

 Effective Unit Testing:

 An administrative guide for Java Developers

 Lasse Koskela

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 	[image:]

 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	Manning Publications Co.

 	Development editor:

 	Frank Pohlman

 	20 Baldwin Road

 	Copyeditor:

 	Benjamin Berg

 	PO Box 261

 	Technical proofreader:

 	Phil Hanna

 	

 	Shelter Island, NY 11964

 	Proofreader:

 	Elizabeth Martin

 	

 	

 	Typesetter:

 	Dottie Marsico

 	

 	

 	Cover designer:

 	Marija Tudor

 ISBN 9781935182573

 Printed in the United States of America

 4 5 6 7 8 9 10 – SP – 18

Dedication

 	Few sights are as captivating as the pure joy of learning new things.

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Foundations

 Chapter 1. The promise of good tests

 Chapter 2. In search of good

 Chapter 3. Test doubles

 2. Catalog

 Chapter 4. Readability

 Chapter 5. Maintainability

 Chapter 6. Trustworthiness

 3. Diversions

 Chapter 7. Testable design

 Chapter 8. Writing tests in other JVM languages

 Chapter 9. Speeding up test execution

 Appendix A. JUnit primer

 Appendix B. Extending JUnit

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Foundations

 Chapter 1. The promise of good tests

 1.1. State of the union: writing better tests

 1.2. The value of having tests

 1.2.1. Factors of productivity

 1.2.2. The curve of design potential

 1.3. Tests as a design tool

 1.3.1. Test-driven development

 1.3.2. Behavior-driven development

 1.4. Summary

 Chapter 2. In search of good

 2.1. Readable code is maintainable code

 2.2. Structure helps make sense of things

 2.3. It’s not good if it’s testing the wrong things

 2.4. Independent tests run easily in solitude

 2.5. Reliable tests are reliable

 2.6. Every trade has its tools and tests are no exception

 2.7. Summary

 Chapter 3. Test doubles

 3.1. The power of a test double

 3.1.1. Isolating the code under test

 3.1.2. Speeding up test execution

 3.1.3. Making execution deterministic

 3.1.4. Simulating special conditions

 3.1.5. Exposing hidden information

 3.2. Types of test doubles

 3.2.1. Test stubs are unusually short things

 3.2.2. Fake objects do it without side effects

 3.2.3. Test spies steal your secrets

 3.2.4. Mock objects object to surprises

 3.3. Guidelines for using test doubles

 3.3.1. Pick the right double for the test

 3.3.2. Arrange, act, assert

 3.3.3. Check for behavior, not implementation

 3.3.4. Choose your tools

 3.3.5. Inject your dependencies

 3.4. Summary

 2. Catalog

 Chapter 4. Readability

 4.1. Primitive assertions

 4.1.1. Example

 4.1.2. What to do about it?

 4.1.3. Summary

 4.2. Hyperassertions

 4.2.1. Example

 4.2.2. What to do about it?

 4.2.3. Summary

 4.3. Bitwise assertions

 4.3.1. Example

 4.3.2. What to do about it?

 4.3.3. Summary

 4.4. Incidental details

 4.4.1. Example

 4.4.2. What to do about it?

 4.4.3. Summary

 4.5. Split personality

 4.5.1. Example

 4.5.2. What to do about it?

 4.5.3. Summary

 4.6. Split logic

 4.6.1. Example

 4.6.2. What to do about it?

 4.6.3. Summary

 4.7. Magic numbers

 4.7.1. Example

 4.7.2. What to do about it?

 4.7.3. Summary

 4.8. Setup sermon

 4.8.1. Example

 4.8.2. What to do about it?

 4.8.3. Summary

 4.9. Overprotective tests

 4.9.1. Example

 4.9.2. What to do about it?

 4.9.3. Summary

 4.10. Summary

 Chapter 5. Maintainability

 5.1. Duplication

 5.1.1. Example

 5.1.2. What to do about it?

 5.1.3. Summary

 5.2. Conditional logic

 5.2.1. Example

 5.2.2. What to do about it?

 5.2.3. Summary

 5.3. Flaky test

 5.3.1. Example

