

 [image: cover]

CoffeeScript in Action

 Patrick Lee

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editors: Renae Gregoire, Jennifer Stout
Copyeditor: Linda Recktenwald
Proofreaders: Andy Carroll, Katie Tennant
Technical proofreader: Doug Warren
Typesetter: Dennis Dalinnik
Illustrator: Nick Marino
Cover designer: Marija Tudor

 ISBN: 9781617290626

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Foundations

 Chapter 1. The road to CoffeeScript

 Chapter 2. Simplified syntax

 Chapter 3. First-class functions

 Chapter 4. Dynamic objects

 2. Composition

 Chapter 5. Composing objects

 Chapter 6. Composing functions

 Chapter 7. Style and semantics

 Chapter 8. Metaprogramming

 Chapter 9. Composing the asynchronous

 3. Applications

 Chapter 10. Driving with tests

 Chapter 11. In the browser

 Chapter 12. Modules and builds

 Chapter 13. ECMAScript and the future of CoffeeScript

 Appendix A. Reserved words

 Appendix B. Answers to exercises

 Appendix C. Popular libraries

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Foundations

 Chapter 1. The road to CoffeeScript

 1.1. Why CoffeeScript?

 1.2. Running CoffeeScript

 1.3. JavaScript

 1.3.1. C

 1.3.2. Scheme

 1.3.3. Self

 1.4. Evolving JavaScript

 1.4.1. A little story about language

 1.4.2. The lesson for JavaScript

 1.5. Creating CoffeeScript

 1.5.1. Designing new syntax

 1.5.2. Achieving new syntax

 1.6. Summary

 Chapter 2. Simplified syntax

 2.1. Your first program

 2.1.1. Comparing CoffeeScript to JavaScript

 2.2. Simple expressions

 2.2.1. Literal values

 2.2.2. Variables

 2.3. Operators

 2.3.1. Essentials

 2.3.2. Types, existential, and combining operators

 2.3.3. Exercises

 2.4. Statements

 2.4.1. Anatomy

 2.4.2. Statements as expressions

 2.4.3. Pure statements

 2.4.4. Exercise

 2.5. Strings

 2.5.1. Methods

 2.5.2. Interpolation

 2.5.3. Exercise

 2.6. Arrays

 2.6.1. length, join, slice, and concat

 2.6.2. in

 2.6.3. Ranges

 2.6.4. Comprehensions

 2.6.5. Exercise

 2.7. Heres for comments, docs, and regexes

 2.7.1. Comments

 2.7.2. Heredocs

 2.7.3. Heregexes

 2.8. Putting it together

 2.8.1. Running in a browser

 2.8.2. Running on the command line

 2.9. Summary

 Chapter 3. First-class functions

 3.1. Computation

 3.1.1. Basics

 3.1.2. Custom operations

 3.1.3. Anatomy

 3.1.4. Comparison: JavaScript and CoffeeScript

 3.1.5. Exercises

 3.2. Events

 3.2.1. Browser events

 3.2.2. Using timeouts and intervals to create events

 3.3. I/O

 3.3.1. Ajax

 3.3.2. Event-driven file reading with Node.js

 3.3.3. Event-driven file serving with Node.js

 3.3.4. Exercises

 3.4. Higher-order functions

 3.4.1. Invoking other functions

 3.4.2. Example: Counting words in a file

 3.4.3. Functions as arguments

 3.4.4. Exercises

 3.5. Scope

 3.5.1. Lexical function scope

 3.5.2. No block scope

 3.5.3. Implicit variable declarations

 3.5.4. Nesting

 3.6. Closures

 3.6.1. Global state problems

 3.6.2. Functions as return values

 3.6.3. Extended example: using closure

 3.7. Putting it together

 3.8. Summary

 Chapter 4. Dynamic objects

 4.1. Syntax

 4.1.1. Literals

 4.1.2. Properties

 4.1.3. YAML-style syntax

 4.2. Key-value stores

 4.2.1. Data

 4.2.2. Key-values for named arguments

 4.2.3. Exercises

 4.3. Comprehensions

 4.3.1. Object comprehensions

 4.3.2. Example

 4.4. Structured data

 4.4.1. JSON

 4.4.2. Trees

 4.5. Binding

 4.5.1. this

 4.5.2. The fat arrow

 4.6. Prototypes

 4.6.1. Copy

 4.6.2. Object creation

 4.6.3. Exercises

 4.7. Behavior

 4.7.1. Refactor

 4.7.2. Exercise

