

 [image:]

 Quantum Computing in Action

 Johan Vos

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Dustin Archibald

 	
 Technical development editor:

 	
 Jan Goyvaerts, Alain Couniot

 	
 Review editor:

 	
 Ivan Martinović, Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Nick Watts

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296321

brief contents

 Part 1. Quantum computing introduction

 1 Evolution, revolution, or hype?

 2 “Hello World,” quantum computing style

 3 Qubits and quantum gates: The basic units in quantum computing

 Part 2. Fundamental concepts and how they relate to code

 4 Superposition

 5 Entanglement

 6 Quantum networking: The basics

 Part 3. Quantum algorithms and code

 7 Our HelloWorld, explained

 8 Secure communication using quantum computing

 9 Deutsch-Jozsa algorithm

 10 Grover’s search algorithm

 11 Shor’s algorithm

 Appendix A. Getting started with Strange

 Appendix B. Linear algebra

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Quantum computing introduction

 1 Evolution, revolution, or hype?

 1.1 Expectation management

 Hardware

 Software

 Algorithms

 Why start with QC today?

 1.2 The disruptive parts of QC: Getting closer to nature

 Evolutions in classical computers

 Revolution in quantum computers

 Quantum physics

 1.3 Hybrid computing

 1.4 Abstracting software for quantum computers

 1.5 From quantum to computing or from computing to quantum

 2 “Hello World,” quantum computing style

 2.1 Introducing Strange

 2.2 Running a first demo with Strange

 2.3 Inspecting the code for HelloStrange

 The build procedures

 The code

 Java APIs vs. implementations

 2.4 Obtaining and installing the Strange code

 Downloading the code

 A first look at the library

 2.5 Next steps

 3 Qubits and quantum gates: The basic units in quantum computing

 3.1 Classic bit vs. qubit

 3.2 Qubit notation

 One qubit

 Multiple qubits

 3.3 Gates: Manipulating and measuring qubits

 3.4 A first [quantum] gate: Pauli-X

 3.5 Playing with qubits in Strange

 The QuantumExecutionEnvironment interface

 The Program class

 Steps and gates

 Results

 3.6 Visualizing quantum circuits

 Part 2. Fundamental concepts and how they relate to code

 4 Superposition

 4.1 What is superposition?

 4.2 The state of a quantum system as a probability vector

 4.3 Introducing matrix gate operations

 The Pauli-X gate as a matrix

 Applying the Pauli-X gate to a qubit in superposition

 A matrix that works for all gates

 4.4 The Hadamard gate: The gate to superposition

 4.5 Java code using the Hadamard gate

 5 Entanglement

 5.1 Predicting heads or tails

 5.2 Independent probabilities: The classic way

 5.3 Independent probabilities: The quantum way

 5.4 The physical concept of entanglement

 5.5 A gate representation for quantum entanglement

 Converting to probability vectors

 CNot gate

 5.6 Creating a Bell state: Dependent probabilities

 5.7 Mary had a little qubit

 6 Quantum networking: The basics

 6.1 Topology of a quantum network

 6.2 Obstacles to quantum networking

 Classical networking in Java

 No-cloning theorem

 Physical limitations on transferring qubits

 6.3 Pauli-Z gate and measurement

 Pauli-Z gate

 Measurements

 6.4 Quantum teleportation

 The goal of quantum teleportation

 Part 1: Entanglement between Alice and Bob

 Part 2: Alice’s operations

 Part 3: Bob’s operations

 Running the application

 Quantum and classical communication

 6.5 A quantum repeater

 Part 3. Quantum algorithms and code

 7 Our HelloWorld, explained

 7.1 From hardware to high-level languages

 7.2 Abstractions at different levels

 7.3 Other languages for quantum computing simulators

 Approaches

 Resources for other languages

 7.4 Strange: High-level and low-level approaches

 Top-level API

 Low-level APIs

 When to use what

 7.5 StrangeFX: A development tool

 Visualization of circuits

 Debugging Strange code

 7.6 Creating your own circuits with Strange

 Quantum arithmetic as an introduction to Shor’s algorithm

 Adding two qubits

 Quantum arithmetic with a carry bit

 Next steps

 7.7 Simulators, cloud services, and real hardware

 8 Secure communication using quantum computing

 8.1 The bootstrap problem

 Issues with sending bits over a network

 One-time pad to the rescue

 Sharing a secret key

