

Azure in Action

 Chris Hay & Brian Prince

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 180 Broad Street
 Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 [image:]

	Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901

	Development editor: Lianna Wlasiuk
 Copyeditor: Joan Celmer
 Proofreader: Katie Tennant
 Illustrator: Martin Murtonen
 Designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11 10

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Author Online

 About the Authors

 About the Cover Illustration

 1. Welcome to the cloud

 Chapter 1. Getting to know Windows Azure

 Chapter 2. Your first steps with a web role

 2. Understanding the Azure service model

 Chapter 3. How Windows Azure works

 Chapter 4. It’s time to run with the service

 Chapter 5. Configuring your service

 3. Running your site with web roles

 Chapter 6. Scaling web roles

 Chapter 7. Running full-trust, native, and other code

 4. Working with BLOB storage

 Chapter 8. The basics of BLOBs

 Chapter 9. Uploading and downloading BLOBs

 Chapter 10. When the BLOB stands alone

 5. Working with structured data

 Chapter 11. The Table service, a whole different entity

 Chapter 12. Working with the Table service REST API

 Chapter 13. SQL Azure and relational data

 Chapter 14. Working with different types of data

 6. Doing work with messages

 Chapter 15. Processing with worker roles

 Chapter 16. Messaging with the queue

 Chapter 17. Connecting in the cloud with AppFabric

 Chapter 18. Running a healthy service in the cloud

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Author Online

 About the Authors

 About the Cover Illustration

 1. Welcome to the cloud

 Chapter 1. Getting to know Windows Azure

 1.1. What’s the Windows Azure platform?

 1.1.1. Windows is in the title, so it must be an operating system

 1.1.2. Hosting and running applications the Azure way

 1.2. Building your first Windows Azure web application

 1.2.1. Setting up your environment

 1.2.2. Creating a new project

 1.2.3. Modifying the web page

 1.2.4. Running the web page

 1.3. Putting all the Azure pieces together

 1.3.1. How the load balancer works

 1.3.2. Creating worker roles

 1.3.3. How the fabric and the Fabric Controller work

 1.4. Storing data in the cloud with Azure

 1.4.1. Understanding Azure’s shared storage mechanism

 1.4.2. Storing and accessing BLOB data

 1.4.3. Messaging via queues

 1.4.4. Storing data in tables

 1.5. Why run in the cloud?

 1.5.1. Treating computing power as a utility service

 1.5.2. Simplified data-center management

 1.6. Inside the Windows Azure platform

 1.6.1. SQL Server capability in the cloud

 1.6.2. Enterprise services in the cloud

 1.7. Summary

 Chapter 2. Your first steps with a web role

 2.1. Getting around the Azure SDK

 2.1.1. Exploring the SDK folders

 2.1.2. Using the Cloud Service project templates

 2.1.3. Running the cloud locally

 2.1.4. How the local and cloud environments differ

 2.2. Taking Hello World to the next level

 2.2.1. Creating the project

 2.2.2. Laying down some markup with XHTML and a CSS

 2.2.3. Binding your data in the code-behind

 2.2.4. Just another place to run your code

 2.2.5. Configuring the Azure service model

 2.2.6. Running the website in the local development fabric

 2.3. Deploying with the Azure portal

 2.3.1. Signing up for Azure

 2.3.2. The Azure portal

 2.3.3. Setting up your service online

 2.3.4. Putting on your logging boots

 2.3.5. Setting up your storage environment

 2.3.6. Packaging and deploying your application

 2.3.7. Moving to production

 2.4. Summary

 2. Understanding the Azure service model

 Chapter 3. How Windows Azure works

 3.1. The big shift

 3.1.1. The data centers of yore

 3.1.2. The latest Azure data centers

 3.1.3. How many administrators do you need?

 3.1.4. Data center: the next generation

 3.2. Windows Azure, an operating system for the cloud

 3.3. The Fabric Controller

 3.3.1. How the FC works: the driver model

 3.3.2. Resource allocation

 3.3.3. Instance management

 3.4. The service model and you

 3.4.1. Defining configuration

 3.4.2. Adding a custom configuration element

 3.4.3. Centralizing file-reading code

 3.4.4. The many sizes of roles

 3.5. It’s not my fault

 3.5.1. Fault domains

 3.5.2. Update domains

 3.5.3. A service model example

 3.6. Rolling out new code

 3.6.1. Static upgrades

 3.6.2. Rolling upgrades

 3.7. The bare metal

 3.7.1. Free parking

 3.7.2. A special blend of spices

 3.7.3. Creating instances on the fly

 3.7.4. Image is everything

 3.8. The innards of the web role VM

 3.8.1. Exploring the VM details

 3.8.2. The process list

 3.8.3. The hosting process of your website (WaWebHost)

 3.8.4. The health of your web role (RDAgent)

 3.9. Summary

 Chapter 4. It’s time to run with the service

 4.1. Using the Windows Azure Service Management API

 4.1.1. Adding the ServiceRuntime assembly to your application

 4.1.2. Is your application running in Windows Azure?

 4.2. Defining your service

 4.2.1. The format of the service definition file

 4.2.2. Configuring the endpoint of your web role

 4.2.3. Configuring trust level, instances, and startup action

 4.2.4. Configuring local storage

 4.3. Setting up certificates in Windows Azure

 4.3.1. Generating a certificate

 4.3.2. Adding certificates

 4.3.3. Configuring your HTTPS endpoint to use the certificate

 4.4. Summary

 Chapter 5. Configuring your service

 5.1. Working with the service configuration file

 5.1.1. The format of the service configuration file

 5.1.2. Configuring standard settings

 5.1.3. Configuring runtime settings

 5.2. Handling configuration at runtime

 5.2.1. Modifying configuration settings in the Azure portal

 5.2.2. Tracking service configuration changes

 5.3. Configuring non-application settings

 5.3.1. Database connection strings

 5.3.2. Application build configuration

 5.3.3. Tweakable configuration

 5.3.4. Endpoint configuration

 5.4. Developing a common code base

 5.4.1. Using the RoleEnvironment.IsAvailable property

 5.4.2. Pluggable configuration settings using inversion of control

 5.5. The RoleEnvironment class and callbacks

 5.6. Summary

 3. Running your site with web roles

 Chapter 6. Scaling web roles

 6.1. What happens to your web server under extreme load?

 6.1.1. Web server under normal load

 6.1.2. Simulating extreme load

 6.1.3. How the web server responds under extreme load

 6.1.4. Handling increased requests by scaling up or out

 6.2. How the load balancer distributes requests

 6.2.1. Multi-instance sample application

 6.2.2. The development fabric load balancer

 6.2.3. Load balancing in the live environment

 6.3. Session management

 6.3.1. How do sessions work?

 6.3.2. Sample session application

 6.3.3. In-process session management

 6.3.4. Table-storage session state sample provider

 6.4. Cache management

 6.4.1. In-process caching with the ASP.NET cache

 6.4.2. Distributed caching with Memcached

 6.4.3. Cache extensibility in ASP.NET 4.0

 6.5. Summary

 Chapter 7. Running full-trust, native, and other code

 7.1. Enabling full-trust support

 7.2. FastCGI in Windows Azure

 7.2.1. Enabling FastCGI in your local cloud environment

 7.2.2. Configuring Azure for FastCGI and PHP

 7.2.3. Setting up HelloAzureWorld.php

 7.3. External processes in Windows Azure

 7.3.1. Spawning a sample process

 7.3.2. Using BLOB storage

 7.4. Calling native libraries with P/Invoke

 7.4.1. Getting started

 7.4.2. Calling into the method

 7.5. Summary

 4. Working with BLOB storage

 Chapter 8. The basics of BLOBs

 8.1. Storing files in a scaled-out fashion is a pain in the NAS

 8.1.1. Traditional approaches to BLOB management

 8.1.2. The BLOB service approach to file management

 8.2. A closer look at the BLOB storage service

 8.2.1. Accessing the BLOB (file)

 8.2.2. Setting up a storage account

 8.2.3. Registering custom domain names

