

 [image: cover]

Arduino in Action

 Martin Evans, Joshua Noble, and Jordan Hochenbaum

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Photographs in this book were created by Martin Evans and Jordan Hochenbaum, unless otherwise noted. Illustrations were created
 by Martin Evans, Joshua Noble, and Jordan Hochenbaum. Fritzing (fritzing.org) was used to create some of the circuit diagrams.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditor: Andy Carroll
Proofreader: Katie Tennant
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617290244

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Hello Arduino

 Chapter 2. Digital input and output

 Chapter 3. Simple projects: input and output

 2. Putting Arduino to work

 Chapter 4. Extending Arduino

 Chapter 5. Arduino in motion

 Chapter 6. Object detection

 Chapter 7. LCD displays

 Chapter 8. Communications

 Chapter 9. Game on

 Chapter 10. Integrating the Arduino with iOS

 Chapter 11. Making wearables

 Chapter 12. Adding shields

 Chapter 13. Software integration

 Appendix A. Installing the Arduino IDE

 Appendix B. Coding primer

 Appendix C. Libraries

 Appendix D. Components list

 Appendix E. Useful links

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Hello Arduino

 1.1. A brief history of the Arduino

 1.2. The Arduino hardware

 1.2.1. Arduino Uno

 1.2.2. Arduino Duemilanove

 1.2.3. Arduino Ethernet

 1.2.4. Arduino Mega

 1.2.5. Other Arduino boards

 1.2.6. Attack of the clones

 1.2.7. Getting an Arduino

 1.3. Setting up your working environment

 1.3.1. Software for Arduino

 1.3.2. Basic hardware setup

 1.3.3. Your Arduino toolbox

 1.4. Make something happen!

 1.4.1. Your first blinking LED

 1.4.2. Sketch to make an LED blink

 1.4.3. Connecting everything

 1.4.4. Uploading and testing

 1.5. Touring the IDE

 1.5.1. The main editor

 1.5.2. Serial monitor

 1.5.3. Catching errors

 1.5.4. Process

 1.6. Anatomy of a sketch

 1.6.1. A routine called setup

 1.6.2. The endless loop

 1.7. Commenting code

 1.8. Summary

 Chapter 2. Digital input and output

 2.1. Getting started

 2.1.1. Using a breadboard

 2.1.2. Circuit diagram

 2.1.3. Adding the LEDs

 2.1.4. Connecting the hardware

 2.1.5. Sketch to flash five LEDs

 2.1.6. Upload and test

 2.2. Gaining control

 2.2.1. Circuit diagram

 2.2.2. Connections

 2.2.3. Interrupts butting in

 2.2.4. Sketch to control the LEDs with a push button

 2.2.5. Upload and test

 2.2.6. Time for a break

 2.2.7. Upload and test

 2.3. Reaction tester

 2.3.1. Circuit diagram

 2.3.2. Connections

 2.3.3. Sketch to test reaction speed

 2.3.4. Upload and test

 2.4. Reactometer: Who really has the fastest reaction time?

 2.4.1. Sketch to measure reaction speed

 2.4.2. Upload and test

 2.5. Summary

 Chapter 3. Simple projects: input and output

 3.1. Time to get analog

 3.1.1. What’s the difference between analog and digital?

 3.1.2. Reading a potentiometer

 3.1.3. Connecting the hardware

 3.1.4. Sketch to read a potentiometer

 3.1.5. Upload and test

 3.2. A piezoelectric transducer

 3.2.1. The circuit diagram

 3.2.2. Connecting the hardware

 3.2.3. Sketch to measure output from a piezoelectric transducer

 3.2.4. Upload and test

 3.2.5. Circuit with added speaker

 3.2.6. Connecting the hardware

