 12. Putting Android to work in a field service application

 12.1. Designing a real-world Android application

 12.1.1. Core requirements of the application

 12.1.2. Managing the data

 12.1.3. Application architecture and integration

 12.2. Mapping out the application flow

 12.2.1. Mapping out the field service application

 12.2.2. List of source files

 12.2.3. Field service application’s AndroidManifest.xml

 12.3. Application source code

 12.3.1. Splash Activity

 12.3.2. Preferences used by the FieldService Activity

 12.3.3. Implementing the FieldService Activity

 12.3.4. Settings

 12.3.5. Managing job data

 12.4. Source code for managing jobs

 12.4.1. RefreshJobs

 12.4.2. Managing jobs: the ManageJobs Activity

 12.4.3. Working with a job with the ShowJob Activity

 12.4.4. Capturing a signature with the CloseJob Activity

 12.5. Server code

 12.5.1. Dispatcher user interface

 12.5.2. Database

 12.5.3. PHP dispatcher code

 12.5.4. PHP mobile integration code

 12.6. Summary

 Chapter 13. Building Android applications in C

 13.1. Building Android apps without the SDK

 13.1.1. The C compiler and linker tools

 13.1.2. Building a Hello World application

 13.1.3. Installing and running the application

 13.1.4. C application build script

 13.2. Solving the problem with dynamic linking

 13.2.1. Android system libraries

 13.2.2. Building a dynamically linked application

 13.2.3. exit() vs. return()

