
[image: Cover: Deep Learning with R, Second Edition, by Francois Chollet, Tomasz Kalinowski, and J. J. Allaire]

Deep Learning with R, Second Edition

Francois Chollet with Tomasz Kalinowski and J. J. Allaire

Praise for the First Edition

“The clearest explanation of deep learning I have come across… it was a joy to read.”

—Richard Tobias, Cephasonics

“Bridges the gap between the hype and a functioning deep-learning system.”

—Peter Rabinovitch, Akamai

“All major topics and concepts of deep learning are covered and well-explained, using code examples and diagrams instead of mathematical formulas.”

—Srdjan Santic, Springboard.com

[image: Deep Learning with R, Second Edition, by Francois Chollet, Tomasz Kalinowski, and J. J. Allaire, Manning Publications]

For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

[image: Logo: Manning Publications]

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Jennifer Stout

Review editor: Aleksandar Dragosavljević

Production editor: Andy Marinkovich

Copy editor: Pamela Hunt

Proofreader: Keri Hales

Technical proofreader: Ninoslav Cerkez

Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781633439849

ISBN 9781638350781 (ebook)

preface

If you’ve picked up this book, you’re probably aware of the extraordinary progress that deep learning has represented for the field of artificial intelligence in the recent past. We went from near-unusable computer vision and natural language processing to highly performant systems deployed at scale in products you use every day. The consequences of this sudden progress extend to almost every industry. We’re already applying deep learning to an amazing range of important problems across domains as different as medical imaging, agriculture, autonomous driving, education, disaster prevention, and manufacturing.

Yet, I believe deep learning is still in its early days. It has realized only a small fraction of its potential so far. Over time, it will make its way to every problem where it can help—a transformation that will take place over multiple decades.

To begin deploying deep learning technology to every problem that it could solve, we need to make it accessible to as many people as possible, including non-experts— people who aren’t researchers or graduate students. For deep learning to reach its full potential, we need to radically democratize it. And today, I believe that we’re at the cusp of a historical transition, where deep learning is moving out of academic labs and the R&D departments of large tech companies to become a ubiquitous part of the toolbox of every developer out there—not unlike the trajectory of web development in the late 1990s. Almost anyone can now build a website or web app for their business or community of a kind that would have required a small team of specialist engineers in 1998. In the not-so-distant future, anyone with an idea and basic coding skills will be able to build smart applications that learn from data.

When I released the first version of the Keras deep learning framework in March 2015, the democratization of AI wasn’t what I had in mind. I had been doing research in machine learning for several years and had built Keras to help me with my own experiments. But since 2015, hundreds of thousands of newcomers have entered the field of deep learning; many of them picked up Keras as their tool of choice. As I watched scores of smart people use Keras in unexpected, powerful ways, I came to care deeply about the accessibility and democratization of AI. I realized that the further we spread these technologies, the more useful and valuable they become. Accessibility quickly became an explicit goal in the development of Keras, and over a few short years, the Keras developer community has made fantastic achievements on this front. We’ve put deep learning into the hands of hundreds of thousands of people, who in turn are using it to solve problems that were until recently thought to be unsolvable.

The book you’re holding is another step on the way to making deep learning available to as many people as possible. Keras had always needed a companion course to simultaneously cover the fundamentals of deep learning, deep learning best practices, and Keras usage patterns. In 2016 and 2017, I did my best to produce such a course, which became the first edition of this book, released in December 2017. It quickly became a machine learning best seller that sold over 50,000 copies and was translated into 12 languages.

However, the field of deep learning advances fast. Since the release of the first edition, many important developments have taken place—the release of TensorFlow 2, the growing popularity of the Transformer architecture, and more. And so, in late 2019, I set out to update my book. I originally thought, quite naively, that it would feature about 50% new content and would end up being roughly the same length as the first edition. In practice, after two years of work, it turned out to be over a third longer, with about 75% novel content. More than a refresh, it is a whole new book.

I wrote it with a focus on making the concepts behind deep learning, and their implementation, as approachable as possible. Doing so didn’t require me to dumb down anything—I strongly believe that there are no difficult ideas in deep learning. I hope you’ll find this book valuable and that it will enable you to begin building intelligent applications and solve the problems that matter to you.

acknowledgments

First, I’d like to thank the Keras community for making this book possible. Over the past six years, Keras has grown to have hundreds of open source contributors and more than one million users. Your contributions and feedback have turned Keras into what it is today.

On a more personal note, I’d like to thank my wife for her endless support during the development of Keras and the writing of this book.

I’d also like to thank Google for backing the Keras project. It has been fantastic to see Keras adopted as TensorFlow’s high-level API. A smooth integration between Keras and TensorFlow greatly benefits both TensorFlow users and Keras users and makes deep learning accessible to most.

I want to thank the people at Manning who made this book possible: publisher Marjan Bace and everyone on the editorial and production teams, including Michael Stephens, Jennifer Stout, Aleksandar Dragosavljević, Andy Marinkovich, Pamela Hunt, Susan Honeywell, Keri Hales, Paul Wells, and many others who worked behind the scenes.

Many thanks go to all the reviewers: Arnaldo Ayala Meyer, Davide Cremonesi, Dhinakaran Venkat, Edward Lee, Fernando García Sedano, Joel Kotarski, Marcio Nicolau, Michael Petrey, Peter Henstock, Shahnawaz Ali, Sourav Biswas, Thiago Britto Borges, Tony Dubitsky, Vlad Navitski, and all the other people who sent us feedback. Your suggestions helped make this a better book.

And on the technical side, special thanks go to Ninoslav Cerkez, who served as the book’s technical proofreader.

about this book

This book was written for anyone who wishes to explore deep learning from scratch or broaden their understanding of deep learning. Whether you’re a practicing machine learning engineer, a data scientist, or a college student, you’ll find value in these pages.

You’ll explore deep learning in an approachable way—starting simply, then working up to state-of-the-art techniques. You’ll find that this book strikes a balance between intuition, theory, and hands-on practice. It avoids mathematical notation, preferring instead to explain the core ideas of machine learning and deep learning via detailed code snippets and intuitive mental models. You’ll learn from abundant code examples that include extensive commentary, practical recommendations, and simple high-level explanations of everything you need to know to start using deep learning to solve concrete problems.

The code examples use the deep learning framework Keras, with TensorFlow 2 as its numerical engine. They demonstrate modern Keras and TensorFlow 2 best practices as of 2022.

After reading this book, you’ll have a solid understand of what deep learning is, when it’s applicable, and what its limitations are. You’ll be familiar with the standard workflow for approaching and solving machine learning problems, and you’ll know how to address commonly encountered issues. You’ll be able to use Keras to tackle real-world problems ranging from computer vision to natural language processing: image classification, image segmentation, time-series forecasting, text classification, machine translation, text generation, and more.

Who should read this book?

This book is written for people with R programming experience who want to get started with machine learning and deep learning. But this book can also be valuable to many different types of readers:

	If you’re a data scientist familiar with machine learning, this book will provide you with a solid, practical introduction to deep learning, the fastest growing and most significant subfield of machine learning.

	If you’re a deep learning researcher or practitioner looking to get started with the Keras framework, you’ll find this book to be the ideal Keras crash course.

	If you’re a graduate student studying deep learning in a formal setting, you’ll find this book to be a practical complement to your education, helping you build intuition around the behavior of deep neural networks and familiarizing you with key best practices.

Even technically-minded people who don’t code regularly will find this book useful as an introduction to both basic and advanced deep learning concepts.

To understand the code examples, you’ll need reasonable R proficiency. You don’t need previous experience with machine learning or deep learning: this book covers, from scratch, all the necessary basics. You don’t need an advanced mathematics background, either—high school–level mathematics should suffice to follow along.

About the code

This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Output from running code is similarly formatted in fixed-width font, but is also adorned with a vertical gray bar on the left. Throughout the book you’ll find code and code outputs interleaved like this:

print("R is awesome!")

[1] "R is awesome!"

In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image: Image]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/deep-learning-with-r-second-edition/, and as R scripts on GitHub at https://github.com/t-kalinowski/deep-learning-with-R-2nd-edition-code.

liveBook discussion forum

Purchase of Deep Learning with R, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to at https://livebook.manning.com/book/deep-learning-with-r-second-edition/. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the cover illustration

The figure on the cover of Deep Learning with R, Second Edition, “Habit of a Chinese Lady in 1700,” is taken from a book by Thomas Jefferys, published between 1757 and 1772.

In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

about the authors

FRANÇOIS CHOLLET is the creator of Keras, one of the most widely used deep learning frameworks. He is currently a software engineer at Google, where he leads the Keras team. In addition, he does research on abstraction, reasoning, and how to achieve greater generality in artificial intelligence.

TOMASZ KALINOWSKI is a software engineer at RStudio, where he serves as maintainer of the TensorFlow and Keras R packages. In prior roles, he worked as a scientist and engineer, applying machine learning to a wide variety of datasets and domains.

J.J. ALLAIRE is the founder of RStudio and the creator of the RStudio IDE. J.J. is the author of the R interfaces to TensorFlow and Keras.

1 What is deep learning?

This chapter covers

	High-level definitions of fundamental concepts

	Time line of the development of machine learning

	Key factors behind deep learning’s rising popularity and future potential

In the past few years, artificial intelligence (AI) has been a subject of intense media hype. Machine learning, deep learning, and AI come up in countless articles, often outside of technology-minded publications. We’re promised a future of intelligent chatbots, self-driving cars, and virtual assistants—a future sometimes painted in a grim light and other times as utopian, where human jobs will be scarce and most economic activity will be handled by robots or AI agents. For a future or current practitioner of machine learning, it’s important to be able to recognize the signal amid the noise, so that you can tell world-changing developments from overhyped press releases. Our future is at stake, and it’s a future in which you have an active role to play: after reading this book, you’ll be one of those who develop those AI systems. So let’s tackle these questions: What has deep learning achieved so far? How significant is it? Where are we headed next? Should you believe the hype?

This chapter provides essential context around artificial intelligence, machine learning, and deep learning.

1.1 Artificial intelligence, machine learning, and deep learning

First, we need to define clearly what we’re talking about when we mention AI. What are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How do they relate to each other?

[image: Image]
Figure 1.1 Artificial intelligence, machine learning, and deep learning

1.1.1 Artificial intelligence

Artificial intelligence was born in the 1950s, when a handful of pioneers from the nascent field of computer science started asking whether computers could be made to “think”—a question whose ramifications we’re still exploring today.

Although many of the underlying ideas had been brewing in the years and even decades prior, “artificial intelligence” finally crystallized as a field of research in 1956, when John McCarthy, then a young assistant professor of mathematics at Dartmouth College, organized a summer workshop under the following proposal:

The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

At the end of the summer, the workshop concluded without having fully solved the riddle it set out to investigate. Nevertheless, it was attended by many people who would move on to become pioneers in the field, and it set in motion an intellectual revolution that is still ongoing to this day.

Concisely, AI can be described as the effort to automate intellectual tasks normally performed by humans. As such, AI is a general field that encompasses machine learning and deep learning, but that also includes many more approaches that may not involve any learning. Consider that until the 1980s, most AI textbooks didn’t mention “learning” at all! Early chess programs, for instance, involved only hardcoded rules crafted by programmers and didn’t qualify as machine learning. In fact, for a fairly long time, most experts believed that human-level artificial intelligence could be achieved by having programmers handcraft a sufficiently large set of explicit rules for manipulating knowledge stored in explicit databases. This approach is known as symbolic AI. It was the dominant paradigm in AI from the 1950s to the late 1980s, and it reached its peak popularity during the expert systems boom of the 1980s.

Although symbolic AI proved suitable to solve well-defined, logical problems, such as playing chess, it turned out to be intractable to figure out explicit rules for solving more complex, fuzzy problems, such as image classification, speech recognition, or natural language translation. A new approach arose to take symbolic AI’s place: machine learning.

1.1.2 Machine learning

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles Babbage, the inventor of the Analytical Engine: the first-known general-purpose mechanical computer. Although visionary and far ahead of its time, the Analytical Engine wasn’t meant as a general-purpose computer when it was designed in the 1830s and 1840s, because the concept of general-purpose computation had yet to be invented. It was merely meant as a way to use mechanical operations to automate certain computations from the field of mathematical analysis—hence the name Analytical Engine. As such, it was the intellectual descendant of earlier attempts at encoding mathematical operations in gear form, such as the Pascaline, or Leibniz’s stepped reckoner, a refined version of the Pascaline. Designed by Blaise Pascal in 1642 (at age 19!), the Pascaline was the world’s first mechanical calculator—it could add, subtract, multiply, or even divide digits.

In 1843, Ada Lovelace remarked on the invention of the Analytical Engine:

The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform…. Its province is to assist us in making available what we’re already acquainted with.

Even with 179 years of historical perspective, Lady Lovelace’s observation remains arresting. Could a general-purpose computer “originate” anything, or would it always be bound to dully execute processes we humans fully understand? Could it ever be capable of any original thought? Could it learn from experience? Could it show creativity?

Her remark was later quoted by AI pioneer Alan Turing as “Lady Lovelace’s objection” in his landmark 1950 paper “Computing Machinery and Intelligence,”1 which introduced the Turing test as well as key concepts that would come to shape AI.2 Turing was of the opinion—highly provocative at the time—that computers could in principle be made to emulate all aspects of human intelligence.

The usual way to make a computer do useful work is to have a human programmer write down rules—a computer program—to be followed to turn input data into appropriate answers, just like Lady Lovelace writing down step-by-step instructions for the Analytical Engine to perform. Machine learning turns this around: the machine looks at the input data and the corresponding answers, and figures out what the rules should be (see figure 1.2). A machine learning system is trained rather than explicitly programmed. It’s presented with many examples relevant to a task, and it finds statistical structure in these examples that eventually allows the system to come up with rules for automating the task. For instance, if you wished to automate the task of tagging your vacation pictures, you could present a machine learning system with many examples of pictures already tagged by humans, and the system would learn statistical rules for associating specific pictures to specific tags.