 3.2.7. Sketch to generate a tone

 3.2.8. Upload and test

 3.3. Making a pentatonic or five-tone keyboard

 3.3.1. Circuit diagram

 3.3.2. Connecting the hardware

 3.3.3. Sketch to create a pentatonic keyboard

 3.3.4. Upload and test

 3.4. Summary

 2. Putting Arduino to work

 Chapter 4. Extending Arduino

 4.1. Extending the Arduino with libraries

 4.2. Core library

 4.3. Standard libraries

 4.3.1. Test-driven development with ArduinoTestSuite

 4.3.2. Storing values using EEPROM

 4.3.3. Storing more data with SD

 4.3.4. Get connected with Ethernet

 4.3.5. Serial communication with Firmata

 4.3.6. Displaying data using the LiquidCrystal library

 4.3.7. Controlling a servo motor

 4.3.8. Turning a stepper motor

 4.3.9. Communicating with SPI peripherals

 4.3.10. Communicating with the two-wire interface

 4.3.11. Get more serial ports with SoftwareSerial

 4.4. Contributed libraries

 4.4.1. Installing a new library

 4.5. Expanding the Arduino with shields

 4.5.1. Common shields

 4.5.2. Gotchas: will it work with my Arduino?

 4.6. Summary

 Chapter 5. Arduino in motion

 5.1. Getting up to speed with DC motors

 5.1.1. Stopping and starting

 5.1.2. Sketch to turn a small DC motor on and off

 5.1.3. Connecting the hardware

 5.1.4. Upload and test

 5.2. Speed control and reverse

 5.2.1. PWM to the rescue

 5.2.2. The H-bridge for motor control

 5.2.3. The L293D dual H driver

 5.2.4. Connecting the hardware

 5.2.5. Sketch to control a motor with an L293D

 5.2.6. Upload and test

 5.2.7. Changing motor speed

 5.2.8. Upload and test

 5.3. Stepper motors: one step at a time

 5.3.1. Unipolar or bipolar

 5.3.2. Connecting the hardware

 5.3.3. Stepper motor library functions

 5.3.4. Sketch to control a stepper motor

 5.3.5. Upload and test

 5.4. Try not to get in a flap with servomotors

 5.4.1. Controlling a servomotor

 5.4.2. Servomotor functions and methods

 5.4.3. Sketch to control a servomotor

 5.4.4. Connecting the hardware

 5.4.5. Upload and test

 5.5. Mighty power comes in small packages with brushless DC motors

 5.5.1. Why go brushless

 5.5.2. Gaining control

 5.5.3. Sketch to control a brushless motor

 5.5.4. Connecting the hardware

 5.5.5. Upload and test

 5.5.6. Reverse

 5.5.7. Sketch to reverse a brushless motor

 5.5.8. Connecting the hardware

 5.5.9. Upload and test

 5.6. The motor control shield for more motors

 5.7. Summary

 Chapter 6. Object detection

 6.1. Object detection with ultrasound

 6.1.1. Choosing an ultrasonic sensor

 6.1.2. Three wires or four

 6.1.3. Sketches for ultrasonic object finding

 6.1.4. Connecting the hardware

 6.1.5. Upload and test

 6.2. Infrared for range finding

 6.2.1. Infrared and ultrasound together

 6.2.2. The Sharp GP2D12 range finder

 6.2.3. Nonlinear algorithm for calculating distance

 6.2.4. Sketch for range finding

 6.2.5. Connecting the hardware

 6.2.6. Upload and test

 6.3. Passive infrared to detect movement

 6.3.1. Using the Parallax PIR sensor

 6.3.2. Sketch for infrared motion detection

 6.3.3. Connecting the hardware

 6.3.4. Upload and test

 6.4. Summary

 Chapter 7. LCD displays

 7.1. Introduction to LCDs

 7.1.1. String variables: String type vs. char type

 7.2. Parallel character LCDs: the Hitachi HD44780

 7.2.1. 4-bit or 8-bit?

