

 inside front cover

 [image:]

 [image:]

 Hugo in Action

 Static sites and dynamic Jamstack apps

 Atishay Jain

 Foreword by Steve Francia

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Katie Sposato Johnson

 	
 Technical development editor:

 	
 Louis Lazaris

 	
 Review editor:

 	
 Ivan Martinović and Adriana Sabo

 	
 Production editor:

 	
 Deirdre Hiam

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Taylor Dolezal

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297007

 dedication

 To Ritika, my lifeline.

contents

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Static Hugo websites: Loading fast, building to last

 1 The Jamstack and Hugo

 1.1 The stack in Jamstack

 1.2 How does Jamstack work?

 1.3 The JAM in Jamstack

 JavaScript

 Application programming interfaces (APIs)

 Markup

 1.4 Why use Jamstack?

 Minimal operations

 Great performance

 Lower costs

 Developer productivity

 Longevity

 Tooling

 1.5 When not to use the Jamstack

 When there is dynamic data with no historical significance

 Building based on user-generated content with transient data

 Having user-specific web pages

 When there is no data to compile

 1.6 Selecting the builder

 1.7 Why choose Hugo?

 Hugo is fast

 Hugo is stable

 Hugo is built for performance

 Hugo is self-contained

 Hugo is a single file

 Hugo can be extremely low maintenance

 Hugo can save you from analysis paralysis

 Hugo is powerful

 Hugo is scalable

 Hugo is a community project

 1.8 Is speed really important?

 1.9 What can we build with Hugo?

 Personal websites and blogs

 Nontechnology business websites

 Documentation websites

 Hybrid Jamstack-based websites

 1.10 Cases that don’t map to Hugo

 1.11 How to be successful with Hugo and this book

 2 Live in 30 minutes: You now have a website

 2.1 Your first Hugo website

 The Hugo command line

 Adding to source control

 Structure of the Hugo source folder

 2.2 Adding a theme

 Adding a theme to the website

 Running the dev server

 2.3 Adding content

 Configuration

 Content pages

 Index page

 2.4 Continuous delivery

 Netlify hosting

 GitHub Pages

 Vercel, Cloudflare, AWS Amplify, and other dedicated Jamstack hosts

 AWS, Azure, and Google Cloud file storage

 2.5 Meeting the goals for performance and maintainability

 Performance

 Maintainability

 Choose the theme wisely

 3 Using markup for content

 3.1 Writing content in Markdown

 Paragraphs in Markdown

 Headings, lists, and other block elements

 Formatting, inline links, code, and images

 HTML

 Tables, task lists, and code blocks

 Emojis, IDs, and other Hugo extensions

 3.2 Markdown in action

 3.3 Other markup languages

 3.4 Metadata

 Comments

 Basic data types

 Multiline strings

 Lists

 Dictionaries

 Revisiting config.yaml

 3.5 Other metadata languages

 3.6 Front matter

 Common metadata elements in the front matter

 Data-driven landing page using the front matter

 3.7 Benefits of using markup and metadata languages

 Content versioning

 Theme independence

 Cleanliness

 4 Content management with Hugo

 4.1 Customizing with the Hugo configurations

 4.2 Organizing content with sections and menus

 Sections

 Menus

 4.3 Better together with page bundles

 Leaf bundles

 Branch bundles

 Headless bundles

 4.4 More than tags: Taxonomies

 4.5 YouTube, Gists, and other snippets via shortcodes

 Shortcodes with content

 Nested shortcodes

 Built-in shortcodes

 4.6 Content sharing using custom shortcodes

 HTML shortcodes

 Markup-based shortcodes

 Inline shortcodes

 5 Custom pages and customized content with the Go template language

 5.1 Separating data and design

 Accessing the Go template language

 Existence checks

 Using site variables for defaults

 Creating variables for simplification

 Using standard library functions to reduce the code size

 Using a context switch via the with conditional for simplifying further checks

 Adding content processing

 Adding Markdown content

 5.2 Using external data to add content

 Adding the menu

 Adding recent blog posts

 5.3 Playing with structured data

 Using front matter for structured data

 Parsing files for data

 5.4 Enhancing life with the Go template language

 Template code in shortcodes

 Inner content in shortcodes

 Save some time with archetypes

 6 Structuring web pages

 6.1 Using content types, base templates, and blocks to structure templates

 Encapsulating templates with different content types

 Providing the base template for reuse

 Defining blocks of code

 Reusing the base template in a different layout

 6.2 Reusing content with partials

 Moving to a partial

 The partial context

 Bringing back the submenu using additional parameters to the menu partial

 Partials and performance

 A detour to partial returns

 6.3 Asset handling with Hugo Pipes

 Handling textual assets

 Handling images

 Other assets

 6.4 Controlling Markdown rendering

 6.5 Using bundled templates for common work

 7 Creating your own theme

 7.1 More ways to lay out content

 Parameterizing front matter to differentiate the News page interface

 Using the cascade property to apply properties to the front matter of multiple pages

 Providing a different layout to the blog content

 Cascading targets

 Related pages via Hugo

 7.2 Updating the index pages by providing content and subsection lists

 Using the list template for index pages

 Creating multiple pages to render a long list

 Using a custom paginator

 Rendering a list of subsections

 7.3 Providing the taxonomy pages

 The terms page

 The taxonomy pages

 7.4 Creating our own theme

 Moving to a new theme

 Aligning content with the theme

 Providing theme assets

 7.5 Powering up with content views

 8 Hugo Modules: Plugins for everybody

 8.1 Setting up Hugo Modules

 8.2 Themes as Hugo Modules

 8.3 Importing themes

 8.4 Enabling themes other than Eclectic

 8.5 Getting a specific version of a theme

 8.6 Viewing the dependencies source code

 8.7 Modifying dependencies locally

 8.8 Adding nested dependencies

 8.9 Modules as template plugins

 8.10 Shared dependencies across the theme and website

 8.11 Content plugins

 8.12 Commonly used Hugo Modules APIs

 Part 2 Expanding with the Jamstack: Dynamic outside, static inside

 9 Accessing APIs to enhance functionality

 9.1 Build-time vs. run-time API access

 9.2 Embedding tweets at compile time

 Understanding the Twitter API

 Understanding Hugo’s functions for compile-time API access

 Rendering a tweet as a testimonial

 Managing content lifetimes

 9.3 Hugo and REST APIs

 9.4 Creating a contact page the Jamstack way

 Setting up a contact form

 Choosing a form provider

 Using Netlify forms for the Contact Us page

 Using Formspree for contact forms

 9.5 Building dynamic surveys

 9.6 Commenting using the Jamstack

 Displaying a comment form

 Displaying comments

 9.7 Pseudo APIs that compile to JSON

 Custom output formats in Hugo

 Creating the JSON API for the website

 10 The power of JavaScript

 10.1 Why use JavaScript in a Hugo project?

 10.2 Using JavaScript to control the page flow

 Handling forms in JavaScript

 Building and loading JavaScript using Hugo Pipes

 10.3 Approaches for JavaScript handling

 HTML as primary JavaScript as a utility

 JavaScript as a separate layer to HTML

 10.4 Converting JavaScript to a utility controlled by the HTML code

 Enabling dynamic forms through JavaScript

 Splitting JavaScript into multiple files

 Passing variables when building JavaScript

 10.5 Enabling client-side search

 Concept of a client-side search

 Showing the search box in the header

 Loading the website data

 Importing a search library

 Updating our build systems to support npm

 Creating a search index

 Getting search input and showing results

 Using Hugo modules with JavaScript

 10.6 An SPA in a Hugo website

 Importing a node module in the root project

 Creating a template for the SPA

 Importing CSS

 Creating a web page

 11 Breaking barriers with custom APIs and webhooks

 11.1 Building custom APIs

 Choosing the layer of the application stack

 Monoliths vs. microservices

 11.2 Adding LaTeX rendering to our website

 What is LaTeX?

 How can we render LaTeX?