 13.2.4. Startup code

 13.3. What time is it? The DayTime Server

 13.3.1. DayTime Server application

 13.3.2. daytime.c

 13.3.3. The SQLite database

 13.3.4. Building and running the DayTime Server

 13.4. Daytime Client

 13.4.1. Activity

 13.4.2. Socket client

 13.4.3. Testing the Daytime Client

 13.5. Summary

 4. The maturing platform

 Chapter 14. Bluetooth and sensors

 14.1. Exploring Android’s Bluetooth capabilities

 14.1.1. Replacing cables

 14.1.2. Primary and secondary roles and sockets

 14.1.3. Trusting a device

 14.1.4. Connecting to a remote device

 14.1.5. Capturing Bluetooth events

 14.1.6. Bluetooth permissions

 14.2. Interacting with the SensorManager

 14.2.1. Types of sensors

 14.2.2. Reading sensor values

 14.2.3. Enabling and disabling sensors

 14.3. Building the SenseBot application

 14.3.1. User interface

 14.3.2. Interpreting sensor values

 14.3.3. Driving the robot

 14.3.4. Communication with the robot

 14.4. Summary

 Chapter 15. Integration

 15.1. Understanding the Android contact model

 15.1.1. Choosing open-ended records

 15.1.2. Dealing with multiple accounts

 15.1.3. Unifying a local view from diverse remote stores

 15.1.4. Sharing the playground

 15.2. Getting started with LinkedIn

 15.3. Managing contacts

 15.3.1. Leveraging the built-in Contacts app

 15.3.2. Requesting operations from your app

 15.3.3. Directly reading and modifying the contacts database

 15.3.4. Adding contacts

 15.4. Keeping it together

 15.4.1. The dream of sync

 15.4.2. Defining accounts

 15.4.3. Telling secrets: The AccountManager service

 15.5. Creating a LinkedIn account

 15.5.1. Not friendly to mobile

 15.5.2. Authenticating to LinkedIn

 15.6. Synchronizing to the backend with SyncAdapter

 15.6.1. The synchronizing lifecycle

 15.6.2. Synchronizing LinkedIn data

 15.7. Wrapping up: LinkedIn in action

 15.7.1. Finalizing the LinkedIn project

 15.7.2. Troubleshooting tips

 15.7.3. Moving on

 15.8. Summary

 Chapter 16. Android web development

 16.1. What’s Android web development?

 16.1.1. Introducing WebKit

 16.1.2. Examining the architectural options

 16.2. Optimizing web applications for Android

 16.2.1. Designing with mobile in mind

 16.2.2. Adding the viewport tag

 16.2.3. Selectively loading content

 16.2.4. Interrogating the user agent

 16.2.5. The media query

 16.2.6. Considering a made-for-mobile application

 16.3. Storing data directly in the browser

 16.3.1. Setting things up

 16.3.2. Examining the code

 16.3.3. The user interface

 16.3.4. Opening the database

 16.3.5. Unpacking the transaction function

 16.3.6. Inserting and deleting rows

 16.3.7. Testing the application with WebKit tools

 16.4. Building a hybrid application

 16.4.1. Examining the browser control

 16.4.2. Wiring up the control

 16.4.3. Implementing the JavaScript handler

 16.4.4. Accessing the code from JavaScript

 16.4.5. Digging into the JavaScript

 16.4.6. Security matters

 16.4.7. Implementing a WebViewClient

 16.4.8. Augmenting the browser

 16.4.9. Detecting navigation events

 16.4.10. Implementing the WebChromeClient

 16.5. Summary

 Chapter 17. AppWidgets

 17.1. Introducing the AppWidget

 17.1.1. What’s an AppWidget?

 17.1.2. AppWidget deployment strategies

 17.2. Introducing SiteMonitor

 17.2.1. Benefits of SiteMonitor

 17.2.2. The user experience

 17.3. SiteMonitor application architecture

 17.3.1. Bird’s-eye view of the application

 17.3.2. File by file

 17.4. AppWidget data handling

 17.5. Implementing the AppWidgetProvider

 17.5.1. AppWidgetProvider method inventory

 17.5.2. Implementing SiteMonitorWidgetImpl

 17.5.3. Handling zombie widgets

 17.6. Displaying an AppWidget with RemoteViews

 17.6.1. Working with RemoteViews

 17.6.2. UpdateOneWidget explained

 17.7. Configuring an instance of the AppWidget

 17.7.1. AppWidget metadata

 17.7.2. Working with Intent data

 17.7.3. Confirming widget creation

 17.8. Updating the AppWidget

 17.8.1. Comparing services to alarms

 17.8.2. Triggering the update

 17.8.3. Updating the widgets, finally!

 17.9. Tying it all together with AndroidManifest.xml

 17.10. Summary

 Chapter 18. Localization

 18.1. The need for localization

 18.2. Exploring locales

 18.3. Strategies for localizing an application

 18.3.1. Identifying target locales and data

 18.3.2. Identifying and managing strings

 18.3.3. Drawables and layouts

 18.3.4. Dates, times, numbers, and currencies

 18.3.5. Working with the translation team

 18.4. Leveraging Android resource capabilities

 18.4.1. More than locale

 18.4.2. Assigning strings in resources

 18.5. Localizing in Java code

 18.6. Formatting localized strings

 18.7. Obstacles to localization

 18.8. Summary

 Chapter 19. Android Native Development Kit

 19.1. Introducing the NDK

 19.1.1. Uses for the NDK

 19.1.2. Looking at the NDK

 19.2. Building an application with the NDK

 19.2.1. Demonstrating the completed application

 19.2.2. Examining the project structure

 19.3. Building the JNI library

 19.3.1. Understanding JNI

 19.3.2. Implementing the library

 19.3.3. Compiling the JNI library

 19.4. Building the user interface

 19.4.1. User interface layout

 19.4.2. Taking a photo

 19.4.3. Finding the edges

 19.5. Integrating the NDK into Eclipse

 19.6. Summary

 Chapter 20. Activity fragments

 20.1. Fragment lifecyle

 20.2. Creating fragments and fragment layouts

 20.2.1. Create the fragment subclass

 20.2.2. Defining a fragment layout

 20.2.3. Include the fragment within the activity

 20.3. Background fragments

 20.4. The fragment manager

 20.5. Fragment transactions

 20.6. Fragment back stack

 20.7. The Android Compatibility Package

 20.8. Summary

 Chapter 21. Android 3.0 action bar

 21.1. Introducing the action bar

 21.2. Overview of the ActionBar classes

 21.3. Action bar display options

 21.3.1. Application name and icon

 21.3.2. Navigation modes

 21.4. Action items

 21.4.1. The application icon as an action item

 21.4.2. Action views

 21.5. Removing, showing, and hiding the action bar

 21.6. Action bar styling

 21.7. Summary

 Chapter 22. Drag-and-drop

 22.1. The drag-and-drop classes

 22.2. Drag-and-drop operations

 22.3. The shadow builder

 22.4. Drag events

 22.5. Starting drag operations

 22.6. Listening for drag-and-drop events

 22.7. Responding to drag-start operations

 22.8. Handling drop operations

 22.9. Summary

 Appendix A. Installing the Android SDK

 A.1. Development environment requirements

 A.2. Obtaining and installing Eclipse

 A.3. Obtaining and installing the Android SDK

 A.4. Using the SDK and AVD Manager

 A.5. Obtaining and installing the Eclipse plug-in

 A.6. Configuring the Eclipse plug-in

 Appendix B. Publishing applications

 B.1. Preparing an application for distribution

 B.1.1. Logging

 B.1.2. Debugging notifications

 B.1.3. Sample data

 B.1.4. AndroidManifest.xml

 B.1.5. End-user license agreement

 B.1.6. Testing

 B.1.7. Finishing touches

 B.2. Digitally signing an application

 B.2.1. Keystores

 B.2.2. keytool

 B.2.3. jarsigner

 B.3. Publishing to the Android Market

 B.3.1. The Market rules

 B.3.2. Getting your application in the Market

 B.3.3. Android Market—the right solution

 B.4. Other distribution means

 B.5. Recapping the Android Debug Bridge

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 The idea of a writing a book about Android development can be somewhat futile at times, considering the pace at which Android
 continues to expand, morph, and change. What started out as a book project a few years ago has now become a series of updates
 to the original work with the page count nearly double the original project—and that after making hard decisions about what
 to leave out of the book to make sure it gets published.

 This update to Android in Action represents our latest effort to provide coverage on important Android development topics, namely the expansion into the tablet
 space with Android 3.x as well as advances in mobile graphics and media such as RenderScript.

 Although there have been many off-brand and name-brand tablet offerings popping up over time, the Android development team
 has taken the step of adding tablet-specific capabilities to the SDK under the banner of 3.0. True to form, 3.0 was quickly
 updated, so we generally refer to the tablet-specific features as 3.x; and before long I am sure Android 4.x will be out with
 a super-set of features.

 Like many things in life, the only constant is change, but by now we’re somewhat accustomed to the rapid-fire environment
 of Android development. To that end, we have ensured that all of the applications in the book work with Android 3.x. The newest
 chapters covering tablet-specific content (20–22) require the 3.x SDK, whereas the remaining chapters are compatible with
 the 2.x SDK versions. If you plan to write application software for Android, you simply need to steel yourself for navigating
 the multiple version game. It is at once a strength and a challenge of the Android ecosystem.

 The third edition was written by Frank Ableson, Robi Sen, Chris King, and newcomer C. Enrique Ortiz, aka CEO. To borrow a
 line from the air-travel industry, “We know you have a choice when it comes to Android development books, so thank you for
 learning and collaborating with us.”

 FRANK ABLESON

Acknowledgments

 Writing a third edition of Android in Action feels somewhat like the old saying about weddings: “Something old, something new...” The deadlines for the third edition
 did not become any easier as at last count there are still only 24 hours in the day. And as for something new—it seems as
 though Android’s pace of innovation is continuing to match its adoption rate by mobile users around the globe. Like the two
 earlier editions, Android in Action, Third Edition represents a collaboration between a number of contributors. I had the privilege of working again with Robi Sen and Chris
 King, who worked with me on the second edition. C. Enrique Ortiz joined us to contribute the tablet content. Once again the
 talented team at Manning have labored to bring about this edition.

 In particular, we’d like to acknowledge and thank everyone at Manning. First, thanks to Troy Mott, our acquisition and development
 editor, who has been involved in every aspect of now three editions of this project—congratulations, Troy, on your hat-trick!
 Bob Herbstman did all the big and little things to bring the project together; Mary Piergies skillfully piloted the team through
 the harrowing production process; and Marjan Bace, our publisher, showed an attention to detail at once challenging, beneficial,
 and appreciated.

 Once the writing was finished, the next round of work began. Special thanks need to go to Benjamin Berg, who performed the
 preproduction editing pass; Tiffany Taylor, who did the second copyediting pass and helped us bring the final pieces of the
 project together; and finally Dottie Marsico, who handled the actual layout of the pages. It’s sometimes hard to envision
 the final product when looking at edits upon edits in MS Word, but Dottie’s magic made the product you hold in your hands.
 Next, we would like to thank Candace Gillhoolley for her efforts in getting the word out about the book. Thanks to each of
 you for your special contribution to this project.

 And special thanks to the reviewers who read our revised manuscript at different times during its development: Steve Prior,
 Matthew Johnson, Julian Harty, David Strong, Loïc Simon, Al Scherer, Gabor Paller, and Pieter Kuijpers; and to Jérôme Bâton
 for his careful technical review of the final manuscript during production.

 Last, we want to thank the thoughtful and encouraging MEAP subscribers who provided feedback along the way; the book is better
 thanks to your contributions.

Frank Ableson

 I would like to thank my coauthors: Robi Sen, a real pro who has been involved in this project from the beginning; Chris King,
 who has proven to be rock-solid in terms of both technical capability and reliability; and newcomer C. Enrique Ortiz (CEO),
 who has injected energy and enthusiasm into the Third Edition. Of course, through each iteration of this project, Troy Mott
 has led the way: managing the process, coaxing us at times, and delivering every time. Bob Herbstman has contributed invaluably
 to the finished product and is likely tired of cleaning up after my writing and amateurish graphics after all of these years.
 Special thanks to Bob for re-creating many illustrations. Thanks also to the production team at Manning Publications who have
 once again delivered an excellent work. Thanks also to Candace Gillhoolley for continued support with books and promotions
 to support speaking events and conferences—always aiding my last-minute requests. Last and most important, I would like to
 thank Nikki and company at the Ableson household for unconditional support. Praise be to God, another version is complete!

Chris King

 I am deeply grateful to Troy Mott, Frank, Robi, and Enrique for being such a pleasure to collaborate with as we drove toward
 the latest incarnation of this book. I also appreciate all the work done by the reviewers and editors from Manning, and also
 the dedicated readers of previous editions who contributed suggestions at the Author Online forums. Special thanks go to Eric
 Tamo and Zac White for their support and relentless good cheer. Finally, my love to my family: Charles, Karen, Patrick, Kathryn,
 and Andrew.

Robi Sen

 I would like to thank Troy Mott and the team—and everyone at Manning Publications—for their hard work making this book something
 worth reading. I would like to thank my coauthors, Frank and Chris, who were great to work with and very understanding when
 I was the one holding things up. I would also like to thank C. Enrique Ortiz for his contributions. Finally, I would like
 to dedicate my efforts on this book to my brother Neel, who passed away while we were wrapping up the book.

C. Enrique Ortiz

 To my parents, family, friends, and colleagues, who influence my work and make it exciting.

About this Book

 Android in Action, Third Edition is a revision and update of, you guessed it, the Second Edition, published in January 2011. This third edition adds new content related to Android’s push into the tablet space as well as
 enhancements to various sub-systems within the Android platform. Like its predecessors, this book covers important beginner
 topics such as “What is Android?” and installing and using the development environment. We then advance to practical working
 examples of core programming topics any developer will be happy to have at the ready on the reference shelf. The remaining
 chapters present detailed example applications covering advanced topics, including a complete field-service application, localization,
 and material on Android web applications, Bluetooth, sensors, AppWidgets, and integration adapters. We even include two chapters
 on writing applications in C—one for the native side of Android and one using the more generally accepted method of employing
 the Android Native Development Kit. Brand-new content covering tablet programming is found in chapters 20 through 22. Chapters 20–22 specifically require Android SDK 3.0 and beyond, whereas the balance of the book is compatible with 2.x versions of Android.