 7.2.2. Library and functions

 7.2.3. Circuit diagram

 7.2.4. Connecting everything up in 4-bit mode

 7.2.5. Sketch for writing to the Hitachi HD44780

 7.2.6. Upload and test

 7.3. Serial LCD weather station

 7.3.1. Serial vs. parallel LCDs

 7.3.2. SerLCD library and functions

 7.3.3. The Maxim IC DS18B20 temperature sensor

 7.3.4. OneWire and DallasTemperature libraries

 7.3.5. Circuit diagram

 7.3.6. Connecting everything up

 7.3.7. Sketch for an LCD weather station

 7.3.8. Upload and test

 7.4. Graphic LCDs: the Samsung KS0108 GLCD

 7.4.1. Library and functions

 7.4.2. Circuit diagram

 7.4.3. Connecting everything up

 7.4.4. Sketch for drawing to a GLCD

 7.4.5. Upload and test

 7.5. Summary

 Chapter 8. Communications

 8.1. Ethernet

 8.1.1. The Ethernet library

 8.1.2. Ethernet Shield with SD data card

 8.2. Arduino web server

 8.2.1. Setting up the server

 8.2.2. Sketch for creating a web server

 8.2.3. Upload and test

 8.2.4. Troubleshooting

 8.3. Tweet tweet: talking to Twitter

 8.3.1. Of Twitter and tokens

 8.3.2. Libraries and functions

 8.3.3. Circuit diagram and connecting the hardware

 8.3.4. Sketch for the Twitter button-press tweeter

 8.3.5. Upload and test

 8.4. Wi-Fi

 8.4.1. Arduino Wifi Shield

 8.4.2. WiFi library and functions

 8.4.3. Gestures: wireless accelerometers

 8.4.4. Connecting the hardware

 8.4.5. Sketch for Bluetooth communication

 8.4.6. Upload and test

 8.5. Bluetooth wireless

 8.5.1. ArduinoBT

 8.5.2. Adding Bluetooth

 8.5.3. Establishing a Bluetooth connection

 8.5.4. Sketch for Bluetooth communication

 8.6. Serial peripheral interface (SPI)

 8.6.1. SPI library

 8.6.2. SPI devices and digital potentiometers

 8.6.3. Circuit diagram and connecting the hardware

 8.6.4. Sketch for a digital LED dimmer

 8.7. Data logging

 8.7.1. Types of memory

 8.7.2. SD cards and SD library

 8.7.3. Sketch for an SD card sensor logger

 8.8. Cosm

 8.8.1. Sign up for an account and get an API key

 8.8.2. Creating a new data feed

 8.8.3. Sketch for Cosm sensor logging

 8.8.4. Upload and test

 8.9. Summary

 Chapter 9. Game on

 9.1. Nintendo Wii salutes you

 9.1.1. Wii Nunchuk

 9.1.2. Nunchuk connections

 9.1.3. Wii will talk

 9.1.4. Wii will test

 9.2. Release the Xbox

 9.2.1. Getting connected

 9.2.2. USB Host library

 9.2.3. Learning about the Xbox controller using the USB Host Shield

 9.2.4. Xbox reporting for duty

 9.2.5. Let’s boot it

 9.2.6. Interfacing with code

 9.2.7. Xboxhid.ino

 9.2.8. Hardware connections and testing

 9.3. Summary

 Chapter 10. Integrating the Arduino with iOS

 10.1. Connecting your device to the Arduino

 10.1.1. The Redpark serial cable

 10.1.2. The final connection

 10.2. iOS code

 10.2.1. Creating a single-view application in Xcode

 10.2.2. Writing the code

 10.3. The Arduino gets involved

 10.3.1. Sketch to switch LED from iOS device

 10.3.2. Testing the sketch

 10.4. Doing more with Xcode

 10.4.1. Adding a Slider control

 10.5. Arduino sliding

 10.5.1. Arduino slider circuit

 10.5.2. Testing the circuit

 10.6. Moving data to the iOS device

 10.6.1. Xcode coding

 10.6.2. The GP2D12 IR distance sensor

 10.6.3. Testing

 10.7. Summary

 Chapter 11. Making wearables

 11.1. Introducing the LilyPad

 11.1.1. LilyPad accessories

 11.1.2. Conductive thread and fabric

 11.2. Creating a turn-signal jacket

 11.3. Creating a wearable piano

 11.4. The Arduino Pro Mini

 11.5. Creating a smart headphone

 11.6. Creating a jacket with a compass

 11.7. Summary

 Chapter 12. Adding shields

 12.1. Shield basics

 12.2. The Adafruit motor shield

 12.2.1. The AFMotor library

 12.2.2. Using the motor shield with a stepper motor

 12.2.3. Using the motor shield with a DC motor

 12.2.4. Getting a motor shield

 12.3. Creating your own shield

 12.3.1. Memory

 12.3.2. Level shifters

 12.3.3. The SD card holder

 12.3.4. Connecting the SD card to the Arduino

 12.3.5. Preparing the perfboard

 12.3.6. Testing the shield

 12.4. Summary

 Chapter 13. Software integration

 13.1. The serial channel

 13.2. Servos for face tracking

 Serial communication in Processing

 13.2.2. Code for face-tracking

 13.3. Using Firmata to create an equalizer

 13.3.1. Using Firmata in your application

 13.3.2. Audio analysis in Processing

 13.3.3. Assembling the equalizer hardware

 13.3.4. Code for the equalizer

 13.4. Using Pure Data to create a synthesizer

 13.4.1. Assembling the synthesizer hardware

 13.4.2. Code for the synthesizer

 13.5. Using Python to monitor temperatures

 13.5.1. The Serial library in Python

 13.5.2. Assembling the thermometer hardware

 13.5.3. Code for monitoring temperatures

 13.6. Summary

 Appendix A. Installing the Arduino IDE

 A.1. Windows

 A.1.1. Installing drivers for your board

 A.2. Mac OS X

 A.3. Linux

 Appendix B. Coding primer

 B.1. The Arduino language

 B.2. Variables

 B.2.1 Variable types

 B.2.2 Arrays