 8.2 Quantum key distribution

 8.3 Naive approach

 8.4 Using superposition

 Applying two Hadamard gates

 Sending qubits in superposition

 8.5 BB84

 Confusing Eve

 Bob is confused, too

 Alice and Bob are talking

 8.6 QKD in Java

 The code

 Running the application

 9 Deutsch-Jozsa algorithm

 9.1 When the solution is not the problem

 9.2 Properties of functions

 Constant and balanced functions

 9.3 Reversible quantum gates

 Experimental evidence

 Mathematical proof

 9.4 Defining an oracle

 9.5 From functions to oracles

 Constant functions

 Balanced functions

 9.6 Deutsch algorithm

 9.7 Deutsch-Jozsa algorithm

 9.8 Conclusion

 10 Grover’s search algorithm

 10.1 Do we need yet another search architecture?

 Traditional search architecture

 What is Grover’s search algorithm?

 10.2 Classical search problems

 General preparations

 Searching the list

 Searching using a function

 10.3 Quantum search: Using Grover’s search algorithm

 10.4 Probabilities and amplitudes

 Probabilities

 Amplitudes

 10.5 The algorithm behind Grover’s search

 Running the example code

 Superposition

 Quantum oracle

 Grover diffusion operator: Increasing the probability

 10.6 Conclusion

 11 Shor’s algorithm

 11.1 A quick example

 11.2 The marketing hype

 11.3 Classic factorization vs. quantum factorization

 11.4 A multidisciplinary problem

 11.5 Problem description

 11.6 The rationale behind Shor’s algorithm

 Periodic functions

 Solving a different problem

 Classic period finding

 The post-processing step

 11.7 The quantum-based implementation

 11.8 Creating a periodic function using quantum gates

 The flow and circuit

 The steps

 11.9 Calculating the periodicity

 11.10 Implementation challenges

 Appendix A. Getting started with Strange

 Appendix B. Linear algebra

 index

 front matter

preface

 I started working on my PhD thesis in 1995 at Delft University of Technology in the Netherlands. My work was mainly focused on the acoustic wave equation, and I needed to combine theoretical models with experimental data, which, of course, required data processing and visualization. Around that same time, a new programming language named Java was unveiled. Several things made Java attractive for scientific work, including its portability to different platforms, which made it easy to create applications with a user interface and execute them on the various platforms I was working on.

 However, it occurred to me that there was a large gap between the scientific world and the IT world. While researchers in science are typically trying to find answers to difficult questions, ITers are working on implementing the results of science and dealing with scalability, failover, code reuse, and functional or object-oriented development. Often, ideas and models created by scientists need to be implemented by ITers. Scientists should not worry about unit tests, while ITers should not have knowledge of the Standard Model of physics; but somehow, the handover between the two areas should be smooth.

 I was privileged to be a frequent co-speaker with James Weaver, a long-time Java expert who became interested in quantum computing. Because of my background in science, he asked me to co-present on quantum computing.

 If you need to do a presentation about something, it often helps if you know at least something about the subject. Even though I had worked on the acoustic wave equation, quantum computing was something different. Hence, I was forced to learn about quantum computing. The best way to learn something is to work with it; so, to understand quantum computing, I created a simulator of a quantum computer in Java, named Strange. Step by step, I added functionality to Strange, and by implementing it, I got a better idea of what quantum computing means for developers.

 My general observation that scientists face different issues than developers turned out to be true for quantum computing. I believe that one of the significant challenges in quantum computing is finding ways for existing developers to use quantum computing without requiring them to understand the physics behind it. But it also works the other way: great algorithms that may lead to improvements in various areas often require a good understanding of modern IT development before they can be successful.