 Server-side LaTeX rendering

 Writing the code to render LaTeX

 Adding a HTTP server to call this function

 Adding some security to prevent unauthorized access

 Deploying to the cloud via Netlify Functions

 Deploying to the cloud via Heroku

 Creating shortcode to render LaTeX

 Adding some LaTeX to our website

 11.3 Using webhooks to rebuild automatically

 Creating a webhook for Netlify rebuilds

 Adding the webhook to Netlify Forms

 Preventing abuse

 Creating a GitHub Pages rebuild webhook

 Creating a function to trigger GitHub webhooks

 Adding a webhook to Formspree to rebuild the website

 Updating the JavaScript code for some immediate feedback on the comment submission

 12 Adding e-commerce capabilities using the Jamstack

 12.1 Creating e-commerce pages

 Creating the product content view

 Building a single product page

 12.2 Creating a shopping cart

 Creating a cart button in the header

 Creating the cart in JavaScript

 12.3 Checkout support

 Setting up the billing provider

 Creating a checkout session

 Handling success and failure

 Enabling the Buy Now button

 12.4 Fulfillment

 Receiving and verifying webhooks

 Getting purchase details

 Setting up an email provider

 Sending emails

 Preparing content to send to the users

 Attaching files to email

 13 Wrapping it up

 13.1 Developing multilingual websites

 Overrides and defaults for content in a multilingual website

 Accessing strings within the theme

 Linking to translated pages

 13.2 Special pages

 Sitemaps

 robots.txt

 13.3 Different versions using different output formats

 Built-in RSS formats

 Creating our own output format

 13.4 Service workers in progressive web apps

 Install functions

 Activation functions

 Fetching resources

 13.5 Prefetching on hover

 13.6 Cleaner navigation with the Turbo JavaScript library

 Adding Turbo Drive to the template

 Handling JavaScript-based navigation

 13.7 More Jamstack tooling and services

 CLI, SDKs, configurations, and additional automation SDKs (software development kits)

 Authentication, storage, and other pieces of the puzzle

 13.8 The Hugo community

 Asking for help

 Showcasing your work

 Contributing

 13.9 The future of Hugo

 appendix A Getting up and running with Hugo

 appendix B TOML and JSON for metadata

 appendix C A GUI-based admin section with Netlify CMS

 appendix D The Go template language

 appendix E Answers to exercises

 index

 front matter

foreword

 Hugo was born out of two beliefs: 1) website maintenance (authoring, hosting, securing, etc.) could be dramatically simplified, and 2) the Go programming language and its ecosystem would provide the right base for a fast, straightforward, and productive website engine.

 As I write this in late spring of 2022, we’re approaching the ninth anniversary of Hugo’s first public announcement (June 2013). Reflecting back to the months leading up to Hugo’s first release, I had recently begun investigating a new programming language from Google, the Go programming language. It had just reached 1.0 status, and I was looking for a project so I could learn through building. Simultaneously, I was becoming increasingly frustrated with my WordPress-powered blog that was growing in cost and complexity. I calculated that I had spent more time doing maintenance and security patches than authoring new posts.

 I had begun playing with the static site generators available at the time; Jekyll and Pelican being the two most prominent. Installing was complicated, however, taking me a few hours each because they both required me to first install the entire toolset for each programming language and then all the language dependencies. After that, I needed to install the software and all of its dependencies, requiring hundreds of packages to be fetched and resolved.

 I began porting my content to Markdown and building my blog in Jekyll. Rendering my small blog of maybe 200 posts and the most basic template still took over five minutes! I would tweak the template and then rerun the builder and wait another five minutes before I could see how it was rendered. Five minutes is far too long for a feedback loop to be productive.

 I recognized that these tools didn’t fix the maintenance issues I experienced with WordPress; they just shifted it to the dev machine. I thought it must be possible to write a better and simpler static site generator and was looking for a project to learn Go anyway. I spent the next couple of days writing a small prototype. The prototype confirmed that a website engine in Go could be magnitudes faster than the existing ones, and it would fix my installation experience as well. I spent the next few months designing and writing Hugo, incorporating my 20 years of experience working with and building CMSs and taking inspiration from everywhere.

 I ported my blog to Hugo and announced my first Go project to the world in July 2013. At the time, I had no idea how this personal project, which I simply wrote for my own blog, would change my life and change the world. To build Hugo the way I wanted to design it forced me to invent new libraries in Go, several of which (notably Cobra, Viper, and Afero) have gone on to be some of the most popular in Go’s ecosystem, with adoption from Kubernetes, Docker, GitHub, and thousands of others. The experience of writing Hugo ultimately led me to join the Go team as the product lead in 2016 to help shape the future of the language.

 Hugo’s simple and accessible design, combined with its unparalleled performance and productivity, immediately gained attention. Hugo continued to grow in adoption and popularity, ultimately becoming the most popular static site generator and one of the most popular open source CMS systems. It’s currently rated as #13 based on a number of websites (https://trends.builtwith.com/cms/open-source). Along with this growth came a small but dedicated contributor base, including Bjørn Erik Pedersen who succeeded me as the lead developer of Hugo.

 Hugo also attracted the attention of Atishay Jain, an innovative software engineer who had a part in developing many of Adobe’s technologies that we’re all familiar with. He’s written this book, Hugo in Action, which is straightforward and approachable. It explains not only how to use Hugo but also explains the history of how things came to be and the context of each decision you make through the process.

 Beginners will deeply appreciate chapter 2’s “Live in 30 minutes” section, which provides plenty of guidance to make even people who are new to command-line applications and websites feel comfortable. All readers will benefit from the breadth and context that this book provides. I personally appreciated chapter 9’s recipes to extend Hugo using external APIs, which expand the functionality of Hugo to include dynamic features while retaining Hugo’s security and performance advantages.

 —Steve Francia

 creator of Hugo

preface

 The World Wide Web was initially a document delivery mechanism. Early web pages were documents that presented the same contents to everyone and were present as a file on disk. Early web browsers were more like a printer that would deliver the documents on the screen. The significant achievement of the web was document delivery from a server far away, managed by someone else, and the ability to navigate across documents via hyperlinks. Developers always wanted to do more. They wrote scripts to generate all combinations of web pages to make the system appear dynamic. As the number of combinations increased, we found that we could support an infinite number of variations by dynamically generating the web pages on a server. This approach brought a lot of complexity that the mainstream web community has been dealing with ever since.

 My first website had a total of 10 pages. It lasted on the internet for eight months. When it was defaced the first time, I tried to set it up again. But I had neither the skills nor the perseverance to keep it running for a long time. This whack-a-mole game continued across multiple technology stacks, frameworks, and approaches. Either pay someone to keep your system secure or dedicate yourself to keeping it up. The cycle of redoing the website continued until I landed on the Jamstack. Very few websites need infinite combinations of pages. For the rest, the run-time content generation approach is suboptimal both from the maintenance and performance perspectives. The Jamstack is a flashback to the generate-all-combinations era with just one catch—we can still do infinite combinations using JavaScript for the cases where there is a need. For the significant portions of most websites, we can be free of all the complexity.

 When I first picked up Hugo, I didn’t realize how much of it was unlearning the web development conventions used in the run-time development model. Although images should always get stored with the rest of the document, static and dynamic content constraints forced this to be different. The more I used Hugo, the more I found about its way of doing things. The lack of structured learning resources caused a lot of rework. That is what triggered me to write this book. Hugo is an engineered product, not a mashup of multiple technologies to catch up to the trends or a solution covering years of cruft under a set of buzzwords. Hugo deserves a proper learning resource that presents the most straightforward web development approach and showcases how we can use Hugo to do much more than what it humbly advertises. That is what this book is about—setting up for simplicity and success.

 As I wrote this book, my website has been sitting patiently. I do not have to spend a single second to maintain it. After a hiatus of two years, I can pick it up from where I left it, whenever I want, to make incremental improvements. This book is about fast websites that can last without continuous monitoring, unlike the approaches I tried in the past.

acknowledgments

 This is my first book, and I when I signed up for it, I had no idea what I was signing up for. What was planned as a six-month project took two years to complete, thanks to changing personal circumstances (arrival of kids) and changes all around the globe (the COVID-19 pandemic).

 I would sincerely like to thank my wife, Ritika, who went through a tough pregnancy, premature delivery, and a month-long stay in NICU—all while I was writing this book! Without her constant support and inspiration, this book would never have happened. This book also required continuous support from my parents, work colleagues, and friends who made time for me to get it done.

 Next, I would like to thank my editor, Katie Sposato Johnson, for helping me comb through the entire set of guidelines to complete the book in the right format. She had answers with additional resources and guidelines for everything. I really appreciate the accommodation that the entire Manning team provided with my slippage of deadlines again and again, specifically, Deirdre Hiam my project editor; Frances Buran, my copyeditor; and Keri Hales, my proofreader.