 B.2.3 Strings

 B.2.4 Constants

 B.2.5 Variable scope

 B.3. Taking control

 B.3.1 If, else, else if

 B.3.2 Switch case

 B.3.3 Logical operators

 B.4. Going loopy

 B.4.1. The for loop

 B.4.2. The while loop

 B.4.3. The do while loop

 B.5. Functions

 B.6. Summary

 Appendix C. Libraries

 C.1. Anatomy of a library

 C.1.1. The .h (header) file

 C.1.2. The .cpp file

 C.2. Using a library

 C.2.1. Using a library in a sketch

 C.2.2. Distributing a library

 Appendix D. Components list

 Chapter 1

 Chapter 2

 Chapter 3

 Chapter 4

 Chapter 5

 Chapter 6

 Chapter 7

 Chapter 8

 Chapter 9

 Chapter 10

 Chapter 11

 Chapter 12

 Chapter 13

 Appendix E. Useful links

 Additional Arduino articles

 Other useful links and materials

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 My Arduino journey started after watching Elise Huard present her talk, “The internet of things,” at Rails Underground in
 the summer of 2009. Following the conference, I immediately purchased a copy of Massimo Banzi’s Getting Started with Arduino (O’Reilly, 2008), which I read from cover to cover on the train back to where I was staying.

 Shortly afterwards, I purchased my first Arduino and started playing, experimenting, and building small projects. My first
 major project was an obstacle-avoidance robot, which I presented at the 2010 Scottish Ruby conference in Edinburgh, Scotland.

 I’ve had a lifelong interest in underwater vehicles and the marine environment, and following the conference I started work
 on an Arduino-controlled underwater remote-operated vehicle (ROV), which I duly presented at the 2011 Scottish Ruby conference.

 Since then, I’ve toured the UK and Ireland displaying my ROV at a number of Maker Faires, where it has generated much interested
 and discussion.

 I’m one of the founding members of Aberduino, a hack space based in Aberdeen, Scotland, where we produce installations for
 various events.

 Other Arduino-based projects I’ve worked on include the development of a medical training aid and helping with the Wikispeed
 project, an open source car.

 I continue to work with underwater vehicles and am actively developing a new Arduino-based underwater ROV that can be distributed
 as a kit.

 MARTIN EVANS

 I first started working with microcontrollers with the same introduction that a lot of artists and designers had ten years
 ago: PIC controllers. I found them difficult to understand, finicky, slow to build with, and yet they were the only option.
 Later I discovered Teleo controllers and then Wiring boards, but when the Arduino arrived in my world, I was hooked.

 I’ve used Arduinos for everything from prototyping smart spray-paint cans to building interactive exhibits for museums to
 creating tools for science experiments. I’m in love with the boards, the environment, and, most especially, the community
 that has grown up around the Arduino and that’s so willing to teach, experiment, explore, and share.

 JOSHUA NOBLE

 My interest in music technology led me to discover the Arduino as a platform for rapid development and physical computing
 sometime around 2008. I was originally introduced to the Arduino as a tool for designing musical interfaces for live performance.
 This led to the Arduinome project, an open source port of the popular Monome USB MIDI controller, which I worked on with longtime
 collaborator Owen Vallis. The success of the Arduinome project was a true testament to the uniqueness of the Arduino itself—a
 device that empowers musicians and artists of all technical backgrounds to create unique and powerful tools for expression.
 Around the same time, I was taking a course in musical robotics and kinetic sculpture, and we used the Arduino to drive a
 collaborative musical robotic instrument.

 Since then, the Arduino has been at the heart of my work. In 2009 I began pursuing my PhD, which investigated the affordances
 of multimodal sensor systems for musical performance and pedagogy. Using the Arduino, I’ve built numerous interfaces and hyperinstruments
 for capturing data and metrics from musical performance. I built the SmartFiducial, which added z-depth (in-air proximity) and pressure sensing to tangible tabletop surfaces. Embedding multimodal sensing systems within
 instruments or placing them on human performers, I’ve investigated a wide variety of machine learning tasks, such as performer
 recognition and drum-hand recognition. I completed my PhD and became a professor in Music Technology: Interaction, Intelligence,
 and Design at California Institute of the Arts in 2012, and the Arduino continues to be an important part of my artistic and
 academic practice. My work with the Arduino has been featured online and in print, including in WIRED and Computer Arts magazine,
 and my current Arduino-based projects range from kinetic surfaces for live projection mapping and visuals to wireless sensing
 systems for interactive dance performance.