 Although you can read the book from start to finish, you can also consider it a few books in one. If you’re new to Android,
 focus first on chapter 1, appendix A, and then chapter 2. With that foundation, you can work your way through chapters 3–12. Chapters 13 and on are more in-depth in nature and can be read independently of the others. Chapters 20–22 focuses on important topics related to Android 3.0 and tablets.

Who should read this book?

 We wrote this book for professional programmers and hobbyists alike. Many of the concepts can be absorbed without specific
 Java language knowledge, although you’ll obtain the most value if you have Java programming skills—Android application programming
 requires them. If you have C, C++, or C# programming knowledge, you’ll be able to follow the examples.

 Prior Eclipse experience is helpful, but not required. A number of good resources are available on Java and Eclipse to augment
 the content of this book.

Roadmap

 This book is divided into four parts. Part 1 contains introductory material about the platform and development environment. Part 2 takes a close look at the fundamental skills required for building Android applications. Part 3 presents a larger-scope application and a Native C Android application. Part 4 explores features added to the Android platform, providing examples of using the capable Android platform to create innovative
 mobile applications.

Part 1: The essentials

 Part 1 introduces the Android platform, including its architecture and setting up the development environment.

 Chapter 1 delves into the background and positioning of the Android platform, including comparisons to other popular platforms such
 as BlackBerry, iPhone, and Windows Mobile. After an introduction to the platform, the balance of the first chapter introduces
 the high-level architecture of Android applications and the operating system environment.

 Chapter 2 takes you on a step-by-step development exercise, teaching you the ropes of using the Android development environment, including
 the key tools and concepts for building an application. If you’ve never used Eclipse or have never written an Android application,
 this chapter will prepare you for the next part of the book.

Part 2: The programming environment

 Part 2 includes an extensive survey of fundamental programming topics in the Android environment.

 Chapter 3 covers the fundamental Android UI components, including View and Layout. We also review the Activity in more detail. These are the basic building blocks of screens and applications on the Android platform. Along the way, we
 also touch on other basic concepts such as accessing external resources, responding to events, and the lifecycle of an Android
 application.

 Chapter 4 expands on the concepts you learned in chapter 3. We delve into the Android Intent to demonstrate interaction between screens, activities, and entire applications. We also introduce and use the Service framework, which allows for ongoing background processes.

 Chapter 5 incorporates methods and strategies for storing and retrieving data locally. The chapter examines use of the filesystem,
 databases, the SD card, and Android-specific storage entities such as the SharedPreferences and ContentProvider classes. This chapter begins combining fundamental concepts with more real-world details, such as handling application state,
 using a database for persistent storage, and working with SQLite.

 Chapter 6 deals with storing and retrieving data over the network. Here we include a networking primer before delving into using raw
 networking concepts such as sockets on Android. From there, we progress to using HTTP, and even explore web services (such
 as REST and SOAP).

 Chapter 7 covers telephony on the Android platform. We touch on basics such as originating and receiving phone calls, as well as more
 involved topics such as identifying cell towers and sending or receiving SMS messages.

 Chapter 8 looks at how to work with notifications and alarms. In this chapter, we look at how to notify users of various events such
 as receiving a SMS message, as well as how to manage and set alarms.

 Chapter 9 deals with the basics of Android’s Graphics API and more advanced concepts such as working with the OpenGL ES library for
 creating sophisticated 2D and 3D graphics. We also touch on animation as well as Android’s new graphics systems RenderScript.

 Chapter 10 looks at Android’s support for multimedia; we cover both playing multimedia as well as using the camera and microphone to
 record your own multimedia files.

 Chapter 11 introduces location-based services as we look at an example that combines many of the concepts from the earlier parts of
 the book in a mapping application. You’ll learn about using the mapping APIs on Android, including different location providers
 and properties that are available, how to build and manipulate map-related screens, and how to work with location-related
 concepts within the emulator.

Part 3: Bringing it all together

 Part 3 contains two chapters, both of which build on knowledge you gained earlier in the text, with a focus on bringing a larger
 application to fruition.

 Chapter 12 demonstrates an end-to-end field service application. The application includes server communications, persistent storage,
 multiple Activity navigation menus, and signature capture.

 Chapter 13 explores the world of native C language applications. The Android SDK is limited to the Java language, although native applications
 can be written for Android. This chapter walks you through examples of building C language applications for Android, including
 the use of built-in libraries and TCP socket communications as a Java application connects to your C application. This chapter
 is useful for developers targeting solutions beyond carrier-subsidized, locked-down cell phones.

Part 4: The maturing platform

 Part 4 contains nine new chapters, each of which represents a more advanced development topic.

 Chapter 14 demonstrates the use of both Bluetooth communication and processing sensor data. The sample application accompanying the
 chapter, SenseBot, permits the user to drive a LEGO Mindstorms robot with their Android phone.

 Chapter 15 explores the Android contact database and demonstrates integrating with an external data source. In particular, this application
 brings Android into the social-networking scene by integrating with the popular LinkedIn professional networking service.

 Chapter 16 explores the world of web development. Android’s browser is based on the open source WebKit engine and brings desktop-like
 capability to this mobile browser. This chapter equips you to bring attractive and capable web applications to Android.

 Chapter 17 brings the home screen of your Android application to life by showing you how to build an application that presents its user
 interface as an AppWidget. In addition to AppWidgets, this chapter demonstrates BroadcastReceiver, Service, and Alarms.

 Chapter 18 takes a real-world look at localizing an existing application. Chapter 12’s Field Service application is modified to support multiple languages. Chapter 18’s version of the Field Service application contains support for both English and Spanish.

 Chapter 19 reaches into Android’s open source foundation by using a popular edge-detection image-processing algorithm. The Sobel Edge
 Detection algorithm is written in C and compiled into a native library. The sample application snaps a picture with the Android
 camera and then uses this C algorithm to find the edges in the photo.

 Chapter 20 covers Android Fragments, a new application component that was introduced with Android 3.0. Fragments provide more granular application control than
 working only with Activitys alone.

 Chapter 21 explores the action bar. Also introduced with Android 3.0, the action bar provides a consistent look-and-feel for the application
 title, icon, actions, and menu options.

 Chapter 22 introduces the new drag-and-drop API, also introduced with Android 3.0. The drag-and-drop API allows for touch-based, interactive
 operations: for example, to move or copy data across views by visually selecting data from one view and dropping it onto another
 view on the screen. Another example is to trigger application actions: for example, image sharing by dragging an image from
 an image gallery view onto a sharing view.

Appendixes

 The appendixes contain additional information that didn’t fit with the flow of the main text. Appendix A is a step-by-step guide to installing the development environment. This appendix, along with chapter 2, provides all the information you need to build an Android application. Appendix B demonstrates how to prepare and submit an application for the Android Market—an important topic for anyone looking to sell
 an application commercially.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code. We have tried to format
 the code so that it fits within the available page space in the book by adding line breaks and using indentation carefully.
 Sometimes, however, very long lines include line-continuation markers.

 Source code for all the working examples is available from www.manning.com/AndroidinActionThirdEdition or www.manning.com/ableson3. A Readme.txt file is provided in the root folder and also in each chapter folder; the files provide details on how to install
 and run the code. Code examples appear throughout this book. Longer listings appear under clear listing headers, whereas shorter
 listings appear between lines of text.

Software requirements

 Developing applications for Android may be done from the Windows XP/Vista/7 environment, a Mac OS X (Intel only) environment,
 or a Linux environment. Appendix A includes a detailed description of setting up the Eclipse environment along with the Android Developer Tools plug-in for
 Eclipse.

A note about the graphics

 Many of the original graphics from the first edition, Unlocking Android, have been reused in the second and third editions of the book. Although the title was changed to Android in Action during the writing of the second edition, we kept the original book title in our graphics and sample applications.