 5.3.2. What to do about it?

 5.3.3. Summary

 5.4. Crippling file path

 5.4.1. Example

 5.4.2. What to do about it?

 5.4.3. Summary

 5.5. Persistent temp files

 5.5.1. Example

 5.5.2. What to do about it?

 5.5.3. Summary

 5.6. Sleeping snail

 5.6.1. Example

 5.6.2. What to do about it?

 5.6.3. Summary

 5.7. Pixel perfection

 5.7.1. Example

 5.7.2. What to do about it?

 5.7.3. Summary

 5.8. Parameterized mess

 5.8.1. Example

 5.8.2. What to do about it?

 5.8.3. Summary

 5.9. Lack of cohesion in methods

 5.9.1. Example

 5.9.2. What to do about it?

 5.9.3. Summary

 5.10. Summary

 Chapter 6. Trustworthiness

 6.1. Commented-out tests

 6.1.1. Example

 6.1.2. What to do about it?

 6.1.3. Summary

 6.2. Misleading comments

 6.2.1. Example

 6.2.2. What to do about it?

 6.2.3. Summary

 6.3. Never-failing tests

 6.3.1. Example

 6.3.2. What to do about it?

 6.3.3. Summary

 6.4. Shallow promises

 6.4.1. Example(s)

 6.4.2. What to do about it?

 6.4.3. Summary

 6.5. Lowered expectations

 6.5.1. Example

 6.5.2. What to do about it?

 6.5.3. Summary

 6.6. Platform prejudice

 6.6.1. Example

 6.6.2. What to do about it?

 6.6.3. Summary

 6.7. Conditional tests

 6.7.1. Example

 6.7.2. What to do about it?

 6.7.3. Summary

 6.8. Summary

 3. Diversions

 Chapter 7. Testable design

 7.1. What’s testable design?

 7.1.1. Modular design

 7.1.2. SOLID design principles

 7.1.3. Modular design in context

 7.1.4. Test-driving toward modular design

 7.2. Testability issues

 7.2.1. Can’t instantiate a class

 7.2.2. Can’t invoke a method

 7.2.3. Can’t observe the outcome

 7.2.4. Can’t substitute a collaborator

 7.2.5. Can’t override a method

 7.3. Guidelines for testable design

 7.3.1. Avoid complex private methods

 7.3.2. Avoid final methods

 7.3.3. Avoid static methods

 7.3.4. Use new with care

 7.3.5. Avoid logic in constructors

 7.3.6. Avoid the Singleton

 7.3.7. Favor composition over inheritance

 7.3.8. Wrap external libraries

 7.3.9. Avoid service lookups

 7.4. Summary

 Chapter 8. Writing tests in other JVM languages

 8.1. The premise of mixing JVM languages

 8.1.1. General benefits

 8.1.2. Writing tests

 8.2. Writing unit tests with Groovy

 8.2.1. Simplified setup for tests

 8.2.2. Groovier JUnit 4 tests

 8.3. Expressive power with BDD tools

 8.3.1. Groovy specs with easyb

 8.3.2. Spock Framework: steroids for writing more expressive tests

 8.3.3. Spock Framework’s test doubles are on steroids, too

 8.4. Summary

 Chapter 9. Speeding up test execution

 9.1. Looking for a speed-up

 9.1.1. The need for speed

 9.1.2. Approaching the situation

 9.1.3. Profiling a build

 9.1.4. Profiling tests

 9.2. Speeding up test code

 9.2.1. Don’t sleep unless you’re tired

 9.2.2. Beware the bloated base class

 9.2.3. Watch out for redundant setup and teardown

 9.2.4. Be picky about who you invite to your test

 9.2.5. Stay local, stay fast

 9.2.6. Resist the temptation to hit the database

 9.2.7. There’s no slower I/O than file I/O

 9.3. Speeding up the build

 9.3.1. Faster I/O with a RAM disk

 9.3.2. Parallelizing the build

 9.3.3. Offload to a higher-powered CPU

 9.3.4. Distribute the build

 9.4. Summary

 Appendix A. JUnit primer

 A.1. A basic JUnit test class

 A.1.1. Declaring test methods

 A.1.2. JUnit test lifecycle

 A.1.3. Test setup and teardown

 A.2. JUnit assertions

 A.2.1. Asserting that an exception is thrown

 A.2.2. assertThat() and Hamcrest matchers

 Appendix B. Extending JUnit

 B.1. Controlling test execution with runners

 B.2. Decorating tests with rules

 B.3. Built-in rules