[image: Image]
Figure 1.2 Machine learning: A new programming paradigm

Although machine learning started to flourish only in the 1990s, it has quickly become the most popular and most successful subfield of AI, a trend driven by the availability of faster hardware and larger datasets. Machine learning is related to mathematical statistics, but it differs from statistics in several important ways, in the same sense that medicine is related to chemistry but cannot be reduced to chemistry, because medicine deals with its own distinct systems with their own distinct properties. Unlike statistics, machine learning tends to deal with large, complex datasets (such as a dataset of millions of images, each consisting of tens of thousands of pixels) for which classical statistical analysis such as Bayesian analysis would be impractical. As a result, machine learning, and especially deep learning, exhibits comparatively little mathematical theory—maybe too little—and is fundamentally an engineering discipline. Unlike theoretical physics or mathematics, machine learning is a very hands-on field driven by empirical findings and deeply reliant on advances in software and hardware.

1.1.3 Learning rules and representations from data

To define deep learning and understand the difference between deep learning and other machine learning approaches, first we need some idea of what machine learning algorithms do. We just stated that machine learning discovers rules for executing a data processing task, given examples of what’s expected. So, to do machine learning, we need the following three things:

	
Input data points—For instance, if the task is speech recognition, these data points could be sound files of people speaking. If the task is image tagging, they could be pictures.

	
Examples of the expected output—In a speech-recognition task, these could be human-generated transcripts of sound files. In an image task, expected outputs could be tags such as “dog,” “cat,” and so on.

	
A way to measure whether the algorithm is doing a good job—This is necessary to determine the distance between the algorithm’s current output and its expected output. The measurement is used as a feedback signal to adjust the way the algorithm works. This adjustment step is what we call learning.

A machine learning model transforms its input data into meaningful outputs, a process that is “learned” from exposure to known examples of inputs and outputs. Therefore, the central problem in machine learning and deep learning is to meaningfully transform data: in other words, to learn useful representations of the input data at hand— representations that get us closer to the expected output.

Before we go any further: what’s a representation? At its core, it’s a different way to look at data—to represent or encode data. For instance, a color image can be encoded in the RGB format (red-green-blue) or in the HSV format (hue-saturation-value): these are two different representations of the same data. Some tasks that may be difficult with one representation can become easy with another. For example, the task “select all red pixels in the image” is simpler in the RGB format, whereas “make the image less saturated” is simpler in the HSV format. Machine learning models are all about finding appropriate representations for their input data—transformations of the data that make it more amenable to the task at hand.

Let’s make this concrete. Consider an x-axis, a y-axis, and some points represented by their coordinates in the (x, y) system, as shown in figure 1.3.

[image: Image]
Figure 1.3 Some sample data

As you can see, we have a few white points and a few black points. Let’s say we want to develop an algorithm that can take the coordinates (x, y) of a point and output whether that point is likely to be black or white. In this case, we have the following data:

	The inputs are the coordinates of our points.

	The expected outputs are the colors of our points.

	A way to measure whether our algorithm is doing a good job could be, for instance, the percentage of points that are being correctly classified.

What we need here is a new representation of our data that cleanly separates the white points from the black points. One transformation we could use, among many other possibilities, would be a coordinate change, illustrated in figure 1.4.

In this new coordinate system, the coordinates of our points can be said to be a new representation of our data. And it’s a good one! With this representation, the black/white classification problem can be expressed as a simple rule: “Black points are such that x > 0,” or “White points are such that x < 0.” This new representation, combined with this simple rule, neatly solves the classification problem.

[image: Image]
Figure 1.4 Coordinate change

In this case, we defined the coordinate change by hand: we used our human intelligence to come up with our own appropriate representation of the data. This is fine for such an extremely simple problem, but could you do the same if the task was to classify images of handwritten digits? Could you write down explicit, computer-executable image transformations that would illuminate the difference between a 6 and an 8, between a 1 and a 7, across all kinds of different handwriting?

This is possible to an extent. Rules based on representations of digits, such as “number of closed loops” or vertical and horizontal pixel histograms, can do a decent job of telling apart handwritten digits. But finding such useful representations by hand is hard work, and, as you can imagine, the resulting rule-based system is brittle—a nightmare to maintain. Every time you come across a new example of handwriting that breaks your carefully thought-out rules, you will have to add new data transformations and new rules, while taking into account their interaction with every previous rule.

You’re probably thinking, if this process is so painful, could we automate it? What if we tried systematically searching for different sets of automatically generated representations of the data and rules based on them, identifying good ones by using as feedback the percentage of digits being correctly classified in some development data-set? We would then be doing machine learning. Learning, in the context of machine learning, describes an automatic search process for data transformations that produce useful representations of some data, guided by some feedback signal—representations that are amenable to simpler rules solving the task at hand.

These transformations can be coordinate changes (like in our 2-D coordinates classification example), or taking a histogram of pixels and counting loops (like in our digits classification example), but they could also be linear projections, translations, nonlinear operations (such as “select all points such that x > 0”), and so on. Machine learning algorithms aren’t usually creative in finding these transformations; they’re merely searching through a predefined set of operations, called a hypothesis space. For instance, the space of all possible coordinate changes would be our hypothesis space in the 2-D coordinates classification example.

So that’s what machine learning is, concisely: searching for useful representations and rules over some input data, within a predefined space of possibilities, using guidance from a feedback signal. This simple idea allows for solving a remarkably broad range of intellectual tasks, from speech recognition to autonomous driving. Now that you understand what we mean by learning, let’s take a look at what makes deep learning special.

1.1.4 The “deep” in “deep learning”

Deep learning is a specific subfield of machine learning: a new take on learning representations from data that emphasizes learning successive layers of increasingly meaningful representations. The “deep” in “deep learning” isn’t a reference to any kind of deeper understanding achieved by the approach; rather, it stands for this idea of successive layers of representations. How many layers contribute to a model of the data is called the depth of the model. Other appropriate names for the field could have been layered representations learning or hierarchical representations learning. Modern deep learning often involves tens or even hundreds of successive layers of representations, and they’re all learned automatically from exposure to training data. Meanwhile, other approaches to machine learning tend to focus on learning only one or two layers of representations of the data (say, taking a pixel histogram and then applying a classification rule); hence, they’re sometimes called shallow learning.

In deep learning, these layered representations are learned via models called neural networks, structured in literal layers stacked on top of each other. The term “neural network” refers to neurobiology, but although some of the central concepts in deep learning were developed in part by drawing inspiration from our understanding of the brain (in particular, the visual cortex), deep learning models are not models of the brain. There’s no evidence that the brain implements anything like the learning mechanisms used in modern deep learning models. You may come across pop-science articles proclaiming that deep learning works like the brain or was modeled after the brain, but that isn’t the case. It would be confusing and counterproductive for newcomers to the field to think of deep learning as being in any way related to neurobiology; you don’t need that shroud of “just like our minds” mystique and mystery, and you may as well forget anything you may have read about hypothetical links between deep learning and biology. For our purposes, deep learning is a mathematical framework for learning representations from data.

What do the representations learned by a deep learning algorithm look like? Let’s examine how a network several layers deep (see figure 1.5) transforms an image of a digit to recognize what digit it is.

As you can see in figure 1.6, the network transforms the digit image into representations that are increasingly different from the original image and increasingly informative about the final result. You can think of a deep network as a multistage information-distillation process, where information goes through successive filters and comes out increasingly purified (that is, useful with regard to some task).

[image: Image]
Figure 1.5 A deep neural network for digit classification

[image: Image]
Figure 1.6 Data representations learned by a digit-classification model

So that’s what deep learning is, technically: a multistage way to learn data representations. It’s a simple idea—but, as it turns out, very simple mechanisms, sufficiently scaled, can end up looking like magic.

1.1.5 Understanding how deep learning works, in three figures

At this point, you know that machine learning is about mapping inputs (such as images) to targets (such as the label “cat”), which is done by observing many examples of input and targets. You also know that deep neural networks do this input-to-target mapping via a deep sequence of simple data transformations (layers) and that these data transformations are learned by exposure to examples. Now let’s look at how this learning happens, concretely.

The specification of what a layer does to its input data is stored in the layer’s weights, which in essence are a bunch of numbers. In technical terms, we’d say that the transformation implemented by a layer is parameterized by its weights (see figure 1.7). (Weights are also sometimes called the parameters of a layer.) In this context, learning means finding a set of values for the weights of all layers in a network, such that the network will correctly map example inputs to their associated targets. But here’s the thing: a deep neural network can contain tens of millions of parameters. Finding the correct values for all of them may seem like a daunting task, especially given that modifying the value of one parameter will affect the behavior of all the others!

[image: Image]
Figure 1.7 A neural network is parameterized by its weights.

To control something, first you need to be able to observe it. To control the output of a neural network, you need to be able to measure how far this output is from what you expected. This is the job of the loss function of the network, also sometimes called the objective function or cost function. The loss function takes the predictions of the network and the true target (what you wanted the network to output) and computes a distance score, capturing how well the network has done on this specific example (see figure 1.8).

[image: Image]
Figure 1.8 A loss function measures the quality of the network’s output.

The fundamental trick in deep learning is to use this score as a feedback signal to adjust the value of the weights a little, in a direction that will lower the loss score for the current example (see figure 1.9). This adjustment is the job of the optimizer, which implements what’s called the backpropagation algorithm: the central algorithm in deep learning. The next chapter explains in more detail how backpropagation works.

[image: Image]
Figure 1.9 The loss score is used as a feedback signal to adjust the weights.

Initially, the weights of the network are assigned random values, so the network merely implements a series of random transformations. Naturally, its output is far from what it should ideally be, and the loss score is accordingly very high. But with every example the network processes, the weights are adjusted a little in the correct direction, and the loss score decreases. This is the training loop, which, repeated a sufficient number of times (typically tens of iterations over thousands of examples), yields weight values that minimize the loss function. A network with a minimal loss is one for which the outputs are as close as they can be to the targets: a trained network. Once again, it’s a simple mechanism that, once scaled, ends up looking like magic.

1.1.6 What deep learning has achieved so far

Although deep learning is a fairly old subfield of machine learning, it rose to prominence only in the early 2010s. In the few years since, it has achieved nothing short of a revolution in the field, producing remarkable results on perceptual tasks and even natural language processing tasks—problems involving skills that seem natural and intuitive to humans but have long been elusive for machines. In particular, deep learning has enabled the following breakthroughs, all in historically difficult areas of machine learning:

	Near-human-level image classification

	Near-human-level speech transcription

	Near-human-level handwriting transcription

	Dramatically improved machine translation

	Dramatically improved text-to-speech conversion

	Digital assistants such as Google Assistant and Amazon Alexa

	Near-human-level autonomous driving

	Improved ad targeting, as used by Google, Baidu, or Bing

	Improved search results on the web

	
Ability to answer natural language questions

	Superhuman Go playing

We’re still exploring the full extent of what deep learning can do. We’ve started applying it with great success to a wide variety of problems that were thought to be impossible to solve just a few years ago—automatically transcribing the tens of thousands of ancient manuscripts held in the Vatican’s Apostolic Archive, detecting and classifying plant diseases in fields using a simple smartphone, assisting oncologists or radiologists with interpreting medical imaging data, predicting natural disasters such as floods, hurricanes, or even earthquakes, and so on. With every milestone, we’re getting closer to an age where deep learning assists us in every activity and every field of human endeavor—science, medicine, manufacturing, energy, transportation, software development, agriculture, and even artistic creation.

1.1.7 Don’t believe the short-term hype

Although deep learning has led to remarkable achievements in recent years, expectations for what the field will be able to achieve in the next decade tend to run much higher than what will likely be possible. Although some world-changing applications, like autonomous cars, are already within reach, many more are likely to remain elusive for a long time, such as believable dialogue systems, human-level machine translation across arbitrary languages, and human-level natural language understanding. In particular, talk of human-level general intelligence shouldn’t be taken too seriously. The risk with high expectations for the short term is that, as technology fails to deliver, research investment will dry up, slowing progress for a long time.

This has happened before. Twice in the past, AI went through a cycle of intense optimism followed by disappointment and skepticism, with a dearth of funding as a result. It started with symbolic AI in the 1960s. In those early days, projections about AI were flying high. One of the best-known pioneers and proponents of the symbolic AI approach was Marvin Minsky, who claimed in 1967, “Within a generation… the problem of creating ‘artificial intelligence’ will substantially be solved.” Three years later, in 1970, he made a more precisely quantified prediction: “In from three to eight years we will have a machine with the general intelligence of an average human being.” In 2022, such an achievement still appears to be far in the future—so far that we have no way to predict how long it will take—but in the 1960s and early 1970s, several experts believed it to be right around the corner (as do many people today). A few years later, as these high expectations failed to materialize, researchers and government funds turned away from the field, marking the start of the first AI winter (a reference to a nuclear winter, because this was shortly after the height of the Cold War).

It wouldn’t be the last one. In the 1980s, a new take on symbolic AI, expert systems, started gathering steam among large companies. A few initial success stories triggered a wave of investment, with corporations around the world starting their own in-house AI departments to develop expert systems. Around 1985, companies were spending over $1 billion each year on the technology; but by the early 1990s, these systems had proven expensive to maintain, difficult to scale, and limited in scope, and interest died down. Thus began the second AI winter.

We may be currently witnessing the third cycle of AI hype and disappointment, and we’re still in the phase of intense optimism. It’s best to moderate our expectations for the short term and make sure people less familiar with the technical side of the field have a clear idea of what deep learning can and can’t deliver.

1.1.8 The promise of AI

Although we may have unrealistic short-term expectations for AI, the long-term picture is looking bright. We’re only getting started in applying deep learning to many important problems for which it could prove transformative, from medical diagnoses to digital assistants. AI research has been moving forward amazingly quickly in the past 10 years, in large part due to a level of funding never before seen in the short history of AI, but so far relatively little of this progress has made its way into the products and processes that form our world. Most of the research findings of deep learning aren’t yet applied, or at least are not applied to the full range of problems they could solve across all industries. Your doctor doesn’t yet use AI, and neither does your accountant. You probably don’t use AI technologies very often in your day-to-day life. Of course, you can ask your smartphone simple questions and get reasonable answers, you can get fairly useful product recommendations on Amazon.com, and you can search for “birthday” on Google Photos and instantly find those pictures of your daughter’s birthday party from last month. That’s a far cry from where such technologies used to stand. But such tools are still only accessories to our daily lives. AI has yet to transition to being central to the way we work, think, and live.