 8.2.4. Using containers to store BLOBs

 8.3. Getting started with development storage

 8.3.1. SQL Server backing store

 8.3.2. Getting around in the development storage UI

 8.4. Developing against containers

 8.4.1. Accessing the StorageClient library

 8.4.2. Accessing development storage

 8.4.3. Creating a container

 8.4.4. Listing containers

 8.4.5. Deleting a container

 8.5. Configuring your application to work against the live service

 8.5.1. Switching to the live storage account

 8.5.2. Configuring the access key

 8.6. Summary

 Chapter 9. Uploading and downloading BLOBs

 9.1. Using the REST API

 9.1.1. Listing BLOBs in a public container using REST

 9.1.2. Authenticating private requests

 9.2. Managing BLOBs using the StorageClient library

 9.2.1. Listing BLOBs using the storage client

 9.2.2. Uploading BLOBs

 9.2.3. Deleting BLOBs

 9.3. Downloading BLOBs

 9.3.1. Downloading BLOBs from a public container

 9.3.2. Downloading BLOBs from a private container using the storage client

 9.4. Integrating BLOBs with your ASP.NET websites

 9.4.1. Integrating ASP.NET websites with table-driven BLOB content

 9.4.2. Integrating protected, private content

 9.5. Using local storage with BLOB storage

 9.5.1. Using a local cache

 9.5.2. Defining and accessing local storage

 9.5.3. Updating your HTTP handler to use local storage

 9.5.4. Checking properties of a BLOB without downloading it

 9.5.5. Improving your handler to check the last modified time

 9.5.6. Adding and returning custom metadata

 9.6. Copying BLOBs

 9.6.1. Copying files via the StorageClient library

 9.7. Setting shared access permissions

 9.7.1. Setting shared access permissions on a container

 9.8. Summary

 Chapter 10. When the BLOB stands alone

 10.1. Hosting static HTML websites

 10.1.1. Creating a static HTML website

 10.1.2. Publishing your website to BLOB services

 10.2. Hosting Silverlight applications in BLOB storage

 10.2.1. Hosting the Silverlight Spectrum emulator

 10.2.2. Communicating with third-party sites

 10.3. Using BLOB storage as a media server

 10.3.1. Building a Silverlight or WPF video player

 10.3.2. A WPF-based adaptive-streaming video player

 10.3.3. A Silverlight-based chunking media player

 10.4. Content delivery networks

 10.4.1. What’s a CDN?

 10.4.2. CDN performance advantages

 10.4.3. Using the Windows Azure CDN

 10.5. Summary

 5. Working with structured data

 Chapter 11. The Table service, a whole different entity

 11.1. A brief overview of the Table service

 11.2. How we’d normally represent entities outside of Azure

 11.2.1. How we’d normally represent an entity in C#

 11.2.2. How we’d normally store an entity in SQL Server

 11.2.3. Mapping an entity to a SQL Server database

 11.3. Modifying an entity to work with the Table service

 11.3.1. Modifying an entity definition

 11.3.2. Table service representation of products

 11.3.3. Storing completely different entities

 11.4. Partitioning data across lots of servers

 11.4.1. Partitioning the storage account

 11.4.2. Partitioning tables

 11.5. Developing with the Table service

 11.5.1. Creating a project

 11.5.2. Defining an entity

 11.5.3. Creating a table

 11.6. Doing CRUDy stuff with the Table service

 11.6.1. Creating a context class

 11.6.2. Adding entities

 11.6.3. Listing entities

 11.6.4. Deleting entities

 11.6.5. Updating entities

 11.7. Summary

 Chapter 12. Working with the Table service REST API

 12.1. Performing storage account operations using REST

 12.1.1. Listing tables in the development storage account using the REST API

 12.1.2. Deleting tables using the REST API

 12.1.3. WCF Data Services and AtomPub

 12.1.4. Creating a table using the REST API

 12.2. Authenticating requests against the Table service

 12.2.1. Shared Key authentication

 12.2.2. Shared Key Lite authentication

 12.3. Modifying entities with the REST API is CRUD

 12.3.1. Inserting entities

 12.3.2. Deleting entities

 12.3.3. Updating entities

 12.4. Batching data

 12.4.1. Entity group transactions

 12.4.2. Retries

 12.5. Querying data

 12.5.1. Retrieving all entities in a table using the REST API

 12.5.2. Querying with LINQ

 12.5.3. Filtering data with the REST API

 12.5.4. Filtering data with LINQ

 12.5.5. Selecting data using the LINQ syntax

 12.5.6. Paging data

 12.6. Summary

 Chapter 13. SQL Azure and relational data

 13.1. The march of SQL Server to the cloud

 13.2. Setting up SQL Azure

 13.2.1. Creating your database

 13.2.2. Connecting to your database

 13.3. Size matters

 13.3.1. Partitioning your data

 13.3.2. Sharding your data for easier scale

 13.4. How SQL Azure works

 13.4.1. SQL Azure from a logical viewpoint

 13.4.2. SQL Azure from a physical viewpoint

 13.5. Managing your database

 13.5.1. Moving your data

 13.5.2. Controlling access to your data with the firewall

 13.5.3. Creating user accounts

 13.6. Migrating an application to SQL Azure

 13.6.1. Migrating the traditional way

 13.6.2. Migrating with the wizard

 13.7. Limitations of SQL Azure

 13.8. Common SQL Azure scenarios

 13.8.1. Far-data scenarios

 13.8.2. Near-data scenarios

 13.8.3. SQL Azure versus Azure Tables

 13.9. Summary

 Chapter 14. Working with different types of data

 14.1. Static reference data

 14.1.1. Representing simple static data in SQL Azure

 14.1.2. Representing simple static data in the Table service

 14.1.3. Performance disadvantages of a chatty interface

 14.1.4. Caching static data

 14.2. Storing static reference data with dynamic data

 14.2.1. Representing the shopping cart in SQL Azure

 14.2.2. Partitioning the SQL Azure shopping cart

 14.2.3. Representing the shopping cart’s static data in the Table service

 14.3. Joining dynamic and infrequently changing data together

 14.3.1. Duplicating data instead of joining

 14.3.2. Client-side joining of uncached data

 14.4. Summary

 6. Doing work with messages

 Chapter 15. Processing with worker roles

 15.1. A simple worker role service

 15.1.1. No more Hello World

 15.2. Communicating with a worker role

 15.2.1. Consuming messages from a queue

 15.2.2. Exposing a service to the outside world

 15.2.3. Inter-role communication

 15.3. Common uses for worker roles

 15.3.1. Offloading work from the frontend

 15.3.2. Using threads in a worker role

 15.3.3. Simulating worker roles in a web role

 15.3.4. State-directed workers

 15.4. Working with local storage

 15.4.1. Setting up local storage

 15.4.2. Working with local storage

 15.5. Summary

 Chapter 16. Messaging with the queue

 16.1. Decoupling your system with messaging

 16.1.1. How messaging works

 16.1.2. What is a message?

 16.1.3. What is a queue?

 16.1.4. StorageClient and the REST API

 16.2. Working with basic queue operations

 16.2.1. Get a list of queues

 16.2.2. Creating a queue

 16.2.3. Attaching metadata

 16.2.4. Deleting a queue

 16.3. Working with messages

 16.3.1. Putting a message on the queue

 16.3.2. Peeking at messages

 16.3.3. Getting messages

 16.3.4. Deleting messages

 16.4. Understanding message visibility

 16.4.1. About message visibility and invisibility

 16.4.2. Setting visibility timeout

 16.4.3. Planning on failure

 16.4.4. Use idempotent processing code

 16.5. Patterns for message processing

 16.5.1. Shared counters

 16.5.2. Work complete receipt

 16.5.3. Asymmetric queues versus symmetric queues

 16.5.4. Truncated exponential backoff

 16.5.5. Queue creation on startup

 16.5.6. Dynamic queues versus static queues

 16.5.7. Ordered delivery

 16.5.8. Long queues

 16.5.9. Dynamically scaling to meet queue demand

 16.6. Summary

 Chapter 17. Connecting in the cloud with AppFabric

 17.1. The road AppFabric has traveled

 17.1.1. The two AppFabrics

 17.1.2. Two key AppFabric services

 17.2. Controlling access with ACS

 17.2.1. Identity in the cloud

 17.2.2. Working with actors