 This book would not have been the same without the readers and reviewers on the livebook forums and the structured reviews. They, with their sharp critiques, changed the direction of the book multiple times. The first two chapters have been redone almost 20 times with major and minor tweaks based on places where the readers got stuck. It was great to see the roadblocks getting removed, albeit slowly, with each change as more and more readers could get through the initial hurdles and get into enjoying Hugo. To all the reviewers: Al Norman, Alberto Ciarlanti, Alex Lucas, Amit Lamba, Anton Rich, Cena Mayo, Clive Harber, Darrin Bishop, David Jacobs, David Pardo, Guy Ndjeng, Hilde Van Gysel, Jeff Smith, Jerome Meyer, Joseph Houghes, Joshua White, Jürgen Hötzel, Lakshmi Narasimhan, Marjorie Roswell, Michael Bright, Milorad Imbra, Riccardo Marotti, Sander Zegveld, Sau Fai Fong, Taylor Dolezal, Theofanis Despoudis, and Vidhyadharan Deivamani, your suggestions helped make this a better book.

 Of course, nothing was possible without @spf13, @bep, and the entire team that has made Hugo the ultimate static site builder. The thought and care that has gone into making Hugo is evidenced in the way its core structure and ideas have survived unchanged as the Jamstack concepts and services have matured. The Hugo community is a marvel, and it is a pleasure to have had healthy discussions on the Hugo forums for not only problems and solutions, but also for approaches, pros and cons, and performance considerations for doing things in a certain way.

 Lastly, I would like to thank the service providers, GitHub, Netlify, Formspree, Stripe, and SendGrid, for having stable backbone services for us to be able to build upon. These services are affordable, reliable, and have allowed us to focus on what we love the most—creating new websites.

about this book

 Hugo in Action guides you through building a fast and low maintenance website using the Hugo static site builder. It enables you to understand the core concept of the Jamstack and the profound impact of its compilation step on the website’s architecture. This book provides a step-by-step walkthrough for laying out content, organizing templates, and managing assets in a Hugo-based website. It provides the best practices for building a quick-to-compile, quick-to-load, and easy-to-maintain website, along with the means to debug issues, optimize existing template files, and set the website’s architecture for optimal usage of Hugo.

Who should read this book

 Hugo is a tool for web developers looking for a powerful static site builder to create feature-rich websites without compromising run-time performance, developer experience, and maintainability. This book expects its readers to understand HTML, CSS, JavaScript, and version control using Git and GitHub-based code hosting. The readers should also be familiar with the basic usage of the command line, including navigating through the filesystem and running simple commands. Both beginner and experienced web developers will benefit from this book.

How this book is organized: A road map

 The entire book runs through a single example website for a fictional company called Acme Corporation. We’ll build the site and add new features to improve its behavior while introducing approaches to development.

 The book has two distinct parts. The first part focuses on the core functionality of Hugo, which we will run in isolation from the rest of the internet. The second part centers on how Hugo provides the means to communicate with various services and how the JavaScript ecosystem furnishes the functionality that is not possible during Hugo’s compilation step.

 	
 Chapter 1 introduces the Jamstack and explains the ideas behind it. This chapter also lays out the parts of the Jamstack and how these work together. It also introduces the Hugo static site builder and discusses when it is sensible to use Hugo and when it is inappropriate to use Hugo or the Jamstack.

 	
 Chapter 2 provides a brief overview of a Hugo project’s working directory. It also sets up web hosting and creates a simple Hugo-based website that is live on the internet, which offers outstanding performance and a manageable set of dependencies.

 	
 Chapter 3 lets us play the role of the content author. This chapter provides an in-depth overview of Markdown and YAML, the two main languages used to create content and provide metadata for a Hugo website. It also compares these languages with other available options and provides an overview of the standard metadata properties we can use in the front matter of a Hugo web page.

 	
 Chapter 4 allows us to play the role of the website editor. This chapter shows how to organize pages in a Hugo website into sections, menus, and Hugo taxonomies, how to bunch contents into a page bundle, and how to effectively use Hugo’s built-in and community-provided shortcodes to enable and extend Markdown features.

 	
 Chapter 5 offers our first glimpse of the Go template language that provides the means to control the rendering of a web page. We will explore how to build custom pages in Hugo, how to render content with the Go template language, how to access Hugo’s variables, functions, configurations, and front matter, and how to read from the filesystem using Hugo.

 	
 Chapter 6 explores the critical components of a Hugo theme and the tools Hugo provides for building custom web pages. It teaches us how to organize templates for easy maintenance and reuse, to improve productivity by sharing template code and snippets between multiple page types, and to tackle resource management issues with Hugo pipes.

 	
 Chapter 7 allows us to take full ownership of the website. It shows how the building blocks of Hugo’s content system (the leaf and branch bundles, the taxonomy system, layouts, and types) all map to template code.

 	
 Chapter 8 dives deep into Hugo Modules, which are a powerful, widely misunderstood, and underused feature of Hugo. Hugo’s modules allow the creation and consumption of plugins (from themes and templates to shortcodes and even content) from all the components of a Hugo-based website.

 	
 Chapter 9 steps outside of the bounds of our project folder and showcases Hugo’s support for the second pillar of the Jamstack—APIs. This chapter moves us into Web 2.0 with support for dynamic features like comments and contact forms. It also presents some simple solutions to historically more challenging problems such as dynamic surveys and RESTful GET APIs.

 	
 Chapter 10 shows why Hugo goes to great lengths to ensure that it plays nicely with JavaScript (the “J” in Jamstack). This includes customizing and integrating with one of the fastest JavaScript bundlers. Hugo clarifies concerns between the compile-time and run-time environments while still keeping tight integration and providing unified control. This chapter uses client-side scripting for dynamic features like background form submissions and the npm ecosystems for client-side searches. It also sets up a hybrid website with Hugo and JavaScript that takes ownership of the pieces they excel in.

 	
 Chapter 11 introduces the Jamstack way of building low-maintenance APIs to extend Hugo with features that it does not natively provide. We do this without losing the key performance benefits of Hugo. This chapter also explores webhooks—the server-to-server API communication mechanism that integrates with independent API providers—to enable our website to act as a unified backend with little operational overhead.

 	
 Chapter 12 dives into a capstone project where everything from the book is put into practice. This chapter busts some of the most popular myths of the Jamstack by building an e-commerce website with end-to-end support from the shopping cart to checkout to order fulfillment.

 	
 Chapter 13 takes the existing website and stretches it in multiple directions. This provides support for numerous (human) languages and many views of the same content with different themes. It also makes our website even faster with offline support, instant pages, and Turbo techniques and libraries. It also discusses scripting to reduce the work done manually in the browser and participation in the Hugo community for support, appreciation, and contribution.

 The chapters in this book should be read in order: what you learn from previous chapters is built upon in the following ones. Each chapter improves the example website from where it was left in the last chapter. If the reader, by chance, wants to understand a topic out of order, it is advised to look at the code checkpoint at the end of the previous chapter to understand where the next chapter starts.

About the code

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The book has over 128 code checkpoints and more than 94 chapter resources present on GitHub with links to the exact checkpoint associated with any section immediately after the section. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/hugo-in-action. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/hugo-in-action, and from GitHub at https://github.com/hugoinaction/hugoinaction.

 The resources provide easy-to-use copies of the code samples embedded throughout the book and assets like CSS files and the images used to build the example website. Code checkpoints provide working code up to the point in the book where it is referenced and are presented as branches in the GitHub repository. We can compare two checkpoints between any sections in the text to see the changes between those two sections. For example, https://github.com/hugoinaction/hugoinaction/compare/chapter-03-06...chapter-04-11 provides all the changes as commits messages between code checkpoints chapter-03-6 and chapter-04-11. It also provides a diff between the two checkpoints. Each checkpoint can also be viewed live on the book’s website in a subdomain like https://chapter-04-11.hugoinaction.com, which offers a working version of the website at chapter 04, checkpoint 11. The readme file for the repository also provides summaries and links to additional chapter resources and checkpoints. You can clone the code repository locally and use git checkout <checkpoin or chapter resource name> to get to a specific code checkpoint or to a specific chapter’s resources.