Right now, it may seem hard to believe that AI could have a large impact on our world, because it isn’t yet widely deployed—much as, back in 1995, it would have been difficult to believe in the future impact of the internet. Back then, most people didn’t see how the internet was relevant to them and how it was going to change their lives. The same is true for deep learning and AI today. But make no mistake: AI is coming. In a not-so-distant future, AI will be your assistant, even your friend; it will answer your questions, help educate your kids, and watch over your health. It will deliver your groceries to your door and drive you from point A to point B. It will be your interface to an increasingly complex and information-intensive world. And, even more important, AI will help humanity as a whole move forward, by assisting human scientists in new breakthrough discoveries across all scientific fields, from genomics to mathematics.

On the way, we may face a few setbacks and maybe even a new AI winter—in much the same way the internet industry was overhyped in 1998–1999 and suffered from a crash that dried up investment throughout the early 2000s. But we’ll get there eventually. AI will end up being applied to nearly every process that makes up our society and our daily lives, much like the internet is today.

Don’t believe the short-term hype, but do believe in the long-term vision. It may take a while for AI to be deployed to its true potential—a potential the full extent of which no one has yet dared to dream—but AI is coming, and it will transform our world in a fantastic way.

1.2 Before deep learning: A brief history of machine learning

Deep learning has reached a level of public attention and industry investment never before seen in the history of AI, but it isn’t the first successful form of machine learning. It’s safe to say that most of the machine learning algorithms used in the industry today aren’t deep learning algorithms. Deep learning isn’t always the right tool for the job—sometimes there isn’t enough data for deep learning to be applicable, and sometimes the problem is better solved by a different algorithm. If deep learning is your first contact with machine learning, you may find yourself in a situation where all you have is the deep learning hammer, and every machine learning problem starts to look like a nail. The only way not to fall into this trap is to be familiar with other approaches and practice them when appropriate.

A detailed discussion of classical machine learning approaches is outside of the scope of this book, but I’ll briefly go over them and describe the historical context in which they were developed. This will allow us to place deep learning in the broader context of machine learning and better understand where deep learning comes from and why it matters.

1.2.1 Probabilistic modeling

Probabilistic modeling is the application of the principles of statistics to data analysis. It is one of the earliest forms of machine learning, and it’s still widely used to this day. One of the best-known algorithms in this category is the naive Bayes algorithm.

Naive Bayes is a type of machine learning classifier based on applying Bayes’ theorem while assuming that the features in the input data are all independent (a strong, or “naive” assumption, which is where the name comes from). This form of data analysis predates computers and was applied by hand decades before its first computer implementation (most likely dating back to the 1950s). Bayes’ theorem and the foundations of statistics date back to the 18th century, and these are all you need to start using naive Bayes classifiers.

A closely related model is logistic regression (logreg for short), which is sometimes considered to be the “Hello World” of modern machine learning. Don’t be misled by its name—logreg is a classification algorithm rather than a regression algorithm. Much like naive Bayes, logreg predates computing by a long time, yet it’s still useful to this day, thanks to its simple and versatile nature. It’s often the first thing a data scientist will try on a dataset to get a feel for the classification task at hand.

1.2.2 Early neural networks

Early iterations of neural networks have been completely supplanted by the modern variants covered in these pages, but it’s helpful to be aware of how deep learning originated. Although the core ideas of neural networks were investigated in toy forms as early as the 1950s, the approach took decades to get started. For a long time, the missing piece was an efficient way to train large neural networks. This changed in the mid-1980s, when multiple people independently rediscovered the backpropagation algorithm—a way to train chains of parametric operations using gradient-descent optimization (we’ll precisely define these concepts later in the book)—and started applying it to neural networks.

The first successful practical application of neural networks came in 1989 from Bell Labs, when Yann LeCun combined the earlier ideas of convolutional neural networks and backpropagation and applied them to the problem of classifying handwritten digits. The resulting network, dubbed LeNet, was used by the United States Postal Service in the 1990s to automate the reading of ZIP codes on mail envelopes.

1.2.3 Kernel methods

As neural networks started to gain some respect among researchers in the 1990s, thanks to this first success, a new approach to machine learning rose to fame and quickly sent neural networks back to oblivion: kernel methods. Kernel methods are a group of classification algorithms, the best known of which is the Support Vector Machine (SVM). The modern formulation of an SVM was developed by Vladimir Vapnik and Corinna Cortes in the early 1990s at Bell Labs and published in 1995,3 although an older linear formulation was published by Vapnik and Alexey Chervonenkis as early as 1963.4

SVM is a classification algorithm that works by finding “decision boundaries” separating two classes (see figure 1.10). SVMs proceed to find these boundaries in the following two steps:

	
1 The data is mapped to a new high-dimensional representation where the decision boundary can be expressed as a hyperplane (if the data was two-dimensional, as in figure 1.10, a hyperplane would be a straight line).

	
2 A good decision boundary (a separation hyperplane) is computed by trying to maximize the distance between the hyper-plane and the closest data points from each class, a step called maximizing the margin. This allows the boundary to generalize well to new samples outside of the training dataset.

[image: Image]
Figure 1.10 A decision boundary

The technique of mapping data to a high-dimensional representation where a classification problem becomes simpler may look good on paper, but in practice, it’s often computationally intractable. That’s where the kernel trick comes in (the key idea that kernel methods are named after). Here’s the gist of it: to find good decision hyperplanes in the new representation space, you don’t have to explicitly compute the coordinates of your points in the new space; you just need to compute the distance between pairs of points in that space, which can be done efficiently using a kernel function. A kernel function is a computationally tractable operation that maps any two points in your initial space to the distance between these points in your target representation space, completely bypassing the explicit computation of the new representation. Kernel functions are typically crafted by hand rather than learned from data—in the case of an SVM, only the separation hyperplane is learned.

At the time they were developed, SVMs exhibited state-of-the-art performance on simple classification problems and were one of the few machine learning methods backed by extensive theory and amenable to serious mathematical analysis, making them well understood and easily interpretable. Because of these useful properties, SVMs became extremely popular in the field for a long time.

But SVMs proved hard to scale to large datasets and didn’t provide good results for perceptual problems such as image classification. Because an SVM is a shallow method, applying an SVM to perceptual problems requires first extracting useful representations manually (a step called feature engineering), which is difficult and brittle. For instance, if you want to use an SVM to classify handwritten digits, you can’t start from the raw pixels; you should first find by hand useful representations that make the problem more tractable, like the pixel histograms mentioned earlier.

1.2.4 Decision trees, random forests, and gradient-boosting machines

Decision trees are flowchart-like structures that let you classify input data points or predict output values given inputs (see figure 1.11). They’re easy to visualize and interpret. Decision trees learned from data began to receive significant research interest in the 2000s, and by 2010, they were often preferred to kernel methods.

[image: Image]
Figure 1.11 A decision tree: The parameters that are learned are the questions about the data. A question could be, for instance, “Is coefficient 2 in the data greater than 3.5?”

In particular, the random forest algorithm introduced a robust, practical take on decision tree learning that involves building a large number of specialized decision trees and then ensembling their outputs. Random forests are applicable to a wide range of problems—you could say that they’re almost always the second-best algorithm for any shallow machine learning task. When the popular machine learning competition website Kaggle (http://kaggle.com) got started in 2010, random forests quickly became a favorite on the platform—until 2014, when gradient-boosting machines took over. A gradient-boosting machine, much like a random forest, is a machine learning technique based on ensembling weak prediction models, generally decision trees. It uses gradient boosting, a way to improve any machine learning model by iteratively training new models that specialize in addressing the weak points of the previous models. Applied to decision trees, the use of the gradient-boosting technique results in models that strictly outperform random forests most of the time, while having similar properties. It may be one of the best, if not the best, algorithm for dealing with nonperceptual data today. Alongside deep learning, it’s one of the most commonly used techniques in Kaggle competitions.

1.2.5 Back to neural networks

Around 2010, although neural networks were almost completely shunned by the scientific community at large, a number of people still working on neural networks started to make important breakthroughs: the groups of Geoffrey Hinton at the University of Toronto, Yoshua Bengio at the University of Montreal, Yann LeCun at New York University, and IDSIA in Switzerland.

In 2011, Dan Cireşan from IDSIA began to win academic image-classification competitions with GPU-trained deep neural networks—the first practical success of modern deep learning. But the watershed moment came in 2012, with the entry of Hinton’s group in the yearly large-scale image-classification challenge, ImageNet (ImageNet Large Scale Visual Recognition Challenge, or ILSVRC for short). The ImageNet challenge was notoriously difficult at the time, consisting of classifying high-resolution color images into 1,000 different categories after training on 1.4 million images. In 2011, the top-five accuracy of the winning model, based on classical approaches to computer vision, was only 74.3%.5 Then, in 2012, a team led by Alex Krizhevsky and advised by Geoffrey Hinton was able to achieve a top-five accuracy of 83.6%—a significant breakthrough. The competition has been dominated by deep convolutional neural networks every year since. By 2015, the winner reached an accuracy of 96.4%, and the classification task on ImageNet was considered to be a completely solved problem.

Since 2012, deep convolutional neural networks (convnets) have become the go-to algorithm for all computer vision tasks; more generally, they work on all perceptual tasks. At any major computer vision conference after 2015, it was nearly impossible to find presentations that didn’t involve convnets in some form. At the same time, deep learning has also found applications in many other types of problems, such as natural language processing. It has completely replaced SVMs and decision trees in a wide range of applications. For instance, for several years, the European Organization for Nuclear Research, CERN, used decision tree–based methods for analyzing particle data from the ATLAS detector at the Large Hadron Collider (LHC), but CERN eventually switched to Keras-based deep neural networks due to their higher performance and ease of training on large datasets.

1.2.6 What makes deep learning different?

The primary reason deep learning took off so quickly is that it offered better performance for many problems. But that’s not the only reason. Deep learning also makes problem-solving much easier, because it completely automates what used to be the most crucial step in a machine learning workflow: feature engineering.

Previous machine learning techniques—shallow learning—involved transforming the input data into only one or two successive representation spaces, usually via simple transformations such as high-dimensional nonlinear projections (SVMs) or decision trees. But the refined representations required by complex problems generally can’t be attained by such techniques. As such, humans had to go to great lengths to make the initial input data more amenable to processing by these methods: they had to manually engineer good layers of representations for their data. This is called feature engineering. Deep learning, on the other hand, completely automates this step: with deep learning, you learn all features in one pass rather than having to engineer them yourself. This has greatly simplified machine learning workflows, often replacing sophisticated multistage pipelines with a single, simple, end-to-end deep learning model.

You may ask, if the crux of the issue is to have multiple successive layers of representations, could shallow methods be applied repeatedly to emulate the effects of deep learning? In practice, successive applications of shallow-learning methods produce fast-diminishing returns, because the optimal first representation layer in a three-layer model isn’t the optimal first layer in a one-layer or two-layer model. What is transformative about deep learning is that it allows a model to learn all layers of representation jointly, at the same time, rather than in succession (greedily, as it’s called). With joint feature learning, whenever the model adjusts one of its internal features, all other features that depend on it automatically adapt to the change, without requiring human intervention. Everything is supervised by a single feedback signal: every change in the model serves the end goal. This is much more powerful than greedily stacking shallow models, because it allows for complex, abstract representations to be learned by breaking them down into long series of intermediate spaces (layers); each space is only a simple transformation away from the previous one.

These are the two essential characteristics of how deep learning learns from data: the incremental, layer-by-layer way in which increasingly complex representations are developed, and the fact that these intermediate incremental representations are learned jointly, each layer being updated to follow both the representational needs of the layer above and the needs of the layer below. Together, these two properties have made deep learning vastly more successful than previous approaches to machine learning.

1.2.7 The modern machine learning landscape

A great way to get a sense of the current landscape of machine learning algorithms and tools is to look at machine learning competitions on Kaggle. Due to its highly competitive environment (some contests have thousands of entrants and million-dollar prizes) and to the wide variety of machine learning problems covered, Kaggle offers a realistic way to assess what works and what doesn’t. So, what kind of algorithm is reliably winning competitions? What tools do top entrants use?

In early 2019, Kaggle ran a survey asking teams that ended in the top five of any competition since 2017 which primary software tool they had used in the competition (see figure 1.12). It turns out that top teams tend to use either deep learning methods (most often via the Keras library) or gradient-boosted trees (most often via the LightGBM or XGBoost libraries).

[image: Image]
Figure 1.12 Machine learning tools used by top teams on Kaggle

It’s not just competition champions, either. Kaggle also runs a yearly survey among machine learning and data science professionals worldwide. With tens of thousands of respondents, this survey is one of the most reliable sources about the state of the industry. Figure 1.13 shows the percentage of usage of different machine learning software frameworks.

From 2016 to 2020, the entire machine learning and data science industry has been dominated by these two approaches: deep learning and gradient-boosted trees. Specifically, gradient-boosted trees are used for problems where structured data is available, whereas deep learning is used for perceptual problems such as image classification.

[image: Image]
Figure 1.13 Tool usage across the machine learning and data science industry (Source: http://www.kaggle.com/kaggle-survey-2020)

Users of gradient-boosted trees tend to use Scikit-Learn, XGBoost, or LightGBM. Meanwhile, most practitioners of deep learning use Keras, often in combination with its parent framework, TensorFlow. The common point of these tools is they’re all available as R or Python libraries: R and Python are by far the most widely used language for machine learning and data science.

You should be the most familiar with the following two techniques to be successful in applied machine learning today: gradient-boosted trees, for shallow-learning problems; and deep learning, for perceptual problems. In technical terms, this means you’ll need to be familiar with XGBoost and Keras—the libraries that currently dominate Kaggle competitions. With this book in hand, you’re already one big step closer.