 17.2.3. Tokens communicate authorization

 17.2.4. Making claims about who you are

 17.3. Example: A return to our string-reversing service

 17.3.1. Putting ACS in place

 17.3.2. Reviewing the string-reversal service

 17.3.3. Accepting tokens from ACS

 17.3.4. Checking the token

 17.3.5. Sending a token as a client

 17.3.6. Attaching the token

 17.3.7. Configuring the ACS namespace

 17.3.8. Putting it all together

 17.4. Connecting with the Service Bus

 17.4.1. What is a Service Bus?

 17.4.2. Why an ESB is a good idea in the cloud

 17.5. Example: Listening for messages on the bus

 17.5.1. Connecting the service to the bus

 17.5.2. Connecting to the service

 17.6. The future of AppFabric

 17.7. Summary

 Chapter 18. Running a healthy service in the cloud

 18.1. Diagnostics in the cloud

 18.1.1. Using Azure Diagnostics to find what’s wrong

 18.1.2. Challenges with troubleshooting in the cloud

 18.2. Diagnostics in the cloud is just like normal (almost)

 18.2.1. Managing event sources

 18.2.2. It’s not just for diagnostics

 18.3. Configuring the diagnostic agent

 18.3.1. Default configuration

 18.3.2. Diagnostic host configuration

 18.3.3. The other data sources

 18.3.4. Arbitrary diagnostic sources

 18.4. Transferring diagnostic data

 18.4.1. Scheduled transfer

 18.4.2. On-demand transfer

 18.5. Using the service management API

 18.5.1. What the API doesn’t do

 18.5.2. Setting up the management credentials

 18.5.3. Listing your services and containers

 18.5.4. Automating a deployment

 18.5.5. Changing configuration and dynamically scaling your application

 18.6. Better together for scaling

 18.6.1. The thermostat

 18.6.2. The control system

 18.6.3. Risks and managing them

 18.6.4. Managing service health

 18.7. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Both of us have a passion for cloud computing and Windows Azure, and in this book we’d like to share with you what we’ve learned
 from working with the technology. We want to show you how to get the most out of Azure and how to best use the cloud.

 Writing a book is a far more complex project than either of us expected, involving a lot of people, a lot of collaboration,
 and plenty of late nights hunched over a keyboard. We did it because we wanted to help you understand what happens inside
 Azure, how it works, and how you can leverage it as you work with your applications. We wanted to show you not only how to
 run your complete system in the cloud, but all the other ways you can leverage the cloud, specifically by using hybrid applications
 and distributed applications.

 As we worked with all sorts of developers in our day jobs, we knew they could easily learn how to use the cloud, but they
 were all scared. We hadn’t seen people so afraid of a new technology that could help so much since web services came onto
 the scene years ago. We knew if developers would take a minute to play with Azure just a little bit, it would become less
 scary and more approachable. Ultimately, we wanted this book to answer the question, “What can Azure do, and why do I care?”
 We hope we’ve succeeded.

 We’ve leveraged a lot of resources to write this book, and you might have been one of them. We worked in forums, we worked
 with other cloud techs, we crawled through every scrap of public Azure information we could find (even obscure blog posts
 in the dark corners of the internet), and we had personal conversations with Azure team members and anyone else we could get
 to take our calls. We leveraged our own experience and insight. Sometimes we guessed at how things work based on how we would
 have built Azure, and then pushed Microsoft to give us more details to see if we were right. We wrote a lot of code, and tried
 out ideas that we would get asked about at conferences, in forums, over email, and as responses to our articles.

 The rest is history, with about a year of writing, rewriting, reviews, intense discussion, and coding. We faced two big challenges
 as a writing team. The first was PDC 2009. We knew that would be the coming-out party for Windows Azure with its official
 1.0 release, and that a lot of what we had written up to that point would change. This involved rewriting most of our code,
 retaking all our screen shots, and changing a lot of our text. The second challenge was the time zone differences between
 us. With up to fourteen time zones separating us at times, our combined travel schedules exacerbated the time zone challenge.
 Much of this book was written in airports, hotels, at conferences, during late weekend hours, and at every other conceivable
 time and place.

 Windows Azure was released for commercial availability on February 1, 2010, and by all accounts has been a huge success. Microsoft
 won’t publicly state how many applications have been deployed to Azure, but you can infer some trends from the case studies
 and press releases they make available. It looks like tens of thousands of applications (from small test apps to major internet-scale
 applications) have been deployed to Azure globally. The Azure teams ship new features about every 2-3 months. As a developer,
 it’s exciting to see so much innovation coming out of Microsoft on a platform you use. It’s gratifying to see the features
 that customers have asked for being deployed.

 For book authors, the pace can be a little grueling, with things changing in the technology all the time, but maybe that just
 sets us up for a second edition. We hope you enjoy the book.

Acknowledgments

 We would like to thank all the people who helped us during the writing process; their input made this a much better book.
 First on the list is our amazing editor at Manning, Lianna Wlasiuk. She showed an endless amount of patience and had a seemingly
 inexhaustible supply of the proverbial red ink. Her feedback and guidance turned these cloud geeks into writers.

 Secondly, a big thanks to Mike Stephens. He’s a great guy who did an amazing job in shaping this project. We’d also like to
 thank our publisher Marjan Bace for his insight and vision. Those early conversations with him helped us go in the right direction.
 And thanks to Christina Rudhoff for kicking off the book in the first place, and to Mary Piergies for her management of the
 production process. You guys are awesome.

 We would also like to thank the other staff at Manning. While any author can ship a book, Manning knows that shipping a great
 book is a team sport, and they have an excellent team in place. Their constant support and guidance—and the challenge to push
 the book further—are greatly appreciated.

 There’s another group of people who were key to making this book successful, the group of reviewers that read the manuscript
 four or five times over the past year, pointing out weak parts of the story, plot holes, and places where better code samples
 could be provided. We’d like to thank James Hatheway, Alex Thissen, Scott Turner, Darren Neimke, Christian Siegers, Margriet
 Bruggeman, Nikander Bruggeman, Eric Nelson, Ray Booysen, Jonas Bandi, Frank Wang, Wade Wegner, Mark Monster, Lester Lobo,
 Shreekanth Joshi, Berndt Hamboeck, Jason Jung, and Kunal Mittal.

 Special thanks to Michael Wood who served as the technical proofreader of the book, reviewing it again shortly before it went
 to press and testing the code. We couldn’t have done it without you.

 Our early readers, people who bought the book through the Early Access program, before it was even done, were a big help too.
 They suffered through drafts, impartial chapters, and early cuts of code. Their feedback in the forums was critical to where
 we went with the book.

Chris Hay

 I don’t want this to sound like an Oscar acceptance speech (boo hoo, I want to thank my goldfish, blah blah blah), but it’s
 gonna be a little like that as I really do want to call out a few folks. I guess I lose my right to laugh at those blubbering
 celebrities in the future.