 4.8. Classes

 4.8.1. Declaration

 4.8.2. Object identity

 4.8.3. Exercises

 4.9. Putting it together

 4.10. Summary

 2. Composition

 Chapter 5. Composing objects

 5.1. Being classical

 5.1.1. Raw data

 5.1.2. Class abstractions

 5.2. Class inheritance

 5.2.1. extends

 5.2.2. How does it work?

 5.3. Class variables and properties

 5.3.1. Usage

 5.3.2. Declaring (to keep things together)

 5.3.3. Exercise

 5.4. Overriding and super

 5.4.1. Overriding

 5.4.2. super

 5.5. Modifying prototypes

 5.5.1. How class declarations work

 5.5.2. How methods work

 5.5.3. Dynamic classes

 5.6. Extending built-ins

 5.6.1. Built-in constructor prototypes

 5.6.2. Extending date

 5.6.3. Don’t modify objects you don’t own

 5.7. Mixins

 5.7.1. Class inheritance can be awkward

 5.7.2. Writing a mixin

 5.7.3. Example: enumerable mixin

 5.7.4. Mixins from null

 5.8. Putting it together

 5.8.1. Exercise

 5.9. Summary

 Chapter 6. Composing functions

 6.1. Clarity

 6.1.1. Functions are descriptions

 6.1.2. Where arguments need parentheses

 6.1.3. Higher-order functions revisited

 6.2. State and mutability

 6.2.1. Variables, assignment, and side effects

 6.2.2. Local state and shared state

 6.2.3. Encapsulating state with objects

 6.2.4. World state

 6.3. Abstraction

 6.3.1. Extracting common code

 6.3.2. Adding common code

 6.3.3. Recursion

 6.4. Combinators

 6.4.1. Compose

 6.4.2. Before and after

 6.4.3. Around

 6.4.4. Working with objects

 6.4.5. Asynchronous combinators

 6.5. Summary

 Chapter 7. Style and semantics

 7.1. Rest and spread parameters

 7.1.1. Rest

 7.1.2. Spread

 7.2. Destructuring

 7.2.1. Arrays

 7.2.2. Objects

 7.2.3. Object shorthand

 7.2.4. Array destructuring expansion

 7.2.5. Exercises

 7.2.6. Putting it together

 7.3. No nulls

 7.3.1. Null soak

 7.3.2. Conditional assignment

 7.4. No types—the duck test

 7.4.1. Don’t rely on typeof, instanceof, or constructor

 7.4.2. How to use duck typing

 7.5. When to use comprehensions (and when not to)

 7.5.1. map

 7.5.2. filter

 7.5.3. reduce

 7.5.4. Defining functions inside comprehensions

 7.6. Fluent interfaces

 7.6.1. Why create them?

 7.6.2. The indentation problem

 7.6.3. Creating fluent interfaces

 7.6.4. Chain

 7.7. Ambiguity

 7.7.1. Whitespace and indentation

 7.7.2. Implicit variables

 7.8. Summary

 Chapter 8. Metaprogramming

 8.1. Literate CoffeeScript

 8.1.1. The .litcoffee file extension

 8.2. Domain-specific languages

 8.2.1. External DSLs

 8.2.2. Internal DSLs

 8.2.3. Object literals

 8.2.4. Fluent interfaces

 8.2.5. Function passing

 8.2.6. Constructing a DSL

 8.3. How the compiler works

 8.3.1. Tokenizing

 8.3.2. Rewriting

 8.3.3. The abstract syntax tree

 8.4. Bending code to your ideas

 8.4.1. Can you just eval?

 8.4.2. Rewriting the token stream

 8.4.3. Using the abstract syntax tree

 8.4.4. It’s just JavaScript

 8.5. Summary

 Chapter 9. Composing the asynchronous

 9.1. Data processing

 9.1.1. Reading

 9.1.2. Sorting

 9.1.3. Performance

 9.1.4. Decorate, sort, undecorate

 9.2. Event loops

 9.2.1. Events and blackouts

 9.2.2. Infinite time

 9.3. Event emitters

 9.3.1. User events

 9.3.2. Data as events

 9.3.3. Using event emitters in Node.js

 9.3.4. Events as data

 9.4. Event composition

 9.4.1. Lazy data handling

 9.4.2. Lazy event handling

 9.4.3. Composing event streams

 9.4.4. Client side

 9.4.5. Multiple event sources

 9.5. Summary

 3. Applications

 Chapter 10. Driving with tests

 10.1. No tests? Disaster awaits

 What happens when you don’t write tests?