1.3 Why deep learning? Why now?

The two key ideas of deep learning for computer vision—convolutional neural networks and backpropagation—were already well understood by 1990. The long short-term memory (LSTM) algorithm, which is fundamental to deep learning for time series, was developed in 1997 and has barely changed since. Why did deep learning take off only after 2012? What changed in these two decades? In general, the following three technical forces are driving advances in machine learning:

	Hardware

	Datasets and benchmarks

	Algorithmic advances

Because the field is guided by experimental findings rather than by theory, algorithmic advances become possible only when appropriate data and hardware are available to try new ideas (or to scale up old ideas, as is often the case). Machine learning isn’t mathematics or physics, where major advances can be done with a pen and a piece of paper. It’s an engineering science.

The real bottlenecks throughout the 1990s and 2000s were data and hardware. But here’s what happened during that time: the internet took off and high-performance graphics chips were developed for the needs of the gaming market.

1.3.1 Hardware

Between 1990 and 2010, off-the-shelf CPUs became faster by a factor of approximately 5,000. As a result, nowadays it’s possible to run small deep learning models on your laptop, whereas this would have been intractable 25 years ago.

But typical deep learning models used in computer vision or speech recognition require orders of magnitude more computational power than your laptop can deliver. Throughout the 2000s, companies like NVIDIA and AMD invested billions of dollars in developing fast, massively parallel chips (graphical processing units, or GPUs) to power the graphics of increasingly photorealistic video games—cheap, single-purpose supercomputers designed to render complex 3-D scenes on your screen in real time. This investment came to benefit the scientific community when, in 2007, NVIDIA launched CUDA (https://developer.nvidia.com/about-cuda), a programming interface for its line of GPUs. A small number of GPUs started replacing massive clusters of CPUs in various highly parallelizable applications, beginning with physics modeling. Deep neural networks, consisting mostly of many small matrix multiplications, are also highly parallelizable, and around 2011, some researchers began to write CUDA implementations of neural nets—Dan Cireşan6 and Alex Krizhevsky7 were among the first.

What happened is that the gaming market subsidized supercomputing for the next generation of artificial intelligence applications. Sometimes, big things begin as games. The NVIDIA Titan RTX, a GPU that cost $2,500 at the end of 2019, can deliver a peak of 16 teraflops in single precision (16 trillion float32 operations per second). That’s about 500 times more computing power than the world’s fastest supercomputer from 1990, the Intel Touchstone Delta. On a Titan RTX, it takes only a few hours to train an ImageNet model of the sort that would have won the ILSVRC competition around 2012 or 2013. Meanwhile, large companies train deep learning models on clusters of hundreds of GPUs.

What’s more, the deep learning industry has been moving beyond GPUs and is investing in increasingly specialized, efficient chips for deep learning. In 2016, at its annual I/O convention, Google revealed its Tensor Processing Unit (TPU) project: a new chip design developed from the ground up to run deep neural networks significantly faster and far more energy efficiently than top-of-the-line GPUs. In 2020, the third iteration of the TPU card represents 420 teraflops of computing power. That’s 10,000 times more than the Intel Touchstone Delta from 1990.

These TPU cards are designed to be assembled into large-scale configurations, called “pods.” One pod (1024 TPU cards) peaks at 100 petaflops. For scale, that’s about 10% of the peak computing power of the current largest supercomputer, the IBM Summit at Oak Ridge National Lab, which consists of 27,000 NVIDIA GPUs and peaks at around 1.1 exaflops.

1.3.2 Data

AI is sometimes heralded as the new industrial revolution. If deep learning is the steam engine of this revolution, then data is its coal: the raw material that powers our intelligent machines, without which nothing would be possible. When it comes to data, in addition to the exponential progress in storage hardware over the past 20 years (following Moore’s law), the game changer has been the rise of the internet, making it feasible to collect and distribute very large datasets for machine learning. Today, large companies work with image datasets, video datasets, and natural language datasets that couldn’t have been collected without the internet. User-generated image tags on Flickr, for instance, have been a treasure trove of data for computer vision. So are YouTube videos. And Wikipedia is a key dataset for natural language processing.

If there’s one dataset that has been a catalyst for the rise of deep learning, it’s the ImageNet dataset, consisting of 1.4 million images that have been hand annotated with 1,000 image categories (one category per image). But what makes ImageNet special isn’t just its large size but also the yearly competition associated with it.8

As Kaggle has been demonstrating since 2010, public competitions are an excellent way to motivate researchers and engineers to push the envelope. Having common benchmarks that researchers compete to beat has greatly helped the rise of deep learning by highlighting its success against classical machine learning approaches.

1.3.3 Algorithms

In addition to hardware and data, until the late 2000s, we were missing a reliable way to train very deep neural networks. As a result, neural networks were still fairly shallow, using only one or two layers of representations; thus, they weren’t able to shine against more-refined shallow methods such as SVMs and random forests. The key issue was that of gradient propagation through deep stacks of layers. The feedback signal used to train neural networks would fade away as the number of layers increased.

This changed around 2009–2010 with the advent of the following simple but important algorithmic improvements that allowed for better gradient propagation:

	Better activation functions for neural layers

	Better weight-initialization schemes, starting with layer-wise pretraining, which was then quickly abandoned

	Better optimization schemes, such as RMSprop and Adam

Only when these improvements began to allow for training models with 10 or more layers did deep learning start to shine. Finally, in 2014, 2015, and 2016, even more advanced ways to improve gradient propagation were discovered, such as batch normalization, residual connections, and depthwise separable convolutions.

Today, we can train models that are arbitrarily deep from scratch. This has unlocked the use of extremely large models, which hold considerable representational power—that is to say, which encode very rich hypothesis spaces. This extreme scalability is one of the defining characteristics of modern deep learning. Large-scale model architectures, which feature tens of layers and tens of millions of parameters, have brought about critical advances both in computer vision (for instance, architectures such as ResNet, Inception, or Xception) and natural language processing (for instance, large Transformer-based architectures such as BERT, GPT-3, or XLNet).

1.3.4 A new wave of investment

As deep learning became the new state of the art for computer vision in 2012–2013, and eventually for all perceptual tasks, industry leaders took note. What followed was a gradual wave of industry investment far beyond anything previously seen in the history of AI (see figure 1.14).

In 2011, right before deep learning took the spotlight, the total venture capital investment in AI worldwide was less than a billion dollars, which went almost entirely to practical applications of shallow machine learning approaches. In 2015, it had risen to over $5 billion, and in 2017, to a staggering $16 billion. Hundreds of startups launched in these few years, trying to capitalize on the deep learning hype. Meanwhile, large tech companies such as Google, Amazon, and Microsoft have invested in internal research departments in amounts that would most likely dwarf the flow of venture-capital money.

[image: Image]
Figure 1.14 OECD estimate of total investments in AI startups (Source: http://mng.bz/zGN6)

Machine learning—in particular, deep learning—has become central to the product strategy of these tech giants. In late 2015, Google CEO Sundar Pichai stated, “Machine learning is a core, transformative way by which we’re rethinking how we’re doing everything. We’re thoughtfully applying it across all our products, be it search, ads, YouTube, or Play. And we’re in early days, but you’ll see us—in a systematic way— apply machine learning in all these areas.”9

As a result of this wave of investment, the number of people working on deep learning went from a few hundred to tens of thousands in less than 10 years, and research progress has reached a frenetic pace.

1.3.5 The democratization of deep learning

One of the key factors driving this inflow of new faces in deep learning has been the democratization of the toolsets used in the field. In the early days, doing deep learning required significant C++ and CUDA expertise, which few people possessed.

Nowadays, basic R or Python scripting skills suffice to do advanced deep learning research. This has been driven most notably by the development of the TensorFlow library—a symbolic tensor-manipulation frameworks that supports autodifferentiation, greatly simplifying the implementation of new models—and by the rise of user-friendly libraries such as Keras, which makes deep learning as easy as manipulating LEGO bricks. After its release in early 2015, Keras quickly became the go-to deep learning solution for large numbers of new startups, graduate students, and researchers pivoting into the field.

1.3.6 Will it last?

Is there anything special about deep neural networks that makes them the “right” approach for companies to be investing in and for researchers to flock to? Or is deep learning just a fad that may not last? Will we still be using deep neural networks in 20 years?

Deep learning has several properties that justify its status as an AI revolution, and it’s here to stay. We may not be using neural networks two decades from now, but whatever we use will directly inherit from modern deep learning and its core concepts. These important properties can be broadly sorted into the following three categories:

	
Simplicity—Deep learning removes the need for feature engineering, replacing complex, brittle, engineering-heavy pipelines with simple, end-to-end trainable models that are typically built using only five or six different tensor operations.

	
Scalability—Deep learning is highly amenable to parallelization on GPUs or TPUs, so it can take full advantage of Moore’s law. In addition, deep learning models are trained by iterating over small batches of data, allowing them to be trained on datasets of arbitrary size. (The only bottleneck is the amount of parallel computational power available, which, thanks to Moore’s law, is a fast-moving barrier.)

	
Versatility and reusability—Unlike many prior machine learning approaches, deep learning models can be trained on additional data without restarting from scratch, making them viable for continuous online learning—an important property for very large production models. Furthermore, trained deep learning models are repurposable and thus reusable: for instance, it’s possible to take a deep learning model trained for image classification and drop it into a video-processing pipeline. This allows us to reinvest previous work into increasingly complex and powerful models. This also makes deep learning applicable to fairly small datasets.

Deep learning has been in the spotlight for only a few years, and we may not yet have established the full scope of what it can do. With every passing year, we learn about new use cases and engineering improvements that lift previous limitations. Following a scientific revolution, progress generally follows a sigmoid curve: it starts with a period of fast progress, which gradually stabilizes as researchers hit hard limitations, and then further improvements become incremental.

When I was writing the first edition of this book, in 2016, I predicted that deep learning was still in the first half of that sigmoid, with much more transformative progress to come in the following few years. This has proven true in practice—2017 and 2018 have seen the rise of Transformer-based deep learning models for natural language processing, which have been a revolution in the field, while deep learning also kept delivering steady progress in computer vision and speech recognition. Today, in 2022, deep learning seems to have entered the second half of that sigmoid. We should still expect significant progress in the years to come, but we’re probably out of the initial phase of explosive progress.

Today, I’m extremely excited about the deployment of deep learning technology to every problem it can solve—the list is endless. Deep learning is still a revolution in the making, and it will take many years to realize its full potential.

	
1 A.M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433–460.

	
2 Although the Turing test has sometimes been interpreted as a literal test—a goal the field of AI should set out to reach—Turing merely meant it as a conceptual device in a philosophical discussion about the nature of cognition.

	
3 Vladimir Vapnik and Corinna Cortes, “Support-Vector Networks,” Machine Learning 20, no. 3 (1995): 273–297.

	
4 Vladimir Vapnik and Alexey Chervonenkis, “A Note on One Class of Perceptrons,” Automation and Remote Control 25 (1964).

	
5 “Top-five accuracy” measures how often the model selects the correct answer as part of its top five guesses (out of 1,000 possible answers, in the case of ImageNet).

	
6 See “Flexible, High Performance Convolutional Neural Networks for Image Classification,” Proceedings of the 22nd International Joint Conference on Artificial Intelligence (2011), http://mng.bz/nN0K.

	
7 See “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Processing Systems 25 (2012), http://mng.bz/2286.

	
8 The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), http://www.image-net.org/challenges/LSVRC.

	
9 Sundar Pichai, Alphabet earnings call, Oct. 22, 2015.

2 The mathematical building blocks of neural networks

This chapter covers

	A first example of a neural network

	Tensors and tensor operations

	How neural networks learn via backpropagation and gradient descent

Understanding deep learning requires familiarity with many simple mathematical concepts: tensors, tensor operations, differentiation, gradient descent, and so on. Our goal in this chapter will be to build up your intuition about these notions without getting overly technical. In particular, we’ll steer away from mathematical notation, which can introduce unnecessary barriers for those without any mathematics background and isn’t necessary to explain things well. The most precise, unambiguous description of a mathematical operation is its executable code.

To provide sufficient context for introducing tensors and gradient descent, we’ll begin the chapter with a practical example of a neural network. Then we’ll go over every new concept that’s been introduced, point by point. Keep in mind that these concepts will be essential for you to understand the practical examples in the following chapters.

After reading this chapter, you’ll have an intuitive understanding of the mathematical theory behind deep learning, and you’ll be ready to start diving into Keras and TensorFlow in chapter 3.

2.1 A first look at a neural network

Let’s look at a concrete example of a neural network that uses Keras to learn to classify handwritten digits. Unless you already have experience with Keras or similar libraries, you won’t understand everything about this first example right away. That’s fine. In the next chapter, we’ll review each element in the example and explain them in detail. So don’t worry if some steps seem arbitrary or look like magic to you—we’ve got to start somewhere.

The problem we’re trying to solve here is to classify grayscale images of handwritten digits (28 × 28 pixels) into their 10 categories (0 through 9). We’ll use the MNIST dataset, a classic in the machine learning community, which has been around almost as long as the field itself and has been intensively studied. It’s a set of 60,000 training images, plus 10,000 test images, assembled by the National Institute of Standards and Technology (the NIST in MNIST) in the 1980s. You can think of “solving” MNIST as the “Hello World” of deep learning—it’s what you do to verify that your algorithms are working as expected. As you become a machine learning practitioner, you’ll see MNIST come up over and over again in scientific papers, blog posts, and so on. You can see some MNIST samples in figure 2.1.

[image: Image]
Figure 2.1 MNIST sample digits

In machine learning, a category in a classification problem is called a class. Data points are called samples. The class associated with a specific sample is called a label.

You don’t need to try to reproduce the example shown in the next code listing on your machine just now. If you wish to, you’ll first need to set up a deep learning workspace, which is covered in chapter 3. The MNIST dataset comes preloaded in Keras, in the form of a set of four R arrays, organized into two lists named train and test.