 The biggest thanks of all go to my wonderful wife, who woke up one morning to discover that due to the UK/US time zone difference,
 I had negotiated a book deal whilst she was sleeping. In spite of this, she gave me her full support, without which this book
 would never have happened. She is totally awesome and I love her very much. Thank you, Katy, for being so cool and supportive.

 I want to apologize to my dogs (Sascha and Tufty) for the impact on their walking time and thank them for distracting me when
 I got bogged down with too much work. They brought me their bouncy balls and even figured out how to shut down my computer.

 Big thanks to my parents and my brother (please don’t read anything into the order of thanks; you really don’t come after
 the dogs). Thanks for the great start in life, especially buying me that ZX81 when I was 4 years old.

 Thanks to Nathan for being my sounding board; truly appreciated it, dude.

 Thanks to Brian and Michael for doing the production work on the book while I was working 18-hour days in India. You guys
 are awesome, thank you.

 Santa Claus, thank you for bringing me presents every year, and Tooth Fairy, thank you for making tooth loss more bearable.

 I’d like to thank all the guys at NxtGenUG (especially Rich, Dave, John, and Allister) for their support. P.S. If you have
 never gone to a .NET User Group then be sure to do so—it’s a lot of fun. Big thanks to the UK/US community in general (you
 guys know who you are, thank you).

 Also thanks to Girls Aloud, the Pussycat Dolls, and Alesha Dixon for making cool music and helping me keep my sanity throughout
 the writing process. And if you are reading this book, then something has gone wrong with the universe which will require
 The Doctor to fix.

 Finally, thanks to you, dear reader, for buying the book. I love you, kiss, kiss, kiss, boo hoo, wah wah ;)

Brian H. Prince

 I started learning how to write code when I was ten. My parents were supportive and understanding when they figured out that
 their middle son wasn’t normal, that he was a geek. Back then, geeks hadn’t risen to their current social prominence. They
 picked me up after work from UMF, and they didn’t kick me out of the house after I caused a small electrical fire while trying
 to control the box fan in my room with my CoCo 3. Thanks, Mom and Dad. A few years later, one of my aunts suggested I stick
 with computers as I grew up. She expected they would be important in the future. That sounds like a trivial prediction today,
 but back then, it seemed like something out of Nostradamus’s writings.

 I also want to thank everyone at Microsoft for their encouragement, including my manager, Brian, who supported me in the extra
 work that writing a book takes.

 Above all, I owe a tremendous debt to my family. My kids, Miranda and Elliot, kept me from totally disappearing into my office
 for 10 months with regular forced breaks. Elliot would come in and declare a 15-minute recess to go and play Xbox with him.
 Miranda would come in and write cute notes of support on my whiteboard or tell me about that latest book she was reading.
 Thanks kids, you’re the best!

 But the one person I owe the most to is my beautiful wife. She kept me motivated; she gave me the time and quiet to write
 when I needed to write and the push to take a break when I needed to release pressure. I’d heard rumors about how hard it
 is to live with an author in the house from friends who gave me advice along the way (thanks Bill, Jim, and Jason). Without
 her I wouldn’t have been able to complete this huge project. She spent hours helping me simplify the story, revise the approaches,
 and dream up segues. Joanne, I would not be without you, and without you I would not be.

About this Book

 This book will teach you about Windows Azure, Microsoft’s cloud computing platform. We’ll cover all aspects and components
 of Windows Azure from a developer’s point of view.

 The book is written from the perspective of a .NET developer who’s using C#. We feel that most developers using Azure will
 be using .NET. Everything in this book applies to any platform that uses Azure. You’ll need to use the appropriate SDK for
 your development tools and platform of choice.

 You should be fairly familiar with .NET, but you don’t have to be an expert. We expect a developer with a few years of experience
 to be able to get the most out of this book. Someone new to development, or perhaps even a manager, can still read the book
 to get a grasp of the broad concepts of Azure. If that’s your situation, skip over the code samples and try to understand
 what the moving parts are.

Roadmap

 This book is broken into six parts, each with its own focus.

 Part 1 is titled “Welcome to the cloud” and that’s exactly what it is: a welcome to the world of cloud computing. Chapters 1 and 2 explain what cloud computing is, and what the big moving parts of Windows Azure are. You’ll build and deploy some simple
 applications in this part, just to whet your appetite.

 Part 2 is called “Understanding the Azure service model.” Chapter 3 gives you a peek behind the curtain and shows you how Azure works. Chapters 4 and 5 cover how to run and configure your applications in Azure.

 Part 3, “Running your site with web roles,” covers running web applications in Azure. This part includes chapter 6, which describes scaling your application, and chapter 7, which covers using native code in Azure.

 Part 4 is called “Working with BLOB storage,” and covers the first part of Windows Azure storage, BLOBs. Chapter 8 discusses the conceptual basics of BLOBs, chapter 9 covers how to work with them in your code, and chapter 10 tells you when to use BLOBs outside Azure.

 Part 5, “Working with structured data,” tells you all about Windows Azure tables and SQL Azure. Chapters 11 and 12 focus on tables, chapter 13 dives into SQL Azure, and chapter 14 takes a broader look at how to work with data in the cloud and how to make decisions on what strategies to use.

 Part 6, titled “Doing work with messages,” covers the last several parts of Azure, including specialized aspects of using worker
 roles, which is detailed in chapter 15. We discuss working with queues in chapter 16. Connecting your applications together and securing your services are delved into in chapter 17. Finally, chapter 18 describes how to work with diagnostics and how to manage your infrastructure in the cloud.

About the source code

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 Source code for all working examples in this book is available for download from the publisher’s website at www.manning.com/AzureinAction.

 To work with the sample code in this book, you’ll need Windows Vista, Windows 7, or Windows Server 2008. You’ll also need
 either Visual Studio 2008 or 2010. We used VS2010 in this book for samples and screen shots. Additionally, you need to install
 the Azure SDK and the AppFabric SDK. Both of these can be found at Azure.com.

Author Online

 The purchase of Azure in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. You can access and subscribe to the forum at www.manning.com/AzureinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 Chris Hay is a Microsoft MVP in Client App Dev, an international conference speaker, and cofounder of a .NET usergroup in
 Cambridge, UK (http://nxtgenug.net/). He has spent part of the past year working and living in India. Brian H. Prince is an Architect Evangelist for Microsoft,
 cofounder of the nonprofit organization CodeMash (www.codemash.org), and a speaker at various regional and national technology events. He lives in Westerville, Ohio. In their own words, here’s
 what they say about how they came to Azure.

Chris Hay

 My day job involves building some of the largest m-commerce systems in the world. When Microsoft announced Windows Azure to
 the world at the Professional Developers Conference in Los Angeles in 2008, I immediately thought of how I could use the cloud
 as part of the systems I was actively building.

 Of all of the key scenarios for using the cloud, dynamic scaling is one of the most well-known. I was hoping that the promise
 of massive numbers of servers and a simplified platform would be able to meet my enormous scale needs, while making it easier
 to build large-scale systems. Azure offered the promise of being able to deploy an application into the cloud and have an
 automated deployment and provisioning system, with a complete abstraction of the underlying physical infrastructure. This
 book is focused on exploring those promises, and seeing how they worked out.

 Coupling this newfound passion with my long-held desire to someday write a book, I settled down to write the proposal that
 I would send to Manning, pitching my idea for a book titled Azure in Action. And a year later, here it is!

Brian H. Prince

 While working for Microsoft in recent years, I found myself spending more and more of my time focusing on Windows Azure (or
 Red Dog, as it was called internally at Microsoft at the time) and cloud computing. I was already at work on another In Action book when I made a comment in one of my many meetings with Manning that I was surprised they weren’t planning a book for
 each piece of the upcoming Microsoft cloud platform. Thinking that writing my first book ever wasn’t enough work, I further
 commented that I would love to get involved and help with the Azure book.