Author Online

 Purchase of Android in Action, Third Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/AndroidinActionThirdEdition or www.manning.com/ableson3. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The illustration on the cover of Android in Action, Third Edition is taken from a French book of dress customs, Encyclopédie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and illustrated guides
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions
 of the world, as well as to the regional costumes and uniforms of France.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the uniqueness and individuality of the world’s countries and regions just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other,
 and when members of a social class or a trade or a tribe could be easily distinguished by what they were wearing. This was
 also a time when people were fascinated by foreign lands and faraway places, even though they could not travel to these exotic
 destinations themselves.

 Dress codes have changed since then and the diversity by region and tribe, so rich at the time, has faded away. It is now
 often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded
 a world of cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and
 technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 native and tribal costumes from two centuries ago brought back to life by the pictures from this travel guide.

Part 1. What is Android? The big picture

 Android has become a market-moving technology platform—not just because of the functionality available in the platform but
 because of how the platform has come to market. Part 1 of this book brings you into the picture as a developer of the open source Android platform. We begin with a look at the
 Android platform and the impact it has on each of the major stakeholders in the mobile marketplace (chapter 1). We then bring you on board to developing applications for Android with a hands-on tour of the Android development environment
 (chapter 2).

Chapter 1. Introducing Android

	

 This chapter covers

	Exploring Android, the open source phone and tabtet platform

 	Android Intents, the way things work

 	Sample application

	

You’ve heard about Android. You’ve read about Android. Now it’s time to begin unlocking Android.

 Android is a software platform that’s revolutionizing the global cell phone market. It’s the first open source mobile application
 platform that’s moved the needle in major mobile markets around the globe. When you’re examining Android, there are a number
 of technical and market-related dimensions to consider. This first section introduces the platform and provides context to
 help you better understand Android and where it fits in the global cell phone scene. Moreover, Android has eclipsed the cell
 phone market, and with the release of Android 3.X has begun making inroads into the tablet market as well. This book focuses
 on using SDKs from 2.0 to 3.X.

 Android is primarily a Google effort, in collaboration with the Open Handset Alliance. Open Handset Alliance is an alliance
 of dozens of organizations committed to bringing a “better” and more “open” mobile phone to market. Considered a novelty at first by some, Android has grown to become a market-changing player in a few short years, earning both respect
 and derision alike from peers in the industry.

 This chapter introduces Android—what it is, and, equally important, what it’s not. After reading this chapter, you’ll understand
 how Android is constructed, how it compares with other offerings in the market, and what its foundational technologies are,
 plus you’ll get a preview of Android application architecture. More specifically, this chapter takes a look at the Android
 platform and its relationship to the popular Linux operating system, the Java programming language, and the runtime environment
 known as the Dalvik virtual machine (VM).

 Java programming skills are helpful throughout the book, but this chapter is more about setting the stage than about coding
 specifics. One coding element introduced in this chapter is the Intent class. Having a good understanding of and comfort level with the Intent class is essential for working with the Android platform.

 In addition to Intent, this chapter introduces the four main application components: Activity, Service, ContentProvider, and BroadcastReceiver. The chapter concludes with a simple Android application to get you started quickly.

1.1. The Android platform

 Android is a software environment built for mobile devices. It’s not a hardware platform. Android includes a Linux kernel-based
 OS, a rich UI, end-user applications, code libraries, application frameworks, multimedia support, and much more. And, yes,
 even telephone functionality is included! Whereas components of the underlying OS are written in C or C++, user applications
 are built for Android in Java. Even the built-in applications are written in Java. With the exception of some Linux exploratory
 exercises in chapter 13 and the Native Developer Kit (NDK) in chapter 19, all the code examples in this book are written in Java, using the Android software development kit (SDK).

 One feature of the Android platform is that there’s no difference between the built-in applications and applications that
 you create with the SDK. This means that you can write powerful applications to tap into the resources available on the device.
 Figure 1.1 shows the relationship between Android and the hardware it runs on. The most notable feature of Android might be that it’s
 open source; missing elements can and will be provided by the global developer community. Android’s Linux kernel-based OS
 doesn’t come with a sophisticated shell environment, but because the platform is open, you can write and install shells on
 a device. Likewise, multimedia codecs can be supplied by third-party developers and don’t need to rely on Google or anyone else to provide new functionality. That’s the power of an open source platform brought to
 the mobile market.

 Figure 1.1. Android is software only. By leveraging its Linux kernel to interface with the hardware, Android runs on many different devices
 from multiple cell phone manufacturers. Developers write applications in Java.

 [image:]

 Platform vs. Device Throughout this book, wherever code must be tested or exercised on a device, a software-based emulator is typically employed.
 An exception is in chapter 14 where Bluetooth and Sensors are exercised. See chapter 2 for information on how to set up and use the Android emulator.

 The term platform refers to Android itself—the software—including all the binaries, code libraries, and tool chains. This book focuses on the
 Android platform; the Android emulators available in the SDK are simply components of the Android platform.

 With all of that as a backdrop, creating a successful mobile platform is clearly a nontrivial task involving numerous players.
 Android is an ambitious undertaking, even for Google, a company of seemingly boundless resources and moxie—and they’re getting
 the job done. Within a span of three years, Android has seen numerous major software releases, the release of multiple handsets
 across most major mobile carriers in the global market, and most recently the introduction of Android-powered tablets.

 Now that you’ve got an introduction to what Android is, let’s look at the why and where of Android to provide some context
 and set the perspective for Android’s introduction to the marketplace. After that, it’s on to exploring the platform itself!

1.2. Understanding the Android market

 Android promises to have something for everyone. It aims to support a variety of hardware devices, not just high-end ones
 typically associated with expensive smartphones. Of course, Android users will enjoy improved performance on a more powerful
 device, considering that it sports a comprehensive set of computing features. But how well can Android scale up and down to
 a variety of markets and gain market and mind share? How quickly can the smartphone market become the standard? Some folks
 are still clinging to phone-only devices, even though smartphones are growing rapidly in virtually every demographic. Let’s
 look at Android from the perspective of a few existing players in the marketplace. When you’re talking about the cellular
 market, the place to start is at the top, with the carriers, or as they’re sometimes referred to, the mobile operators.

 1.2.1. Mobile operators

 Mobile operators (the cell phone companies such as AT&T and Verizon) are in the business, first and foremost, of selling subscriptions
 to their services. Shareholders want a return on their investment, and it’s hard to imagine an industry where there’s a larger
 investment than in a network that spans such broad geographic territory. To the mobile operator, cell phones are simultaneously
 a conduit for services, a drug to entice subscribers, and an annoyance to support and lock down.

 Some mobile operators are embracing Android as a platform to drive new data services across the excess capacity operators
 have built into their networks. Data services represent high-premium services and high-margin revenues for the operator. If Android can help drive those revenues for the
 mobile operator, all the better.

 Other mobile operators feel threatened by Google and the potential of “free wireless,” driven by advertising revenues and
 an upheaval of the market. Another challenge for mobile operators is that they want the final say on what services are enabled
 across their networks. Historically, handset manufacturers complain that their devices are handicapped and don’t exercise
 all the features designed into them because mobile operators lack the capability or willingness to support those features.
 An encouraging sign is that there are mobile operators involved in the Open Handset Alliance.

 Let’s move on to a comparison of Android and existing cell phones on the market today.

 1.2.2. Android vs. the feature phones

 The majority of cell phones on the market continue to be consumer flip phones and feature phones—phones that aren’t smartphones.[1] These phones are the ones consumers get when they walk into the retailer and ask what can be had for free. These consumers
 are the “I just want a phone” customers. Their primary interest is a phone for voice communications, an address book, and
 increasingly, texting. They might even want a camera. Many of these phones have additional capabilities such as mobile web
 browsing, but because of relatively poor user experience, these features aren’t employed heavily. The one exception is text
 messaging, which is a dominant application no matter the classification of device. Another increasingly in-demand category
 is location-based services, which typically use the Global Positioning System (GPS).

 1 About 25% of phones sold in the second quarter of 2011 were smartphones: http://www.gartner.com/it/page.jsp?id=1764714.