Listing 2.1 Loading the MNIST dataset in Keras

library(tensorflow)

library(keras)

mnist <- dataset_mnist()

train_images <- mnist$train$x

train_labels <- mnist$train$y

test_images <- mnist$test$x

test_labels <- mnist$test$y

train_images and train_labels form the training set, the data that the model will learn from. The model will then be tested on the test set, test_images and test_ labels. The images are encoded as R arrays, and the labels are an array of digits, ranging from 0 to 9. The images and labels have a one-to-one correspondence. Let’s look at the training data, shown here:

str(train_images)

int[1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 …

str(train_labels)

int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4 …

And here’s the test data:

str(test_images)

int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 …

str(test_labels)

int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9 …

The workflow will be as follows: first, we’ll feed the neural network the training data, train_images and train_labels. Then the network will learn to associate images and labels. Finally, we’ll ask the network to produce predictions for test_images, and we’ll verify whether these predictions match the labels from test_labels.

Let’s build the network, as shown in the next listing. Again, remember that you aren’t expected to understand everything about this example yet.

Listing 2.2 The network architecture

model <- keras_model_sequential(list(

layer_dense(units = 512, activation = "relu"),

layer_dense(units = 10, activation = "softmax")

))

The core building block of neural networks is the layer. You can think of a layer as a filter for data: some data goes in, and it comes out in a more useful form. Specifically, layers extract representations out of the data fed into them—hopefully, representations that are more meaningful for the problem at hand. Most of deep learning consists of chaining together simple layers that will implement a form of progressive data distillation. A deep learning model is like a sieve for data processing, made of a succession of increasingly refined data filters—the layers.

Here, our model consists of a sequence of two Dense layers, which are densely connected (also called fully connected) neural layers. The second (and last) layer is a 10-way softmax classification layer, which means it will return an array of 10 probability scores (summing to 1). Each score will be the probability that the current digit image belongs to one of our 10 digit classes.

To make the model ready for training, we need to pick the following three things as part of the compilation step, shown in listing 2.3:

	
An optimizer—The mechanism through which the model will update itself based on the training data it sees, so as to improve its performance.

	
A loss function—How the model will be able to measure its performance on the training data, and thus how it will be able to steer itself in the eright direction.

	
Metrics to monitor during training and testing—Here, we care only about accuracy (the fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear throughout the next two chapters.

Listing 2.3 The compilation step

compile(model,

optimizer = "rmsprop",

loss = "sparse_categorical_crossentropy",

metrics = "accuracy")

Note that we don’t save the return value from compile() because the model is modified in place.

Before training, we’ll preprocess the data by reshaping it into the shape the model expects and scaling it so that all values are in the [0, 1] interval, as shown next. Previously, our training images were stored in an array of shape (60000, 28, 28) of type integer with values in the [0, 255] interval. We’ll transform it into a double array of shape (60000, 28 * 28) with values between 0 and 1.

Listing 2.4 Preparing the image data

train_images <- array_reshape(train_images, c(60000, 28 * 28))

train_images <- train_images / 255

test_images <- array_reshape(test_images, c(10000, 28 * 28))

test_images <- test_images / 255

Note that we use the array_reshape() function rather than the dim•() function to reshape the array. We’ll explain why later, when we talk about tensor reshaping.

We’re now ready to train the model, which in Keras is done via a call to the model’s fit() method—we fit the model to its training data.

Listing 2.5 “Fitting” the model

fit(model, train_images, train_labels, epochs = 5, batch_size = 128)

Epoch 1/5

60000/60000 [===========================] - 5s - loss: 0.2524 - acc:

[image:] 0.9273

Epoch 2/5

51328/60000 [=====================>.....] - ETA: 1s - loss: 0.1035 -

[image:] acc: 0.9692

Two quantities are displayed during training: the loss of the model over the training data, and the accuracy of the model over the training data. We quickly reach an accuracy of 0.989 (98.9%) on the training data.

Now that we have a trained model, we can use it to predict class probabilities for new digits—images that weren’t part of the training data, like those from the test set.

Listing 2.6 Using the model to make predictions

test_digits <- test_images[1:10,]

predictions <- predict(model, test_digits)

str(predictions)

num [1:10, 1:10] 3.10e-09 3.53e-11 2.55e-07 1.00 8.54e-07 …

predictions[1,]

[1] 3.103298e-09 1.175280e-10 1.060593e-06 4.761311e-05 4.189971e-12

[6] 4.062199e-08 5.244305e-16 9.999473e-01 2.753219e-07 3.826783e-06

Each number of index i in that array (predictions[1,]) corresponds to the probability that digit image test_digits[1,] belongs to class i. This first test digit has the highest probability score (0.9999473, almost 1) at index 8, so according to our model, it must be a 7 (because we start counting at 0):

which.max(predictions[1,])

[1] 8

predictions[1, 8]

[1] 0.9999473

We can check that the test label agrees:

test_labels[1]

[1] 7

On average, how good is our model at classifying such never-before-seen digits? Let’s check by computing average accuracy over the entire test set.

Listing 2.7 Evaluating the model on new data

metrics <- evaluate(model, test_images, test_labels)

metrics["accuracy"]

accuracy

0.9795

The test set accuracy turns out to be 97.9%—that’s quite a bit lower than the training set accuracy (98.9%). This gap between training accuracy and test accuracy is an example of overfitting: the fact that machine learning models tend to perform worse on new data than on their training data. Overfitting is a central topic in chapter 3.

This concludes our first example. You just saw how you can build and train a neural network to classify handwritten digits in fewer than 15 lines of R code. In this chapter and the next, we’ll go into detail about every moving piece we just previewed and clarify what’s going on behind the scenes. You’ll learn about tensors, the data-storing objects going into the model; tensor operations, which layers are made of; and gradient descent, which allows your model to learn from its training examples.

2.2 Data representations for neural networks

In the previous example, we started from data stored in multidimensional arrays, also called tensors. In general, all current machine learning systems use tensors as their basic data structure. Tensors are fundamental to the field—so fundamental that TensorFlow was named after them. So, what’s a tensor?

At its core, a tensor is a container for data—usually numerical data—so, it’s a container for numbers. You may be already familiar with matrices, which are rank 2 tensors: tensors are a generalization of matrices to an arbitrary number of dimensions (note that in the context of tensors, a dimension is often called an axis).

R provides an implementation of tensors: array objects (constructed via base:: array()) are tensors. In this section we are focused on defining the concepts around tensors, so we will stick to using R arrays. Later in the book (chapter 3), we introduce another implementation of tensors (Tensorflow Tensors).

2.2.1 Scalars (rank 0 tensors)

A tensor that can contain only one number is called a scalar (or scalar tensor, or rank 0 tensor, or 0D tensor). R doesn’t have a data type to represent scalars (all numeric objects are vectors), but an R vector of length 1 is conceptually similar to a scalar.

2.2.2 Vectors (rank 1 tensors)

An array of numbers is called a vector, or rank 1 tensor, or 1D tensor. A rank 1 tensor is said to have exactly one axis. The following is a tensor vector:

x <- as.array(c(12, 3, 6, 14, 7))

str(x)

num [1:5(1d)] 12 3 6 14 7

length(dim(x))

[1] 1

This vector has five entries and so is called a five-dimensional vector. Don’t confuse a 5D vector with a 5D tensor! A 5D vector has only one axis and has five dimensions along its axis, whereas a 5D tensor has five axes (and may have any number of dimensions along each axis). Dimensionality can denote either the number of entries along a specific axis (as in the case of our 5D vector) or the number of axes in a tensor (such as a 5D tensor), which can be confusing at times. In the latter case, it’s technically more correct to talk about a tensor of rank 5 (the rank of a tensor being the number of axes), but the ambiguous notation 5D tensor is common regardless.

2.2.3 Matrices (rank 2 tensors)

An array of vectors is a matrix, or rank 2 tensor, or 2D tensor. A matrix has two axes (often referred to as rows and columns). You can visually interpret a matrix as a rectangular grid of numbers:

x <- array(seq(3 * 5), dim = c(3, 5))

x

[image: Image]

dim(x)

[1] 3 5

The entries from the first axis are called the rows, and the entries from the second axis are called the columns. In the previous example, c(1, 4, 7, 10, 13) is the first row of x, and c(1, 2, 3) is the first column.

2.2.4 Rank 3 and higher-rank tensors

If you supply a length 3 vector to dim, you obtain a rank 3 tensor (or 3D tensor), which you can visually interpret as a cube of numbers or a stack of rank 2 tensors:

x <- array(seq(2 * 3 * 4), dim = c(2, 3, 4))

str(x)

int [1:2, 1:3, 1:4] 1 2 3 4 5 6 7 8 9 10 …

length(dim(x))

[1] 3

By stacking rank 3 tensors, you can create a rank 4 tensor, and so on. In deep learning, you’ll generally manipulate tensors with ranks 0 to 4, although you may go up to 5 if you process video data.

2.2.5 Key attributes

A tensor is defined by the following three key attributes:

	
Number of axes (rank)—For instance, a rank 3 tensor has three axes, and a matrix has two axes. This is available from length(dim(x)).

	
Shape—This is an integer vector that describes how many dimensions the tensor has along each axis. For instance, the previous matrix example has shape (3, 5), and the rank 3 tensor example has shape (2, 3, 4). A vector has a shape with a single element, such as (5). R arrays don’t distinguish between 1D vectors and scalar tensors, but conceptually, tensors can also be scalar with shape ().

	
Data type—This is the type of the data contained in the tensor. R arrays have support for R’s built-in data types like double and integer. Conceptually, however, tensors can support any type of homogeneous data type, and other tensor implementations also provide support for types like like float16, float32, float64 (corresponding to R’s double), int32 (R’s integer type), and so on. In TensorFlow, you are also likely to come across string tensors.

To make this more concrete, let’s look back at the data we processed in the MNIST example. First, we load the MNIST dataset:

library(keras)

mnist <- dataset_mnist()

train_images <- mnist$train$x

train_labels <- mnist$train$y

test_images <- mnist$test$x

test_labels <- mnist$test$y

Next, we display the number of axes of the tensor train_images:

length(dim(train_images))

[1] 3

Here’s its shape:

dim(train_images)

[1] 60000 28 28

And this is its R data type:

typeof(train_images)

[1] "integer"

So what we have here is a rank 3 tensor of integers. More precisely, it’s a stack of 60,000 matrices of 28 × 28 integers. Each such matrix is a grayscale image, with coefficients between 0 and 255 of pixel intensity values.

Let’s display the fifth digit in this rank 3 tensor (see figure 2.2).

[image: Image]
Figure 2.2 The fifth sample in our dataset

Listing 2.8 Displaying the fifth digit

digit <- train_images[5, ,]

plot(as.raster(abs(255 - digit), max = 255))

Naturally, the corresponding label is the integer 9:

train_labels[5]

[1] 9

2.2.6 Manipulating tensors in R

In the previous example, we selected a specific digit alongside the first axis using the syntax train_images[i, ,]. Selecting specific elements in a tensor is called tensor slicing. Let’s look at the tensor-slicing operations you can do on R arrays.

NOTE TensorFlow Tensor‘s slicing is similar to R arrays but with some differences. In this section, we focus on R arrays and begin discussing TensorFlow Tensors in chapter 3.

The following example selects digits 10 to 99 and puts them in an array of shape (90, 28, 28):

my_slice <- train_images[10:99, ,]

dim(my_slice)

[1] 90 28 28

In general, you may select slices between any two indices along each tensor axis. For instance, to select 14 × 14 pixels in the bottom-right corner of all images, you would do this:

my_slice <- train_images[, 15:28, 15:28]

dim(my_slice)

[1] 60000    14    14

2.2.7 The notion of data batches

In general, the first axis in all data tensors you’ll come across in deep learning will be the samples axis (sometimes called the samples dimension). In the MNIST example, “samples” are images of digits.

In addition, deep learning models don’t process an entire dataset at once; rather, they break the data into small batches. Concretely, here’s one batch of our MNIST digits, with a batch size of 128:

batch <- train_images[1:128, ,]

And here’s the next batch:

batch <- train_images[129:256, ,]

And the nth batch:

n <- 3

batch <- train_images[seq(to = 128 * n, length.out = 128), ,]

When considering such a batch tensor, the first axis is called the batch axis or batch dimension. This is a term you’ll frequently encounter when using Keras and other deep learning libraries.

2.2.8 Real-world examples of data tensors

Let’s make data tensors more concrete with a few examples similar to what you’ll encounter later. The data you’ll manipulate will almost always fall into one of the following categories:

	
Vector data—Rank 2 tensors of shape (samples, features), where each sample is a vector of numerical attributes (“features”)

	
Times-series data or sequence data—Rank 3 tensors of shape (samples, timesteps, features), where each sample is a sequence (of length timesteps) of feature vectors

	
Images—Rank 4 tensors of shape (samples, height, width, channels), where each sample is a 2D grid of pixels, and each pixel is represented by a vector of values (“channels”)

	
Video—Rank 5 tensors of shape (samples, frames, height, width, channels), where each sample is a sequence (of length frames) of images

2.2.9 Vector data

This is one of the most common cases. In such a dataset, each single data point can be encoded as a vector, and thus a batch of data will be encoded as a rank 2 tensor (that is, a matrix), where the first axis is the samples axis and the second axis is the features axis.

Let’s take a look at the next two examples:

	An actuarial dataset of people, where we consider each person’s age, gender, and income. Each person can be characterized as a vector of 3 values, and thus an entire dataset of 100,000 people can be stored in a rank 2 tensor of shape (100000, 3).

	A dataset of text documents, where we represent each document by the counts of how many times each word appears in it (out of a dictionary of 20,000 common words). Each document can be encoded as a vector of 20,000 values (one count per word in the dictionary), and thus an entire dataset of 500 documents can be stored in a tensor of shape (500, 20000).

2.2.10. Time-series data or sequence data

Whenever time matters in your data (or the notion of sequence order), it makes sense to store it in a rank 3 tensor with an explicit time axis. Each sample can be encoded as a sequence of vectors (a rank 2 tensor), and thus a batch of data will be encoded as a rank 3 tensor (see figure 2.3).