 B.3.1. Setting a global timeout

 B.3.2. Expected exceptions

 B.3.3. Temporary folders

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 On the night of June 10, 2009, I found an email in my inbox from Christina Rudloff from Manning, asking me if I knew anyone who might be a good candidate to write a Java edition of Roy Osherove’s book, The Art of Unit Testing in .NET. I told her I’d do it.

 That was a long time ago and what you’re looking at right now has very little in common with Roy’s book. Let me explain.

 The project started as a straight translation from .NET to Java, only rewriting where necessary to match the changing technology platform, its tooling, and its audience. I finished the first chapter, the second chapter, the third chapter, and suddenly I found myself rewriting not just short passages but entire chapters. The tone of voice wasn’t mine; sometimes I would disagree or have preferences incompatible with Roy’s, and sometimes I simply felt strongly about saying something, setting things straight, and putting a stake into the ground.

 Eventually, I decided to start over.

 It was clear that we were not in a translation project. This was a brand new title of its own—a book that helps a Java programmer improve his tests, gaining a deeper insight into what makes a test good and what kind of pitfalls to look out for. You can still see Roy’s thinking in many ways in this book. For instance, the chapter titles of the catalog in part 2 I’ve blatantly borrowed from Roy and chapter 7 was written largely thanks to Roy’s counterpart in The Art of Unit Testing in .NET.

 This is a book for the Java programmer. Yet, I didn’t want to straitjacket the ideas in this book artificially, so I tried to steer away from being too language-specific even though all of the code examples in the pattern catalog, for example, are Java. Writing good tests is a language-agnostic problem and I heartily recommend you read this book thoughtfully, even if you happen to spend most of your office hours hacking on another programming language.

 Along those same lines, I didn’t want to give you a tutorial on JUnit or my favorite mock object library. Aside from such technology being a constantly changing landscape and bound to become stale information within months of publication, I wanted to write the kind of book that I would want to read. I like focused books that don’t force me to lug around dead weight about a testing framework I already know by heart or a mock object library I don’t use. For these reasons, I’ve tried to minimize the amount of technology-specific advice. There is some but I want you to know that I’ve done my best to keep it to a minimum—just enough to have meaningful conversations about the underlying concepts that I find essential in writing, running, maintaining, and improving tests.

 I tried to write the book I would’ve wanted to read. I hope you will enjoy it and, most importantly, integrate some of these ideas into your own practice.

Acknowledgments

 When I signed up to write this book I thought it’d be a short project. Everything was supposed to be straightforward with no wildcards in sight. I should’ve known better. My wishful thinking was shattered as weeks turned to months and months turned to years. Without the help of many, many people this book would definitely not be in your hands and most likely it’d still be a work-in-progress.

 From the moment this project was initiated in a casual email exchange with Manning Publication’s Christina Rudloff, a massive amount of help has poured in and all of it has been very much appreciated—and needed.