 10.2. How to write tests

 10.2.1. Assertions

 10.2.2. How to unit test

 10.2.3. Rinse and repeat

 10.2.4. Feedback

 10.3. Dependencies

 10.3.1. Why dependencies make testing difficult

 10.3.2. Test doubles

 10.3.3. Avoiding dependency injection hell

 10.4. Testing the asynchronous

 10.4.1. Live with it

 10.4.2. Remove it

 10.4.3. Expect it

 10.4.4. Exercise

 10.5. System tests

 10.6. Test suites

 10.6.1. Setups and teardowns

 10.6.2. Test helpers and runners

 10.6.3. Watchers

 10.7. Summary

 Chapter 11. In the browser

 11.1. Getting started

 11.1.1. Manual compilation

 11.1.2. Browser compilation

 11.1.3. Automatic compilation

 11.2. Communicating with the outside world

 11.2.1. Using XMLHttpRequest

 11.2.2. Dynamic script insertion

 11.2.3. Going real time with WebSocket

 11.3. Cross-browser compatibility

 11.3.1. Polyfilling host objects

 11.3.2. Polyfilling language features

 11.4. Creating a user interface

 11.4.1. Retained mode with the DOM

 11.4.2. Immediate mode with HTML5 canvas

 11.5. Creating animations

 11.5.1. Retained mode

 11.5.2. Immediate mode

 11.6. Structuring programs

 11.6.1. Abstraction and APIs

 11.6.2. Dealing with time

 11.7. Summary

 Chapter 12. Modules and builds

 12.1. Server-side modules (on Node.js)

 12.1.1. Creating and requiring

 12.1.2. Exporting

 12.1.3. No file extensions

 12.1.4. The module cache

 12.1.5. Putting it together

 12.1.6. Indexes

 12.2. Build automation with Cake

 12.2.1. Cake and build tasks

 12.2.2. Test tasks

 12.2.3. Task dependencies

 12.3. Client-side modules (in a web browser)

 12.3.1. Making modules work in a browser

 12.3.2. How to write a module system

 12.3.3. Tests

 12.4. Application deployment

 12.4.1. Creating an artifact (something that’s easy to deploy)

 12.4.2. Creating a manifest (something that tells your artifact where it is)

 12.5. The final Cakefile

 12.5.1. Tidying up

 12.6. Summary

 Chapter 13. ECMAScript and the future of CoffeeScript

 13.1. CoffeeScript in the context of JavaScript

 13.1.1. A better JavaScript through CoffeeScript

 13.1.2. Future JavaScript features that CoffeeScript has today

 13.2. ECMAScript 5

 13.2.1. Runtime support

 13.2.2. Object.create

 13.2.3. JSON

 13.2.4. Property descriptors

 13.2.5. Putting it together

 13.2.6. Strict mode

 13.3. ECMAScript 6

 13.3.1. Modules

 13.3.2. const and let

 13.3.3. Sets, Maps, and WeakMaps

 13.3.4. Proxies

 13.3.5. Comprehensions, iterators, and generators

 13.4. Source maps for debugging

 13.4.1. Why source maps?

 13.4.2. Getting started with source maps

 13.5. Summary

 Appendix A. Reserved words

 Appendix B. Answers to exercises

 About the exercises

 Exercise 2.3.3

 Exercise 2.4.4

 Exercise 2.5.3

 Exercise 2.6.5

 Exercises 3.1.5

 Exercises 3.3.4

 Exercises 3.4.4

 Exercises 4.2.3

 Exercise 4.6.3

 Exercise 4.7.2

 Exercises 4.8.3

 Exercise 5.3.3

 Exercise 5.8.1

 Exercises 7.2.5

 Exercise 10.4.4

 Appendix C. Popular libraries

 npm

 Testing

 Modules

 Builds

 Deployment

 Frameworks

 Asynchronous programming

 Physical computing

 On GitHub

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 I’ve long thought that the things that will ultimately resonate the most with people don’t reveal themselves immediately.
 Instead, they might initially present themselves as slightly interesting but not striking. I’ve seen this with music, film,
 literature, and every other aspect of human experience that I’ve looked at for any substantial amount of time. I’ve also seen
 this with at least two programming languages, JavaScript and CoffeeScript.