 JORDAN HOCHENBAUM

Acknowledgments

 We would like to thank the following people at Manning: Sebastian Stirling for his endless patience and support; Cynthia Kane
 for guiding us and giving gentle prods over the final review stages to bring the manuscript to publication; Troy Mott who
 handled the preproduction stages; technical editors Sharon Cichelli and Daniel Soltis who offered help and advice on how to
 improve the final manuscript; and copyeditor Andy Carroll who carefully combed through the manuscript, removing unnecessary
 words and tidying everything up.

 We also want to thank our reviewers who helped clarify parts of the book that needed further explanation and who pointed out
 inconsistencies. Thanks to Alan Burlison, Andrew Davidson, Bill Westfield, Daniel Soltis, George Entenman, Howard R. Hansen,
 Jeroen Benckhuijsen, John Raines, Margriet Bruggeman, Matt Scarpino, Nikander Bruggeman, P. David Pull, Philipp K. Janert,
 Scott Couprie, Scott Howard, Steve Prior, and Ursin Stauss.

 MARTIN EVANS would like to thank his wife Henrietta and children Leanne, Heather, and Luke, who all in one way or another encouraged him
 to keep on working on this book. He would also like to thank Paul and the team at Symposium Coffee House, Peterhead, who kept
 him fueled with coffee when most needed.

 JOSHUA NOBLE would like to acknowledge a huge debt of gratitude to Simona Maschi, David Gauthier, and everyone at CIID who let him slack
 off a little on his thesis project so he could finish his chapters for this book, his lovely girlfriend Rachel Buker, and
 of course the man who originally taught him to program in his first halting steps, Morgan Schwartz.

 JORDAN HOCHENBAUM would like acknowledge his friend and mentor Ajay Kapur for introducing him to the Arduino and to systematically thinking
 about musical interface design. He’d also like to thank longtime friend and collaborator Owen Vallis for his help as they
 stumbled through their first Arduino sketches together and delved deeper into the world of the AVR.

About this Book

 This book is organized into two parts. Part 1 discusses the Arduino in general and includes a tutorial that introduces you to your first project before looking at a couple
 of simple projects that use the Arduino inputs and outputs. Part 2 looks at the Arduino in more depth, and this is where we really start to put the Arduino to work with a number of advanced
 techniques that you can use in your own projects.

 Code for the sketches covered in each chapter is available online via the book’s website: www.manning.com/ArduinoinAction. We suggest trying to follow along with the projects in the book as much as you can. Typing in the individual code listings
 will help to fix concepts and ideas into your mind.

 This book is suitable for both beginners and intermediate Arduino users. It starts from a very basic level and assumes no
 prior knowledge, but we think even expert users will gain things from the second part of the book, which covers a wide variety
 of subjects, many of which can be combined into your own projects. A basic understanding of electronics will help with some
 project circuits, although we endeavor to explain them as much as we can.

Roadmap

 Part 1 of the book discusses the Arduino in general.

 Chapter 1 explains how to get started by setting up your development environment and a basic software and hardware toolbox. It shows
 you how to blink your first LED and walks you through the anatomy of an Arduino sketch.

 Chapter 2 takes the form of a tutorial that introduces your first project and covers a number of key concepts.

 Chapter 3 builds on the knowledge gained in chapter 2 by looking at a couple of simple projects that use the Arduino inputs and outputs.

 Part 2 of the book looks at the Arduino in more depth. This is where we put the Arduino to work.

 Chapter 4 covers software libraries that extend the Arduino’s functionality.

 Chapter 5 gets the Arduino into motion by showing how an Arduino can be used to control a range of motors.

 Object detection is covered in chapter 6 with a section on how ultrasound and ultrasonic sensors can be interfaced.

 Chapter 7 is all about outputting data to LCD displays. It covers communication with the Hitachi HD44780 parallel LCD as well as the
 KS0108 graphic LCD that can also display graphics.