 I’d like to thank the team at Manning for their support and persistence. In no specific order, Michael Stephens, Elle Suzuki, Steven Hong, Nick Chase, Karen Tegtmeyer, Sebastian Stirling, Candace M. Gillhoolley, Maureen Spencer, Ozren Harlovic, Frank Pohlmann, Benjamin Berg, Elizabeth Martin, Dottie Marsico, Janet Vail, and Mary Piergies.

 A special thanks goes to the fine individuals that served as domain experts or reviewers and contributed their time to put their specific experience and expertise to improving this book. Again, in no specific order, I’d like to extend my most sincere gratitude to Jeremy Anderson, Christopher Bartling, Jedidja Bourgeois, Kevin Con-away, Roger Cornejo, Frank Crow, Chad Davis, Gordon Dickens, Martyn Fletcher, Paul Holser, Andy Kirsch, Antti Koivisto, Paul Kronquist, Teppo Kurki, Franco Lombardo, Saicharan Manga, Dave Nicolette, Gabor Paller, J. B. Rainsberger, Joonas Reynders, Adam Taft, Federico Tomassetti, Jacob Tomaw, Bas Vodde, Deepak Vohra, Rick Wagner, Doug Warren, James Warren, Robert Wenner, Michael Williams, and Scott Sauyet. Special thanks to Phil Hanna for his technical review of the manuscript just before it went into production.

 And last, but definitely not least, I’d like to thank my family for their continued support. I imagine it has at times felt like a never-ending endeavor to get this book to print. Thank you for understanding all of those late nights with a computer on my lap and for carrying me through the rough spots.

About this Book

 Developer testing has been increasing its mindshare significantly among Java developers over the past 10 years or so. Today, no computer science student graduates without having at least read about automated unit tests and their importance in software development. The idea is simple—to ensure that our code works and keeps working—but the skill takes significant effort to learn.

 Some of that effort goes to simply writing tests and learning the technology such as a test framework like JUnit. Some of that effort (and quite possibly most of it) that’s required for truly mastering the practice of writing automated unit tests goes to reading test code and improving it. This constant refactoring of tests—trying out different ways of expressing your intent, structuring tests for various aspects of behavior, or building the various objects used by those tests—is our pragmatic way of teaching ourselves and developing our sense for unit tests.

 That sense is as much about what good unit tests are like as it is about what not-so-good unit tests are like. There may be some absolute truths involved (such as that a code comment repeating exactly what the code says is redundant and should be removed) but the vast majority of the collective body of knowledge about unit tests is highly context-sensitive. What is generally considered good might be a terrible idea in a specific situation. Similarly, what is generally a bad idea and should be avoided can sometimes be just the right thing to do.

 It turns out that often the best way to find your way to a good solution is to try one approach that seems viable, identify the issues with that approach, and change the approach to remove the icky parts. By repeating this process of constantly evaluating and evolving what you have, eventually you reach a solution that works and doesn’t smell all that bad. You might even say that it’s a pretty good approach!

 With this complexity in mind, we’ve adopted a style and structure for this book where we don’t just tell you what to do and how to write unit tests. Instead, we aim to give you a solid foundation on what kind of properties we want our tests to exhibit (and why) and then give you as many concrete examples as we can to help you develop your sense for test smells—to help you notice when something about your test seems to be out of place.

Audience

 This book is aimed at Java programmers of all experience levels who are looking to improve the quality of the unit tests they write. While we do provide appendices that teach you about a test framework (JUnit), our primary goal is to help Java programmers who already know how to write unit tests with their test framework of choice to write better unit tests. Regardless of how many unit tests you’ve written so far, we’re certain that you can still get better at it, and reading a book like this might be just what you need to stimulate a line of thought that you’ve struggled to put into words.

Roadmap

 Effective Unit Testing takes on a multifaceted challenge that calls for a structure that supports each of those facets. In our wisdom (gained through several iterations of failed attempts) we’ve decided to divide this book into three parts.

 Part 1 begins our journey toward better tests by introducing what we’re trying to achieve and why those goals should be considered desirable in the first place. These three chapters present the fundamental tools and simple guidelines for writing a good test.