 Tip Code checkpoints are a vital tool in debugging issues. Some details with light documentation can be gleaned from code checkpoints. Readers can compare their code to a checkpoint to figure out and fix misunderstandings and mistakes.

liveBook discussion forum

 Purchase of Hugo in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/hugo-in-action/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 The official documentation website for Hugo is https://gohugo.io/documentation/. It provides a complete list of all available Hugo parameters and features. The Hugo community at https://discourse.gohugo.io/ can be of immense help in figuring out best practices, asking for help, or providing feedback.

about the author

 [image: AtishayJain]

 Atishay Jain is a senior computer scientist at Adobe. He is an experienced web developer, developing web-based software used by millions of Adobe Creative Cloud customers on a daily basis and has contributed to many Adobe tools, including Photoshop, Acrobat and Illustrator. Atishay is a guest author at CSS-Tricks and is a regular conference speaker at web conferences. He has his own personal website with a 100/100 score on Google Lighthouse, focusing on the performance of all the features of a regular website. Learn more about Atishay at https://atishay.me.

about the cover illustration

 The figure on the cover of Hugo in Action, “Femme de cracovie,” or “A Woman from Krakow,” is taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of today’s computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Static Hugo websites: Loading fast, building to last

 Are you looking for a website that is fast, flexible, fully automated, and fun to build? Part 1 of Hugo in Action gives you a static website that loads instantly across the planet and works with minimal operational overhead.

 Chapter 1 introduces Hugo and the Jamstack, and provides an understanding of the unique approach to website development practiced by Hugo users.

 Chapter 2 discusses setting up the build environment and deploying a functional website to production. We will also discuss how to keep tabs on its performance and to keep our maintenance work low.

 Chapter 3 takes us deep into authoring with Markdown and YAML for content and metadata, respectively. We will use Markdown’s formatting capabilities and Hugo’s extensions to prepare our pages for presentation on the internet.

 In chapter 4, we don the hat of the website editor. The content organization with Hugo is different than most other approaches for building websites, and there are solid reasons for that. Chapter 4 also shows how intuitive and maintenance friendly Hugo’s page bundles are.

 In chapter 5, we shift gears and move into the developer role. The Go template language is powerful, and Hugo’s function library massively amplifies that power. We will see how we can use Hugo templates for everything—from extending Markdown to automating repetitive work for the content author.

 In chapter 6, the development moves from a single web page to an entire section and also provides the ins and outs of sharing templates and content within a website.

 In chapter 7, we become independent of the external theme we have used since chapter 2. Here we dive into the internals of Hugo’s model for web development. We write code enabling all the features we used as a content editor in chapter 4.

 Finally, chapter 8 adds a new direction, where we go beyond a single website into sharing content, templates, and code across multiple websites.

 As you will see, Hugo Modules is a plugin system for everybody—from content authors to editors and from user interface to business logic developers.

 At the end of part 1, you will have a fast and flexible website. You will also have experience using some of the best techniques to ensure it remains fast, without a heavy investment in operations.

1 The Jamstack and Hugo

 This chapter covers

 	
Jamstack basics for building websites

 	
Principles of static site generators

 	
Understanding the Hugo static site generator

 	
Benefits of the Hugo static site generator

 	
Use cases best suited for Jamstack and Hugo

 If you have been associated with websites recently or have friends in similar situations, you must know how much work is involved in maintaining a website. It needs DevOps engineers, system administrators, and database architects to keep a website running on the internet. It is a full-time job for an entire team, not just an individual. The upkeep of content is so time-consuming that the creators move at an unprecedented rate to managed hosting services like WordPress.com or even to give away their content to platforms like Medium or Facebook.

 Jamstack is a web development architecture that minimizes the day-to-day overhead of maintaining websites by moving the complicated pieces out of run time or by encapsulating them into easier-to-manage services. The term Jamstack was coined by the cofounder and CEO of Netlify, Matt Biilmann, in 2016. Jamstack forgoes databases by storing all the content into files compiled during deployment and then distributing them over a content delivery network (CDN). Application programming interfaces (APIs) provide dynamic, server-based content, maintained by third parties or hosted by cloud service providers with minimal day-to-day involvement by the website owner. This way, developers are freed from the tasks of handling security updates, denial-of-service (DoS) attacks, and constant monitoring to keep hackers at bay.

 Jamstack is heavily reliant on the core web technologies of HTML, CSS, and JavaScript. It offers the ability to get up and running on the modern web quickly so we can build websites with outstanding performance, low cost, and little maintenance. It can create websites for various use cases like individual blogs, business websites, and e-commerce solutions. Jamstack works in harmony with a server-based framework by providing full support for static content. We can, however, still use a traditional framework to offer user-generated, server-based content.

 Hugo is among the most popular of the current Jamstack frameworks and provides the best build speeds. It helps us enjoy web development without the annoyances of setup, upkeep, or day-to-day maintenance. There is no waiting for compilation, updates, or deployment! Hugo takes a template and a website in markup format and converts that to HTML, so the site is ready to be hosted. I congratulate you for picking up this book and embarking on the journey to radically simplify your approach to web development.

1.1 The stack in Jamstack

 To understand Jamstack fully, we first need to understand the concept of a web stack. The web stack is a collection of software used for web application development. Some popular web stacks include LAMP (Linux Apache MySQL PHP), Microsoft .NET (IIS, ASP.NET, MS SQL Server), MEAN (MongoDB Express Angular Node.js), and MERN (MongoDB Express React Node.js). Figure 1.1 shows a typical web stack for a non- Jamstack-based website.

 A web page consists of static as well as dynamic assets. Different servers serve these assets in the stack. A web server like Apache or IIS primarily hosts static assets such as images, JavaScript, and CSS in a traditional web stack. These files do not change across multiple users. A second set of assets is dynamic content, which can be different. It is based on the supplied request parameters, which include the URL, request headers, cookies, or associated HTTP POST data. An application server with software like PHP, ASP.NET, or Express takes these parameters and creates a response. It might need to do a series of requests to the database server (like MySQL or MongoDB) that holds the website’s content. The application server takes this content and uses the application logic to stitch it into a JSON response (in MEAN/MERN) or, with an HTML template, into HTML content (in LAMP), which it then serves to the web browser. The web page is assembled in the browser by executing the JavaScript and styling the provided content and images with CSS.

 [image: CH01_F01_Jain]

 Figure 1.1 A traditional web stack used for development. Non-Jamstack websites have a stack with web servers that provide static assets. Application servers provide dynamic content, generated by using the data stored in the database server and assembled and rendered in the web browser.

 This web architecture has been mostly the same since the beginning of the internet, but growth and increased traffic have stressed this architecture. Increasing the CPU and RAM in the servers (called vertical scaling) cannot handle the amount of traffic moving through the modern internet. This load requires us to add multiple machines (called horizontal scaling) to the stack.

 Web servers are easy to scale. Because the content does not change, we can replicate it across multiple machines that share the load. CDNs perform the task of copying these assets across nodes geographically closer to the end user and provide internet scaling of all network traffic at faster speeds for the end user. Figure 1.2 shows the scaling strategies for the web server on the left.

 [image: CH01_F02_Jain]

 Figure 1.2 The traditional web stack needs scaling to handle the load on the web. Horizontally scaling the web servers (left) is easy. We can add as many web servers as needed to handle the load. Scaling the application stack (right) is difficult. We cannot have hundreds of database servers (horizontal scaling), and there is a limit to the RAM and CPU capacities (vertical scaling) we can have in these servers. A variety of caching techniques are needed to solve this problem. Jamstack suggests (top) moving as much work as possible from the application servers to the web servers.

 The application layers (application and database servers) are a lot harder to scale. If we keep the requests stateless by managing the user’s state on the client (via JavaScript or cookies), we can scale the application servers horizontally. Because these servers handle the application logic, it is harder to move these to a CDN.

 The database layer is the hardest to scale. The CAP theorem tells us that scaling a regular database is not possible at the internet scale. (We cannot horizontally scale to thousands of MySQL servers.) The theorem states that in a distributed database, we can simultaneously have, at maximum, two of the three CAP properties:

 	
 Consistency—Every read receives the most recent write or an error.

 	
 Availability—Every request gets a (non-error) response.

 	
 Partition tolerance—The system continues to operate despite an arbitrary number of messages being dropped (or delayed) by the network between nodes).

 Workarounds such as eventual consistency are present in the application stack, where the database is not consistent but becomes so after some time. These workarounds lead to difficulties in the application logic and force constraints on some of the things we can achieve with server technology.

 Despite the problems, the traditional web stack has survived the internet scale. One of the biggest reasons why the stack has worked despite database scalability problems is the type of load. Database changes are an order of magnitude less, in most cases, than the retrieval of that data. We can relieve the database retrieval load by adding layers of caching. Read replicas for the database and RAM-based caching on the application servers are both solutions for this. We have even found that many web pages do not change across multiple requests. Many websites can add CDNs over the application layer to ease that load. Figure 1.2 on the right shows this solution.