 This simple comment initiated a lot of work for the editors at Manning as they started looking for experienced authors who
 could write a series of books on Microsoft’s cloud platform. They approached me to see if I would pitch in and help write
 Azure in Action with Chris. I agreed, and after a few chats with Chris over Skype, we finalized the draft table of contents and submitted
 it to Manning. The rest is history and you are now holding that book in your hands.

About the Cover Illustration

 The figure on the cover of Azure in Action is captioned “Woman with child from Durdevac.” The illustration is taken from a reproduction of an album of Croatian traditional
 costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003.
 The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
 core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book
 includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes
 and of everyday life.

 The village of Durdevac is near the town of Osijek in Slavonia, a geographical and historical region in eastern Croatia. Women
 in Slavonia were known for their intricate embroidery and sewing skills, and everything they wore was made by hand requiring
 the weaving of textiles and dyeing of wool. Slavonian women typically wore long white skirts and white linen shirts with a
 collar, topped with long black and brown vests embroidered along the edges in wool of different colors, with white headscarves
 and necklaces made of red coral beads. The long aprons that completed the traditional costume were elaborately embroidered
 with colorful patterns of flowers or geometric designs.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Welcome to the cloud

 Part 1 is all about dipping your toes into the water and getting ready to dive in headfirst.

 We cover what Azure is in chapter 1—what the moving parts are, and why people are so excited about cloud computing.

 We throw you in the deep end of the pool in chapter 2, building and deploying—step-by-step—your first cloud application. We’ve all written Hello, World apps; after you’ve read
 part 1, you’ll begin to see how you can easily scale them to hundreds of servers.

Chapter 1. Getting to know Windows Azure

 This chapter covers

	Overview of Windows Azure

 	Building your first Windows Azure web role

 	Windows Azure infrastructure

 	How Windows Azure implements core cloud concepts

 	Flagship Windows Azure platform services

Imagine a world where your applications were no longer constrained by hardware and you could consume whatever computing power
 you needed, when you needed it. More importantly, imagine a world where you paid only for the computing power that you used.

 Now that your imagination is running wild, imagine you don’t need to care about managing hardware infrastructure and you can
 focus on the software that you develop. In this world, you can shift your focus from managing servers to managing applications.

 If this is the sort of thing you daydream about, then you should burn your server farm and watch the smoke form into a cloud
 in the perfect azure sky. Welcome to the cloud, and welcome to Windows Azure. We also suggest that if this is the sort of
 thing you daydream about, you might want to lie to your non-IT friends.

 We’ll slowly introduce lots of new concepts to you throughout this book, eventually giving you the complete picture about
 cloud computing. In this chapter, we’ll keep things relatively simple. As you get more comfortable with this new paradigm,
 and as the book progresses, we’ll introduce more of Azure’s complexities. To get the ball rolling, we’ll start by looking
 at the big Azure picture: the entire platform.

1.1. What’s the Windows Azure platform?

 As you might have already gathered, the Windows Azure platform encompasses Microsoft’s complete cloud offering. Every service
 that Microsoft considers to be part of the cloud will be included under this banner. If the whole cloud thing passed you by,
 there isn’t really anything magical about it. The cloud refers to a bunch of servers that host and run your applications, or to an offering of services that are consumed (think
 web service).

 The main difference between a cloud offering and a noncloud offering is that the infrastructure is abstracted away—in the
 cloud, you don’t care about the physical hardware that hosts your service. Another difference is that most public cloud solutions
 are offered as a metered service, meaning you pay for the resources that you use (compute time, disk space, bandwidth, and
 so on) as and when you use them.

 Based on the Azure release announced in November 2009 at the Professional Developers Conference (PDC) held in Los Angeles,
 the Windows Azure platform splits into the three parts shown in figure 1.1: Windows Azure, SQL Azure, and the Windows Azure platform AppFabric. You can expect the parts included in the platform to
 increase over time; in fact, we wouldn’t be surprised to see Microsoft Flight Simulator in the cloud.

 Figure 1.1. The parts that make up the Windows Azure platform include the Windows Azure operating system, SQL Azure, and AppFabric.

 [image:]

 As cool as AppFabric and SQL Azure are, for now we’re going to stay focused on the Windows Azure part of the Windows Azure
 platform and ignore all the other platform-specific stuff until the end of the chapter. Talking about Windows Azure immediately
 gets a little confusing. Unfortunately, when most folks refer to Windows Azure, it’s not clear whether they’re referring to
 the Windows Azure platform, the complete cloud offering, or to Windows Azure, which is a part of the platform.

 It’s kind of like the ESPN naming convention. The ESPN Network has multiple channels (ESPN, ESPN2, ESPN News, and so on),
 yet we tend to refer to these channels collectively as ESPN rather than as the ESPN Network. To confuse matters further, we
 also refer to the individual ESPN channel as ESPN, also. If you ask someone what game is on ESPN tonight, it’s not clear if
 you mean all the channels on ESPN (including ESPN News and ESPN2) or if you mean just the channel named ESPN (not including
 ESPN2 and the others). To keep things consistent, whenever we talk about the platform as a whole, we’ll refer to the Windows Azure platform or the platform; but if we’re talking about the core Windows Azure product, then we’ll use the term Windows Azure, or just Azure.

 So, what exactly is Windows Azure? Microsoft calls Azure its core operating system for the cloud. OK, so now you know what
 Windows Azure is, and we can skip on, right? Not so fast! Let’s break it down, strip away all the hype, and find out what
 Azure is all about.

 1.1.1. Windows is in the title, so it must be an operating system

 Windows Azure is an operating system that provides the ability to run applications in a highly scalable manner on Microsoft
 servers, in Microsoft’s data centers, in a manageable way. You can host either your web applications, such as a website that
 sells Hawaiian shirts, or backend processing services, such as an MP3-to-WMA file converter, in Microsoft’s data centers.

 If you need more computing power (more instances of your website or more instances of your backend service) to run your application,
 you can allocate more resources to the application, which are then spread across many servers. By increasing the number of
 resources to your application, you’ll ultimately be able to process more data or handle more incoming traffic.

 Hmmm...how exactly is that an operating system? To answer that question, we have to define what it means to be a cloud operating system.

 When Microsoft refers to Windows Azure as an operating system for the cloud, it doesn’t literally mean an operating system
 as you might know it (Windows 7, Windows Vista, Leopard, Snow Leopard, and so on). What Microsoft means is that Windows Azure
 performs jobs that are similar to those that a traditional operating system might perform. What does an operating system do?
 Well, it has four tasks in life:

	Host and run applications

 	Remove the complexities of hardware from applications

 	
Provide an interface between users and applications

 	Provide a mechanism that manages what’s running where and enforces permissions in the system

Figure 1.2 shows how a traditional operating system achieves these tasks in a typical PC environment.

 Figure 1.2. A typical representation of an operating system interacting with applications and resources. Notice that applications don’t
 directly interact with CPU, memory, or I/O devices.

 [image:]

 The applications shown in figure 1.2 are running within an operating system. The applications don’t have direct access to the hardware; all interactions must
 come through the kernel, the low-level operating system component that performs all the tasks we’re discussing: processing,
 memory management, and device management. We’ll look at how some components of Windows Azure fill the role of the kernel in
 the cloud later in this chapter.

 The analogy of Windows Azure being an operating system looks like it could work out after all. Over the next few sections,
 we’ll use this analogy to see how Windows Azure fares as an operating system, which will give you a good overview of how Windows
 Azure works and what services it provides.