 Chapter 1 starts off with the value proposition of automated unit tests. We establish the value by considering the many things that factor into our productivity as programmers and how well-written automated unit tests contribute to that productivity or prevent things from dragging us down.

 Chapter 2 sets the bar high and attempts to define what makes a test good. The properties and considerations in this chapter serve as the core foundation for part 2, touching on how we want our tests to be readable, maintainable, and reliable.

 Chapter 3 steps out of the line for a moment to introduce test doubles as an essential tool for writing good tests. It’s not really using test doubles that we’re after but rather using them well and with consideration. (They’re not a silver bullet in case you were wondering.)

 Part 2 turns the tables and offers a stark contrast to part 1 in its approach, presenting a catalog of test smells you should watch for. Along with describing a suspect pattern in test code we’ll suggest solutions to try when you encounter such a smell. The chapters in this part are divided into three themes: smells that suggest degraded readability, smells that indicate a potential maintenance nightmare, and smells that reek of trust issues. Many of the smells in part 2 could be featured in any of these three chapters, but we’ve tried to arrange them according to their primary impact.

 Chapter 4 focuses on test smells that are primarily related to the intent or implementation of a test being unnecessarily opaque. We touch on things like illegible assertions, inappropriate levels of abstraction, and information scatter within our test code.

 Chapter 5 walks through test smells that might lead to late nights at the office, because it takes forever to update one mess of a unit test related to a small change or because making that small change means we need to change a hundred tests. We take on code duplication and logic in our test code and we expound on the horrors of touching the filesystem. And it’s not like we’re giving a free pass to slow tests either because time is money.

 Chapter 6 concludes our catalog of test smells with a sequence of gotchas around assumptions. Some of these assumptions are made because there’s an inconvenient comment in our test code and some are the unfortunate products of a failure to express ourselves unambiguously.

 Part 3 could have been called “advanced topics.” It’s not, however, because the topics covered here don’t necessarily build on parts 1 or 2. Rather, these are topics that a Java programmer might stumble onto at any point on his or her test-writing journey. After all, almost everything about “good” unit tests is context-sensitive so it’s not surprising that a pressing topic for one programmer is a minor consideration for another, whether it’s about inheritance between unit test classes, about the programming language we use for writing tests, or about the way our build infrastructure executes the tests we’ve written.

 Chapter 7 picks up on where chapter 2 left off, exploring what constitutes testable design. After a brief overview of useful principles and clarifying how we are essentially looking for modular designs, we study the fundamental testability issues that untestable designs throw our way. The chapter concludes with a set of simple guidelines to keep us on the righteous path of testable design.

 Chapter 8 throws a curveball by posing the question, what if we’d write our unit tests in a programming language other than Java? The Java Virtual Machine allows the modern programmer to apply a number of alternative programming languages and integrate it all with plain Java code.

 Chapter 9 returns to common reality by taking on the challenge of dealing with increasingly slow build times and delayed test results. We look for solutions both within our test code, considering ways of speeding up the code that’s being run as part of our build, and in our infrastructure, pondering whether we could get that extra bit of oomph from faster hardware or from a different way of allocating work to the existing hardware.

 Despite JUnit’s popularity and status as the de facto unit test framework within the Java community, not all Java programmers are familiar with this great little open source library. We’ve included two appendices to help those individuals and programmers who haven’t squeezed all the horsepower out of JUnit’s more advanced features.

 Appendix A offers a brief introduction to writing tests with JUnit and how JUnit pokes and prods those tests when you tell it to run them. After skimming through this appendix you’ll be more than capable of writing tests and making assertions with JUnit’s API.

 Appendix B takes a deeper dive into the JUnit API with the goal of extending its built-in functionality. While not trying to cover everything about JUnit to the last bit of detail, we’ve chosen to give you a brief overview of the two common ways of extending JUnit—rules and runners—and devote this appendix to showcasing some of the built-in rules that are not only useful, but also give you an idea of what you can do with your custom extensions.