 My early reaction to JavaScript was dismissive. Strangely, or not, years later I would be working almost exclusively in it.
 My early reaction to CoffeeScript was also dismissive. “Here we go,” I thought. “Yet another tool created because people don’t
 understand JavaScript!” I was wrong about CoffeeScript just like I was wrong about JavaScript.

 CoffeeScript is not about avoiding JavaScript—it is about understanding JavaScript. This applies to both people who are already
 familiar with JavaScript and people who are not familiar with JavaScript. Learning CoffeeScript helps people to understand
 JavaScript. At the same time, for many people it makes writing JavaScript programs simpler and more enjoyable, which means
 that it makes sense for them to use CoffeeScript instead of JavaScript.

Acknowledgments

 Thanks to Jeremy Ashkenas for creating CoffeeScript. Thanks to Michael Stephens at Manning for picking up a book on CoffeeScript,
 and to my editors at Manning—Bert Bates, James Hatheway, Jennifer Stout, and Renae Gregoire—who worked with me at various
 stages of manuscript development. Thanks also to Kevin Sullivan, Linda Recktenwald, Andy Carroll, Katie Tennant, and Mary
 Piergies, as well as technical proofreader Doug Warren, who worked with me during production—I was very impressed. Finally,
 thanks to publisher Marjan Bace for having patience with a book that took much longer to complete than anybody had initially
 expected.

 Thanks to all the family, friends, and colleagues who read and provided feedback on early drafts. Thanks to the ThoughtWorks
 Sydney office for their patience with me while I balanced consulting with authoring.

 Thanks to Nick Marino for the illustrations that brought Agtron and Scruffy to life, and for making sense of my sometimes-bizarre
 scripts.

 Thanks also to the MEAP readers who provided feedback on the chapters as they were being written, and to the following reviewers
 who read the chapters at various stages during the development of the manuscript: Andrew Broman, Brett Veenstra, Carl Witty,
 Carlos Santiago, Cleland Early, Daniel Bretoi, David Hunter, Guy Mackenzie, Ian Phillips, Jeff Foster, John Shea, Julian Parry,
 Ken Chien, Logan Johnson, Musannif Zahir, Olivier Broqueville, Peter Fries, Phily Austria, Robert Henley, and Sergey Seletskyy,
 and to Tim Moore and Mikkel Bergmann (who provided many important insights).

 Finally, a special thanks to those who had to stand living with me while I wrote: thanks to Kandy and to Leigh.

About this Book

 This is a language book. It doesn’t try to comprehensively detail libraries, frameworks, or other ancillary matters. Instead,
 it concentrates only on teaching the CoffeeScript programming language from syntax, through composition, to building, testing, and deploying applications.
 Although this book is full of complete, working programs, they’re all manufactured (contrived, if you will) slaves to the
 core goal of helping you learn to program in CoffeeScript. You’ll find this book to be a useful reference because of its breadth
 and depth, but it isn’t comprehensive. The web made comprehensive programming references obsolete long ago.

 If you want to learn the CoffeeScript language, then this book is for you. If, instead, you want to eschew that learning in favor of ready-made instructions for using CoffeeScript
 with one framework or another, then this is probably not the book for you. Although references to popular frameworks are given,
 this book concentrates on CoffeeScript as a language. This book balances server-side and client-side uses of CoffeeScript
 as appropriate to each individual topic.

Roadmap

 This book follows a three-act structure in which you, the hero, journey to the heart of CoffeeScript before emerging with
 a thorough grasp of it.

 Part 1 sets up your core understanding of the language. When you begin your apprenticeship in chapter 1, you’ll learn the motivations for creating CoffeeScript and why you are embarking on your journey. In chapter 2 you’ll be immersed in the syntax of the language and begin to absorb it. In chapter 3 you’ll learn about functions from the ground up, and in chapter 4 you’ll do the same with objects.

 In part 2 you’ll learn how to wield your new understanding of CoffeeScript. Chapter 5 will have you pulling apart objects and putting them together, and chapter 6 will have you creating functions from functions, and from functions that create functions. In chapter 7 you’ll hone your craft, technique, and style. After that comes chapter 8, which leads you right to the heart of CoffeeScript where you’ll learn to change the language itself. Finally prepared, in
 chapter 9 you’ll enter the dragon’s lair of asynchronous programs.