 1.1.2. Hosting and running applications the Azure way

 Hosting and running applications might be the most important task of an operating system. Without applications, we’re just
 moving a mouse around with no purpose. Let’s look at the types of applications that can be run in both traditional operating
 systems and in Windows Azure.

Types of Applications: What’s in a Name?

 In a traditional operating system, such as Windows 7, we can consider most of the following to be applications:

	Microsoft Word (yep, it’s an app)

 	Internet Explorer or Firefox (still an app)

 	Killer Mutant Donkey Zombie Blaster game (even that’s an app)

Remember those applications running in the context of a typical PC operating system in figure 1.1? Instead of hosting client applications (games, Word, Excel, and so on), the types of applications that you host in Windows
 Azure are server applications, such as web applications (for example, a Hawaiian Shirt Shop website) or background computational
 applications (for example, an MP3 file converter).

 Figure 1.3 shows these server applications running in a traditional operating system.

 Figure 1.3. Windows Azure–type applications running in a traditional OS. Azure applications function in an OS the same way that traditional
 applications do.

 [image:]

 Turns out (see figures 1.2 and 1.3) that there’s no real difference between Microsoft Excel and a Hawaiian Shirt Shop website. As far as a traditional operating
 system is concerned, they’re both applications.

Running Applications Across Thousands of Servers

 The traditional operating system is responsible for allocating CPU time and memory space that allows your application to run
 (as seen in both figures 1.1 and 1.2). Not only is the operating system responsible for allocating these resources, but it’s also responsible for managing these
 resources. For example, if an application fails, then it’s the operating system’s job to clean up the application’s resource
 usage and restart the application, if necessary. This level of abstraction is perfect for an operating system that manages
 a single server, but it isn’t scalable when it comes to a cloud operating system. With Windows Azure, your application doesn’t
 necessarily run on a single server; it can potentially run in parallel on thousands of servers.

 A cloud operating system can’t be responsible for allocating CPU time and memory on thousands of physically separate servers.
 This responsibility has to be abstracted away from the OS. In Windows Azure, that responsibility is given to virtual machines (VMs). Figure 1.4 shows how your applications might be distributed among the VMs in a Windows Azure data center.

 Figure 1.4. Applications split across many VMs in a Windows Azure data center

 [image:]

 Your cloud operating system is no longer responsible for assigning your applications’ resources by CPU and memory, but is
 instead responsible for allocating resources using VMs. Windows Azure uses VMs to achieve separation of services across physical
 servers. Each physical server is divided into multiple VMs. An application from another customer on the same physical hardware
 as yours won’t interfere with your application.

 In figure 1.4, the Hawaiian Shirt Shop website is allocated across two VMs (VM1 and VM5), which are hosted on two different physical servers
 (server 50 and server 4000), whereas the Azure in Action website is allocated only a single VM (VM8) on server 4000 (shirt shops make more money, so they get more resources).

 Let’s drill down and take a closer look at what constitutes a VM.

Anatomy of a Virtual Machine

 Figure 1.5 shows what the VM hosting a web application looks like.

 Figure 1.5. A logical representation of the VM that hosts your web application

 [image:]

 The physical server is split up into one or more VMs. Every instance of your service (web role or worker role) is installed
 onto its own VM, which is a base installation of Windows Server 2008 (with some extra Azure bits). The VM hosts the web application
 within Internet Information Services (IIS) 7.0.

 Although your application runs on a VM, the VM is abstracted away from you, and you only have a view of the role instance,
 never of the VM. A single instance of your web application is assigned to a single VM, and no other applications will be assigned
 to that VM. In this way, every instance of your web application is isolated from other applications running on the same physical
 server. The VM image also runs an agent process. We’ll explain what this agent does in chapter 3 when we discuss the Red Dog Agent.

	

 Web role and worker role
 A role is another name for your application. The role refers to the base VM image that hosts your application. A web role
 is a VM that hosts your application within IIS. A worker role is the same as a web role, but without IIS. It’s intended for
 typical backend processing workloads.

	

To be honest, we’re now itching for some code. Let’s look at how you can build a simple ASP.NET website that you can run in
 one of those Windows Azure VMs. Don’t worry; we’ll continue dissecting Windows Azure after you get your hands dirty with a
 little code.

1.2. Building your first Windows Azure web application

 Although you’re going to build an ASP.NET website in this example, the good news is that almost any website that can currently
 be hosted in IIS on Windows Server 2008 can be hosted in Windows Azure.

 The following are examples of the types of web applications Azure supports out of the box:

	ASP.NET 3.5 web applications

 	ASP.NET MVC 1.0, 2.0 web applications

 	Web services (WCF, ASMX)

 	Any FastCGI-based website such as PHP or Python

 	Java and Ruby applications

Although Windows Azure supports the ability to host different types of websites, for now you’ll create a simple Hello World
 web application using ASP.NET 3.5 SP1. In chapters 7 and 15, we’ll look at how you can create PHP websites, WCF Web Services, and ASP.NET MVC websites.

 To get started developing an ASP.NET 3.5 SP1 website, you’ll need to download the Windows Azure software development kit (SDK).

 1.2.1. Setting up your environment

 The SDK contains a whole bunch of things that’ll make your life easier when developing for Windows Azure, including the following:

	Windows Azure development fabric (a simulation of the live fabric)

 	Visual Studio templates for creating web applications

 	Windows Azure storage environment

 	Deployment tools

 	A glimpse of a bright new world

In chapter 2, we’ll take a deeper look at some of the items in the SDK. For now, you’ll just install it. If you’re an experienced ASP.NET
 developer, you should be able to install the SDK by clicking the Next button a few times. You can grab the SDK from www.Azure.com.

 Before installing the SDK, check your version of Windows and Visual Studio. A local instance of some flavor of SQL Server
 (either Express, which is installed with Visual Studio, or full-blown SQL Server) is required to use the SDK. We’ll explain
 this in more depth in chapter 9.

Supported Operating Systems

 Before you attempt to install the SDK, make sure that you have a suitable version of Windows. Supported versions of Windows
 currently include the following:

	Windows 7 (which you should be running because it’s lovely)

 	Windows Vista

 	Windows Server 2008 (and beyond)

	

Note

 Windows XP isn’t supported by Windows Azure. Before you jump up and down about Windows XP, there isn’t some conspiracy against
 it. XP isn’t supported because Windows Azure web roles are heavily built on IIS 7.0. Windows XP and Windows 2003 use earlier
 versions of IIS that won’t work with Windows Azure.

	

Supported Versions of Visual Studio

 To develop Windows Azure applications in Visual Studio, you’ll need either Visual Studio 2008 or Visual Studio 2010. If you’re
 still running Visual Studio 2005, you now have the excuse you need to upgrade. If for some reason you can’t get Visual Studio
 or your company won’t upgrade you, then you can use the Web Express versions of either Visual Studio 2008 or 2010 for free,
 or you can use Visual Studio 2008. We’ll be using Visual Studio 2010 throughout this book. The windows and dialog boxes shown
 in the figures might differ slightly from those in Visual Studio 2008 or the Express Edition, but, all in all, it works in
 the same way.

Starting Visual Studio

 To launch your Windows Azure application in the development fabric from Visual Studio, you need Administrator privileges.
 Get into the habit (for Azure development) of right-clicking your Visual Studio icon and selecting Run as Administrator.

 Now we’ll help you create your first Azure web application.

 1.2.2. Creating a new project

 Your first step is to create a new project. Open Visual Studio and select File > New > Project. Select the Cloud Service project
 type, which gives you the option to select the Cloud Service template, as shown in figure 1.6.