 Android’s challenge is to scale down to this market. Some of the bells and whistles in Android can be left out to fit into
 lower-end hardware. One of the big functionality gaps on these lower-end phones is the web experience the user gets. Part
 of the problem is screen size, but equally challenging is the browser technology itself, which often struggles to match the
 rich web experience of desktop computers. Android features the market-leading WebKit browser engine, which brings desktop-compatible
 browsing to the mobile arena. Figure 1.2 shows WebKit in action on Android. If a rich web experience can be effectively scaled down to feature phone class hardware, it would go a long way toward penetrating this end of the
 market. Chapter 16 takes a close look at using web development skills for creating Android applications.

 Figure 1.2. Android’s built-in browser technology is based on WebKit’s browser engine.

 [image:]

 WebKit The WebKit (www.webkit.org) browser engine is an open source project that powers the browser found in Macs (Safari) and is the engine behind Mobile
 Safari, which is the browser on the iPhone. It’s not a stretch to say that the browser experience is one of a few features
 that made the iPhone popular out of the gate, so its inclusion in Android is a strong plus for Android’s architecture.

 Software at the lower end of the market generally falls into one of two camps:

	
Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment for Wireless. For a high-volume example of BREW technology, consider Verizon’s
 Get It Now-capable devices, which run on this platform. The challenge for software developers who want to gain access to this
 market is that the bar to get an application on this platform is high, because everything is managed by the mobile operator,
 with expensive testing and revenue-sharing fee structures. The upside to this platform is that the mobile operator collects
 the money and disburses it to the developer after the sale, and often these sales recur monthly. Just about everything else
 is a challenge to the software developer. Android’s open application environment is more accessible than BREW.

 	
Java ME, or Java Platform, Micro Edition—A popular platform for this class of device. The barrier to entry is much lower for software developers. Java ME developers
 will find a same-but-different environment in Android. Android isn’t strictly a Java ME-compatible platform, but the Java
 programming environment found in Android is a plus for Java ME developers. There are some projects underway to create a bridge
 environment, with the aim of enabling Java ME applications to be compiled and run for Android. Gaming, a better browser, and
 anything to do with texting or social applications present fertile territory for Android at this end of the market.

Although the majority of cell phones sold worldwide are not considered smartphones, the popularity of Android (and other capable
 platforms) has increased demand for higher-function devices. That’s what we’re going to discuss next.

 1.2.3. Android vs. the smartphones

 Let’s start by naming the major smartphone players: Symbian (big outside North America), BlackBerry from Research in Motion,
 iPhone from Apple, Windows (Mobile, SmartPhone, and now Phone 7), and of course, the increasingly popular Android platform.

 One of the major concerns of the smartphone market is whether a platform can synchronize data and access Enterprise Information
 Systems for corporate users. Device-management tools are also an important factor in the enterprise market. The browser experience is better than with the lower-end phones, mainly because of larger displays and more intuitive input methods,
 such as a touch screen, touch pad, slide-out keyboard, or jog dial.

 Android’s opportunity in this market is to provide a device and software that people want. For all the applications available
 for the iPhone, working with Apple can be a challenge; if the core device doesn’t suit your needs, there’s little room to
 maneuver because of the limited models available and historical carrier exclusivity. Now that email, calendaring, and contacts
 can sync with Microsoft Exchange, the corporate environment is more accessible, but Android will continue to fight the battle
 of scaling the Enterprise walls. Later Android releases have added improved support for the Microsoft Exchange platform, though
 third-party solutions still out-perform the built-in offerings. BlackBerry is dominant because of its intuitive email capabilities,
 and the Microsoft platforms are compelling because of tight integration to the desktop experience and overall familiarity
 for Windows users. iPhone has surprisingly good integration with Microsoft Exchange—for Android to compete in this arena,
 it must maintain parity with iPhone on Enterprise support.

 You’ve seen how Android stacks up next to feature phones and smartphones. Next, we’ll see whether Android, the open source
 mobile platform, can succeed as an open source project.

 1.2.4. Android vs. itself

 Android will likely always be an open source project, but to succeed in the mobile market, it must sell millions of units
 and stay fresh. Even though Google briefly entered the device fray with its Nexus One and Nexus S phones, it’s not a hardware
 company. Historically, Android-powered devices have been brought to market by others such as HTC, Samsung, and Motorola, to
 name the larger players. Starting in mid-2011, Google began to further flex its muscles with the acquisition of Motorola’s
 mobile business division. Speculation has it that Google’s primary interest is in Motorola’s patent portfolio, because the
 intellectual property scene has heated up considerably. A secondary reason may be to acquire the Motorola Xoom platform as
 Android continues to reach beyond cell phones into tablets and beyond.

 When a manufacturer creates an Android-powered device, they start with the Android Open Source Platform (AOSP) and then extend
 it to meet their need to differentiate their offerings. Android isn’t the first open source phone, but it’s the first from
 a player with the market-moving weight of Google leading the charge. This market leadership position has translated to impressive
 unit sales across multiple manufacturers and markets around the globe. With a multitude of devices on the market, can Android
 keep the long-anticipated fragmentation from eroding consumer and investor confidence?

 Open source is a double-edged sword. On one hand, the power of many talented people and companies working around the globe
 and around the clock to deliver desirable features is a force to be reckoned with, particularly in comparison with a traditional,
 commercial approach to software development. This topic has become trite because the benefits of open source development are well documented. On the other hand, how far will the competing manufacturers
 extend and potentially split Android? Depending on your perspective, the variety of Android offerings is a welcome alternative
 to a more monolithic iPhone device platform where consumers have few choices available.

 Another challenge for Android is that the licensing model of open source code used in commercial offerings can be sticky.
 Some software licenses are more restrictive than others, and some of those restrictions pose a challenge to the open source
 label. At the same time, Android licensees need to protect their investment, so licensing is an important topic for the commercialization
 of Android.

 1.2.5. Licensing Android

 Android is released under two different open source licenses. The Linux kernel is released under the GNU General Public License (GPL) as is required for anyone licensing the open source OS kernel. The Android platform, excluding the kernel, is licensed under
 the Apache Software License (ASL). Although both licensing models are open source–oriented, the major difference is that the Apache license is considered friendlier
 toward commercial use. Some open source purists might find fault with anything but complete openness, source-code sharing,
 and noncommercialization; the ASL attempts to balance the goals of open source with commercial market forces. So far there
 has been only one notable licensing hiccup impacting the Android mod community, and that had more to do with the gray area
 of full system images than with a manufacturer’s use of Android on a mainstream product release. Currently, Android is facing
 intellectual property challenges; both Microsoft and Apple are bringing litigation against Motorola and HTC for the manufacturer’s
 Android-based handsets.

 The high-level, market-oriented portion of the book has now concluded! The remainder of this book is focused on Android application
 development. Any technical discussion of a software environment must include a review of the layers that compose the environment,
 sometimes referred to as a stack because of the layer-upon-layer construction. Next up is a high-level breakdown of the components of the Android stack.

	

 Selling applications
 A mobile platform is ultimately valuable only if there are applications to use and enjoy on that platform. To that end, the
 topic of buying and selling applications for Android is important and gives us an opportunity to highlight a key difference
 between Android and the iPhone. The Apple App Store contains software titles for the iPhone—lots of them. But Apple’s somewhat
 draconian grip on the iPhone software market requires that all applications be sold through its venue. Although Apple’s digital
 rights management (DRM) is the envy of the market, this approach can pose a challenging environment for software developers
 who might prefer to make their application available through multiple distribution channels.

 Contrast Apple’s approach to application distribution with the freedom Android developers enjoy to ship applications via traditional
 venues such as freeware and shareware, and commercially through various marketplaces, including their own website! For software
 publishers who want the focus of an on-device shopping experience, Google has launched and continues to mature the Android
 Market. For software developers who already have titles for other platforms such as Windows Mobile, Palm, and BlackBerry,
 traditional software markets such as Handango (www.Handango.com) also support selling Android applications. Handango and its ilk are important outlets; consumers new to Android will likely
 visit sites such as Handango because that might be where they first purchased one of their favorite applications for their
 prior device.