 In part 3 your travels will take you further from home where you’ll learn how to build entire applications. This starts in chapter 10 where you’ll learn about test-driven development. In chapter 11 you’ll learn about building user interfaces for web browsers. In chapter 12 you’ll wrap everything up by building and packaging applications, ready for the world to see. Finally, chapter 13 looks at the future and where you, the journeyman, are headed with CoffeeScript.

Prerequisites

 This book doesn’t assume any knowledge of CoffeeScript. Although some familiarity with JavaScript will make things easier,
 no level of JavaScript experience is assumed. What is assumed is some experience with programming (any language will do) and a basic grasp of web development concepts. Finally,
 although the Node.js platform is used throughout the book, no prior knowledge of Node.js is assumed.

Code conventions

 Any source code listings inline within the text, such as read 'book', are formatted using a fixed-width font. Blocks of code are also formatted in a fixed-width font, separated from page content:

 read = (material) ->
 console.log "Reading #{material}"

read 'CoffeeScript in Action'

 Within blocks of code, a # character at the start of a line indicates that what follows the # is the result of evaluating the immediately preceding line:

 read = (material) ->
 console.log "Reading #{material}"

read 'CoffeeScript in Action'
Reading CoffeeScript in Action

 In this way, all of the code snippets can be pasted directly into a CoffeeScript prompt, where the output you see should match
 the comment. A similar approach is taken with JavaScript code snippets where # is replaced with //:

 'Raw' + ' JavaScript'
// 'Raw JavaScript'

 Formatted code snippets can be copied and pasted from HTML files, one for each chapter, which are available for download from
 the publisher’s website and also from links inside eBook versions of CoffeeScript in Action.

 Invoking programs on the command line is shown by prefixing each line with a >. Expected output is prefixed with a #:

 > coffee -e "console.log(3 + 4);"
7

 Being prefixed with a >, the command-line examples have the disadvantage that they can’t be pasted directly into a prompt. Occasionally, to provide
 a clear distinction between general command lines and the prompt for a particular program, the listing is prefixed with the
 name of the program prompt followed by a >:

 node>

 Before you can run any of this code, you need to have CoffeeScript installed.

Installing CoffeeScript

 This book assumes that you have Node.js installed. To install Node.js, visit the website at http://nodejs.org and follow the instructions for your system. Once you have Node.js installed, you’ll be able to run Node.js from the command
 line:

 > node

 This will land you in the Node.js prompt, into which you can enter raw JavaScript:

 node> 1 + 2;
// 3

 To exit, enter Ctrl-C twice:

 node> <CTRL-C>
// (^C again to quit)
node> <CTRL-C>
>

 Installing Node.js also installs npm (Node packaged modules), which you’ll use for installing packages. Use npm to install
 CoffeeScript for all users on your system:

 > npm install –g coffee-script

 You now have CoffeeScript installed. Enter coffee into your command line:

 > coffee

 This launches you into a CoffeeScript prompt that will be your constant companion throughout this book. The command has other
 functionality besides the prompt, which you can see via --help:

 > coffee --help

 This will list the options. The meaning of particular options is given later in this book where needed, but not all options
 are covered.

 As with Node.js, to exit this prompt, enter Ctrl-C twice.

Code downloads

 All of the book’s listings are available in the downloadable code from the publisher’s website at www.manning.com/CoffeeScriptinAction and also on GitHub at https://github.com/boundvariable/coffeescript-in-action. When you obtain the downloadable code, go to the directory containing it and run the command npm install. Suppose you have the downloadable code at ~/src/coffeescript-in-action:

 > cd ~/src/coffeescript-in-action
> npm install

 You’ll see npm install some packages that you’ll need. Once that’s done, you’re ready to start running the listings.

 The downloadable code is organized into directories corresponding to chapter numbers, with each chapter folder containing
 a “listings” folder with files named to correspond to listing numbers for that chapter. Where possible, code listings are
 standalone programs, and you can run them by passing them to the coffee command. Suppose you wanted to run the imaginary listing 77 from chapter 77:

 > coffee 77/listings/77.coffee

 Some code listings in the book are complete programs that aren’t made to run on the command line but require a browser to
 run. In those cases, a command-line server program that will enable you to run them is provided either as one of the listings
 or along with the listings. Wherever that is the case, instructions are provided for running the server.

Exercises

 Throughout the book you’ll find some recommended exercises designed to help you better understand the concepts presented.
 The exercises range from small and closely defined to more open-ended exercises intended for exploration.

