

 inside front cover

 [image:]

 Securing data at rest in Kubernetes

 [image:]

 Kubernetes Secrets Management

 Alex Soto Bueno and Andrew Block

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Patrick Barb

 	
 Technical development editor:

 	
 Conor Redmond

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Marija Tudor

 ISBN: 9781617298912

 dedication

 [Ada i Alexandra recordeu]

 Que viure, viure no és estar vius, viure és l’actitud d’omplir la vida, la vida, allò que passa quan vosaltres rieu.

 —A.S.

 To all those who work tirelessly to keep us all safe.

 —A.B.

brief contents

 Part 1. Secrets and Kubernetes

 1 Kubernetes Secrets

 2 An introduction to Kubernetes and Secrets

 Part 2. Managing Secrets

 3 Securely storing Secrets

 4 Encrypting data at rest

 5 HashiCorp Vault and Kubernetes

 6 Accessing cloud secrets stores

 Part 3. Continuous integration and continuous delivery

 7 Kubernetes-native continuous integration and Secrets

 8 Kubernetes-native continuous delivery and Secrets

 Appendix A. Tooling

 Appendix B. Installing and configuring yq

 Appendix C. Installing and configuring pip

 Appendix D. Installing and configuring Git

 Appendix E. Installing GPG

 index

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Secrets and Kubernetes

 1 Kubernetes Secrets

 1.1 A focus on security

 1.2 Taking full advantage of the Kubernetes ecosystem

 1.3 Not everything is a Secret

 1.4 Bringing secrets management and Kubernetes together

 1.5 Tools to get started

 2 An introduction to Kubernetes and Secrets

 2.1 Kubernetes architecture

 What is a master Node?

 What is a worker Node?

 2.2 Deploying workloads in Kubernetes

 Deploying a workload

 Deployment objects

 Volume

 2.3 Managing application configuration

 ConfigMaps

 2.4 Using Kubernetes Secrets to store sensitive information

 Secrets are encoded in Base64

 Secrets are mounted in a temporary file system

 Secrets can be encrypted at rest

 Risks

 Part 2. Managing Secrets

 3 Securely storing Secrets

 3.1 Storing Kubernetes manifests at rest

 Capturing resources for declarative configuration

 3.2 Tools for securely storing Kubernetes resources

 Ansible Vault

 3.3 Kubernetes Operators

 Custom resource definitions (CRDs)

 Sealed Secrets

 3.4 Managing Secrets within Kubernetes package managers

 Deploying the Greeting Demo Helm chart

 Using Helm Secrets

 3.5 Rotating secrets

 Ansible Vault secret key rotation

 Sealed Secrets key rotation

 SOPS secret key rotation

 4 Encrypting data at rest

 4.1 Encrypting secrets in Kubernetes

 Data at rest vs. data in motion

 Plain secrets

 Encrypting secrets

 Creating the secret

 4.2 Key management server

 Kubernetes and KMS provider

 Creating the secret

 5 HashiCorp Vault and Kubernetes

 5.1 Managing application secrets using HashiCorp Vault

 Deploying Vault to Kubernetes

 Deploying an application to access Vault

 5.2 Kubernetes auth method

 Configuring Kubernetes auth

 Testing and validating Kubernetes auth

 5.3 The Vault Agent Injector

 Configurations to support Kubernetes Vault Agent injection

 6 Accessing cloud secrets stores

 6.1 The Container Storage Interface and Secrets Store CSI Driver

 Container Storage Interface

 Container Storage Interface and Kubernetes

 CSI and secrets

 Installing prerequisites

 Installing the Secrets Store CSI Driver

 Consuming HashiCorp Vault secrets via the Secrets Store CSI Driver and the HashiCorp Vault provider