[image: Image]
Figure 2.3 A rank 3 time-series data tensor

The time axis is always the second axis by convention. Let’s look at a few examples:

	A dataset of stock prices. Every minute, we store the current price of the stock, the highest price in the past minute, and the lowest price in the past minute. Thus, every minute is encoded as a 3D vector, an entire day of trading is encoded as a matrix of shape (390, 3) (there are 390 minutes in a trading day), and 250 days’ worth of data can be stored in a rank 3 tensor of shape (250, 390, 3). Here, each sample would be one day’s worth of data.

	A dataset of tweets, where we encode each tweet as a sequence of 280 characters out of an alphabet of 128 unique characters. In this setting, each character can be encoded as a binary vector of size 128 (an all-zeros vector except for a 1 entry at the index corresponding to the character). Then each tweet can be encoded as a rank 2 tensor of shape (280, 128), and a dataset of one million tweets can be stored in a tensor of shape (1000000, 280, 128).

2.2.11. Image data

Images typically have three dimensions: height, width, and color depth. Although grayscale images (like our MNIST digits) have only a single color channel and could thus be stored in rank 2 tensors, by convention, image tensors are always rank 3, with a one-dimensional color channel for grayscale images. A batch of 128 grayscale images of size 256 × 256 could thus be stored in a tensor of shape (128, 256, 256, 1), and a batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3) (see figure 2.4).

[image: Image]
Figure 2.4 A rank 4 image data tensor

Two conventions for shapes of image tensors are the channels-last convention (which is standard in TensorFlow) and the channels-first convention (which is increasingly falling out of favor). The channels-last convention places the color-depth axis at the end: (samples, height, width, color_depth). Meanwhile, the channels-first convention places the color depth axis right after the batch axis: (samples, color_depth, height, width). With the channels-first convention, the previous examples would become (128, 1, 256, 256) and (128, 3, 256, 256). The Keras API provides support for both formats.

2.2.12. Video data

Video data is one of the few types of real-world data for which you’ll need rank 5 tensors. A video can be understood as a sequence of frames, with each frame being a color image. Because each frame can be stored in a rank 3 tensor (height, width, color_depth), a sequence of frames can be stored in a rank 4 tensor (frames, height, width, color_depth), and thus a batch of different videos can be stored in a rank 5 tensor of shape (samples, frames, height, width, color_depth).

For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per second would have 240 frames. A batch of four such video clips would be stored in a tensor of shape (4, 240, 144, 256, 3). That’s a total of 106,168,320 values! If the data type of the tensor was R integers, each value would be stored in 32 bits, so the tensor would represent 405 MB. Heavy! Videos you encounter in real life are much lighter, because they aren’t stored as R integers, and they’re typically compressed by a large factor (such as in the MPEG format).

2.3 The gears of neural networks: Tensor operations

As much as any computer program can be ultimately reduced to a small set of binary operations on binary inputs (AND, OR, NOR, and so on), all transformations learned by deep neural networks can be reduced to a handful of tensor operations (or tensor functions) applied to tensors of numeric data. For instance, it’s possible to add tensors, multiply tensors, and so on. In our initial example, we built our model by stacking Dense layers on top of each other. A Keras layer instance looks like this:

layer_dense(units = 512, activation = "relu")

<keras.layers.core.dense.Dense object at 0x7f7b0e8cf520>

This layer can be interpreted as a function, which takes as input a matrix and returns another matrix—a new representation for the input tensor. Specifically, the function is as follows (where W is a matrix and b is a vector, both properties of the layer):

output <- relu(dot(W, input) + b)

Let’s unpack this. We have the following three tensor operations here:

	A dot product (dot) between the input tensor and a tensor named W

	An addition (+) between the resulting matrix and a vector b

	A relu operation: relu(x) is an element-wise max(x, 0); relu stands for rectified linear unit

Although this section deals entirely with linear algebra expressions, you won’t find any mathematical notation here. I’ve found that mathematical concepts can be more readily mastered by programmers with no mathematical background if they’re expressed as short code snippets instead of mathematical equations. So we’ll use R and TensorFlow code throughout.

2.3.1 Element-wise operations

The relu operation and addition are element-wise operations: operations that are applied independently to each entry in the tensors being considered. This means these operations are highly amenable to massively parallel implementations (vectorized implementations, a term that comes from the vector processor supercomputer architecture from the 1970–1990 period). If you want to write a naive R implementation of an element-wise operation, you use a for loop, as in the following naive implementation of an element-wise relu operation:

naive_relu <- functsion(x) {

stopifnot(length(dim(x)) == 2)➊

for (i in 1:nrow(x))

for (j in 1:ncol(x))

x[i, j] <- max(x[i, j], 0)

x

}

➊ x is a rank 2 tensor (a matrix).

You could do the same for addition:

naive_add <- function(x, y) {

stopifnot(length(dim(x)) == 2, dim(x) == dim(y))➊

for (i in 1:nrow(x))

for (j in 1:ncol(x))

x[i, j] <- x[i, j] + y[i, j]

x

}

➊ x and y are rank 2 tensors.

On the same principle, you can do element-wise multiplication, subtraction, and so on.

In practice, when dealing with R arrays, these operations are available as well-optimized built-in R functions, which themselves delegate the heavy lifting to a Basic Linear Algebra Subprograms (BLAS) implementation. BLAS are low-level, highly parallel, efficient tensor-manipulation routines that are typically implemented in Fortran or C. So, in R, you can do the following element-wise operation, and it will be blazing fast:

z <- x + y➊

z[z < 0] <- 0➋

➊ Element-wise addition

➋ Element-wise relu

Let’s actually time the difference here:

random_array <- function(dim, min = 0, max = 1)

array(runif(prod(dim), min, max),

dim)

x <- random_array(c(20, 100))

y <- random_array(c(20, 100))

system.time({

for (i in seq_len(1000)) {

z <- x + y

z[z < 0] <- 0

}

})[["elapsed"]]

[1] 0.009

This takes 0.009 seconds. Meanwhile, the naive version takes a stunning 0.72 seconds:

system.time({

for (i in seq_len(1000)) {

z <- naive_add(x, y)

z <- naive_relu(z)

}

})[["elapsed"]]

[1] 0.724

Likewise, when running TensorFlow code on a GPU, element-wise operations are executed via fully vectorized CUDA implementations that can best utilize the highly parallel GPU chip architecture.

2.3.2 Broadcasting

Our earlier naive implementation of naive_add supports only the addition of rank 2 tensors with identical shapes. But in the layer_dense() introduced earlier, we added a rank 2 tensor with a vector. What happens with addition when the shapes of the two tensors being added differ?

What we’d like is for the smaller tensor to be broadcast to match the shape of the larger tensor. Broadcasting consists of the following two steps:

	
1 Axes (called broadcast axes) are added to the smaller tensor to match the length(dim(x)) of the larger tensor.

	
2 The smaller tensor is repeated alongside these new axes to match the full shape of the larger tensor.

Note that Tensorflow Tensors, covered in chapter 3, have rich broadcasting functionality built in. Here, however, we are building up machine learning concepts from scratch using R arrays and are intentionally avoiding R’s implicit recycling behavior when operating on two arrays of different dimensions. We can implement our own recycling approach by building up the smaller tensor to match the shape of the larger tensor, at which point we are again back to doing a standard element-wise operation.

Let’s look at a concrete example. Consider X with shape (32, 10) and y with shape (10):

X <- random_array(c(32, 10))➊

y <- random_array(c(10))➋

➊ X is a random matrix with shape (32, 10).

➋ y is a random vector with shape (10).

First, we add a size 1 first axis to y, whose shape becomes (1, 10):

dim(y) <- c(1, 10)

str(y)➊

num [1, 1:10] 0.885 0.429 0.737 0.553 0.426 …

➊ The shape of y is now (1, 10).

Then, we repeat y 32 times alongside this new axis, so that we end up with a tensor Y with shape (32, 10), where Y[i,] == y for i in seq(32):

Y <- y[rep(1, 32),]➊

str(Y)

num [1:32, 1:10] 0.885 0.885 0.885 0.885 0.885 …

➊ Repeat y 32 times along axis 1 to obtain Y, which has shape (32, 10).

At this point, we can proceed to add X and Y, because they have the same shape.

In terms of implementation, ideally we want no new rank 2 tensor to be created, because that is terribly inefficient. In most tensor implementations, including R and TensorFlow, the repetition operation is entirely virtual: it happens at the algorithmic level rather than at the memory level. However, be aware that R’s recycling and TensorFlow’s (and NumPy’s) broadcasting differ in their behavior (we go into details in chapter 3). Regardless, thinking of the vector being repeated 10 times alongside a new axis is a helpful mental model. Here’s what a naive implementation would look like:

naive_add_matrix_and_vector <- function(x, y) {

stopifnot(length(dim(x)) == 2,➊

length(dim(y)) == 1,➋

ncol(x) == dim(y))

for (i in seq(dim(x)[1]))

for (j in seq(dim(x)[2]))

x[i, j] <- x[i, j] + y[j]

x

}

➊ x is a rank 2 tensor.

➋ y is a vector.

2.3.3 Tensor product

The tensor product, or dot product (not to be confused with an element-wise product, the * operator), is one of the most common, most useful tensor operations. In R, an element-wise product is done with the * operator, whereas dot products use the %*% operator:

x <- random_array(c(32))

y <- random_array(c(32))

z <- x %*% y

In mathematical notation, you’d note the operation with a dot (•):

z = x • y

Mathematically, what does the dot operation do? Let’s start with the dot product of two vectors, x and y. It’s computed as follows:

naive_vector_dot <- function(x, y) {

stopifnot(length(dim(x)) == 1,➊

 length(dim(y)) == 1,➊

dim(x) == dim(y))

z <- 0

for (i in seq_along(x))

z <- z + x[i] * y[i]

z

}

➊ x and y are 1D vectors of the same size.

You’ll have noticed that the dot product between two vectors is a scalar and that only vectors with the same number of elements are compatible for a dot product.

You can also take the dot product between a matrix x and a vector y, which returns a vector where the coefficients are the dot products between y and the rows of x:

naive_matrix_vector_dot <- function(x, y) {

 stopifnot(length(dim(x)) == 2,➊

length(dim(y)) == 1,➋

nrow(x) == dim(y))➌

z <- array(0, dim = dim(y))➍

for (i in 1:nrow(x))

for (j in 1:ncol(x))

z[i] <- z[i] + x[i, j] * y[j]

z

}

➊ x is a 2D tensor (matrix).

➋ y is a 1D tensor (vector).

➌ The first dimension of x must be the same as the first dimension of y!

➍ This operation returns a vector of zeros with the same shape as y.

You could also reuse the code we wrote previously, which highlights the relationship between a matrix-vector product and a vector product:

naive_matrix_vector_dot <- function(x, y) {

z <- array(0, dim = c(nrow(x)))

for (i in 1:nrow(x))

z[i] <- naive_vector_dot(x[i,], y)

z

}

Note that as soon as one of the two tensors has a length(dim(x)) greater than 1, %*% is no longer symmetric, which is to say that x %*% y isn’t the same as y %*% x.

Of course, a dot product generalizes to tensors with an arbitrary number of axes. The most common applications may be the dot product between two matrices. You can take the dot product of two matrices x and y (x %*% y) if and only if ncol(x) == nrow(y). The result is a matrix with shape (nrow(x), ncol(y)), where the coefficients are the vector products between the rows of x and the columns of y. The naive implementation is shown here:

naive_matrix_dot <- function(x, y) {

stopifnot(length(dim(x)) == 2,➊

length(dim(y)) == 2,

ncol(x) == nrow(y))➋

z <- array(0, dim = c(nrow(x), ncol(y)))➌

for (i in 1:nrow(x))➍

for (j in 1:ncol(y)) {➎

row_x <- x[i,]

column_y <- y[, j]

z[i, j] <- naive_vector_dot(row_x, column_y)

}

z

}

➊ x and y are 2D tensors (matrices).

➋ The first dimension of x must be the same as the first dimension of y!

➌ This operation returns a matrix of zeros with a specific shape.

➍ Iterate over the rows of x…

➎ … and over the columns of y.

To understand dot-product shape compatibility, it helps to visualize the input and output tensors by aligning them as shown in figure 2.5.

In the figure, x, y, and z are pictured as rectangles (literal boxes of coefficients). Because the rows of x and the columns of y must have the same size, it follows that the width of x must match the height of y. If you go on to develop new machine learning algorithms, you’ll likely be drawing such diagrams often.

[image: Image]
Figure 2.5 Matrix dot-product box diagram

More generally, you can take the dot product between higher-dimensional tensors, following the same rules for shape compatibility as outlined earlier for the 2D case:

(a, b, c, d) • (d) -> (a, b, c)

(a, b, c, d) • (d, e) -> (a, b, c, e)

And so on.

2.3.4 Tensor reshaping

A third type of tensor operation that’s essential to understand is tensor reshaping. Although it wasn’t used in the layer_dense() in our first neural network example, we used it when we preprocessed the digits data before feeding it into our model, as shown next:

train_images <- array_reshape(train_images, c(60000, 28 * 28))

Note that we use the array_reshape() function rather than the `dim<-`() function to reshape R arrays. This is so that the data is reinterpreted using row-major semantics (as opposed to R’s default column-major semantics), which is in turn compatible with the way the numerical libraries called by Keras (NumPy, TensorFlow, and so on) interpret array dimensions. You should always use the array_reshape() function when reshaping R arrays that will be passed to Keras.