Author Online

 Purchase of CoffeeScript in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. To access the forum and subscribe to it, point your web browser
 to www.manning.com/CoffeeScriptinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose
 contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions,
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of CoffeeScript in Action is captioned “Man from Dalj, Slavonia, Croatia.” The illustration is taken from a reproduction of an album of Croatian traditional
 costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003.
 The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
 core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book
 includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes
 and of everyday life.

 Dalj is a village in eastern Croatia, on the border with Serbia, near the confluence of the Drava and Danube rivers. The figure
 on the cover is wearing a black woolen jacket over black woolen pants, both richly embroidered in the red and blue colors
 typical for this region.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Foundations

 Although there are many theories about exactly how the process works, learning a new language is known to involve comprehensible
 input, comprehensible output, and reflection for you, the learner. This part of the book provides many opportunities for all
 three, and you’ll get the most benefit if you take advantage of all those opportunities not only by reading the content and
 the code but also by running and experimenting with the examples, doing the exercises, and taking some time to consider the
 deeper implications of the underlying concepts.

 Because this part covers CoffeeScript language fundamentals, your current experience level with CoffeeScript (and to an extent
 JavaScript) will affect how quickly you take it in.

Chapter 1. The road to CoffeeScript

 This chapter covers

 	Why CoffeeScript matters

 	How to get started

 	The evolution of JavaScript

 	Adapting to evolution by using CoffeeScript

 CoffeeScript is a small, general-purpose programming language. It was created by Jeremy Ashkenas and first released in 2009.
 It’s a compiled language: you write your program in CoffeeScript and then use the compiler to translate it to an equivalent
 JavaScript program. When you run your program, it’s the compiled JavaScript that runs. Think of your CoffeeScript programs
 as being JavaScript programs underneath.

 There are many programming languages that can compile to JavaScript, so many that they might even outnumber the programming
 languages that don’t compile to JavaScript. CoffeeScript is rare among these languages because it keeps the core structure and semantics of JavaScript
 intact. CoffeeScript is essentially JavaScript. If it’s essentially JavaScript though, why bother to use CoffeeScript? What’s
 the benefit?

1.1. Why CoffeeScript?

 CoffeeScript is a simple language, and there are two simple reasons for learning it. First, it fixes some problems in JavaScript
 that are unpleasant to work with. Second, understanding CoffeeScript will help you learn new ways of using JavaScript, and
 new ways of programming in general.

 JavaScript is an elegant programming language with some unfortunate gnarled edges. It has problems that other popular programming
 languages don’t have. Layers of these problems obscure the simple elegance of JavaScript and any programs you write with it.
 The goal of CoffeeScript is to peel back those layers. Think of your JavaScript programs as being CoffeeScript programs underneath.

 Why CoffeeScript? One reason is that it can help you to make smaller and easier-to-understand programs that are easier to
 maintain. You say you don’t have a problem with programs being large, difficult to understand, and difficult to maintain?
 Meet Agtron and Scruffy (figure 1.1).

 Figure 1.1. Meet Agtron and Scruffy.

 [image:]

 Agtron and Scruffy have recently started working on a massive JavaScript program. This program contains more lines of JavaScript
 than Scruffy cares to count (though Agtron informs Scruffy that when he last looked it was 532,565). Agtron and Scruffy both
 consider the application they inherited to be disgusting. Scruffy thinks it’s disgusting because he can’t figure out what’s
 going on. Agtron thinks it’s disgusting because he can figure out what’s going on. Why is the program disgusting? Because it’s too big and the different components are too complicated
 and intertwined. The program is incomprehensible. Understanding how any of it works requires understanding of how all of it works.

 How might CoffeeScript help? By simplifying JavaScript syntax and making each line easier to comprehend. That simplicity of
 expression will encourage you to compose programs that are, in turn, simpler and easier to comprehend. Your programs will
 become less complicated and not so intertwined. Simplifying small things, like syntax, can lead to simpler big things, like
 programs. Although it’s not a panacea (it’s possible to write incomprehensible garbage in CoffeeScript), learning CoffeeScript will help you to write better programs. It’s time to get started, time to write some CoffeeScript.