Code conventions

 The code examples presented in this book consist of Java source code as well as a host of markup languages and output listings. We present the longer pieces of code as listings with their own headers. Smaller bits of code are run inline with the text. In all cases, we present the code using a monospaced font like this, to differentiate it from the rest of the text. We frequently refer to elements in code listings taken from the text. Such references are also presented using a monospaced font, to make them stand out. Many longer listings have numbered annotations that we refer to in the text.

Code downloads

 The Manning website page for this book at www.manning.com/EffectiveUnitTesting offers a source code package you can download to your computer. This includes selected parts of the source code shown in the book, should you want to take things further from where we left off.

 The download includes an Apache Maven 2 POM file and instructions for installing and using Maven (http://maven.apache.org) to compile and run the examples. Note that the download doesn’t include the various dependencies, and you need to have an internet connection when running the Maven build for the first time—Maven will then download all the required dependencies from the internet. After that, you’re free to disconnect and play with the examples offline.

 The code examples were written against Java 6, so you’ll need to have that installed in order to compile and run the examples. You can download a suitable Java environment from www.oracle.com. (To compile the code, you’ll need to download the JDK, not the JRE.)

 We recommend installing a proper IDE as well. You may want to download and install the latest and greatest version of Eclipse (www.eclipse.org) or another mainstream tool like IntelliJ IDEA (www.jetbrains.com) or NetBeans (www.netbeans.org). All of these should work fine as long as you’re familiar with the tool.

What’s next?

 This book should give you enough insight to start visibly improving your unit tests. It’s going to be a long journey, and there’s bound to be a question or two that we haven’t managed to predict or answer in full. Fortunately, you’ll have plenty of peers on this journey and many of them will be more than happy to share and discuss the nuances of test code online.

 Manning has set up an online forum where you can talk to the authors of Manning titles. That includes the book you’re reading right now so head over to the Author Online forum for this book at www.manning.com/EffectiveUnitTesting.

 There’s also an active community of test-infected programmers over at the testdrivendevelopment and extremeprogramming Yahoo! Groups. While these forums aren’t exclusively for discussions about unit tests, they are excellent places for holding those discussions. Besides, maybe you’ll manage to pick up some new ideas outside of test code, too.

 If you’re looking for a more focused forum for having discussions about developer testing, head over to the CodeRanch at http://www.coderanch.com and the excellent Testing forum. Again, a lovely group of very helpful people over there.

 Most importantly, however, I suggest that you actively talk about your test code with your peers at work. Some of the best insights I’ve had about my code have been through having someone else look at it on the spot.

Author Online

 Purchase of Effective Unit Testing includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to http://www.manning.com/EffectiveUnitTesting. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 About the Cover Illustration

 The figure on the cover of Effective Unit Testing is captioned “A Man from Drnis, Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Drnis is a small town in inland Dalmatia, built on the ruins of an old medieval fortress. The figure on the cover is wearing blue woolen trousers and, over a white linen shirt, a blue woolen vest which is richly trimmed with the colorful embroidery typical for this region. He is carrying a long pipe and a burgundy jacket is slung over his shoulder. A red cap and leather moccasins complete the outfit.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

 Part 1. Foundations

 This first part of the book aims to give you, the reader, and me, the author, a shared context to build upon throughout the chapters. With the ultimate purpose of this book being to help you improve your ability to write good tests, chapter 1 begins with an overview of what kind of value we can extract from writing tests in the first place. Once we’ve discussed the dynamics of programmer productivity and the kind of impact that our tests—and the quality of our tests—can have on it, we’ll conclude the chapter with a brief introduction to two methods that are closely related to automated tests: test-driven development (TDD) and behavior-driven development (BDD).