 6.2 Synchronizing CSI secrets as Kubernetes Secrets

 Preparing the namespace

 Defining a SecretProviderClass resource with secretObjects

 6.3 Autorotating secrets to improve security posture

 Preparing the namespace

 Deploying the Pod with a secret mounted

 Updating the secret

 6.4 Consuming secrets from cloud secrets stores

 Azure Key Vault

 GCP Secret Manager

 AWS Secrets Manager

 Part 3. Continuous integration and continuous delivery

 7 Kubernetes-native continuous integration and Secrets

 7.1 Introduction to continuous integration

 7.2 Tekton

 Installing prerequisites

 Installing Tekton

 Tekton pipelines

 7.3 Continuous integration for a welcome message

 Compiling and Running tests

 Building and Pushing the container image

 The PipelineResource

 Pipeline

 PipelineRun

 8 Kubernetes-native continuous delivery and Secrets

 8.1 Introduction to continuous delivery and deployment

 8.2 Continuous delivery for the welcome message

 Deploying the Name Generator service

 DevOps and GitOps

 8.3 Argo CD

 Installation of ArgoCD

 Welcome service and GitOps

 Creating a Welcome Message service from a Git repository

 Updating the Welcome service

 Appendix A. Tooling

 Appendix B. Installing and configuring yq

 Appendix C. Installing and configuring pip

 Appendix D. Installing and configuring Git

 Appendix E. Installing GPG

 index

 front matter

preface

 As technologists, we are naturally drawn to seeking out innovative ways of solving problems—whether that be through the use of new or existing approaches, frameworks, or technologies. One such technology both authors have been enthralled with over the last few years is Kubernetes. While Docker brought containers to the masses, it was Kubernetes that provided an extensible platform for running containers at scale.

 We approached Kubernetes from different ends of the spectrum: one from an infrastructure mindset, understanding what it takes to build a Kubernetes cluster, and the other focusing on applications, looking to take advantage of the capabilities provided by the underlying infrastructure. There are several interwoven themes that apply to both infrastructure and application-focused individuals; one such area that remains a constant, whether using Kubernetes or not, is security.

 Security is one of those topics that, while essential, often gets deprioritized or overlooked compared to other areas of interest. What we have found while working with organizations and developers is that they may not understand what types of resources require protections or how they can go about securing them. Those who have started working with Kubernetes are also surprised to learn that Kubernetes itself had very little in terms of security when it was first released. The protection mechanism that became known as Secrets was developed as a solution to provide some form of protection for sensitive assets prior to the initial 1.0. As a result, Secrets provide a minimal level of security, which may come as a surprise, given the name of the resource.

 The combination of being potentially unfamiliar with the types of assets that should be secured and how to secure them, the false sense of security offered by the native Kubernetes features, and a myriad of solutions becoming available in this space spells a potential recipe for disaster. Our goal with this book is emphasizing the shift left mentality, in which security becomes a key concern when working with Kubernetes and addresses the capabilities and pitfalls of the included tooling, alternate solutions, and ways these can be incorporated within different parts of the delivery process. We don’t intend—and wouldn’t be able—to address all possible security options, but the concepts and implementations discussed in Kubernetes Secrets Management should enable you to be more successful and secure when working with Kubernetes.

acknowledgments

 During these challenging times, I’d like to acknowledge Santa (fly, fly), Uri (thanks for all the conversations), Guiri (Vive Le Tour), Gavina, Gabi (thanks for the beers), and Edgar and Ester (yes, it’s Friday); my working teammates Edson, Sebi, Natale, Ana-Maria, Elder, and, of course, Burr and Kamesh (you will be on our team wherever you are)—we are the best team in the world! Also, thanks to Jonathan Vila, Abel Salgado, and Jordi Sola for the fantastic conversations about Java and Kubernetes.

 Special thanks to all the reviewers who read our manuscript and provided such valuable feedback: Alain Lompo, Atila Kaya, Chris Devine, Clifford Thurber, Deepak Sharma, Giuseppe Catalano, John Guthrie, Jon Moore, Michael Bright, Mihaela Barbu, Milorad Imbra, Peter Reisinger, Robin Coe, Sameer Wadhwa, Satadru Roy, Sushant Bhadkamar, Tobias Ammann, and Werner Dijkerman; your contributions helped improve this book.

 Last but certainly not least, I’d like to acknowledge Anna for being here; my parents, Mili and Ramon, who bought me my first computer; and my daughters Alexandra and Ada, "sou les ninetes dels meus ulls.”

 —Alex Soto Bueno

 Writing a book can be a challenging ordeal while also juggling other responsibilities amid a global pandemic. I would like to acknowledge those that helped reinforce various security concepts, including Raffaele Spazzoli, Bob Callaway, and Luke Hinds. In addition, all those in in the Open Source community who helped build knowledge and stayed connected during these challenging times.