 Looking at figure 1.2 closely, the application layer is similar to the web server layer. It is a lot harder to manage the caching layers in the application servers built for dynamic calculations. Jamstack upends the traditional web stack by moving most of the logic out of the application into the web server layer.

 Note Jamstack is not a web stack in the traditional sense. It does not prescribe any specific technology for use in developing websites. It provides an approach to web development where most of the website is prebuilt and client-side scripting adds dynamicity. This changes the nature and arrangement of software in the traditional stack.

 Being explicit about trying to cache everything makes cache management a lot simpler. We can precompute and cache a lot of the work that needs dynamic computation. This precomputation (also called compilation and prerendering in Jamstack) provides an added benefit of enhanced performance because no calculation is needed in the server when the user requests data.

 Jamstack does not prohibit server-side or client-side processing. It advises using these only when required. Precomputation during deployment is more efficient, and web servers have fewer security issues and maintenance needs than application servers.

 Figure 1.3 provides a comparison of the Jamstack with the traditional web stack at run time for the first issued request that fetches the HTML page. For the initial HTML in the classic approach, the query needs to go through to the service’s origin server across the internet. The load balancer then selects an application server. The application server may send multiple requests to the database to get the data it needs. It assembles the response based on the application logic and the HTML template that is a part of the application code to create the final HTML passed on to the client for rendering. With Jamstack, the compilation step has already performed database processing and application logic-based stitching. This HTML generation does not happen for every request. Therefore the request does not need to go across the internet to the origin server. A CDN location geographically close to the client serves the content.

 [image: CH01_F03_Jain]

 Figure 1.3 A comparison of the first request’s run-time impact in a traditional web stack with the Jamstack architecture. In the conventional approach, when we request the initial HTML page, it goes through the load balancer to the application server. The application server does multiple database calls to get the data and then creates the HTML page based on the template. In the Jamstack approach, the HTML is precomputed and comes from a CDN.

 Note that figure 1.3 shows only the initial request for data. Normally, there are additional calls for images, JavaScript, and CSS files. These requests might ask for more data from the origin server or from third-party services.

1.2 How does Jamstack work?

 The simplified stack that Jamstack provides has a lot of processing going on behind the scenes. Jamstack’s emphasis on the compilation process is something new for the web platform. Figure 1.4 explains the various parts of the Jamstack.

 [image: CH01_F04_JAIN]

 Figure 1.4 Viewing the inner workings of the Jamstack. The development and content teams maintain the source code for a Jamstack-based website. This code consists of the website data and a set of templates. A Jamstack builder picks up the code in the compilation process to create the static website’s HTML/CSS/JS contents. The builder might also call services during compile time and output JSON documents that serve as an API. This output is given to the CDN to distribute geographically. The client gets the website from the closest CDN endpoint. The client executes the JavaScript code that can ask for additional data from the services.

 A considerable portion of the world wide web consists of websites managed by a CMS. A content management system (CMS) is a tool used for creation and management of digital content. The content in most websites is kept separate from the presentation logic and can be managed by different individuals, requiring a different skill set to develop and maintain than the business logic. In a Jamstack-based website, we store the content in markup documents instead of in the database. Unlike a cell in a database table, a markup document allows for viewing and editing the page contents with a regular text-based editor. The content authors or editors can directly edit those files or use a graphical CMS if they so desire. The developer maintains the templates and the business logic to combine the data and create the website. These files can be managed in a version control system like Git and hosted on a cloud-based repository system like GitHub to manage the changes. This forms the markup (M) layer of the website.

 A website builder like Hugo uses the data stored in markup files to compile the website into HTML and CSS files, JavaScript, and image-based assets. The builder can communicate with both external and internal services via APIs to fetch the data to compile into the website. The builder can also build the website content into a machine-friendly format like JSON. JSON files act as APIs (called pseudo APIs) for the markup data that the JavaScript code or native mobile apps consume.

 Doing it old school

 The approach of writing content and saving it in a folder on a disk and then uploading it to a shared hosting provider that manages the content looks a lot like the early web, where we used to upload HTML and PHP files over an FTP connection. The parallels are easy to see. These similarities raise the question, what is different this time?

 The web has matured a lot since we moved away from controlling full servers. Frontend technology now performs many features that required server code back then. Additionally, shared hosting has upgraded itself to the cloud, where you can scale hosting and computation to the internet scale. Even the traditional web stack-based services are cloud-hosted.

 The other significant change from that era is tooling. Tools like FrontPage originally targeted designers and end users, making the website a mesh of copy-pasted scripts that even the website author did not understand. Modern tools target developers and help in optimization, maintenance, and performance. Now we engineer websites with these tools rather than mashing them up together. We’ve learned from the early days of the web. We have a much better system with enough power and flexibility to build any application desired without compromises.

 The geographically distributed machines of a CDN host the compiled website for consumption. The CDN node closest to the end user serves this content to the end user. All the static content is user-agnostic and fast to produce. For dynamic data, JavaScript code can take over. JavaScript is the J layer of the Jamstack. JavaScript provides interactivity and personalization to the website.

 The JavaScript layer can communicate with various services to provide dynamic content. These services expose APIs that form the A layer of the Jamstack. These APIs encapsulate the remains of the application servers of the traditional stack. Jamstack recommends using managed services like those owned by third parties or those hosted on a FaaS (function as a service) cloud solution to minimize maintenance.

 Exercise 1.1

 In Jamstack, where should most of the logic reside?

 	
 Server

 	
 Microservices

 	
 Compiled templates

 	
 Client

 	
 JavaScript

1.3 The JAM in Jamstack

 The JAM part of the Jamstack stands for JavaScript, APIs, and markup. Let’s take a look at each of these components.

1.3.1 JavaScript

 JavaScript in Jamstack refers to all the approaches to client-side scripting that provide interactivity and dynamic functionality, which is personalized to the user and cannot be precompiled. This enables developers to react to user actions and modifies the user interface at run time. Jamstack leaves the specifics of the JavaScript framework and its management to the web developer.

 In traditional stacks, the server plays a prominent role in handling user interactions. It generates new pages even when just a part of the page needs to be modified. That is unnecessary and suboptimal. Modern JavaScript is fully capable of storing the user state in the browser. It can communicate with the server and update the interface without the user needing to reload or see a flicker in the interface. Jamstack prescribes using JavaScript for use cases where it shines the best—providing interactive interfaces to the end user and communicating from the client to the server.

1.3.2 Application programming interfaces (APIs)

 Application programming interfaces (APIs) provide a well-defined contract for communicating with a web service. APIs abstract the entire server functionality so the client does not need to understand the server internals to consume the service. In Jamstack, precompilation and client-side JavaScript take over a lot of the work usually done on the server, but the server still has its use cases. These include storage of the application state across machines, computations that require more processing power than a single machine, and data that must be transmitted back from the website viewer to the servers.

 Many traditional systems expose APIs to communicate with the underlying functionality. Although this approach fits in the Jamstack definition, Jamstack advises minimizing the building of APIs to reduce maintenance overhead. A lot of operations that need APIs in other stacks are handled differently in Jamstack. Instead of content creation, update, or deletion APIs, you can place, update, or remove files on disk. Only dynamic updates based on user actions in the website (like purchases and comments) need dedicated APIs.

 There are third-party API providers that provide high-level APIs, which developers can use without going through the overhead of building everything themselves. From handling comments to full-text searches, a lot is available at scale without writing custom code. When we need to write a custom backend, cloud service providers make that task easier than building it from scratch. With FaaS, the cloud service providers take over the ownership of uptime, ongoing security updates, and scaling with user load. The service provider maintains performance and availability across the globe. The developer writes code and hands it over to the service provider to deploy. The ongoing work is minimal. Developers can then work to enhance functionality or update any dependencies at the function level.

1.3.3 Markup

 The traditional definition of markup includes a set of annotations (like XML tags in HTML documents or stars around the text in Markdown) in a text document that provides further information on how to understand or render the text. Jamstack considers the entire markup document as markup. This consists of the textual data, the annotations, and the structured metadata.

 Markup forms the data layer of the Jamstack. Unlike traditional databases, we store markup in text files. It is readable and editable by humans in its raw form without using a tool to convert it to a readable format. Markup languages provide a way to write formatted documents in a terse and readable way. Markdown is the most popular markup language for writing content in the Jamstack. (We will examine Markdown in detail in chapter 3.) Various metadata languages that we use for additional information associated with the document can accompany this content. One of these is YAML (Yaml Ain’t Markup Language), which we will also discuss in chapter 3.