Reshaping a tensor means rearranging its rows and columns to match a target shape. Naturally, the reshaped tensor has the same total number of coefficients as the initial tensor. Reshaping is best understood via simple examples:

x <- array(1:6)

x

[1] 1 2 3 4 5 6

array_reshape(x, dim = c(3, 2))

[,1] [,2]

 [1,]     1    2

 [2,]     3    4

 [3,]     5    6

array_reshape(x, dim = c(2, 3))

[,1] [,2] [,3]

 [1,]     1    2     3

 [2,]     4    5     6

A special case of reshaping that’s commonly encountered is transposition. Transposing a matrix means exchanging its rows and its columns, so that x[i,] becomes x[, i]. We can use the t() function to transpose a matrix:

x <- array(1:6, dim = c(3, 2))

x

[,1] [,2]

 [1,]     1    4

 [2,]     2    5

 [3,]     3    6

t(x)

[,1] [,2] [,3]

 [1,]     1    2     3

 [2,]     4    5     6

2.3.5 Geometric interpretation of tensor operations

Because the contents of the tensors manipulated by tensor operations can be interpreted as coordinates of points in some geometric space, all tensor operations have a geometric interpretation. For instance, let’s consider addition. We’ll start with the following vector:

A = c(0.5, 1)

It’s a point in a 2D space (see figure 2.6). It’s common to picture a vector as an arrow linking the origin to the point, as shown in figure 2.7.

Let’s consider a new point, B = c(1, 0.25), which we’ll add to the previous one. This is done geometrically by chaining together the vector arrows, with the resulting location being the vector representing the sum of the previous two vectors (see figure 2.8). As you can see, adding a vector B to a vector A represents the action of copying point A in a new location, whose distance and direction from the original point A is determined by the vector B. If you apply the same vector addition to a group of points in the plane (an object), you would be creating a copy of the entire object in a new location (see figure 2.9). Tensor addition thus represents the action of translating an object (moving the object without distorting it) by a certain amount in a certain direction.

[image: Image]
Figure 2.6 A point in a 2D space

[image: Image]
Figure 2.7 A point in a 2D space pictured as an arrow

In general, elementary geometric operations such as translation, rotation, scaling, skewing, and so on can be expressed as tensor operations. Here are a few examples:

[image: Image]
Figure 2.8 Geometric interpretation of the sum of two vectors

	
Translation—As you just saw, adding a vector to a point will move the point by a fixed amount in a fixed direction. Applied to a set of points (such as a 2D object), this is called a “translation” (see figure 2.9).

[image: Image]
Figure 2.9 2D translation as a vector addition

	
Rotation—A counterclockwise rotation of a 2D vector by an angle theta (see figure 2.10) can be achieved via a dot product with a 2 × 2 matrix R = rbind(c(cos(theta), -sin(theta)), c(sin(theta), cos(theta)).

[image: Image]
Figure 2.10 2D rotation (counterclock-wise) as a dot product

	
Scaling—A vertical and horizontal scaling of the image (see figure 2.11) can be achieved via a dot product with a 2 × 2 matrix S = rbind(c(horizontal_factor, 0), c(0, vertical_factor)) (note that such a matrix is called a diagonal matrix, because it has only non-zero coefficients in its “diagonal,” going from the top left to the bottom right).

[image: Image]
Figure 2.11 2D scaling as a dot product

	
Linear transform—A dot product with an arbitrary matrix implements a linear transform. Note that scaling and rotation, listed previously, are by definition linear transforms.

	
Affine transform—An affine transform (see figure 2.12) is the combination of a linear transform (achieved via a dot product with some matrix) and a translation (achieved via a vector addition). As you have probably recognized, that’s exactly the y = W • x + b computation implemented by layer_dense()! A Dense layer without an activation function is an affine layer.

[image: Image]
Figure 2.12 Affine transform in the plane

	
Dense layer with relu activation—An important observation about affine transforms is that if you apply many of them repeatedly, you still end up with an affine transform (so you could just have applied that one affine transform in the first place). Let’s try it with two: affine2(affine1(x)) = W2 • (W1 • x + b1) + b2 = (W2 • W1) • x + (W2 • b1 + b2). That’s an affine transform where the linear part is the matrix W2 • W1 and the translation part is the vector W2 • b1 + b2. As a consequence, a multilayer neural network made entirely of Dense layers without activations would be equivalent to a single Dense layer. This “deep” neural network would just be a linear model in disguise! This is why we need activation functions, like relu (seen in action in figure 2.13). Thanks to activation functions, a chain of Dense layers can be made to implement very complex, nonlinear geometric transformations, resulting in very rich hypothesis spaces for your deep neural networks. We’ll cover this idea in more detail in the next chapter.

[image: Image]
Figure 2.13 Affine transform followed by relu activation

2.3.6 A geometric interpretation of deep learning

You just learned that neural networks consist entirely of chains of tensor operations, and that these tensor operations are just simple geometric transformations of the input data. It follows that you can interpret a neural network as a very complex geometric transformation in a high-dimensional space, implemented via a series of simple steps.

In 3D, the following mental image may prove useful. Imagine two sheets of colored paper: one red and one blue. Put one on top of the other. Now crumple them together into a small ball. That crumpled paper ball is your input data, and each sheet of paper is a class of data in a classification problem. What a neural network is meant to do is figure out a transformation of the paper ball that would uncrumple it, so as to make the two classes cleanly separable again (see figure 2.14). With deep learning, this would be implemented as a series of simple transformations of the 3D space, such as those you could apply on the paper ball with your fingers, one movement at a time.

[image: Image]
Figure 2.14 Uncrumpling a complicated manifold of data

Uncrumpling paper balls is what machine learning is about: finding neat representations for complex, highly folded data manifolds in high-dimensional spaces (a manifold is a continuous surface, like our crumpled sheet of paper). At this point, you should have a pretty good intuition as to why deep learning excels at this: it takes the approach of incrementally decomposing a complicated geometric transformation into a long chain of elementary ones, which is pretty much the strategy a human would follow to uncrumple a paper ball. Each layer in a deep network applies a transformation that disentangles the data a little, and a deep stack of layers makes tractable an extremely complicated disentanglement process.

2.4 The engine of neural networks: Gradient-based optimization

As you saw in the previous section, each neural layer from our first model example transforms its input data as follows:

output <- relu(dot(input, W) + b)

In this expression, W and b are tensors that are attributes of the layer. They’re called the weights or trainable parameters of the layer (the kernel and bias attributes, respectively). These weights contain the information learned by the model from exposure to training data.

Initially, these weight matrices are filled with small random values (a step called random initialization). Of course, there’s no reason to expect that relu(dot(input, W) + b), when W and b are random, will yield any useful representations. The resulting representations are meaningless—but they’re a starting point. What comes next is to gradually adjust these weights, based on a feedback signal. This gradual adjustment, also called training, is the learning that machine learning is all about. This happens within what’s called a training loop, which works as follows. Repeat these steps in a loop, until the loss seems sufficiently low:

	
1 Draw a batch of training samples, x, and corresponding targets, y_true.

	
2 Run the model on x (a step called the forward pass) to obtain predictions, y_pred.

	
3 Compute the loss of the model on the batch, a measure of the mismatch between y_pred and y_true.

	
4 Update all weights of the model in a way that slightly reduces the loss on this batch.

You’ll eventually end up with a model that has a very low loss on its training data: a low mismatch between predictions, y_pred, and expected targets, y_true. The model has “learned” to map its inputs to correct targets. From afar, it may look like magic, but when you reduce it to elementary steps, it turns out to be simple.

Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the application of a handful of tensor operations, so you could implement these steps purely from what you learned in the previous section. The difficult part is step 4: updating the model’s weights. Given an individual weight coefficient in the model, how can you compute whether the coefficient should be increased or decreased, and by how much?

One naive solution would be to freeze all weights in the model except the one scalar coefficient being considered, and try different values for this coefficient. Let’s say the initial value of the coefficient is 0.3. After the forward pass on a batch of data, the loss of the model on the batch is 0.5. If you change the coefficient’s value to 0.35 and rerun the forward pass, the loss increases to 0.6. But if you lower the coefficient to 0.25, the loss falls to 0.4. In this case, it seems that updating the coefficient by –0.05 would contribute to minimizing the loss. This would have to be repeated for all coefficients in the model.

But such an approach would be horribly inefficient, because you’d need to compute two forward passes (which are expensive) for every individual coefficient (of which there are many—usually thousands and sometimes up to millions). Thankfully, there’s a much better approach: gradient descent.

Gradient descent is the optimization technique that powers modern neural networks. Here’s the gist of it: all of the functions used in our models (such as dot or +) transform their input in a smooth and continuous way. If you look at z = x + y, for instance, a small change in y results in only a small change in z, and if you know the direction of the change in y, you can infer the direction of the change in z. Mathematically, you’d say these functions are differentiable. If you chain together such functions, the bigger function you obtain is still differentiable. In particular, this applies to the function that maps the model’s coefficients to the loss of the model on a batch of data: a small change in the model’s coefficients results in a small, predictable change in the loss value. This enables you to use a mathematical operator called the gradient to describe how the loss varies as you move the model’s coefficients in different directions. If you compute this gradient, you can use it to move the coefficients (all at once in a single update, rather than one at a time) in a direction that decreases the loss.

If you already know what differentiable means and what a gradient is, you can skip to section 2.4.3. Otherwise, the following two sections will help you understand these concepts.

2.4.1 What’s a derivative?

Consider a continuous, smooth function f(x) = y, mapping a number, x, to a new number, y. We can use the function in figure 2.15 as an example.

Because the function is continuous, a small change in x can only result in a small change in y—that’s the intuition behind continuity. Let’s say you increase x by a small factor, epsilon_x: this results in a small epsilon_y change to y, as shown in figure 2.16.

In addition, because the function is smooth (its curve doesn’t have any abrupt angles), when epsilon_x is small enough, around a certain point p, it’s possible to approximate f as a linear function of slope a, so that epsilon_y becomes a * epsilon_x:

f(x + epsilon_x) = y + a * epsilon_x

Obviously, this linear approximation is valid only when x is close enough to p.

[image: Image]
Figure 2.15 A continuous, smooth function

[image: Image]
Figure 2.16 With a continuous function, a small change in x results in a small change in y.

[image: Image]
Figure 2.17 Derivative of f in p

The slope a is called the derivative of f in p. If a is negative, it means a small increase in x around p will result in a decrease of f(x) (as shown in figure 2.17), and if a is positive, a small increase in x will result in an increase of f(x). Further, the absolute value of a (the magnitude of the derivative) tells you how quickly this increase or decrease will happen.

For every differentiable function f(x) (differentiable means “can be differentiated to find the derivative”: for example, smooth, continuous functions can be differentiated), there exists a derivative function f’(x) that maps values of x to the slope of the local linear approximation of f in those points. For instance, the derivative of cos(x) is -sin(x), the derivative of f(x) = a * x is f’(x) = a, and so on.

Being able to differentiate functions is a very powerful tool when it comes to optimization, the task of finding values of x that minimize the value of f(x). If you’re trying to update x by a factor epsilon_x to minimize f(x), and you know the derivative of f, then your job is done: the derivative completely describes how f(x) evolves as you change x. If you want to reduce the value of f(x), you just need to move x a little in the opposite direction from the derivative.

2.4.2 Derivative of a tensor operation: The gradient

The function we were just looking at turned a scalar value x into another scalar value y: you could plot it as a curve in a 2D plane. Now imagine a function that turns a list of scalars (x, y) into a scalar value z: that would be a vector operation. You could plot it as a 2D surface in a 3D space (indexed by coordinates x, y, z). Likewise, you can imagine functions that take matrices as inputs, functions that take rank 3 tensors as inputs, and so on.

The concept of differentiation can be applied to any such function, as long as the surfaces they describe are continuous and smooth. The derivative of a tensor operation (or tensor function) is called a gradient. Gradients are just the generalization of the concept of derivatives to functions that take tensors as inputs. Remember how, for a scalar function, the derivative represents the local slope of the curve of the function? In the same way, the gradient of a tensor function represents the curvature of the multidimensional surface described by the function. It characterizes how the output of the function varies when its input parameters vary.

Let’s look at an example grounded in machine learning. Consider the following:

	An input vector, x (a sample in a dataset)

	A matrix, W (the weights of a model)

	A target, y_true (what the model should learn to associate to x)

	A loss function, loss_fn() (meant to measure the gap between the model’s current predictions and y_true)

You can use W to compute a target candidate y_pred, and then compute the loss, or mismatch, between the target candidate y_pred and the target y_true:

y_pred <- dot(W, x)➊

loss_value <- loss_fn(y_pred, y_true)➋

➊ We use the model weights, W, to make a prediction for x.

➋ We estimate how far off the prediction was.

Now we’d like to use gradients to figure out how to update W so as to make loss_value smaller. How do we do that? Given fixed inputs x and y_true, the preceding operations can be interpreted as a function mapping values of W (the model’s weights) to loss values:

loss_value <- f(W)➊

➊ f() describes the curve (or high-dimensional surface) formed by loss values when W varies.

Let’s say the current value of W is W0. Then the derivative of f() at the point W0 is a tensor grad(loss_value, W0), with the same shape as W, where each coefficient grad(loss_ value, W0)[i, j] indicates the direction and magnitude of the change in loss_value you observe when modifying W0[i, j]. That tensor grad(loss_value, W0) is the gradient of the function f(W) = loss_value in W0, also called “gradient of loss_value with respect to W around W0.”

Partial derivatives

The tensor operation grad(f(W), W) (which takes as input a matrix W) can be expressed as a combination of scalar functions, grad_ij(f(W), w_ij), each of which would return the derivative of loss_value = f(W) with respect to the coefficient W[i, j] of W, assuming all other coefficients are constant. grad_ij is called the partial derivative of f with respect to W[i, j].

Concretely, what does grad(loss_value, W0) represent? You saw earlier that the derivative of a function f(x) of a single coefficient can be interpreted as the slope of the curve of f(). Likewise, grad(loss_value, W0) can be interpreted as the tensor describing the direction of steepest ascent of loss_value = f(W) around W0, as well as the slope of this ascent. Each partial derivative describes the slope of f() in a specific direction.

For this reason, in much the same way that, for a function f(x), you can reduce the value of f(x) by moving x a little in the opposite direction from the derivative, with a function f(W) of a tensor, you can reduce loss_value = f(W) by moving W in the opposite direction from the gradient: for example, W1 = W0 – step * grad(f(W0), W0) (where step is a small scaling factor). That means going against the direction of steepest ascent of f, which intuitively should put you lower on the curve. Note that the scaling factor step is needed because grad(loss_value, W0) approximates the curvature only when you’re close to W0, so you don’t want to get too far from W0.