 But, most importantly, I would like to acknowledge my parents, AnneMarie and A.J., for their pillar of support that keeps me grounded and focused no matter the adversity.

 —Andrew Block

about this book

 Kubernetes Secrets Management was written to help you understand how to manage secrets during development, and release an application to the Kubernetes cluster. We begin with an introduction to Kubernetes and setting up the environment in which to run the examples presented in the book. After the introduction, we discuss managing secrets during development time and storing them correctly, either in the code repository or inside the Kubernetes cluster. Finally, we show a cloud Kubernetes-native way of implementing continuous integration and delivery as well as managing secrets in the pipeline.

Who should read this book?

 Kubernetes Secrets Management is for senior developers with minimal experience in Kubernetes who want to expand their knowledge about Kubernetes and secret management. This book is also for operators who want to learn how to manage secrets, including how to configure, deploy, and store these secrets appropriately. While plenty of docs and blog posts to this effect exist online, Kubernetes Secrets Management brings together all that information to one clear, easy-to-follow text, so readers can understand security threats step-by-step, and how to address them.

How this book is organized: A roadmap

 This book has three parts that cover eight chapters:

 Part 1 explains the fundamentals of security and secrets and the basic Kubernetes concepts essential for understanding the rest of the book.

 	
 Chapter 1 introduces what is and is not a secret, why it is important to keep secrets secret, as well as an overview of Kubernetes.

 	
 Chapter 2 further introduces Kubernetes, its architecture, and the basic concepts for deploying an application with secret data. It also discusses why standard Kubernetes Secrets do not provide sufficient security.

 Part 2 covers several security issues you might encounter during the development and deployment of an application to Kubernetes and how to fix them. Moreover, part 2 covers using secret storage to manage application secrets outside of the Kubernetes infrastructure.

 	
 Chapter 3 introduces tools and approaches that can store Kubernetes Secrets securely at rest and illustrates the benefits of declaratively defining Kubernetes resources.

 	
 Chapter 4 covers the encryption of secrets at rest inside the Kubernetes cluster as well as their integration with a key management service.

 	
 Chapter 5 focuses on the importance of using a secrets management tool, such as HashiCorp Vault, to securely store and manage sensitive assets for applications deployed to Kubernetes. It also demonstrates how both applications and Vault can be configured to provide seamless integration with one another.

 	
 Chapter 6 expands on the idea, introduced in chapter 5, of using an external secrets management tool—this time focusing on cloud secrets stores, including Google Secret Manager, Azure Key Vault, and AWS Secrets Manager.

 Part 3 introduces a way of implementing Kubernetes-native continuous integration and delivery with Tekton and Argo CD and managing secrets correctly.

 	
 Chapter 7 covers delivering quality applications rapidly to hit the market sooner and, better yet, managing the secrets correctly throughout the pipeline, so no secrets leak in this phase of development.

 	
 Chapter 8 covers using continuous deployment and GitOps methodology to deploy and release services to a Kubernetes cluster by using Argo CD to deliver quality applications rapidly, while correctly managing the secrets throughout the pipeline, and ensuring no secrets leak in this phase of the development.

 The reader may skip the second chapter if they have a good knowledge of Kubernetes (e.g., Deployments, Services, volumes, and ConfigMaps) and minikube.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/kubernetes-secrets-management. The complete code for the examples in the book is available for download from the Manning website at www.manning.com, and from GitHub at https://github.com/lordofthejars/kubernetes-secrets-source.

liveBook discussion forum

 Purchase of Kubernetes Secrets Management includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/kubernetes-secrets-management/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

about the authors

 [image:]

 Alex Soto Bueno is a Director of Developer Experience at Red Hat. He is passionate about the Java world, and software automation, and believes in the open-source software model. Alex is the co-author of Testing Java Microservices, Quarkus Cookbook, Securing Kubernetes Secrets, and contributor to several open-source projects. A Java Champion since 2017, Alex is also an international speaker, radio collaborator at Onda Cero, and teacher at Salle URL University. You can follow Alex on Twitter (@alexsotob) to stay tuned to what’s going on in Kubernetes and the Java world.