 Note HTML (HyperText Markup Language) is also a markup language, and you are free to choose that for writing your data in Jamstack. Human-readable languages like Markdown, however, make it easier to read and maintain our data. This is converted to HTML during rendering, keeping the layout (template) and presentation (CSS) out of content.

 There are many advantages to using a markup-based document to store data. Most of the web page is unstructured. A regular database keeps it in a single cell. This approach, however, is not a good use of database technology. We can use a version control system like Git to monitor the data changes if the data is managed as individual files. Having the data along with the code eases migration across services and build environments. We can store all configuration files together. Optimization and testing are more straightforward with the ability to create new build environments (stage, production, etc.) on demand. With unstructured content, most of the organization and querying capabilities of the databases are not helpful. Hosting blogs or generic web pages based on a database is not the best use of their resources.

 With the popularity of Git and GitHub, many developers are already familiar with markup languages, especially Markdown. Most developers write readme files in a markup language. These languages are stable, standardized, easy to learn, and easy to understand. There is a lot of tooling available to write in these languages or migrate data to them. They also work well with diff and merge tools (used for comparing changes in a file), and most programming languages have libraries to parse these languages. This tooling provides extreme flexibility for programmers to manipulate data the way they like.

 Exercise 1.2

 What does the M in Jamstack stand for?

 	
 markup

 	
 Markdown

 	
 MySQL

 	
 MongoDB

1.4 Why use Jamstack?

 Prebuilding HTML content presented to the user has unique advantages—from minimal operations to outstanding performance and cost reductions. We’ll look at these advantages and more in the following sections.

1.4.1 Minimal operations

 Because content is prebuilt before publication, the number of moving parts in a site is reduced. The service provider takes care of security updates, hardware failures, and network issues. The cloud host provides almost 100% uptime without any active involvement from the website owner. There is no need to be on call, no need to think about servers, scaling, load balancing, uptime across continents, or any other operational overhead. The developer can focus on the joy of building, and the business can focus on its core competency rather than setting up a DevOps team.

1.4.2 Great performance

 CDN hosts in its entirety the prebuilt HTML provided as a static website. This way, every file is cached and served from a server geographically close to the end user. There is no round trip to an application server and no database query, which can become a bottleneck. Most site generators targeting the Jamstack generate the HTML at compile time. It is already available to render when the user requests it. The website is functional, even with a single HTTP request. A simple website built with Jamstack can provide a 90%+ performance score on most audits. If the developer is sensitive to performance while building the theme, the Jamstack-based website can meet all the criteria for a 100% score in these audits.

1.4.3 Lower costs

 The removal of the database and the application servers from the hosting stack reduces the hardware costs. With the operations becoming automatic, most DevOps requirements are not present. All this translates to significant cost savings. You can have a website for free using static-site hosts like GitHub Pages and Netlify. All major cloud providers like AWS S3, Google Cloud Storage, and Azure Storage provide low-cost static hosting. There is no need to have an IT or a DevOps team for managing the fleet of servers.

1.4.4 Developer productivity

 A version control system like Git manages a Jamstack-based website. There is no need to have complicated development environments. Running the code on the developer machine is one command away. Most websites can be deployed by a simple push to a server many times a day. These features give the developer the time and flexibility to focus on the content of the website.

1.4.5 Longevity

 HTML/CSS is the most stable technology built. Today’s browsers bend over backward to continue to support all features that they have supported since the 1990s. If you host a Jamstack-based website and vanish from the internet for a decade, it will still be there when you come back in the same state (mostly) where you left it. The internet is not forgiving to any technology stack outside of plain HTML, CSS, or JavaScript hosted on a static server. You can even continue to use the static site generator in a virtual machine without updating the version. Because the generator is local, security vulnerabilities in the generator do not impact the website. You do not need to go online and expose these vulnerabilities to the internet.

1.4.6 Tooling

 With fewer moving parts and a well-defined structure, the tooling for Jamstack is much more advanced and powerful than other web stacks. One-click deployment is readily available with hands-off support for scaling through Netlify, GitHub Pages, and so on. Having the entire website present as code also means that there is nothing to hide. There are no complicated configurations for security or performance, no extra management overhead for different layers in the stack, and no IDE (integrated development environment).

 Updating on the fly

 When new to the Jamstack, it may seem to be a limitation that we cannot update the website on the fly. Most traditional systems provide an admin mode to update the website. The Jamstack does not prescribe anything. With the Jamstack, there is no need for any special tooling to update a Jamstack-based website.

 The markup language is friendly and easy to use. We can provide updates in any text editor. Most version control providers like GitHub, GitLab, and Bitbucket can commit new changes from the browser. Continuous integration can automatically build and deploy this to production. We get the benefits of having an entire version control system for our content. We also can choose our text editor freely. As a bonus, we can update the theme wherever and whenever desired. Textual content, automatic deployment, and continuous integration ensure that we do not miss WordPress’s admin mode, but admin tools are also available if needed. We’ll discuss the Netlify CMS in appendix C.

1.5 When not to use the Jamstack

 One assumption of the Jamstack is that the content is available at compile time and does not change rapidly. The Jamstack does not offer a lot if this assumption turns out to be false. The following sections provide use cases for when not to use Jamstack.

1.5.1 When there is dynamic data with no historical significance

 If we are building a dashboard-type application with ever-changing data, then precompilation as a concept does not provide great value. Sensor-based data can change within milliseconds. In many cases, no one reads this data. Jamstack does not work well with this type of application. A major exception is reporting, where some data needs to live for a long time, is read frequently, and is rarely, if ever, changed. This type of report is a perfect case to be pre-generated and saved. There is no point in doing this on the fly. The Jamstack fits the reporting use case perfectly.

1.5.2 Building based on user-generated content with transient data

 Websites like Twitter and Facebook have tiny posts that we rarely read as individual pages. These get compiled into feeds, which are different for each user and which change over time. The users may not read the feed at any given time, so pre-generation can prove to be wasteful. These use cases do not fit into the write once, read many times scenarios the Jamstack excels at. While we could theoretically compile often-used pages, the traditional web stack can also do that. One thing to remember here is that the story changes considerably if the data has value in permanence. If we have user-generated blog posts, product pages, or articles that are written once and read many times, this comes back to the write once, read many times use case that the Jamstack is great at.

1.5.3 Having user-specific web pages

 There are websites where the developers personalize each page for the user. This data is different because it’s based on the user ID. Therefore, it might not make sense to precompile. Most users might not log in. There is no public access to bots that can cause increased load. The whole concept of many reads and a single write for the data is false. An example of this would be a calendar application. Because each user’s calendar is different, it does not make sense to pre-generate everyone’s daily calendar.

1.5.4 When there is no data to compile

 Web apps are websites where the user is a creator and a consumer. For a document editor (think Google Docs), there is no data to present. In these cases, the Jamstack approach does not help.

 Note that the Jamstack is helpful in all the previous cases for building the static parts of the website. These include the Privacy Policy page and the Terms of Use page. Even the About Us page and the company blog can be built optimally using the Jamstack. These pages could be set up using the Jamstack approach, while a different stack can serve the rest of the website or web application.

 Exercise 1.3

 Which website from the following list would be best to build with the Jamstack?

 	
 A search engine

 	
 A shopping website

 	
 A social network

 	
 An image editor

1.6 Selecting the builder

 The Jamstack does not prescribe a specific technology. The developer is free to choose the technology of their liking to build the website. There is an extensive list of static site builders with various tradeoffs. These are made in different programming languages, provide integrations, and support many plugins.

 Jekyll, built in Ruby, is a popular static site builder that seamlessly integrates with GitHub Pages. GitHub can automatically deploy Jekyll-based websites from a repository without writing a custom build step. Many Hugo users started their journeys with Jekyll and moved to Hugo looking for better build performance.

 Hugo is among the fastest static site generators with a deep feature set. Hugo’s development team has focused on building a system that can render a complicated website with hundreds of pages in less than a second. Written in Go (Golang), Hugo comes as a single binary with all batteries included. With no plugins, the core team has standardized most of its features. This standardization allows building the elements with a lot of thought focusing on maintainability and performance. Its template language is a complete programming language that we can use to create anything. The documentation is well maintained, and the community is active in the forums. Many popular websites with millions of monthly users have Hugo as their generator. The core of Hugo is stable, and while it does rapidly evolve, it has compatibility with the older versions.