	

1.3. The layers of Android

 The Android stack includes an impressive array of features for mobile applications. In fact, looking at the architecture alone,
 without the context of Android being a platform designed for mobile environments, it would be easy to confuse Android with
 a general computing environment. All the major components of a computing platform are there. Here’s a quick rundown of prominent
 components of the Android stack:

	A Linux kernel that provides a foundational hardware abstraction layer, as well as core services such as process, memory, and filesystem
 management. The kernel is where hardware-specific drivers are implemented—capabilities such as Wi-Fi and Bluetooth are here.
 The Android stack is designed to be flexible, with many optional components that largely rely on the availability of specific
 hardware on a given device. These components include features such as touch screens, cameras, GPS receivers, and accelerometers.

 	
Prominent code libraries, including the following:

	Browser technology from WebKit, the same open source engine powering Mac’s Safari and the iPhone’s Mobile Safari browser.
 WebKit has become the de facto standard for most mobile platforms.

 	Database support via SQLite, an easy-to-use SQL database.

 	Advanced graphics support, including 2D, 3D, animation from Scalable Games Language (SGL), and OpenGL ES.

 	Audio and video media support from PacketVideo’s OpenCORE, and Google’s own Stagefright media framework.

 	Secure Sockets Layer (SSL) capabilities from the Apache project.

 	
An array of managers that provide services for

	Activities and views

 	Windows

 	Location-based services

 	Telephony

 	Resources

 	
The Android runtime, which provides

	Core Java packages for a nearly full-featured Java programming environment. Note that this isn’t a Java ME environment.

 	The Dalvik VM, which employs services of the Linux-based kernel to provide an environment to host Android applications.

Both core applications and third-party applications (such as the ones you’ll build in this book) run in the Dalvik VM, atop
 the components we just listed. You can see the relationship among these layers in figure 1.3.

 Figure 1.3. The Android stack offers an impressive array of technologies and capabilities.

 [image:]

	

Tip

 Without question, Android development requires Java programming skills. To get the most out of this book, be sure to brush
 up on your Java programming knowledge. There are many Java references on the internet, and no shortage of Java books on the
 market. An excellent source of Java titles can be found at www.manning.com/catalog/java.

	

Now that we’ve shown you the obligatory stack diagram and introduced all the layers, let’s look more in depth at the runtime
 technology that underpins Android.

 1.3.1. Building on the Linux kernel

 Android is built on a Linux kernel and on an advanced, optimized VM for its Java applications. Both technologies are crucial
 to Android. The Linux kernel component of the Android stack promises agility and portability to take advantage of numerous
 hardware options for future Android-equipped phones. Android’s Java environment is key: it makes Android accessible to programmers
 because of both the number of Java software developers and the rich environment that Java programming has to offer.

 Why use Linux for a phone? Using a full-featured platform such as the Linux kernel provides tremendous power and capabilities
 for Android. Using an open source foundation unleashes the capabilities of talented individuals and companies to move the
 platform forward. Such an arrangement is particularly important in the world of mobile devices, where products change so rapidly.
 The rate of change in the mobile market makes the general computer market look slow and plodding. And, of course, the Linux
 kernel is a proven core platform. Reliability is more important than performance when it comes to a mobile phone, because
 voice communication is the primary use of a phone. All mobile phone users, whether buying for personal use or for a business,
 demand voice reliability, but they still want cool data features and will purchase a device based on those features. Linux
 can help meet this requirement.

 Speaking to the rapid rate of phone turnover and accessories hitting the market, another advantage of using Linux as the foundation
 of the Android platform stack is that it provides a hardware abstraction layer; the upper levels remain unchanged despite
 changes in the underlying hardware. Of course, good coding practices demand that user applications fail gracefully in the
 event a resource isn’t available, such as a camera not being present in a particular handset model. As new accessories appear
 on the market, drivers can be written at the Linux level to provide support, just as on other Linux platforms. This architecture
 is already demonstrating its value; Android devices are already available on distinct hardware platforms. HTC, Motorola, and
 others have released Android-based devices built on their respective hardware platforms. User applications, as well as core
 Android applications, are written in Java and are compiled into byte codes. Byte codes are interpreted at runtime by an interpreter known as a virtual machine (VM).

 1.3.2. Running in the Dalvik VM

 The Dalvik VM is an example of the need for efficiency, the desire for a rich programming environment, and even some intellectual
 property constraints, colliding, with innovation as the result. Android’s Java environment provides a rich application platform
 and is accessible because of the popularity of Java itself. Also, application performance, particularly in a low-memory setting
 such as you find in a mobile phone, is paramount for the mobile market. But this isn’t the only issue at hand.

 Android isn’t a Java ME platform. Without commenting on whether this is ultimately good or bad for Android, there are other
 forces at play here. There’s the matter of Java VM licensing from Oracle. From a high level, Android’s code environment is
 Java. Applications are written in Java, which is compiled to Java byte codes and subsequently translated to a similar but
 different representation called dex files. These files are logically equivalent to Java byte codes, but they permit Android to run its applications in its own VM that’s
 both (arguably) free from Oracle’s licensing clutches and an open platform upon which Google, and potentially the open source
 community, can improve as necessary. Android is facing litigation challenges from Oracle about the use of Java.

	

Note

 From the mobile application developer’s perspective, Android is a Java environment, but the runtime isn’t strictly a Java
 VM. This accounts for the incompatibilities between Android and proper Java environments and libraries. If you have a code
 library that you want to reuse, your best bet is to assume that your code is nearly source compatible, attempt to compile it into an Android project, and then determine how close you are to having usable code.

	

The important things to know about the Dalvik VM are that Android applications run inside it and that it relies on the Linux
 kernel for services such as process, memory, and filesystem management.

 Now that we’ve discussed the foundational technologies in Android, it’s time to focus on Android application development.
 The remainder of this chapter discusses high-level Android application architecture and introduces a simple Android application. If you’re not comfortable or ready to begin coding, you might want to jump to chapter 2, where we introduce the development environment step-by-step.

1.4. The Intent of Android development

 Let’s jump into the fray of Android development, focus on an important component of the Android platform, and expand to take
 a broader view of how Android applications are constructed.

 An important and recurring theme of Android development is the Intent. An Intent in Android describes what you want to do. An Intent might look like “I want to look up a contact record” or “Please launch this website” or “Show the order confirmation screen.”
 Intents are important because they not only facilitate navigation in an innovative way, as we’ll discuss next, but also represent
 the most important aspect of Android coding. Understand the Intent and you’ll understand Android.

	

Note

 Instructions for setting up the Eclipse development environment are in appendix A. This environment is used for all Java examples in this book. Chapter 2 goes into more detail on setting up and using the development tools.

 The code examples in this chapter are primarily for illustrative purposes. We reference and introduce classes without necessarily
 naming specific Java packages. Subsequent chapters take a more rigorous approach to introducing Android-specific packages
 and classes.

	

Next, we’ll look at the foundational information about why Intents are important, and then we’ll describe how Intents work. Beyond the introduction of the Intent, the remainder of this chapter describes the major elements of Android application development, leading up to and including
 the first complete Android application that you’ll develop.

 1.4.1. Empowering intuitive UIs

 The power of Android’s application framework lies in the way it brings a web mindset to mobile applications. This doesn’t
 mean the platform has only a powerful browser and is limited to clever JavaScript and server-side resources, but rather it
 goes to the core of how the Android platform works and how users interact with the mobile device. The power of the internet
 is that everything is just a click away. Those clicks are known as Uniform Resource Locators (URLs), or alternatively, Uniform Resource Identifiers (URIs). Using effective URIs permits easy and quick access to the information users need and want every day. “Send me the link”
 says it all.

 Beyond being an effective way to get access to data, why is this URI topic important, and what does it have to do with Intents? The answer is nontechnical but crucial: the way a mobile user navigates on the platform is crucial to its commercial success.
 Platforms that replicate the desktop experience on a mobile device are acceptable to only a small percentage of hardcore power
 users. Deep menus and multiple taps and clicks are generally not well received in the mobile market. The mobile application,
 more than in any other market, demands intuitive ease of use. A consumer might buy a device based on cool features that were enumerated in the marketing materials, but that same consumer is unlikely to even
 touch the instruction manual. A UI’s usability is highly correlated with its market penetration. UIs are also a reflection
 of the platform’s data access model, so if the navigation and data models are clean and intuitive, the UI will follow suit.