 [image:]

 Andrew Block is a Distinguished Architect at Red Hat who works with organizations to design and implement solutions leveraging cloud native technologies. He specializes in continuous integration and continuous delivery methodologies to reduce delivery time and automate how environments are built and maintained. He is also the co-author of Learn Helm, which introduces how to package applications for deployment in a Kubernetes environment. Andrew is also a contributor to several open-source projects and emphasizes the benefits of working together to build and maintain Communities of Practice. Andrew can be found on Twitter at @sabre1041 where he frequently shares the latest and greatest headlines and tips in the field of emerging tech.

about the cover illustration

 The figure on the cover of Kubernetes Secrets Management is captioned “Femme Mokschane,” or “Mokshan woman,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. Secrets and Kubernetes

 Whether working through an infrastructure or application lens, the operation of these assets is driven via the use of configuration properties; some of which may contain sensitive values. In the first part of this book, we will introduce the fundamentals of managing of secrets within Kubernetes.

 Chapter 1 provides guidance for identifying the traits commonly found in secrets and their role within Kubernetes. Chapter 2 focuses on the primitives of Kubernetes, its architecture, and the basic concepts for deploying an application with sensitive data. After reading part 1, you will have the skills to identify configurations containing sensitive content along with the knowledge of the primary limitations of the Kubernetes Secret resource.

 1 Kubernetes Secrets

 This chapter covers

 	
Focusing on security

 	
Taking full advantage of the Kubernetes ecosystem

 	
Differentiating between what is and is not considered a Secret

 	
Bringing it all together

 	
Getting started with the tools you will need for success

 Enterprise software systems rely on accurate configuration data to support their normal operation. Configurations take many forms and can be set up in a variety of ways, depending on the use case and context. These configurable properties could include details to support the application framework or the normal operation of the program.

 While many of these properties are intended to be viewed by any party, there are certain attributes, such as passwords, that should only be seen or accessed by certain individuals or components. These sensitive forms of data are called Secrets, and protecting these Secrets is a top priority for Kubernetes administrators and developers. As one might expect with any complex system, Kubernetes configurations employ a myriad of properties to support normal operation, some which may contain sensitive information that, if exposed, would risk the integrity of the entire platform.

 Over time, an increasing number of options have become available for managing configurations in Kubernetes, but most trace their history to the two primary methods for storing configurations within the platform: ConfigMaps and Secrets. While each resource provides a way for storing configuration material through the use of key–value pairs, the primary difference between the two is that Secrets are designed to hold confidential data along with supporting more complex data types, such as binary assets instead of plain text values. It’s important to note that some of these data types may contain sensitive properties.

 However, the included Kubernetes Secrets resource is just the tip of the iceberg as it relates to secrets management within Kubernetes. Additional tools and approaches have evolved to supplement the native capabilities of Kubernetes Secrets. One of the driving forces behind the evolution of these tools is the fact that the native Kubernetes Secrets resource does not provide the level of security one might need or expect from a secrets management system.

 Instead of making use of a proper encryption algorithm, values stored within Kubernetes Secrets are merely Base64 encoded, meaning their values can be easily decoded by a malicious attacker; this encoding scheme was employed for the purpose of storing binary data rather than providing any form of security. But, what makes these alternate tools superior to the native Kubernetes Secrets resource? Is it because they provide a more robust encryption mechanism, are more intuitive to use, or integrate well into the target system or end application? Maybe. These are all factors that need to be considered when choosing from your available options.

 In many cases, there is no correct answer. Everyone, whether an individual developer or a multinational organization, assesses security in a different way. What may be fine for one may not be fine for the other, especially when there are security regulations that must be followed. Understanding not only the importance but also the various methods that can be used to protect sensitive assets within Kubernetes are the goals of this book. Upon completion you will have a better understanding of the role Secrets play in a Kubernetes environment within applications as well as with the technologies and approaches that can be used to properly manage sensitive resources and support the underlying infrastructure.

1.1 A focus on security

 Security is a continuously evolving topic. Every week, news of a new vulnerability is reported with an intrusion no doubt to follow. One of the reasons for adopting a container-native strategy is that many benefits come with cloud-native application development and operation. However, security, in many cases, is still seen as an afterthought and is lower in priority than some of the other aspects of cloud-native development. The fundamental shift to how systems are built and deployed gives organizations an opportunity to reflect on how they prioritize work and some of the factors that should go into how infrastructure and applications are designed. Organizations are beginning to take note of the importance of security and shifting left to include it earlier in the development process. It also gives them the opportunity to reflect on their current security practices and contemplate how they want to design and deliver their strategies and policies moving forward.