 There is a crop of popular JavaScript framework-based static site builders like Gatsby, Nuxt, and Next.js. These force you to follow their choices of how to write and use JavaScript. Frameworks like Next.js include features to build the API backend. If you are looking to develop a JavaScript-heavy application and agree with the decisions made by these frameworks, these might be great choices. Due to the nature of the JavaScript ecosystem, and the relatively small amount of time these frameworks have been in existence, expect some churn.

 There is another set of static site builders like Pelican in Python and mdBook in Rust. These are much smaller in feature sets and popularity. Use these if you are tied to a language and want to write custom features.

1.7 Why choose Hugo?

 Hugo is one of the oldest static site generators and has continued to rise in popularity over time. Its creator, Steve Francia, has extensive experience with CMS and technical writing needs. His background includes building a closed-source CMS (Supersite) that’s used by Major League Soccer and Priceline. He has deep experience with Magento and WordPress and has served on Drupal’s board of directors. He led the technical writing departments of both MongoDB and Docker. He took all of that experience, using the strengths of each of these systems, and channeled that into designing Hugo.

 Hugo lies at the sweet spot between a tool like WordPress, which is built primarily for a nontechnical audience, and Rails or Express.js, which provide the power to generate generic software but require ongoing maintenance. With Hugo, you get the flexibility of a custom theme with less maintenance than most other options and excellent performance. Hugo is for users who don’t mind getting their hands into the code and for those who need to have a life outside of their project.

 You are not alone

 Hugo is extremely popular in the industry. Websites like Bootstrap (https://getboot strap.com), Let’s Encrypt (https://letsencrypt.org), Smashing Magazine (https:// www.smashingmagazine.com), Netlify (https://www.netlify.com/), and 1Password Support (https://support.1password.com/) use Hugo at scale. Smashing Magazine migrated its website with thousands of pages from WordPress to Hugo because of Hugo’s performance and ease of use.

1.7.1 Hugo is fast

 Hugo is the fastest feature-rich static site builder available. While we may not appreciate this when starting a project, this is extremely important in our day-to-day lives. Waiting for compilation or refreshes is a significant reason for developer frustration and can mean a project’s death if it’s a hobby. Performance becomes even more critical when technology modifications force us to go through a substantial change in our website template. For example, the advent of mobile devices brought death to many WordPress themes, where updating every aspect was so painful that developers gave up. Moreover, a Hugo-based website continues to provide a respectable development performance even with a decade worth of content. A Hugo-based website’s facelift or rewrite is easier and more enjoyable than with any slower framework.

 Hugo and the Go language

 One concern people have is that adopting Hugo means learning the Go language. While this is true for other static site generators written in scripting languages, this is not true for Go-based applications. There is no need to learn Go or to understand how it works to be successful with Hugo. Just like people don’t need to learn C++ to use Windows or Photoshop, Hugo does not require any Go programming knowledge. This book does not have a single line of Go code. The Go programming language has built-in support for concurrency. Writing code with parallel execution is easier in Go than in many other programming languages used to build website generators. Hugo benefits immensely from Go’s speed without additional complexity.

 Hugo’s users use the Go template language, which, despite the name, is a different language from Go itself. It allows us to write anything we want, including modules and functions, without dealing with a lot of complexity with multithreaded code. You may not even need the Go template language if you don’t plan to write a custom theme or a shortcode. You can write content in a markup language and pick a theme off the shelf to build your website.

 Most other Jamstack-based website builders have a single-threaded, sequential-flow source language. This approach allows them to have plugins, but you pay massively in the form of performance. With the most significant features available in Hugo, there is no need to compromise on build performance and developer experience with a slow framework.

 Go is among the newer languages (publicly released in 2009), but it has broken into mainstream development. It is a top-10 language in terms of adoption. Major projects including Docker and Kubernetes are written in Go. Also, most of the cloud is written in Go, including AWS, Azure, and Google Cloud Platform (GCP). Major enterprises including Google, American Express, and Dropbox use Go extensively.

 Conveniently, Hugo’s creator, Steve Francia, also serves as the product and strategy lead for the Go programming language at Google. Consequently, Hugo is a project that is well understood by the Go team. It influences the programming language itself and can adopt the best of its features.

1.7.2 Hugo is stable

 The core features of Hugo have been supported for a long time and are not likely to break. Any new additions make sure that these features are not disturbed and continue to work as-is. In the early days of Hugo, development moved slowly as the team focused on getting the architecture right. This approach has paid off. Hugo is flexible and extensible to new features, and most releases do not break the thousands of websites built with it.

 The Hugo development team believes in the continuous evolution of Hugo while maintaining backward compatibility. Hugo attempts to be backward-compatible across releases and guides us in upgrading if something needs to change. If you pick an old theme and get the latest version of Hugo, you might get some warnings, but most of it should continue to work.

1.7.3 Hugo is built for performance

 The Hugo community has a tendency to look for performance gains in everything they do. There is a lot of advice on improving your website’s performance in easy-to-do steps in the community forums. If you find a random script from the internet for doing something with Hugo, there is a high likelihood that its author has optimized it for performance.

 The core performance of Hugo also impacts its output. The performance primitives are available for other uses. Developers can learn from the approach that Hugo uses for optimizing their workflows.

1.7.4 Hugo is self-contained

 A plugin-heavy system appears to provide a lot of flexibility and capabilities until maintenance rolls around. Your site can get into a bad state even if one plugin is abandoned while the framework is being actively maintained! Plugin abandonment has been a classic problem with frameworks like Rails, where each major version became a massive pain for migrating all the plugins. We can see the same in the ecosystems like Backbone and Angular, where there are many stale plugins. Even Jekyll, which is extremely popular and actively maintained, has a considerable problem of plugin rot.

 Being self-contained has allowed Hugo to bypass issues that have plagued other projects. The core team has standardized optimal approaches to perform tasks that are available natively. The Hugo team has optimized Hugo without needing lower-level API compatibility. They continue to write complicated multithreaded logic for the standardized workflows to eke out the few extra milliseconds that their users can spend elsewhere. Hugo’s users get a lot more support than they would from the plugin authors and have less fear of abandoning their core workflows.

 Being self-contained does not mean Hugo is not extensible. The Go template language is potent, and users can share snippets of code as modules that can be reused and that can perform complicated logic using this language.

1.7.5 Hugo is a single file

 Hugo packages all its core dependencies and resources in to a single executable file. A single file makes downloading Hugo, transferring it to another machine, and backing it up extremely simple. In systems where each file has a lot of scrutiny due to security concerns, a single binary file with no other dependencies shines. Developers can merge the Hugo binary with their source code to use it in a restricted environment. With a single file taking care of everything, there are no dependencies to update and no build systems to manage. The full web stack with custom APIs can be built with a handful of dependencies. This freedom is in stark contrast to JavaScript-based static site builders, which have hundreds of dependencies, each of which might need to be vetted by a security team for usage in an enterprise environment.

1.7.6 Hugo can be extremely low maintenance

 With fewer moving parts (plugins and operating system dependencies), a tiny installation footprint, no database, and no complicated hosting steps, the maintenance churn with Hugo can be a lot less than with other web development approaches. Each dependency needs to be maintained. You can get a compelling website with low maintenance with just Hugo and a hosting provider. While Hugo has had updates where backward compatibility has broken (for valid performance, extensibility, and maintainability reasons), you are free to take the updates when you have time, and you do not have to fix arcane plugins. We cannot say this about most other ecosystems in the web development world.

1.7.7 Hugo can save you from analysis paralysis

 Hugo is opinionated and built with a lot of techniques to get up and running quickly. While the powerful template system allows you to roll out a custom solution to a problem, the Hugo team has already solved the most common ones. Hugo has generic implementations for pagination, categorizing content into unlimited types of categories, and getting core website elements like menus. Getting up and running is easy with Hugo because there is a well-documented and widespread approach to solving most problems readily available.

1.7.8 Hugo is powerful

 Despite being opinionated, Hugo is versatile. The Go template language that Hugo extends is powerful and flexible. This power provides the ability for developers to write proper programs with Hugo. The standard library provided by Hugo is enormous and growing. It comes with outstanding performance right from the start. Even if you write terrible code, the core performance of the built-in functions ensures a relatively good performance for the website’s compilation. With access to APIs during website generation, Hugo provides a lot of power without losing the generated output’s performance.