 Figure 1.6. The Cloud Service template in the New Project dialog box of Visual Studio 2010

 [image:]

 After you select the Cloud Service template, enter a name for your project and solution, and then click OK. The dialog box
 shown in figure 1.7 opens, in which you select the type of Windows Azure project that you want to create.

 Figure 1.7. New Cloud Service Project dialog box. From here, you can add several Azure projects to your solution.

 [image:]

 You can create the following types of roles:

	ASP.NET web roles

 	ASP.NET MVC 2 web roles

 	WCF service web roles

 	Worker roles

 	CGI-based web roles

You can create your projects in either Visual Basic or C#. In this book, we use C# rather than Visual Basic. This is no disrespect
 to Visual Basic; we’ve found over time that although C# developers typically aren’t comfortable with Visual Basic, Visual
 Basic developers are comfortable with both languages (you have to be though, because most samples are in C#).

 Select the ASP.NET Web Role project, and then click the right arrow button to add the project to the Cloud Service Solution
 panel, as shown in figure 1.8.

 Figure 1.8. Selecting a web role project from the New Cloud Service Project dialog box. Click the default name WebRole1 to change it to
 something more to your liking.

 [image:]

 Now that you’ve selected your web project, click OK and wait for Visual Studio to generate your solution. After Visual Studio
 has taken some time to set up your solution and project, it’ll have created a new solution for you with two new projects,
 as shown in figure 1.9.

 Figure 1.9. Solution Explorer for your newly created web role project. The top project (CloudService1) defines your application to Azure.
 The bottom one (WebRole1) is a regular ASP.NET project with a starter template.

 [image:]

 The first project (CloudService1) contains configuration that’s specific to your Windows Azure web role. For now, we won’t
 look at the contents of this project and instead save that for chapter 2. Next, you’ll create a simple web page.

 1.2.3. Modifying the web page

 The second project (WebRole1) in figure 1.9 is a regular old ASP.NET web application. You can modify the default.aspx file as you would normally. In this case, modify
 the file to display Hello World, as shown in the following listing.

 Listing 1.1. Modifying the default.aspx file to display Hello World

 <%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="WebRole1._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Hello World</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Hello World
 </div>
 </form>
</body>
</html>

 Now that you’ve created your web page, you can run it in your development fabric.

 1.2.4. Running the web page

 Before you run your new web role, you must ensure that the cloud service, rather than the ASP.NET project, is your startup
 project. By default, Visual Studio does this for you when you create your new project. If the ASP.NET project is the startup project, Visual Studio will run it with the built-in
 development web server and not the Azure SDK.

 Now for the exciting part: you’re about to run your first web application in the Windows Azure development fabric. Press F5
 as you would for any other Visual Studio application. Visual Studio fires up the development fabric and launches your web
 page in your browser just like any other web page. Unlike regular ASP.NET web applications, the development fabric hosts your
 web page rather than the Visual Studio Web Development Server (Cassini). Figure 1.10 shows your web page running in the development fabric.

 Figure 1.10. ASP.NET 3.5 Hello World running in the development fabric

 [image:]

 Congratulations! You’ve developed your first cloud application. In chapter 2, we’ll look in more detail at the development SDK, the development fabric, and how to deploy your service to the live production
 servers.

 Let’s return now to our big-picture discussion of Azure.

1.3. Putting all the Azure pieces together

 Even Hello World web applications often require multiple instances as the result of the levels of traffic they receive. To
 understand all that’s involved in multiple instances, you first need to understand the Windows Azure logical infrastructure
 and how it makes it so easy to deploy and run applications in the cloud. As you can see in figure 1.11, the web role is just one piece of the overall infrastructure.

 Figure 1.11. The Windows Azure compute infrastructure involves several components. They all work together to run your application.

 [image:]

 Over the next couple of sections, we’ll look at how the other components—worker roles, the fabric and the Fabric Controller,
 and the storage services—fit together. First, let’s take a closer look at the load balancer (the component at the bottom of figure 1.11).

 1.3.1. How the load balancer works

 Note in figure 1.11 that neither your web roles (web applications) nor your worker roles (background services) have direct incoming traffic from
 the internet. For both worker and web roles, all incoming traffic must be forwarded via one or more load balancers. The load balancer provides four
 important functions, as listed in table 1.1.

 Table 1.1. Primary load balancer functions

	
 Function

 	
 Purpose

	Minimize attack surface area
 	Improves security

	Load distribution
 	Enables incoming requests to be forwarded to multiple instances

	Fault tolerance
 	Routes traffic to another instance during a fault

	Maintenance
 	Routes traffic to another instance during an upgrade

Not only can a role receive incoming traffic, but roles can also initiate communication with services hosted outside the Windows
 Azure data centers, with roles inside the data center, and with storage services.

 Now that you understand the load balancer’s job of distributing requests across multiple instances of web roles, we’ll take
 a brief look at Azure’s other type of supported role, the worker role.

 1.3.2. Creating worker roles

 Worker roles are a lot like web roles and will be covered in depth in chapter 15. The biggest difference is that they lack IIS, which means they can’t host a web application, at least not in the traditional
 sense. Worker roles are best suited for hosting backend processing and a wide variety of web services. These types of servers
 are often referred to as application servers in many IT departments.

 At this point, we’ve explored a few tasks an operating system performs (hosting and running applications). What we haven’t
 explained is how the kernel fits into this analogy of Azure as a cloud operating system. You need something that will manage
 your applications and all your VMs running in the Windows Azure data center. It’s one thing to host an application; it’s another
 to manage what’s running and enforce permissions and resource allocation. In a normal operating system, the kernel performs
 these tasks. In Windows Azure, the kernel is the Fabric Controller (it sits right in the center of figure 1.11).

 1.3.3. How the fabric and the Fabric Controller work

 Azure contains a massive number of servers, and there isn’t any way they can possibly be managed on an individual basis. This
 is where the Azure operating system concept comes into play. By abstracting away all of those individual servers into a swarm
 or cloud, you only have to manage the cloud as a whole. This swarm of servers is called the fabric, and your applications run in the fabric when you deploy them to the cloud.

 The fabric is managed by a software overlord known as the Fabric Controller. The Fabric Controller plays the role of the kernel and is aware of every hardware and software asset in the fabric. It’s responsible for installing your web and worker roles onto the physical or virtual servers living
 in the fabric (this process is similar to how the kernel assigns memory or CPU to an application in a traditional operating
 system). The Fabric Controller is responsible for maintaining its inventory by monitoring the health of all its assets. If
 any of the assets are unhealthy, it’s responsible for taking steps to resolve the fault, which might include the following:

	Restarting your role

 	Restarting a server

 	Reprogramming a load balancer to remove the server from the active pool

 	Managing upgrades

 	Moving instances of your role in fault situations

Windows Azure follows a cloud computing paradigm known as the fabric, which is another way of describing the data center.
 Like in the movie The Matrix, the fabric is everywhere. Every single piece of hardware (server, router, switch, network cable, and so on) and every VM
 is connected together to form the fabric. Each resource in the fabric is designed and monitored for fault tolerance. The fabric
 forms an abstract representation of the physical data center, allowing your applications to run in the fabric without knowledge
 of the underlying infrastructure.

 Figure 1.11 shows how the Fabric Controller monitors and interacts with the servers. It’s the central traffic cop, managing the servers
 and the code that’s running on those servers. The Fabric Controller performs the job of the kernel (except across multiple
 servers at a server level rather than at CPU and memory level) in terms of allocating resources and monitoring resources.

 One of the jobs that the Fabric Controller doesn’t do (but that a kernel does) is the abstraction of the I/O devices. In Azure,
 this job is performed by storage services, which we’ll discuss next (the storage services component sits near the top of figure 1.11).