 Now we’re going to introduce Intents and IntentFilters, Android’s innovative navigation and triggering mechanisms.

 1.4.2. Intents and how they work

 Intents and IntentFilters bring the “click it” paradigm to the core of mobile application use (and development) for the Android platform:

	An Intent is a declaration of need. It’s made up of a number of pieces of information that describe the desired action or service.
 We’re going to examine the requested action and, generically, the data that accompanies the requested action.

 	An IntentFilter is a declaration of capability and interest in offering assistance to those in need. It can be generic or specific with respect
 to which Intents it offers to service.

The action attribute of an Intent is typically a verb: for example VIEW, PICK, or EDIT. A number of built-in Intent actions are defined as members of the Intent class, but application developers can create new actions as well. To view a piece of information, an application employs
 the following Intent action:

 android.content.Intent.ACTION_VIEW

 The data component of an Intent is expressed in the form of a URI and can be virtually any piece of information, such as a contact record, a website location,
 or a reference to a media clip. Table 1.1 lists some Android URI examples.

 Table 1.1. Commonly employed URIs in Android

	
 Type of information

 	
 URI data

	Contact lookup
 	content://contacts/people

	Map lookup/search
 	Geo:0,0?q=23+Route+206+Stanhope+NJ

	Browser launch to a specific website
 	http://www.google.com/

The IntentFilter defines the relationship between the Intent and the application. IntentFilters can be specific to the data portion of the Intent, the action portion, or both. IntentFilters also contain a field known as a category. The category helps classify the action. For example, the category named CATEGORY_LAUNCHER instructs Android that the Activity containing this IntentFilter should be visible in the main application launcher or home screen.

 When an Intent is dispatched, the system evaluates the available Activitys, Services, and registered BroadcastReceivers (more on these in section 1.5) and dispatches the Intent to the most appropriate recipient. Figure 1.4 depicts this relationship among Intents, IntentFilters, and BroadcastReceivers.

 Figure 1.4. Intents are distributed to Android applications, which register themselves by way of the IntentFilter, typically in the AndroidManifest.xml file.

 [image:]

 IntentFilters are often defined in an application’s AndroidManifest.xml file with the <intent-filter> tag. The AndroidManifest.xml file is essentially an application descriptor file, which we’ll discuss later in this chapter.

 A common task on a mobile device is looking up a specific contact record for the purpose of initiating a call, sending a text
 message, or looking up a snail-mail address when you’re standing in line at the neighborhood pack-and-ship store. Or a user
 might want to view a specific piece of information, say a contact record for user 1234. In these cases, the action is ACTION_VIEW and the data is a specific contact record identifier. To carry out these kinds of tasks, you create an Intent with the action set to ACTION_VIEW and a URI that represents the specific person of interest. Here are some examples:

	The URI that you would use to contact the record for user 1234: content:// contacts/people/1234

 	The URI for obtaining a list of all contacts: content://contacts/people

The following code snippet shows how to PICK a contact record:

 Intent pickIntent = new Intent(Intent.ACTION_PICK,Uri.parse("content://
 contacts/people"));
startActivity(pickIntent);

 An Intent is evaluated and passed to the most appropriate handler. In the case of picking a contact record, the recipient would likely
 be a built-in Activity named com.google.android.phone.Dialer. But the best recipient of this Intent might be an Activity contained in the same custom Android application (the one you build), a built-in application (as in this case), or a third-party
 application on the device. Applications can leverage existing functionality in other applications by creating and dispatching an Intent that requests existing code to handle the Intent rather than writing code from scratch. One of the great benefits of employing Intents in this manner is that the same UIs get used frequently, creating familiarity for the user. This is particularly important for mobile platforms where the user is often neither tech-savvy nor interested in learning
 multiple ways to accomplish the same task, such as looking up a contact on the phone.

 The Intents we’ve discussed thus far are known as implicit Intents, which rely on the IntentFilter and the Android environment to dispatch the Intent to the appropriate recipient. Another kind of Intent is the explicit Intent, where you can specify the exact class that you want to handle the Intent. Specifying the exact class is helpful when you know exactly which Activity you want to handle the Intent and you don’t want to leave anything to chance in terms of what code is executed. To create an explicit Intent, use the overloaded Intent constructor, which takes a class as an argument:

 public void onClick(View v) {
 try {
 startActivityForResult(new Intent(v.getContext(),RefreshJobs.class),0);
 } catch (Exception e) {
 . . .
 }
}

 These examples show how an Android developer creates an Intent and asks for it to be handled. Similarly, an Android application can be deployed with an IntentFilter, indicating that it responds to Intents that were already defined on the system, thereby publishing new functionality for the platform. This facet alone should
 bring joy to independent software vendors (ISVs) who’ve made a living by offering better contact managers and to-do list management
 software titles for other mobile platforms.

	

 The power and the complexity of Intents
 It’s not hard to imagine that an absolutely unique user experience is possible with Android because of the variety of Activitys with specific IntentFilters that are installed on any given device. It’s architecturally feasible to upgrade various aspects of an Android installation
 to provide sophisticated functionality and customization. Though this might be a desirable characteristic for the user, it
 can be troublesome for someone providing tech support who has to navigate a number of components and applications to troubleshoot
 a problem.

 Because of the potential for added complexity, this approach of ad hoc system patching to upgrade specific functionality should
 be entertained cautiously and with your eyes wide open to the potential pitfalls associated with this approach.

	

Intent resolution, or dispatching, takes place at runtime, as opposed to when the application is compiled. You can add specific Intent-handling features to a device, which might provide an upgraded or more desirable set of functionality than the original shipping
 software. This runtime dispatching is also referred to as late binding.

 Thus far, this discussion of Intents has focused on the variety of Intents that cause UI elements to be displayed. Other Intents are more event-driven than task-oriented, as our earlier contact record example described. For example, you also use the
 Intent class to notify applications that a text message has arrived. Intents are a central element to Android; we’ll revisit them on more than one occasion.

 Now that we’ve explained Intents as the catalyst for navigation and event flow on Android, let’s jump to a broader view and discuss the Android application
 lifecycle and the key components that make Android tick. The Intent will come into better focus as we further explore Android throughout this book.

1.5. Four kinds of Android components

 Let’s build on your knowledge of the Intent and IntentFilter classes and explore the four primary components of Android applications, as well as their relation to the Android process
 model. We’ll include code snippets to provide a taste of Android application development. We’re going to leave more in-depth
 examples and discussion for later chapters.

	

Note

 A particular Android application might not contain all of these elements but will have at least one of these elements, and
 could have all of them.

	

1.5.1. Activity

 An application might have a UI, but it doesn’t have to have one. If it has a UI, it’ll have at least one Activity.

 The easiest way to think of an Android Activity is to relate it to a visible screen, because more often than not there’s a one-to-one relationship between an Activity and a UI screen. This relationship is similar to that of a controller in the MVC paradigm.

 Android applications often contain more than one Activity. Each Activity displays a UI and responds to system- and user-initiated events. The Activity employs one or more Views to present the actual UI elements to the user. The Activity class is extended by user classes, as shown in the following listing.

 Listing 1.1. A basic Activity in an Android application

 package com.msi.manning.chapter1;
import android.app.Activity;
import android.os.Bundle;
public class Activity1 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

 The Activity class is part of the android.app Java package, found in the Android runtime. The Android runtime is deployed in the android.jar file. The class Activity1 extends the class Activity, which we’ll examine in detail in chapter 3. One of the primary tasks an Activity performs is displaying UI elements, which are implemented as Views and are typically defined in XML layout files. Chapter 3 goes into more detail on Views and Resources.

	

 You say Intent; I say Intent
 The Intent class is used in similar sounding but very different scenarios.