 You can write functions anywhere in your website with Hugo, including while developing content (as custom shortcodes embedded in the markup) to do some special processing. You can encapsulate that into something that you can reuse or leave as one-time snippets of code on specific pages.

 Hugo has lots of web development primitives. Still, not using them does not seem like fighting the framework. If you don’t want to use a feature provided by Hugo and build your own using the template language, the experience with the rest of Hugo does not deteriorate. Hugo provides good support for interacting with APIs and JavaScript that can provide extensibility and dynamicity where needed.

1.7.9 Hugo is scalable

 Hugo already caters to websites with multilingual content, having thousands of pages and millions of monthly active users. Hugo has a proven record of handling the scale of some of the biggest and most heavily used websites on the internet. There are already enough primitives and capabilities to scale the Hugo-based website from a developer to a team. Hugo supports a wide variety of input and output formats. It has various features to enable the automation of the day-to-day work for a nontechnical member of the team.

1.7.10 Hugo is a community project

 A community of volunteers maintains Hugo with no commercial interest in the project. This voluntary nature allows for the direction of the project to be in the community’s best interest. Hugo cannot pivot, get acquired, or shut down at the whim of a corporation.

 [image: CH01_F05_Jain]

 Figure 1.5 DevOps and the Jamstack: Alex, the web developer, talks to Bob, who works as a system/IT admin. Bob convinced management to use a cloud-based solution with the existing technology and drop the investigation into the Jamstack.

1.8 Is speed really important?

 We cannot emphasize enough the importance of build performance. Hugo employs many techniques to speed up build times, like having a multithreaded core with support for caching at all layers to prevent as much rework as possible. Speed frees the developer from the burden of waiting for the build to complete after every small change.

 If you launch Hugo in watch mode (a special mode for development), the website comes up in less than a second. It reloads with your edits without having to go through the entire step of setting up fancy hot module replacements for live reloads. This feature is not just for the themes but for the whole of the website! We get the flexibility to edit the website in the 5 minutes that we might have between other chores. In other frameworks, getting up and ready is in itself a task.

 Because you don’t need to recompile your site after changes, the developer can make changes or experiment and see results quickly. The same is the case with data entry. A significant burden with static site builders and slow build times is that committing data is something that the content writer needs to plan for because getting up and running itself can take time. The flexibility of WordPress and the performance of the Jamstack are not either/or with a framework like Hugo.

 With performance at Hugo’s core and all the primitives exposed, as a developer you start to rethink your website-building strategy. Does this code need to go into JavaScript that has to run on every one of the billion customer machines that visit this page, or can we write this so it runs once and saves the results as SVGs or precomputed HTML so that our customers don’t have to re-execute? These minor tweaks while building go a long way in improving the website’s performance.

 Exercise 1.4

 Hugo is built using which programming language?

1.9 What can we build with Hugo?

 The Jamstack is a versatile concept, and we can apply it to a variety of problems. Hugo has been a poster child for the success of the Jamstack with its ability to handle scale. Hugo shines when information flows from the server to the client, then the users can focus on consumption rather than creation. This approach fits the traditional definition of publishing, where content creators provide content via a medium like the web to consumers. The following sections introduce us to the things that Hugo specializes in.

1.9.1 Personal websites and blogs

 Hugo is well suited for getting up and running with a personal website. Big goals for personal websites are low maintenance, low costs, and the flexibility to showcase your tastes. Throughout this book, you will see how we can build something with little supervision, almost free hosting, and enough flexibility to customize as much as you desire. You get outstanding performance, the ability to update when and where you want, full SEO support, and a quick start.

 You can pick up any publicly available Hugo theme to get started and be up and running with a decent website in minutes. (You will be surprised at how many features are available without any customization.) Once there, it is straightforward to fork the theme and start customizing it to leave your unique impression on the internet.

1.9.2 Nontechnology business websites

 Hugo scales to teams updating content in parallel without any problem. Businesses whose core competencies do not include building websites need something easy to maintain, with low cost, and outstanding performance. They also want flexibility and control. Hugo ticks all of these boxes. It is well thought out and easy to understand for any vendor team. Hugo provides few places where a developer could write harmful code that would slow down the website. The entire mechanism is flexible enough to add the one custom page that the business needs immediately without going through and ripping apart the whole website.

 With the JavaScript and API layer of the Jamstack, you can extend Hugo websites to provide features reserved for dynamic websites updating on the fly. You will see in this book how we can build low-cost, low-maintenance features like shopping carts while statically managing the rest of the website.

1.9.3 Documentation websites

 Hugo has excellent support for reading structured data from a CSV or JSON files and then creating a website from those, and you can still apply custom themes! It has built-in support for syntax highlighting and can scale to a large number of pages quickly. These make it well suited to write custom websites that can read from the API docs and prepare a neatly formatted version from the specification.

1.9.4 Hybrid Jamstack-based websites

 All websites have pages for displaying content. These pages include, for example, a privacy policy, a generic About Us page, a blog, a product listing page, and a newsroom where the company releases press statements. Hugo and the Jamstack can help keep that content running at a low cost with high availability and good performance. The server technology-based pages can be delivered separately or can be built-in JavaScript, communicating with the servers using APIs exposed by them.

 Exercise 1.5

 True or False: Hugo-based websites require the full setup to be present locally to write content.

1.10 Cases that don’t map to Hugo

 Like all tools, Hugo has its use cases. Apart from all the Jamstack limitations that apply to any of the Jamstack frameworks, we need to understand that Hugo’s focus is on the markup portion of the Jamstack only. While Hugo provides the fastest available JavaScript bundler and has good support for the npm ecosystem, it takes a hands-off approach to the JavaScript and the API layers of the Jamstack. If you want to build a tool which requires a lot of JavaScript to intermingle with the static pages, or you want to have an API that shares code with the website template, Hugo’s approach of having these pieces independent falls short.

 Hugo might not be optimal when we need some functionality that Hugo does not have, and we cannot achieve that with an API. Hugo keeps its core inaccessible to the templates and modules to maintain its flexibility and to keep its performance intact. Hugo is likely not the right choice for developers wanting to build a customized static site builder with lots of plugins catering to an uncommon use case. For example, if we need to interact with the SOAP or FTP protocols at compile time, that may not be possible with Hugo (as of v0.91.2).

1.11 How to be successful with Hugo and this book

 In this book, we will build the website for Acme Corporation, a leading manufacturer of digital shapes. The website will have regular company pages, a blog with support for dynamic comments and searches, a JavaScript-based shape editor, and a storefront to purchase your shapes delivered over email. The final version of the website that we will build in this book is hosted at https://chapter-13-09.hugoinaction.com/.

 We will start with the markup layer of the Jamstack, which Hugo excels in. We will talk about creating and organizing markup-based documents in a Hugo website, how to use those to render web pages, creating themes that share the web templates, and how to use modules to create reusable content and template code. In the second part of the book, we will delve into Hugo’s support for the JavaScript and API portions of the Jamstack. We will see how to call APIs at compile time and run time, build simple Jamstack-based APIs, and use JavaScript to enhance the user experience. We will also compile and bundle a complex JavaScript application with a Hugo-based website.

 To succeed with this book, you need a machine with a modern operating system, access to the internet, a web browser, and an understanding of tools and programming languages familiar to a web developer. These include HTML, CSS, JavaScript, Git, GitHub, any template engine such as Mustache, Jade, or Embedded Ruby (ERB), and optionally npm. The code samples are all available on GitHub and hosted at https://hugoinaction.com. We recommended using the diff between the various files to compare the changes done locally to those present in the code samples.

 Exercise 1.6

 Hugo works on the _______ layer of the Jamstack.

Summary

 	
 Jamstack is an approach to web development where most content is stored along with the theme as files and compiled into the website during deployment.

 	
 The static content in Jamstack is written in a markup language, which compiles to HTML. The dynamic pieces are available in the form of APIs accessed via JavaScript.

 	
 The Jamstack architecture provides massive savings in cost, operations, and maintenance. We also get a fast website.

 	
 Hugo is a framework to help build these so-called static websites, which provide outstanding build performance, and Hugo is available as a single binary.

 	
 Hugo meets the promise of low ongoing maintenance and a great developer experience, and it scales to a large team.

 	
 Hugo especially shines at places where the information flow is from the server to the client, such as personal or company websites, news posts, blogs, documentation, and so forth.

 	
 For places where the information flow is from the client to the server or personalized based on the user, Hugo follows the Jamstack approach. The JavaScript layer is responsible for communicating with the servers over an API.