 Chapter 2 takes on the challenge of defining what makes for a good test. In short, we’d like to write tests that are readable, maintainable, and reliable. Part 2 will go deeper into this rabbit hole by turning the question around and reviewing a collection of examples of what we don’t want to get.

 Part 1 concludes with chapter 3, which tackles one of the most essential tools in the modern programmer’s tool belt—test doubles. We’ll establish the legitimate uses of test doubles, such as isolating code so that it can be tested properly, and we’ll make a distinction between the types of test doubles we might reach out to. Finally, we’ll throw in guidelines for making good use of test doubles to help you get the benefits without stumbling on common pitfalls.

 After reading these first three chapters you should have a good idea of what kind of tests you want to write and why. You should also have a clear understanding of test doubles as a useful vehicle for getting there. The rest of this book will then build on this foundation and give you more ammunition for your journey in the real world.

 Chapter 1. The promise of good tests

 	

 In this chapter

 	
The value of having unit tests

 	How tests contribute to a programmer’s productivity

 	Using tests as a design tool

 	

 When I started getting paid for programming, the world looked a lot different. This was more than 10 years ago and people used simple text editors like Vim and Emacs instead of today’s integrated development environments like Eclipse, Net-Beans, and IDEA. I vividly remember a senior colleague wielding his Emacs macros to generate tons of calls to System.out.println as he was debugging our software. Even more vivid are my memories of deciphering the logs those printouts ended up in after a major customer had reported that their orders weren’t going through like they should.

 That was a time when “testing” for most programmers meant one of two things—the stuff that somebody else does after I’m done coding, or the way you run and poke your code before you say you’re done coding. And when a bug did slip through, you’d find yourself poking and prodding your code again—this time adding a few more logging statements to see if you could figure out where things went wrong.

 Automation was a state-of-the-art concept for us. We had makefiles to compile and package our code in a repeatable manner, but running automated tests as part of the build wasn’t quite in place. We did have various shell scripts that launched one or two “test classes”—small applications that operated our production code and printed what was happening and what our code was returning for what kind of input. We were far from the kind of standard testing frameworks and self-verifying tests that report all failures in our assertions.

 We’ve come a long way since those days.

1.1. State of the union: writing better tests

 Today, it’s widely recommended that developers write automated tests that fail the build when there are regressions. Furthermore, an increasing number of professionals is leaning on a test-first style of programming, using automated tests not for protecting against regression but for aiding them in design, specifying the behavior they expect from code before writing that code, thereby validating a design before verifying its implementation.

 Being a consultant, I get to see a lot of teams, organizations, products, and code bases. Looking at where we are today, it’s clear that automated tests have made their way into the mainstream. This is good because without such automated tests, most software projects would be in a far worse situation than they are today. Automated tests improve your productivity and enable you to gain and sustain development speed.

 	

 Help! I’m new to unit testing

 If you aren’t that familiar with writing automated tests, this would be a good time to get acquainted with that practice. Manning has released several books on JUnit, the de facto standard library for writing unit tests for Java, and the second edition of JUnit in Action (written by Petar Tahchiev, et al. and published in July 2010) is a good primer for writing tests for all kinds of Java code, from plain old Java objects to Enterprise JavaBeans.

 In case you’re at home with writing unit tests but you’re new to Java or JUnit, perhaps all you need to get the most out of this book is to first check out appendix A, so that you won’t have trouble reading the examples.

 	

 Automated tests being mainstream doesn’t mean that our test coverage is as high as it should be or that our productivity couldn’t improve. In fact, a significant part of my work in the last five years or so has revolved around helping people write tests, write tests before code, and especially write better tests.

 Why is it so important to write better tests? What’ll happen if we don’t pay attention to the quality of our tests? Let’s talk about what kind of value tests give us and why the quality of those tests matters.