 Some Intents are used to assist in navigating from one Activity to the next, such as the example given earlier of viewing a contact record. Activities are the targets of these kinds of
 Intents, which are used with the startActivity and startActivityForResult methods.

 Also, a Service can be started by passing an Intent to the startService method.

 BroadcastReceivers receive Intents when responding to system-wide events, such as a ringing phone or an incoming text message.

	

Moving from one Activity to another is accomplished with the startActivity() method or the startActivityForResult() method when you want a synchronous call/result paradigm. The argument to these methods is an instance of an Intent.

 The Activity represents a visible application component within Android. With assistance from the View class, which we’ll cover in chapter 3, the Activity is the most commonly employed Android application component. Android 3.0 introduced a new kind of application component,
 the Fragment. Fragments, which are related to Activitys and have their own life cycle, provide more granular application control than Activitys. Fragments are covered in Chapter 20. The next topic of interest is the Service, which runs in the background and doesn’t generally present a direct UI.

 1.5.2. Service

 If an application is to have a long lifecycle, it’s often best to put it into a Service. For example, a background data-synchronization utility should be implemented as a Service. A best practice is to launch Services on a periodic or as-needed basis, triggered by a system alarm, and then have the Service terminate when its task is complete.

 Like the Activity, a Service is a class in the Android runtime that you should extend, as shown in the following listing. This example extends a Service and periodically publishes an informative message to the Android log.

 Listing 1.2. A simple example of an Android Service

 [image:]

 This example requires that the package android.app.Service be imported. This package contains the Service class. This example also demonstrates Android’s logging mechanism android.util.Log, which is useful for debugging purposes. (Many examples in this book include using the logging facility. We’ll discuss logging
 in more depth in chapter 2.) The Service1 class [image:] extends the Service class. This class implements the Runnable interface to perform its main task on a separate thread. The onCreate method [image:] of the Service class permits the application to perform initialization-type tasks. We’re going to talk about the onBind() method [image:] in further detail in chapter 4, when we’ll explore the topic of interprocess communication in general.

 Services are started with the startService(Intent) method of the abstract Context class. Note that, again, the Intent is used to initiate a desired result on the platform.

 Now that the application has a UI in an Activity and a means to have a background task via an instance of a Service, it’s time to explore the BroadcastReceiver, another form of Android application that’s dedicated to processing Intents.

 1.5.3. BroadcastReceiver

 If an application wants to receive and respond to a global event, such as a ringing phone or an incoming text message, it
 must register as a BroadcastReceiver. An application registers to receive Intents in one of the following ways:

	The application can implement a <receiver> element in the AndroidManfest.xml file, which describes the BroadcastReceiver’s class name and enumerates its IntentFilters. Remember, the IntentFilter is a descriptor of the Intent an application wants to process. If the receiver is registered in the AndroidManifest.xml file, the application doesn’t need
 to be running in order to be triggered. When the event occurs, the application is started automatically upon notification of the triggering event.
 Thankfully, all this housekeeping is managed by the Android OS itself.

 	An application can register at runtime via the Context class’s register-Receiver method.

Like Services, BroadcastReceivers don’t have a UI. Even more important, the code running in the onReceive method of a BroadcastReceiver should make no assumptions about persistence or long-running operations. If the BroadcastReceiver requires more than a trivial amount of code execution, it’s recommended that the code initiate a request to a Service to complete the requested functionality because the Service application component is designed for longer-running operations whereas the BroadcastReceiver is meant for responding to various triggers.

	

Note

 The familiar Intent class is used in triggering BroadcastReceivers. The parameters will differ, depending on whether you’re starting an Activity, a Service, or a BroadcastReceiver, but it’s the same Intent class that’s used throughout the Android platform.

	

A BroadcastReceiver implements the abstract method onReceive to process incoming Intents. The arguments to the method are a Context and an Intent. The method returns void, but a handful of methods are useful for passing back results, including setResult, which passes back to the invoker an integer return code, a String return value, and a Bundle value, which can contain any number of objects.

 The following listing is an example of a BroadcastReceiver triggering upon receipt of an incoming text message.

 Listing 1.3. A sample BroadcastReceiver

 [image:]

 We need to discuss a few items in this listing. The class MySMSMailBox extends the BroadcastReceiver class. This subclass approach is the most straightforward way to employ a BroadcastReceiver. (Note the class name MySMSMailBox; it’ll be used in the AndroidManifest.xml file, shown in listing 1.4.) The tag variable [image:] is used in conjunction with the logging mechanism to assist in labeling messages sent to the console log on the emulator. Using a tag
 in the log enables you to filter and organize log messages in the console. (We discuss the log mechanism in more detail in
 chapter 2.) The onReceive method is where all the work takes place in a BroadcastReceiver; you must implement this method. A given BroadcastReceiver can register multiple IntentFilters. A BroadcastReceiver can be instantiated for an arbitrary number of Intents.

OEBPS/01fig04_alt.jpg
For hire:Takea ride on For ire: Find anything on
the ntemet (intentFilter) the map (IntentFiter)

Android application #2 (BroadecastReceiver)

startActivity(intent;
For hire: View,edit, browse any contacts IntentFilte)
Android application #3 (BroadcastReceiver)

startActivity(Intent,identifier);

startService(intent);

For hire: Custom action on custom data (intntfiter)
Android application #4 (BroadcastReceiver)

Help me: FindaPerson Help me: Find an adress
(Intent) on the map (ntent)

Android application #1

OEBPS/018fig01_alt.jpg
package com.msi.manning.chapterl;
import android.app.Service;
import android.content.Intent:
import android.os.TBinder;
import android.util.Log;
public class Servicel extends Service implements Runnable (
public static final String tag = -servicel’;
private int counter = 0;
Goverride
protected void oncreate() { <@ nitialization
super .onCreate) ;
Thread aThread = new Thread (this);
athread.start();
)
public void run() (
while (true) (
oy
Log.iltag, "servicel firing : ¥ * + counterss);
Thread.sleep(10000) ;
) catch(Exception ee) {
Log.e (ag, ee.gethessage ()) ;
)

)

soverride Handle

public IBinder onBind(Intent intent) (binding request

return null;

)
N

<7 Extend

Service
class.

OEBPS/01fig02.jpg
@ il 3 1230AM
android - Google Search

Web Images Maps News Shopping Gmail m|

GO C)816 androld

Web Vioeo fmsger Resurs 1-10ofsvout 103004

Android Platform
rod__ Learnabout the plttor and
56t o caly ookt the Andro

Android
Offcal webste. Provides 3 project documentaton and |
Conniosd the Androld SOK

id? - Android
e ack for moble devic

S aperatng satem, middewsre and ke ppcos

ey ook ot o5

Open Handset Alliance

e 30 1 Vi dece Bt cn he Androld Piiorm,

OEBPS/01fig03.jpg
User applications: Contacts, phone, browser, etc.

Application managers:Windows, content, activities,
telephony, location, notifications, etc.

Android runtime: Java via Dalvik VM

Libraries: Graphics, media, database,
communications, browser engine, etc.

Linux kernel, including device drivers I

Hardware device with specific capat
5 GPS, camera, Bluetooth, etc.

OEBPS/manning.jpg

OEBPS/01fig01.jpg
Android Software
Environment

Custom & built-in
applications
written in Java

Dalvik virtual
machine

Linux Kernel

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/circle-1.jpg
5

OEBPS/circle-3.jpg

OEBPS/circle-2.jpg

OEBPS/cover.jpg
THIRD EDITION

OEBPS/020fig01_alt.jpg
package com.msi.manning.unlockingandrois

import android.content.Contex
import android.content.Intent
import android.util.Log;
import . android. content . BroadcastReceiver
public class MySMSMailBox extends BroadcastReceiver (Tag used
public static final String tag = *MySMSMailBox 1 inlogging
eoverride
public void onReceive(Context context, Intent intent) (

Log. 1 (tag, "onRecaive®) ;

if (intent.getAction() .equals Check
(*android.provider.Telephony.SMS_RECEIVED")) (Intent’s action

)

Log.i(tag, "Found our Event!®);