1.2. Running CoffeeScript

 One thing you need to get out of the way is to make sure you’re ready to start experimenting with CoffeeScript. Assuming you
 already have CoffeeScript installed (if not, refer to the “About this book” section before this chapter), open a console or terminal, type the word coffee, and press Enter. You see a prompt:

 coffee>

 You’re now in the CoffeeScript REPL (pronounced like ripple but with an e instead of an i). Now enter some CoffeeScript and press Enter again:

 coffee> 'CoffeeScript!'
'CoffeeScript!'

 That’s it, you’ve written CoffeeScript. To exit the REPL, press Ctrl-D (that’s the Ctrl and D keys pressed simultaneously),
 and you’ll be back to your regular command line. Why is it called a REPL? It stands for Read-Eval-Print Loop, and that’s exactly what it does:

 coffee> 'CoffeeScript!' # Read 'CoffeeScript!'
 # Evaluate 'CoffeeScript!'
'CoffeeScript!' # Print the evaluation of 'CoffeeScript!'
coffee> # Loop (to start again)

 By default, the CoffeeScript REPL will read only one line at a time before evaluating. In some cases you might want to evaluate
 two lines at a time. To do this, press Ctrl-V, and you’ll see the prompt change. Now, regardless of how many times you press
 Enter, the REPL will continue to read until you press Ctrl-V again, at which point it will evaluate, print, and resume the
 loop:

 coffee> CTRL-V

------> 'CoffeeScript!' # Read
.......
.......
....... CTRL-V # Eval
'CoffeeScript!' # Print
coffee> # Loop

 Now that you’re familiar with the REPL, any time you are working with a single-line snippet of CoffeeScript, you can enter
 it into the REPL and see it evaluated:

 'CoffeeScript!'
'CoffeeScript!'

 When you see a snippet of CoffeeScript that requires the multiline mode, press Ctrl-V first and then type or paste it in,
 and finally press Ctrl-V again to see it evaluated.

 Although the REPL is fun, and it will often be your companion as you learn CoffeeScript, you didn’t come here for a lesson
 on how to use your keyboard. No, you came to learn about CoffeeScript, how to use it, and what it means. To begin, you want to know where you are and how you got here.
 How did you get here? The answer starts with a small historical detour, beginning with JavaScript.

1.3. JavaScript

 To understand CoffeeScript and how it relates to JavaScript, you first need to know about some other languages that influenced
 JavaScript. Programming language influences can come in many forms, but the ones of significance in your understanding of
 CoffeeScript and JavaScript are the ones that led to the style, semantics, and syntax. The first influence for JavaScript
 in these three areas (and your starting place) is the C programming language and a humble little character called the curly brace.

 1.3.1. C

 The C programming language is one of the most widely used, and enduring, general-purpose programming languages of all time.
 JavaScript deliberately looks like the C programming language with many syntactical similarities. One of the most obvious similarities is the use
 of curly braces, { and }, to indicate the beginning and end of each block of code. JavaScript is not alone in sharing this syntax with C—many mainstream
 programming languages look like C. Why should it matter that JavaScript borrows syntax from C? It matters because the story
 of a programming language (like the story of any language) is, in many regards, a social one. Here’s one account of that story.

 Anybody who studied computer science when grunge music was popular knew that all the cool kids were using C with curly braces
 and that C programming was real programming, involving things like managing memory and manipulating strings as arrays of char pointers. The C programming
 language was the most grown-up thing to write besides assembly language, and the computer science departments in universities
 around the world were full of youth. Finally, and perhaps most importantly, most computer games at the time were written in
 C, and all those young people wanted to write computer games.

 The schools of computer science were motivated to produce graduates who could get jobs, so the three most popular languages
 at the time were often taught. All three of these languages—C, C++, and Java—have curly braces. There were many less-popular
 languages with different styles, syntax, semantics, and ideas, but things found in unpopular places are easily ignored—regardless
 of whether they’re good or bad. That’s why JavaScript looks like the C programming language.

 Despite being dressed in a curly-brace suit and semicolon top hat to look like C, JavaScript took two core ideas from other
 languages called Scheme and Self. As it happens, neither Scheme nor Self was quite so popular or looked very much like C,
 C++, or Java. So, although JavaScript looks very much like C, some of the core ideas are very much unlike C. To understand
 the friction this causes, you need to look closer at these two languages, Scheme and Self.

 1.3.2. Scheme

 Scheme is a general-purpose programming language created by Guy Steele and Gerald Sussman. It’s considered a dialect of the programming language Lisp, which the late John McCarthy created when he was a young man. Lisp dialects don’t look
 like the C programming language at all.