 Adopting concepts like the principle of least privilege, which limits the amount of access granted to resources to only the minimum necessary privileges to accomplish a task, embraces the importance of managing access to sensitive resources. Applying role-based access control (RBAC) to restrict access to authorized users is one of the most common approaches for applying this principle. But keeping an eye on security should not be viewed as a one and done task that only occurs at the planning and initial implementation phase. It is important for these policies to be reviewed on an ongoing basis to confirm whether any actor still needs access to a desired resource. This continual assessment is not only a good practice, but it also increases overall security.

1.2 Taking full advantage of the Kubernetes ecosystem

 As one can probably imagine, proper secret management in a Kubernetes environment goes far beyond the simple deployment of Pods and Services. More advanced topics, such as sidecars—which are separate containers sitting alongside the primary container to provide supplementary capabilities along with admission webhooks that can react to various changes within the platform—push Kubernetes to the limit to achieve secure solutions. The true extensibility of the platform is demonstrated through Custom Resource Definitions (CRD), which extend the base set of Application Programming Interface (API) resources and can be used for managing secure assets among other ways of supporting how secrets can be managed and accessed.

 But it is not always the technology itself that moves projects forward and opens up opportunities. Tireless efforts from members from the open source community in collaboration with various organizations have dedicated their time and resources to provide solutions in this space, allowing additional options and approaches to become available for providing the most secure operating environment possible.

1.3 Not everything is a Secret

 While it is important to have a security-first mindset, one must be considerate of the effort it takes to properly perform secrets management. For example, if you developed an application that sends alerts based on the current temperature once a configurable threshold was reached, such as if the temperature of a refrigerator reached 5 degrees Celsius, would this threshold of 5 degrees Celsius truly be considered a sensitive resource? Probably not. The time, resources, and effort to fully secure and manage assets must be taken into account, as the administrative overhead and ongoing lifecycle may outweigh the benefits.

 The mindset that every configurable value should be treated the same is a common fallacy hindering many teams. Determining which values can remain in plain text and which others require protection is an exercise that should be performed by all teams. Defining a standardized method for identifying sensitive resources will help align not only how application teams approach secrets management, but it will also promote making more informed decisions and reducing wasted time.

1.4 Bringing secrets management and Kubernetes together

 Secrets management has been a challenge long before the days of Kubernetes. The process can be laborious and will most likely involve careful planning and consideration. So what steps should you take? Let’s break down each section from the bird’s-eye perspective depicted in figure 1.1, which will aid in understanding the steps you will need to examine.

 [image:]

 Figure 1.1 The steps involved in handling sensitive resources in Kubernetes

 First, prior to any sort of implementation or execution, there should be an agreement on what types of configurable material is present as well as those that are to be deemed sensitive (figure 1.2).

 In some cases, the answer is fairly straightforward, such as a password to a database. For others, it may not be so easy. Take an example of a web application that makes a connection to the same backend database. Would the database hostname be considered sensitive material? To some, it may be, as there could be a desire to obfuscate the location in order to reduce the potential attack vector. However, if the location referred to a common shared database used by members of a team in a development environment, it may not. Many battles have been fought, won, and lost throughout this process, and the answer does, in fact, vary.

 [image:]

 Figure 1.2 Common types of sensitive assets

 Once there has been an agreement on the types of properties deemed sensitive, the next step is determining how they should be stored. There are several factors that should be taken into account:

 	
 What are the available secrets management solutions?

 	
 How is the sensitive asset intended to be used?

 	
 What application framework is being used, and what are the options for injecting external configurations?

 In a Kubernetes environment, the Secret resource is a natural default, as it provides some form of protection and is included in every distribution of Kubernetes. But, what else is available? Figure 1.3 depicts the two primary approaches.

 [image:]

 Figure 1.3 Typical utilities for storing sensitive Kubernetes assets

 If the framework for your application or component offers a secrets management system, it may be a viable option to leverage this native feature. Many cloud providers also offer their own key management system (KMS) as well as a managed service option. This is highly appetizing when operating in cloud environments. Other solutions, such as HashiCorp Vault, provide a key management system that can be deployed anywhere, whether in the public cloud or elsewhere.