 In chapter 8 we cover communication with the external world. We start by using an Ethernet Shield to create a web server and then move
 on to tweeting messages from an Arduino to Twitter, using a Wi-Fi network and Bluetooth communication, logging data to an
 SD card and the internet using the Cosm service, and communicating with other devices over the serial peripheral interface
 (SPI).

 Chapter 9 details connecting an Arduino to game controllers, starting with the widely available Wii Nunchuk over I2C. Then we take
 a detailed look at using a USB shield to interface with a USB Xbox controller.

 Chapter 10 covers integration with iOS devices like the iPhone and iPad using the Redpark serial cable.

 In chapter 11 we look at two alternative forms of the Arduino that can be used as wearables: the LilyPad that can be sewn into clothing,
 and the Arduino Mini Pro, which is a special customized version of the Arduino notable for its small size.

 Chapter 12 looks at shields, which provide a simple method of extending or enhancing the Arduino hardware. This chapter includes instructions
 for creating your own shields.

 Finally, chapter 13 is on software integration, and it covers communicating with the Arduino from other software programs.

 There are also several appendices.

 Appendix A is about installing the Arduino software on Windows, Mac OS X, and Linux operating systems.

 Appendix B is a coding primer for the Arduino language.

 Appendix C is about Arduino software libraries and their structure.

 Appendix D provides a listing of all the components required to complete the individual projects in each chapter.

 Appendix E is a list of useful links.

Code conventions and downloads

 There are many code examples in this book, edited using the Arduino integrated development environment (IDE). Source code
 in listings and text is in a fixed-width font like this, to separate it from ordinary text, and code annotations accompany many of the listings.

 You’ll find the source code for the examples in this book available from the publisher’s website at www.manning.com/ArduinoinAction.

Author Online

 The purchase of Arduino in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/ArduinoinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Arduino in Action is captioned “Travailleur de déplacement,” which means an itinerant laborer. The illustration is taken from a 19th-century
 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration is finely
 drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s
 towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the
 streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by
 their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Getting started

 Part 1 of this book (chapters 1 to 3) is a discussion of the Arduino in general. You’ll start by learning your way around the Arduino and its development environment
 and completing a tutorial that introduces you to your first project. Then you’ll look at a couple of simple projects that
 use the Arduino inputs and outputs.

Chapter 1. Hello Arduino

 This chapter covers

 	The history of the Arduino

 	Arduino hardware

 	Hardware and software setup

 	The first blinking LED

 What can the Arduino be used for? The answers are surprisingly diverse. The Arduino has been used in a wide variety of projects:

 	Video games such as Pong and Space Invaders that will remind some readers of their childhood and introduce others to the games
 their parents played when they were young, complete with monochrome graphics and simple sound effects

 	Line-following robots that introduce robotics principles but are also used in factories and warehouses to deliver components
 along predetermined paths

 	Light harps that produce music with a wave of your hands, as used internationally by the performer Little Boots

 	MIDI controllers that control a series of instruments

 	Self-balancing robots that mimic the Segway

 These are all examples of projects built using the Arduino, a microcontroller so small that it fits in the palm of your hand.
 Originally designed to be used as a tool for physical computing projects by design and art students, the Arduino has been
 adopted as the tool of choice by communities of tinkerers and makers interested in building and prototyping their own projects.

 In this chapter, we’ll start with a look at the history of Arduino and how it became the tool that many makers reach for when
 starting a new project. This background includes its origins at the Interaction Design Institute Ivrea and explains why it
 was so desperately needed. We’ll then review the different types of Arduinos available and the advantages and disadvantages
 of each. We’ll also look at what you need to get started: tools, equipment, and suggested electronic components. Finally,
 we’ll round this opening chapter out with a look at the Arduino integrated development environment (IDE) before making our
 first project: an LED that blinks on and off.

 Let’s start by learning where the Arduino comes from.

1.1. A brief history of the Arduino

 The Arduino got its start at the Interaction Design Institute in the city of Ivrea, Italy, in 2005. Professor Massimo Banzi
 was looking for a low-cost way to make it easier for the design students there to work with technology. He discussed his problem
 with David Cuartielles, a researcher visiting from Malmö University in Sweden who was looking for a similar solution, and
 Arduino was born.

 Existing products on the market were expensive and relatively difficult to use. Banzi and Cuartielles decided to make a microcontroller
 that could be used by their art and design students in their projects. The main requirements were that it be inexpensive—the
 target price was to be no more than a student would spend going out for a pizza—and be a platform that anyone could use. David
 Cuartielles designed the board, and a student of Massimo’s, David Mellis, programmed the software to run the board. Massimo
 contacted a local engineer, Gianluca Martino, who also worked at the Design Institute helping students with their projects.
 Gianluca agreed to produce an initial run of 200 boards.