Contents

		Cover

		Title Page

		Copyright

		Preface

		Acknowledgments

		About This Book

		About the Authors

		Chapter 1: What Is Deep Learning?
		1.1 Artificial Intelligence, Machine Learning, and Deep Learning
		Artificial Intelligence

		Machine Learning

		Learning Rules and Representations from Data

		The “Deep” in “Deep Learning”

		Understanding How Deep Learning Works, in Three Figures

		What Deep Learning Has Achieved So Far

		Don’t Believe the Short-Term Hype

		The Promise of AI

		1.2 Before Deep Learning: A Brief History of Machine Learning
		Probabilistic Modeling

		Early Neural Networks

		Kernel Methods

		Decision Trees, Random Forests, and Gradient-Boosting Machines

		Back to Neural Networks

		What Makes Deep Learning Different?

		The Modern Machine Learning Landscape

		1.3 Why Deep Learning? Why Now?
		Hardware

		Data

		Algorithms

		A New Wave of Investment

		The Democratization of Deep Learning

		Will It Last?

		Chapter 2: The Mathematical Building Blocks of Neural Networks
		2.1 A First Look at a Neural Network

		2.2 Data Representations for Neural Networks
		Scalars (Rank 0 Tensors)

		Vectors (Rank 1 Tensors)

		Matrices (Rank 2 Tensors)

		Rank 3 and Higher-Rank Tensors

		Key Attributes

		Manipulating Tensors in R

		The Notion of Data Batches

		Real-World Examples of Data Tensors

		Vector Data

		Time-Series Data or Sequence Data

		Image Data

		Video Data

		2.3 The Gears of Neural Networks: Tensor Operations
		Element-Wise Operations

		Broadcasting

		Tensor Product

		Tensor Reshaping

		Geometric Interpretation of Tensor Operations

		A Geometric Interpretation of Deep Learning

		2.4 The Engine of Neural Networks: Gradient-Based Optimization
		What’s a Derivative?

		Derivative of a Tensor Operation: The gradient

		Stochastic Gradient Descent

		Chaining Derivatives: The Backpropagation Algorithm

		2.5 Looking Back at Our First Example
		Reimplementing our First Example from Scratch in TensorFlow

		Running One Training Step

		The Full Training Loop

		Evaluating the Model

		Chapter 3: Introduction to Keras and Tensorflow
		3.1 What’s Tensorflow?

		3.2 What’s Keras?

		3.3 Keras and Tensorflow: A Brief History

		3.4 Python and R Interfaces: A Brief History

		3.5 Setting Up A Deep Learning Workspace
		Installing Keras and TensorFlow

		3.6 First Steps with Tensorflow
		Tensorflow Tensors

		3.7 Tensor Attributes
		Tensor Shape and Reshaping

		Tensor Slicing

		Tensor Broadcasting

		The tf Module

		Constant Tensors and Variables

		Tensor Operations: Doing Math in TensorFlow

		A Second Look at the GradientTape API

		An End-to-End Example: A Linear Classifier in Pure TensorFlow

		3.8 Anatomy of a Neural Network: Understanding Core Keras Apis
		Layers: The Building Blocks of Deep Learning

		From Layers to Models

		The “Compile” Step: Configuring the Learning Process

		Picking a Loss Function

		Understanding the fit() Method

		Monitoring Loss and Metrics on Validation Data

		Inference: Using a Model After Training

		Chapter 4: Getting Started with Neural Networks: Classification and Regression
		4.1 Classifying Movie Reviews: A Binary Classification Example
		The IMDB Dataset

		Preparing the Data

		Building Your Model

		Validating Your Approach

		Using a Trained Model to Generate Predictions on New Data

		Further Experiments

		Wrapping Up

		4.2 Classifying Newswires: A Multiclass Classification Example
		The Reuters Dataset

		Preparing the Data

		Building Your Model

		Validating Your Approach

		Generating Predictions on New Data

		A Different Way to Handle the Labels and the Loss

		The Importance of Having Sufficiently Large Intermediate Layers

		Further Experiments

		Wrapping Up

		4.3 Predicting House Prices: A Regression Example
		The Boston Housing Price Dataset

		Preparing the Data 123 Building Your Model

		Validating Your Approach Using K-fold Validation

		Generating Predictions on New Data

		Wrapping Up

		Chapter 5: Fundamentals of Machine Learning
		5.1 Generalization: The Goal of Machine Learning
		Underfitting and Overfitting

		The Nature of Generalization in Deep Learning

		5.2 Evaluating Machine Learning Models
		Training, Validation, and Test Sets

		Beating a Common-Sense Baseline

		Things to Keep in Mind About Model Evaluation

		5.3 Improving Model Fit
		Tuning Key Gradient Descent Parameters

		Leveraging Better Architecture Priors

		Increasing Model Capacity

		5.4 Improving Generalization
		Dataset Curation

		Feature Engineering

		Using Early Stopping

		Regularizing Your Model

		Chapter 6: The Universal Workflow of Machine Learning
		6.1 Define The Task
		Frame the Problem

		Collect a Dataset

		Understand Your Data

		Choose a Measure of Success

		6.2 Develop a Model
		Prepare the Data

		Choose an Evaluation Protocol

		Beat a Baseline

		Scale Up: Develop a Model that Overfits

		Regularize and Tune Your Model

		6.3 Deploy the Model
		Explain Your Work to Stakeholders and Set Expectations

		Ship an Inference Model

		Monitor Your Model in the Wild

		Maintain Your Model

		Chapter 7: Working with Keras: A Deep Dive
		7.1 A Spectrum of Workflows

		7.2 Different Ways to Build Keras Models
		The Sequential Model

		The Functional API

		Subclassing the Model Class

		Mixing and Matching Different Components

		Remember: Use the Right Tool for the Job

		7.3 Using Built-In Training and Evaluation Loops
		Writing Your Own Metrics

		Using Callbacks

		Writing Your Own Callbacks

		Monitoring and Visualization with Tensorboard

		7.4 Writing Your Own Training and Evaluation Loops
		Training vs. Inference

		Low-Level Usage of Metrics

		A Complete Training and Evaluation Loop

		Make It Fast with tf_function()

		Leveraging fit() with a Custom Training Loop

		Chapter 8: Introduction to Deep Learning for Computer Vision
		8.1 Introduction to Convnets
		The Convolution Operation

		The Max-Pooling Operation

		8.2 Training a Convnet from Scratch on a Small Dataset
		The Relevance of Deep Learning for Small Data Problems

		Downloading the Data

		Building the Model

		Data Preprocessing

		Using Data Augmentation

		8.3 Leveraging a Pretrained Model
		Feature Extraction with a Pretrained Model

		Fine-Tuning a Pretrained Model

		Chapter 9: Advanced Deep Learning for Computer Vision
		9.1 Three Essential Computer Vision Tasks

		9.2 An Image Segmentation Example

		9.3 Modern Convnet Architecture Patterns
		Modularity, Hierarchy, and Reuse

		Residual Connections

		Batch Normalization

		Depthwise Separable Convolutions

		Putting It Together: A Mini Xception-Like Model

		9.4 Interpreting What Convnets Learn
		Visualizing Intermediate Activations

		Visualizing Convnet Filters

		Visualizing Heatmaps of Class Activation

		Chapter 10: Deep Learning for Time Series
		10.1 Different Kinds of Time-Series Tasks

		10.2 A Temperature-Forecasting Example
		Preparing the Data

		A Common-Sense, Non–Machine Learning Baseline

		Let’s Try a Basic Machine Learning Model

		Let’s Try a 1D Convolutional Model

		A First Recurrent Baseline

		10.3 Understanding Recurrent Neural Networks
		A Recurrent Layer in Keras

		10.4 Advanced Use of Recurrent Neural Networks
		Using Recurrent Dropout to Fight Overfitting

		Stacking Recurrent Layers

		Using Bidirectional RNNs

		Going Even Further

		Chapter 11: Deep Learning for Text
		11.1 Natural Language Processing: The Bird’s-Eye View

		11.2 Preparing Text Data
		Text Standardization

		Text Splitting (Tokenization)

		Vocabulary Indexing

		Using layer_text_vectorization

		11.3 Two Approaches for Representing Groups of Words: Sets and Sequences
		Preparing the IMDB Movie Reviews Data

		Processing Words as a Set: The Bag-of-Words Approach

		Processing Words as a Sequence: The Sequence Model Approach

		11.4 The Transformer Architecture
		Understanding Self-Attention

		Multi-Head Attention

		The Transformer Encoder

		When to Use Sequence Models Over Bag-of-Words Models

		11.5 Beyond Text Classification: Sequence-to-Sequence Learning
		A machine Translation Example

		Sequence-to-Sequence Learning with RNNs

		Sequence-to-Sequence Learning with Transformer

		Chapter 12: Generative Deep Learning
		12.1 Text Generation
		A Brief History of Generative Deep Learning for Sequence Generation

		How do you Generate Sequence Data?

		The Importance of the Sampling Strategy

		Implementing Text Generation with Keras

		A Text-Generation Callback with Variable-Temperature Sampling

		Wrapping Up

		12.2 Deepdream
		Implementing Deepdream in Keras

		Wrapping Up

		12.3 Neural Style Transfer
		The Content Loss

		The Style Loss

		Neural Style Transfer in Keras

		Wrapping Up

		12.4 Generating Images with Variational Autoencoders
		Sampling from Latent Spaces of Images

		Concept Vectors for Image Editing

		Variational Autoencoders

		Implementing a VAE with Keras

		Wrapping Up

		12.5 Introduction to Generative Adversarial Networks
		A Schematic GAN Implementation

		A Bag of Tricks

		Getting Our Hands on the Celeba Dataset

		The Discriminator

		The Generator

		The Adversarial Network

		Wrapping Up

		Chapter 13: Best Practices for the Real World
		13.1 Getting the Most Out of Your Models
		Hyperparameter Optimization

		Model Ensembling

		13.2 Scaling-Up Model Training
		Speeding Up Training on GPU with Mixed Precision

		Multi-GPU Training

		TPU Training

		Chapter 14: Conclusions
		14.1 Key Concepts in Review
		Various Approaches to AI

		What Makes Deep Learning Special within the Field of Machine Learning

		How to Think About Deep Learning

		Key Enabling Technologies

		The Universal Machine Learning Workflow

		Key Network Architectures

		The Space of Possibilities

		14.2 The Limitations of Deep Learning
		The Risk of Anthropomorphizing Machine Learning Models

		Automatons vs. Intelligent Agents

		Local Generalization vs. Extreme Generalization

		The Purpose of Intelligence

		Climbing the Spectrum of Generalization

		14.3 Setting The Course Toward Greater Generality in AI
		On the Importance of Setting the Right Objective: The Shortcut Rule

		A New Target

		14.4 Implementing Intelligence: The Missing Ingredients
		Intelligence as Sensitivity to Abstract Analogies

		The Two Poles of Abstraction

		The Two Poles of Abstraction

		The Missing Half of the Picture

		14.5 The Future of Deep Learning
		Models as Programs

		Machine Learning vs. Program Synthesis

		Blending Together Deep Learning and Program Synthesis

		Lifelong Learning and Modular Subroutine Reuse

		The Long-Term Vision

		14.6 Staying Up-to-Date in a Fast-Moving Field
		Practice on Real-World Problems Using Kaggle

		Read About the Latest Developments on arXiv

		Explore the Keras Ecosystem

		14.7 Final Words

		Appendix: Python Primer for R Users

		Index

Guide

		Cover

		Start of Content

		Title Page

		Preface

		Appendix

		Acknowledgments

		About the Authors

		Index

		Copyright

		I

		II

		III

		IV

		V

		VI

		VII

		VIII

		IX

		X

		XI

		XII

		XIII

		XIV

		XV

		XVI

		XVII

		XVIII

		XIX

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

		274

		275

		276

		277

		278

		279

		280

		281

		282

		283

		284

		285

		286

		287

		288

		289

		290

		291

		292

		293

		294

		295

		296

		297

		298

		299

		300

		301

		302

		303

		304

		305

		306

		307

		308

		309

		310

		311

		312

		313

		314

		315

		316

		317

		318

		319

		320

		321

		322

		323

		324

		325

		326

		327

		328

		329

		330

		331

		332

		333

		334

		335

		336

		337

		338

		339

		340

		341

		342

		343

		344

		345

		346

		347

		348

		349

		350

		351

		352

		353

		354

		355

		356

		357

		358

		359

		360

		361

		362

		363

		364

		365

		366

		367

		368

		369

		370

		371

		372

		373

		374

		375

		376

		377

		378

		379

		380

		381

		382

		383

		384

		385

		386

		387

		388

		389

		390

		391

		392

		393

		394

		395

		396

		397

		398

		399

		400

		401

		402

		403

		404

		405

		406

		407

		408

		409

		410

		411

		412

		413

		414

		415

		416

		417

		418

		419

		420

		421

		422

		423

		424

		425

		426

		427

		428

		429

		430

		431

		432

		433

		434

		435

		436

		437

		438

		439

		440

		441

		442

		443

		444

		445

		446

		447

		448

		449

		450

		451

		452

		453

		454

		455

		456

		457

		458

		459

		460

		461

		462

		463

		464

		465

		466

		467

		468

		469

		470

		471

		472

		473

		474

		475

		476

		477

		478

		479

		480

		481

		482

		483

		484

		485

		486

		487

		488

		489

		490

		491

		492

		493

		494

		495

		496

		497

		498

		499

		500

		501

		502

		503

		504

		505

		506

		507

		508

		509

		510

		511

		512

		513

		514

		515

		516

		517

		518

		519

		520

		521

		522

		523

		524

		525

		526

		527

		528

		529

		530

		531

		532

		533

		534

		535

		536

		537

		538

		539

		540

		541

		542

		543

		544

		545

		546

		547

		548