 After determining the secrets management solution you will move forward within the particular implementation, the next step is to store assets within the tool. While the process of storing resources can vary depending on the tool, most expose an API-based interface that can be used to integrate at a variety of levels. The API becomes the focal point for interacting with the secrets management solution, and for conve-

 nience, a Command Line Interface (CLI) option or a user interface exposed through a web browser abstracts the underlying interaction with the API. These options all aid in the storage of secrets and can be achieved in a manual fashion or integrated into a continuous integration or continuous delivery (CI/CD) process to achieve repeatability and consistency (figure 1.4).

 [image:]

 Figure 1.4 Common methods for interacting with secrets management tools

 The final, and arguably most important, step is retrieving the stored resource out of the secrets management tool for use by the application. Thanks to the power of Kubernetes, there are a variety of options and approaches that can be used for this. Ultimately, it boils down to two distinct steps:

 	
 Translating the value from its protected form to plain text

 	
 Exposing the value, so it can be consumed by the application

 The process in which stored values are converted back to their plain text representation is dependent on the secrets management tool in use. In many cases, the same approach used to store the values can be used, just in reverse. Things can get interesting, depending on how you make these values available to applications. Most simply, as with standard Kubernetes Secrets, a reference is made to the stored Secret in the Kubernetes manifest being created, where the asset is then exposed to applications as either an environment variable or contained within a file on the file system of the application. However, if more advanced secrets management tools are used, or there is a desire for more dynamic capabilities to further restrict how values are exposed to applications, additional options may be available.

 Certain tools can be co-located alongside running applications within the aforementioned sidecar containers to interact with the secrets management store and inject sensitive values into applications for consumption. Alternatively, at deployment time, the Kubernetes manifest of the application can be modified by the platform to decouple how values are injected in a dynamic fashion. Furthermore, approaches in which the sensitive value is never exposed in plain text and is accessed directly by the application in memory are also available. From start to end, regardless of the approach, you need to carefully plan and think through assessing the necessary tools, requirements from the application, and the overall time and effort it will take to implement the solution.

1.5 Tools to get started

 To guide you along your journey throughout this book, you will make use of several tools that not only interact with a Kubernetes cluster but any of the secrets management solutions being discussed. It is important to have an environment that allows for the installation and configuration of software. At a minimum, to interact with a Kubernetes cluster and manage the Kubernetes Secret resource, the Kubernetes command-line tool (kubectl) will be needed. As you work through some of the alternate solutions in the secrets management space, additional tools will be introduced. So without further delay, let’s get started!

Summary

 	
 Configurations take many forms—some of which may be sensitive in nature—to support both application and infrastructure contexts.

 	
 Values stored in Kubernetes Secrets are not encrypted but, instead, Base64 encoded and easily decoded.

 	
 The principle of least privilege embraces only enabling the minimum level of access necessary.

 	
 The Kubernetes container orchestration platform contains primitives to enable approaches for managing secrets.

 	
 Concepts and approaches will be introduced in subsequent chapters to enable readers to properly manage secrets in Kubernetes.

 2 An introduction to Kubernetes and Secrets

 This chapter covers

 	
Understanding the basic architecture of a Kubernetes cluster

 	
Deploying an application to Kubernetes

 	
Managing application configuration externally

 	
Using Kubernetes Secrets to store sensitive information

 Because secrets management begins with the initial configuration and the security needs of the application, it’s important to fully understand the initial setup process. In this chapter, you will learn more about how to manage configurations, both insecure and secure, by deploying a simple RESTful Web Service that returns a greeting message.

 NOTE You’ll need a Kubernetes cluster to run the implementations in this book. You can use any Kubernetes distribution provided by a public cloud or made to run it locally.

 The examples in this book are tested using a minikube cluster. Minikube allows you to run Kubernetes locally in a single-node Kubernetes cluster inside a virtual machine (VM) on a laptop. Follow the instructions in appendix A to install your Kubernetes cluster, and then return to this chapter to get started.

 We’ll start by reviewing some basics about Kubernetes architecture and configuration. If you are already well versed in Kubernetes, the next few pages, in which we’ll establish the initial configuration for your web service, should be very familiar. We’ll dive into Kubernetes Secrets after we complete the default setup.

2.1 Kubernetes architecture

 The first thing to understand about Kubernetes architecture is there are two kinds of Nodes—master and worker Nodes—and in typical production deployments you might have several Nodes of each kind.