 The new board was named Arduino after a local bar frequented by faculty members and students from the institute. The boards
 were sold in kit form for students to build themselves. The initial run was soon sold out, and more were produced to keep
 up with demand. Designers and artists from other areas heard about the Arduino and wanted to use it in their projects. Its
 popularity soon grew when the wider maker audience realized that the Arduino was an easy-to-use, low-cost system that could
 be used in their own projects, as well as a great introduction to programming microcontrollers. The original design was improved
 upon and new versions were introduced. Sales of official Arduinos have now reached over 300,000 units, and they’re sold all
 over the world through a range of distributors.

 There are now a number of different versions of Arduino boards, so we’ll take a look at them in the next section.

1.2. The Arduino hardware

 There have been a number of Arduino versions, all based on an 8-bit Atmel AVR reduced instruction set computer (RISC) microprocessor.
 The first board was based on the ATmega8 running at a clock speed of 16 MHz with 8 KB flash memory; later boards such as the
 Arduino NG plus and the Diecimila (Italian for 10,000) used the ATmega168 with 16 KB flash memory. The most recent Arduino
 versions, Duemilanove and Uno, use the ATmega328 with 32 KB flash memory and can switch automatically between USB and DC power.
 For projects requiring more I/O and memory, there’s the Arduino Mega1280 with 128 KB memory or the more recent Arduino Mega2560
 with 256 KB memory.

 The boards have 14 digital pins, each of which can be set as either an input or output, and six analog inputs. In addition,
 six of the digital pins can be programmed to provide a pulse width modulation (PWM) analog output. A variety of communication
 protocols are available, including serial, serial peripheral interface bus (SPI), and I2C/TWI. Included on each board as standard
 features are an in-circuit serial programming (ICSP) header and reset button.

 	

 Note

 Specialist boards called shields can expand the basic functionality of the Arduino; these can be stacked on top of each other to add even more functionality.

 	

 We’re now going to look at the more commonly available Arduino models, starting with the Arduino Uno.

 1.2.1. Arduino Uno

 “Dinner is Served” was the blog title announcing on September 25, 2010, the arrival of the Arduino Uno (meaning one in Italian), and its bigger brother, the Mega2560. The Arduino Uno is pin-compatible with previous Arduinos, including the
 Duemilanove and its predecessor the Diecimila.

 The major difference between the Uno and its predecessors is the inclusion of an ATmega8U2 microcontroller programmed as a
 USB-to-serial converter, replacing the ageing FTDI chipset used by previous versions. The ATmega8U2 can be reprogrammed to
 make the Arduino look like another USB device, such as a mouse, keyboard, or joystick. Another difference is that it has a
 more reliable onboard 3.3 volts, which helps with the stability of some shields that have caused problems in the past. See
 appendix C for the full technical specifications.

 Figure 1.1 shows the board layout and pins of the Arduino Uno.

 Figure 1.1. Board layout and pins of the Arduino Uno

 [image:]

 The Uno is a good all-purpose Arduino and is your best bet for a starter board with its auto-switching power supply and regulated
 onboard 3.3 volts.

 1.2.2. Arduino Duemilanove

 The Duemilanove (which means 2009 in Italian) is one of the most popular Arduino boards produced, having replaced its predecessor, the Arduino Diecimila. But
 it, in turn, has been superseded by the newer, more up-to-date Arduino Uno. The Duemilanove features auto-switching power selection between
 the external and USB, and it uses the ATmega328 processor, although models prior to March 2009 used the ATmega168. Its pin
 layout and capabilities are identical to the Uno, and it uses the FTDI chipset for USB-to-serial communication.

 If you’re purchasing a new Arduino, you should get the Arduino Uno. If you already have a Duemilanove, consider upgrading
 to the Uno if you need the more stable 3.3 volts or want to do some advanced programming with the ATmega8U2.

 1.2.3. Arduino Ethernet

 The Arduino Ethernet is a low-power version of the Arduino announced at the same time as the Uno. The main differences between
 it and other Arduino versions are that it has an onboard RJ45 connector for an Ethernet connection and a microSD card reader.
 The Arduino Ethernet doesn’t have an onboard USB-to-serial driver chip, but it does have a six-pin header that can be connected
 to an FTDI cable or USB serial board to provide a communication link so that the board can be programmed. It can also be powered
 by an optional Power over Ethernet (POE) module, which enables the Arduino Ethernet to source its power from a connected twisted-pair
 Category 5 Ethernet cable.