1.4. Storing data in the cloud with Azure

 Suppose you’re developing a new podcasting application for Windows 7. For this application, you want to convert MP3 files
 to WMA. To convert an MP3 file, you first need to read the file from a hard disk (and eventually write the result). Even though
 there are thousands of different disk drives, you don’t need to concern yourself with the implementation of these drives because
 the operating system provides you with an abstracted view of the disk drive. To save the converted file to the disk, you can
 write the file to the filesystem; the operating system manages how it’s written to the physical device. The same piece of
 code that you would use to save your podcast will work, regardless of the physical disk drive.

 In the same way that Windows 7 abstracts the complexities of the physical hardware of a desktop PC away from your application,
 Windows Azure abstracts the physical cloud infrastructure away from your applications using configuration and managed APIs.

 Applications can’t subsist on code alone; they usually need to store and retrieve data to provide any real value. In the next
 section, we’ll discuss how Azure provides you with shared storage, and then we’ll take a quick tour of the BLOB storage service,
 messaging, and the Table storage service. Each of these is covered in detail in their related sections later in this book.

 1.4.1. Understanding Azure’s shared storage mechanism

 If we consider the MP3 example in the context of Windows Azure, rather than abstracting your application away from a single
 disk, Windows Azure needs to abstract your application away from the physical server (not just the disk). Your application
 doesn’t have to be directly tied to the storage infrastructure of Azure. You’re abstracted away from it so that changes in
 the infrastructure don’t impact your code or application. Also, the data needs to be stored in shared space, which isn’t tied
 to a physical server and can be accessed by multiple physical servers. Figure 1.12 shows this logical abstraction.

 Figure 1.12. Multiple instances of your service (that don’t care what physical server they live on) talking to an abstracted logical filesystem,
 rather than to a physical drive

 [image:]

 You can see how storage is logically represented in figure 1.12, but how does this translate into the world of Windows Azure? Your services won’t always be continually running on the same
 physical machine. Your roles (web or worker) could be shut down and moved to another machine at any time to handle faults
 or upgrades. In the case of web roles, the load balancer could be distributing requests to a pool of web servers, meaning
 that an incoming request could be performed on any machine.

 To run services in such an environment, all instances of your roles (web and worker) need access to a consistent, durable,
 and scalable storage service. Windows Azure provides scalable storage service, which can be accessed both inside and outside
 the Microsoft data centers. When you register for Windows Azure, you’ll be able to create your own storage accounts with a
 set of endpoint URIs that you can use to access access the storage services for your account. The storage services are accessed
 via a set of REST APIs that’s secured by an authentication token. We’ll take a more detailed look at these APIs in parts 4 and 5 of this book.

 Windows Azure storage services are hosted in the fabric in the same way as your own roles are hosted. Windows Azure is a scalable
 solution; you never need to worry about running out of capacity.

 1.4.2. Storing and accessing BLOB data

 Windows Azure provides the ability to store binary files (BLOBs) in a storage area known as BLOB storage.

 In your storage account, you create a set of containers (similar to folders) that you can store your binary files in. In the
 initial version of the BLOB storage service, containers can either be restricted to private access (you must use an authentication
 key to access the files held in this container) or to public access (anyone on the internet can access the file, without using
 an authentication key).

 In figure 1.13, we return to the audio file conversion (MP3 to WMA) scenario. In this example, you’re converting a source recording of your
 podcast (Podcast01.mp3) to Windows Media Audio (Podcast01.wma). The source files are held in BLOB storage in a private container
 called Source Files, and the destination files are held in BLOB storage in a public container called Converted Files. Anyone in the world can access the converted files because they’re held in a public container, but only you can access the
 files in the private container because it’s secured by your authentication token. Both the private and public containers are
 held in the storage account called MyStorage.

 Figure 1.13. Audio files held in BLOB storage

 [image:]

 BLOBs can be split up into more manageable chunks known as blocks for more efficient uploading of files. This is only the tip of the iceberg in terms of what you can do with BLOB storage
 in Azure. In part 4, we’ll explore BLOB storage and usage in much more detail.

 BLOBs play the role of a filesystem in the cloud, but there are other important aspects of the storage subsystem. One of those
 is the ability to store and forward messages to other services through a message queue.

 1.4.3. Messaging via queues

 Message queues are the primary mechanism for communicating with worker roles. Typically, a web role or an external service
 places a message in the queue for processing. Instances of the worker role poll the queue for any new messages and then process
 the retrieved message. After a message is read from the queue, it’s not available to any other instances of the worker role.
 Queues are considered part of the Azure storage system because the messages are stored in a durable manner while they wait
 to be picked up in the queue.

 In the audio file conversion example, after the source podcast BLOB (Podcast01.mp3) is placed in the Source Files container,
 a web role or external service places a message (containing the location of the BLOB) in the queue. A worker role retrieves
 the message and performs the conversion. After the worker role converts the file from MP3 to WMA, it places the converted
 file (Podcast01.wma) in the Converted Files container.

 If you’re experiencing information overload at this point, don’t worry! In part 6, we’ll look at message queues in much greater detail and give you some concrete examples to chew on. Windows Azure also provides
 you with the ability to store data in a highly scalable, simple Table storage service.

 1.4.4. Storing data in tables

 The Table storage service provides the ability to store serialized entities in a big table; entities can then be partitioned
 across multiple servers.

 Using tables is a simple storage mechanism that’s particularly suitable for session management or user authentication. Tables
 don’t provide a relational database in the cloud, and if you need the power of a database (such as when using server-side
 joins), then SQL Azure, discussed in chapter 13, is a more appropriate technology.

 In chapters 11 and 12, you’ll learn how to use Table storage and in what scenarios it can be useful. Let’s turn now to the question of why you
 might want to run your applications in the cloud. You’ll want to read the next section, if for no other reason than to convince
 your boss to let you use it. But you should probably have a better argument prepared than “it’s real cool, man” or “this book
 told me to.”

1.5. Why run in the cloud?

 So far in this chapter, we’ve said, “Isn’t Azure shiny and cool?” We’ve also said, “Wow, it’s so great I can take my existing
 IT app and put it in the cloud.” But what we haven’t asked is, “Why would I want to stick it in the cloud? Why would I want
 to host my applications with Microsoft rather than host them myself? What advantages do I get using this new platform?” The
 answers to these questions include the following:

	You can save lots of money.

 	You won’t need to buy any infrastructure to run your application.

 	You don’t need to manage the infrastructure to run your application.

 	Your application runs on the same infrastructure that Microsoft uses to host its services, not some box under a desk.

 	You can scale out your application on demand to use whatever resources it needs to meet its demands.

 	You pay only for the resources that you use, when you use them.

 	You’re provided with a framework that allows you to develop scalable software that runs in the Windows Azure platform so your
 applications can run at internet scale.

 	You can focus on what you’re good at: developing software.

 	You can watch football and drink milkshakes without being disturbed because someone pulled out the server power cable so they
 could do the vacuuming.

 	You can save lots of money.

In case you think we’re repeating ourselves by saying “You can save lots of money” twice, well, it’s the key point: you can
 save a lot. We’re often involved in large-scale systems for which the infrastructure costs millions (and most of the time,
 the servers sit idle). That’s not including the cost of running these systems. The equivalent systems in Azure are about 10
 percent of the cost.

 With that in mind, this section will show you a few of the ways the Windows Azure platform can help you out and save lots
 of money.

 1.5.1. Treating computing power as a utility service

 In traditional on-premises or managed-hosting solutions, you either rent or own the infrastructure that your service is hosted
 on. You’re paying for future capacity that you’re currently not using. The Windows Azure platform, like other cloud platforms,
 follows a model of utility computing.

 Utility computing treats computing power or storage in the same way you treat a utility service (such as gas or electricity).
 Your usage of the Windows Azure platform is metered, and you pay only for what you consume.