 ImportanT The Kubernetes community has started changing the names of the Nodes, using more inclusive language (e.g., control plane and secondary Node); we truly support this change, but the version of minikube used in this book, has not yet implemented this change. To be aligned with minikube output, master and worker Nodes are used in this chapter.

 Figure 2.1 shows an overview of a Kubernetes cluster and the relationship between master Nodes and worker Nodes. The worker Node(s) is responsible for running your workloads, such as developed services or databases, and the master Node(s) manages the worker Nodes and decides where workloads are deployed.

 [image:]

 Figure 2.1 Overview of Kubernetes architecture with master and worker Nodes

 The minimum number of Nodes required to conform to a Kubernetes is just one master Node acting as the master and worker Node. Although this might not be the typical use case in production, it is typical when developing in the local machine. Usually, in production, you will have between three and five master Nodes and several worker Nodes, the number of which may depend on the number of workloads to deploy and the degree of redundancy you expect in your application. Let’s explore what is inside master and worker Nodes.

2.1.1 What is a master Node?

 A master Node is responsible for executing several tasks in a Kubernetes cluster; for example, it decides where the application is deployed, detects and responds to abnormalities, stores the application configuration parameters, and, by default, is the place secrets (or sensitive information) of the application are stored.

 A Kubernetes cluster must have at least one master Node, but typically in production environments you may have more than one for redundancy. You will find the next four elements inside each master Node:

 	
 kube-apiserver—This is the frontend for Kubernetes and exposes the Kubernetes API to the Kubernetes users. When an operator runs a command against the Kubernetes cluster, it does so through the api-server.

 	
 etcd—This is a key–value database used to store all cluster data. Every time you get information about the cluster, that data is retrieved from etcd.

 	
 scheduler—This is the process responsible for selecting a Node for running workloads on. Factors taken into consideration when selecting the Node on which to deploy your workload might depend on its requirements, such as hardware, policy constraints, affinity and anti-affinity rules, data locality, and so on.

 	
 controllers—The main task of controllers is monitoring specific Kubernetes resources.

 There are four major controllers:

 	
 Node controller—This controller is responsible for monitoring and acting when any Node goes down.

 	
 Replication controller—This controller is responsible for ensuring your workloads are up and running all the time.

OEBPS/OEBPS/Images/CH01_F03_Sotobueno3.png
Kubernetes Secrets

Kubernetes Secrets are the
de facto method for storing
sensitive material in
Kubernetes.

Vo
E

Third-party tools

2. Alternate methods can be
used to both store and
secure sensitive material
for use in Kubernetes.

OEBPS/cover.jpeg
Alex Soto Bueno
Andrew Block

/ll MANNING

OEBPS/OEBPS/Images/CH01_F02_Sotobueno3.png
c || & || ©&

Application
Credentials | | Certificates | | configurations
«Passwords +TLS « Runtime
« APl keys *GPG keys arguments

N7

ﬁ
s

What are the types of sen:
resources?

OEBPS/OEBPS/Images/IFC_F01_Sotobueno3.png
Stores encrypted

secrets in Git

o Encrypts o Do
secrets changes

& Apply and decrypts
secret

Sealed-Secrets Argo CD

0, e
Kubernetes Secret Injected as
0 oime

Stored in
Vault

(@ Consumed using HTTPS

\A

@ !njected using CS| driver
HashiCorp Vault

OEBPS/OEBPS/Images/Andrew_Block_photo.png

OEBPS/OEBPS/Images/CH01_F01_Sotobueno3.png
What do we @ Secrets Vault W’;ZL'::E:"
2
need to store! jroules)
Credentials Certificates
Ansible vault
Identify types of sensitive Determine your secrets
resources storage tool

How are the

How do you 4 A / & assets made
store your - - available to the

assets? "] application?

Secure values using your
secrets tool

Access secure values within the

application

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH02_F01_Sotobueno3.png
Developers and operators
access the cluster through

master Nodes.

Master

Worker Worker
Worker Worker

€Co

CCo

OEBPS/OEBPS/Images/Alex_Sotobueno_photo.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F04_Sotobueno3.png
cLi

o_0
oo
o/ O

An interactive way to work
with sensitive resources

Exposes integrations, such as
Uland RESTful services, to
manage sensitive resources