 Over time, the popularity of Lisp dialects waned while the popularity of the C programming language grew. Finally, when Brendan
 Eich created the C-resembling JavaScript language to be used in the web browser of a company called Netscape, all of McCarthy’s
 hair was gray. Lisp dialects might have been moderately popular choices for programming languages when men in rock bands had
 perms, but they were no longer popular by the time Eich created JavaScript. Because they weren’t popular, there was no way
 that JavaScript was going to look like one of them. But Lisp contained some powerful programming ideas that JavaScript needed,
 so, syntax aside, there was nothing preventing it from being inspired by Lisp.

 The ideas that JavaScript takes from Scheme have foundations in a mathematical system called lambda calculus. In terms of modern computer programming, some of these ideas fall under the term functional programming, which is the style of programming encouraged by Scheme. Functional programming very loosely means programming with functions
 (which you’ll start to learn about in chapter 3). How about C? The style of programming encouraged by C is called imperative programming. JavaScript has the syntax of C, but it was inspired, in a small but important way, by the functional style of Scheme.

 While the popularity of Lisp and the functional programming style was declining, another programming style called object-oriented programming was starting to gain popularity. An object-oriented language called Self was the basis of a core idea in JavaScript called
 prototypes.

 1.3.3. Self

 The Self programming language was created as a research project by David Ungar and Randall Smith based on a programming concept
 known as prototypes. Being based on prototypes, Self was very different from the popular object-oriented languages of the time (such as C++ and
 Java) that were based on classes. You’ll learn more about classes and prototypes in later chapters, but for now, think of classes as being a more rigid and
 static approach, and prototypes as a more fluid and dynamic approach.

 Self also had a different style than the other popular object-oriented languages of the time by preferring a small but powerful
 set of operations to more numerous and elaborate ones. This style was a direct inspiration in the creation of JavaScript,
 which took not only the idea of prototypes from Self but also this idea of having a small set of powerful primitive tools
 as a primary design goal. So, although JavaScript looks more like Java or C++ than it does Self, it has some core ideas taken
 directly from Self. It looks one way but acts another.

 Although JavaScript looks like C (the syntax and to some extent the style and semantics), some of the key ideas (and to some
 extent the style and semantics) are borrowed from Self and Scheme. What happens when a language has many competing factors?

1.4. Evolving JavaScript

 The inherent friction between the competing ideas behind JavaScript’s creation is compounded by it now being the most widely
 used programming language in the world. The social aspect of JavaScript as a programming language has more influencing factors
 than most other programming languages, and the widespread use of JavaScript serves to amplify all of the influences. This
 is important in understanding the future of JavaScript because the people who use any language (JavaScript or otherwise) are those who shape it over time. To illustrate, consider a brief account of a particular
 spoken language.

 1.4.1. A little story about language

 Sometime around the fifth century, a West Germanic tribe invaded Britain and brought with them their language. As a result,
 the existing languages of the region (Celtic and Cornish) were mostly replaced with the West Germanic dialect of the invaders,
 leaving only a hint of Celtic and Cornish in modern English today. A few hundred years later some Vikings, who spoke a Scandinavian
 language, colonized parts of Northern Britain. They needed to speak the local language (now a West Germanic dialect) in order
 to trade with nearby people, but they didn’t know it very well, so they spoke a simplified, broken version of it. The broken
 way they spoke the language changed the way everybody else spoke it, the language evolved as a result.

 Later, in the eleventh century, the Norman French conquered England, and William the Conqueror became the king of England.
 During the Norman occupancy the official language of the region was Norman French, but English was still spoken by the commoners
 on the streets and on their farms. This is why English farm animals such as cows and pigs have one name, but the meats used
 in the restaurants by people speaking Norman French have other names such as beef and pork. The entire history of English
 is like this. When the printing press was invented, it had only the Latin alphabet, so English was changed again, one of the
 changes being to replace the thorn, þ, with the digraph th.

 Now, you might think that a community doesn’t shape a constructed programming language like JavaScript in the same way it shapes a spoken
 language like English, but a language that isn’t shaped by a community is a dead language. A language can initially be constructed,
 but eventually it either evolves and changes as part of a community or it perishes. Just consider any one of the thousands
 of constructed spoken languages created in the history of mankind. Even Esperanto, perhaps the best-known constructed language,
 has today fewer than 1,000 native speakers.