 The Arduino Ethernet is ideally suited for use in remote monitoring and data logging stations with the onboard microSD card
 reader and a connection to a wired Ethernet network for power.

 1.2.4. Arduino Mega

 The big brother of the Arduino family, the Mega, uses a larger surface-mount microprocessor. The ATmega1280, the Mega, was
 updated at the same time as the Uno, and the microprocessor now used is the ATmega2560. The new version has 256 KB of flash memory compared to the 128 KB of the original.

 The Mega provides significantly increased input-output functionality compared to the standard Arduino, so with the increased
 memory, it’s ideal for those larger projects that control lots of LEDs, have a large number of inputs and outputs, or need
 more than one hardware serial port—the Arduino Mega has four. The boards have 54 digital input-output pins, 14 of which can
 provide PWM analog output, and 16 analog input pins. Communication is handled with up to four hardware serial ports. SPI communication
 and support for I2C/TWI devices is also available. The board also includes an ICSP header and reset button. An ATmega8U2 replaces
 the FTDI chipset used by its predecessor and handles USB serial communication.

 The Mega works with the majority of the shields available, but it’s a good idea to check that a shield will be compatible
 with your Mega before purchasing it. Purchase the Mega when you have a clear need for the additional input-output pins and
 larger memory. See appendix C for the full technical specifications.

 Figure 1.2 shows the pin and board layout.

 Figure 1.2. The Arduino Mega pins and layout; note the additional input-output pins and the extra serial ports compared to the Arduino
 Uno.

 [image:]

 Now let’s take a look at a few more specialized Arduino options.

 1.2.5. Other Arduino boards

 The original Arduino has spawned a number of variations that package the design in different ways, usually in response to
 a need. Let’s take a look at two of them: the LilyPad and the Nano.

LilyPad Arduino

 Designed by SparkFun Electronics and Leah Buechley, the LilyPad Arduino is great for textile projects and for strutting your
 stuff on the catwalk. It’s designed with large connecting pads that can be sewn to fabric, and there’s a range of sewable accessories available, including light sensors,
 buzzers, tri-color LEDs, temperature sensors, E-sewing kits, and accelerometers. This low-power version is even washable;
 just don’t forget to take out the batteries first.

 The main difference between the LilyPad and other Arduinos is a slower processing speed of 8 MHz, as opposed to the normal
 16 MHz. One thing to watch out for: the input voltage must not exceed 5.5 volts. See figure 1.3 for a picture of the LilyPad Arduino.

 Figure 1.3. The LilyPad Arduino is suitable for sewing onto fabric, and there’s a range of sewable accessories available.

 [image:]

Arduino Nano

 If your project has limited space, the Arduino Nano is the right choice. Designed and produced by Gravitech, version 3.0 of
 the Nano (with the ATmega328 processor) has a mini USB onboard, a compact format for use on breadboards.

 The Nano has similar functionality to the Duemilanove, but it has two additional analog input pins. Power to the board is
 supplied either by USB or two separate pins: pin 30 can accept an unregulated supply between 6 and 20 volts, or pin 27 can
 accept a regulated supply of 5.5 volts. The board selects whichever voltage is the highest.

 The small size of the board makes it ideal for projects with limited space.

 1.2.6. Attack of the clones

 From the beginning, Arduino was conceived as open-source hardware. Users were free to take the design, download the published
 computer-aided design (CAD) files, and produce and sell hardware based on them. This has led to the production of a number
 of clones or copies of Arduino, with many of the clone manufacturers taking the original specification and making their own
 changes.

 The Arduino name is trademarked, preventing derivatives from using the Arduino name in their products unless permission is
 given by the Arduino team.

Seeeduino (yes, 3 e’s)

 If you like the color red, this is the board to get. Designed and produced by Seeed Studio, in Shenzhen, China, the Seeeduino
 is based on the Diecimila design, one of the early Arduino boards, and can be purchased with either an ATmega168 or ATmega328
 microprocessor. It uses low-profile surface-mount components and has a distinctive red color.

OEBPS/01fig02_alt.jpg

OEBPS/01fig03.jpg

OEBPS/0ivfig01.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/0ivfig02.jpg

OEBPS/cover.jpg