1.2. The value of having tests

 Meet Marcus. Marcus is a prominent programming wiz who graduated two years ago and joined the IT group of a local investment bank, where he’s been developing the bank’s online self-service web application. Being the youngest member of the team, he kept a low profile at first and focused his energy on learning about the banking domain and getting to know “the way things are done here.”

 A few months on, Marcus started noticing that a lot of the team’s work was rework: fixing programmer mistakes.[1] He started paying attention to the types of mistakes the team was fixing and noticed that most of them would’ve been caught fairly easily by unit tests. Marcus started writing unit tests here and there when he felt that the code was particularly prone to having mistakes in it.

 1 For some reason, people referred to them as errors, defects, bugs, or issues.

 Tests help us catch mistakes.

 Time went on and the rest of the team was writing unit tests, too, here and there. Marcus had become test-infected and rarely left a piece of code that he touched without fairly good coverage from automated tests.[2] They weren’t spending any more time fixing errors than they had before, but for the first time, their total number of open defects was on the decline. The tests started having a clearly visible impact on the quality of the team’s work.

 2 The term test-infected was coined by Erich Gamma and Kent Beck in their 1998 Java Report article, “Test-Infected: Programmers Love Writing Tests.”

 Almost a year had passed since Marcus wrote the first test in their code base. On his way to the company Christmas party, Marcus realized how time had flown and started thinking back to the changes they’d seen. The team’s test coverage had grown quickly and had started stabilizing in the recent weeks and months, peaking at 98% branch coverage.

 For a while Marcus had thought that they should push that number all the way to 100%. But in the last couple of weeks, he’d more or less made up his mind—those missing tests wouldn’t give them much more value, and putting any more effort into writing tests wouldn’t yield additional benefit. A lot of the code that wasn’t covered with tests was there only because the APIs they used mandated the implementation of certain interfaces that Marcus’s team wasn’t using, so why test those empty method stubs?

 	

 100% Code Coverage Isn’t the Goal

 100% sure sounds better than, say, 95%, but the difference in how valuable those tests are to you may be negligible. It really depends on what kind of code isn’t covered by tests and whether the tests you have are able to highlight programming mistakes. Having 100% coverage doesn’t guarantee the lack of defects—it only guarantees that all of your code was executed, regardless of whether your application behaves like it should. So rather than obsessing about code coverage, focus your attention on making sure that the tests you do write are meaningful.

 	

 The team had reached the plateau—the flat part of the curve where additional investments have diminishing returns. In the local Java user group meetings, many teams had reported similar experiences and drawn sketches like figure 1.1.

 Figure 1.1. The more tests we have, the less value an additional test is likely to yield. The first tests we write most likely target some of the most crucial areas of the code base and as such tend to be high-value and high-risk. When we’ve written tests for almost everything, most likely the bits that are still lacking test coverage are the least crucial and least likely to break.

 [image:]

 What changed Marcus’s thinking was Sebastian, a senior software architect who’d previously consulted for the investment bank. Sebastian joined the self-service team and quickly became a mentor for the more junior team members, including Marcus. Sebastian was an old fox who seemed to have worked with almost every major programming language suitable for developing web applications. The effect Sebastian had on Marcus was the way he wrote unit tests.

 Marcus had formed a habit of back-filling unit tests for any code he’d written before checking it into the team’s version control system. But Sebastian’s style focused on starting with a test that would fail (obviously), writing enough code to make that test pass, and then writing another failing test. He’d work in this loop until he was done with the task.

 Working with Sebastian, Marcus had noticed how his own style of programming was starting to evolve. He’d structure his objects differently and his code looked somehow different, simply because he started looking at the design and behavior of his code from the caller’s perspective.

 Tests help us shape our design to actual use.

OEBPS/OEBPS/Images/manning.jpg

OEBPS/OEBPS/Images/01fig01.jpg
Value of tests

Effort and attention to writing tests.

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/infin.jpg

OEBPS/cover.jpeg
Effective

A guide for

J

ava developers

| | FTYTE Lasse KOSKELA