 It is my belief that quantum computing can lead to major breakthroughs in several domains, including healthcare and security. With this book, I hope to explain to developers how you can benefit from quantum computing without having to become experts in quantum physics.

acknowledgments

 Thank you to my family for their constant support and patience, which has provided me the opportunity to write this book.

 I’d like to thank my colleagues at Gluon for their support, especially in many technical ways. Likewise, the continuous support and encouragement from the Java and JavaFX communities has motivated me to make this a book that is useful to developers.

 Many thanks to the entire Manning team who helped me realize this book. In particular, I’d like to thank Mike Stephens, Andrew Waldron, Dustin Archibald, Alain Couniot, Jan Goyvaerts, and Candace Gillhoolley for your knowledge and guidance along the way. Thanks also to Tiffany Taylor, Keir Samson, Melody Dolab, Meredith Mix, and Andy Marinkovich for guiding the book through production and for your commitment to making the book the best it can be.

 For obvious reasons, the past couple of years have been intense. We are certainly living in a strange time in which scientific work has become more relevant than ever. Studying quantum computing forced me to dive deep into the mysteries of nature. I am very grateful to all the scientists who are working to understand and explain the fundamental concepts of nature, so that hardware and software developers can work on concrete benefits based on those new insights.

 To all the reviewers: Aleksandr Erofeev, Alessandro Campeis, Antonio Magnaghi, Ariel Gamino, Carlos Aya-Moreno, David Lindelof, Evan Wallace, Flavio Diez, Girish Ahankari, Greg Wright, Gustavo Filipe Ramos Gomes, Harro Lissenberg, Jean-François Morin, Jens Christian Bredahl Madsen, Kelum Prabath Senanayake, Ken W. Alger, Marcel van den Brink, Michael Wall, Nathan B Crocker, Patrick Regan, Potito Coluccelli, Rich Ward, Roberto Casadei, Satej Kumar Sahu, Vasile Boris, Vlad Navitski, William E. Wheeler, and William W. Fly, your suggestions helped make this a better book.

about this book

 Most available resources about quantum computing are about either the mind-boggling physics that is used to enable quantum computing or the high-level consequences that can be expected when quantum computing becomes mainstream. In this book, we address the questions many developers ask: How will quantum computing affect my daily development, and how can I benefit from it? To answer this, we look at quantum computing from the perspective of a developer: we assume that hardware is or will be available (via native hardware or simulators), and we write code that is agnostic to marketing hype.

Who should read this book?

 This book is written for developers who are interested in knowing whether and how they can benefit from quantum computing, now or in the future, or in general, what impact will quantum computing have on their work. The reader is not expected to know anything about quantum physics. The book explains the areas where quantum computing might lead to improvements and how developers can use it similarly to how they use modern hardware (such as GPUs) without knowing the internal details.

How this book is organized: a roadmap

 This book contains three parts. Part 1 gives some basic information about quantum computing. Part 2 introduces the fundamental concepts that make quantum computing different from classical computing. Part 3 covers algorithms and code that are directly applicable to existing developers, and that use quantum advantages.

 Part 1 introduces quantum computing:

 	
 Chapter 1 discusses the importance of quantum computing without using buzzwords or participating in the hype. Down-to-earth developers often say, “Show me the code,” and that is what this book does.

 	
 In chapter 2, we build our first Java application (the typical HelloWorld application) using the Java-based quantum simulator Strange. The Strange quantum simulator shields developers from the low-level details of quantum computing yet provides APIs that internally benefit from quantum concepts.

 	
 Chapter 3 introduces the qubit as the fundamental building block in quantum computing, similar to the regular bit in classical computing.

 Part 2 introduces the relevant concepts of quantum computing:

 	
 Chapter 4 discusses superposition, one of the core principles of quantum physics. This chapter contains code that allows you to use quantum superposition in your Java applications.

 	
 Chapter 5 explains how different qubits can stay connected via quantum entanglement and what that means for applications.

 	
 Chapter 6 introduces quantum networking as a specific application of quantum computing.

 Part 3 deals with code examples and gradually introduces more complex algorithms that are useful to developers. Although the focus is on explaining the use of the algorithms, some explanations of the internals of the algorithms are given, as well, to help you work on similar algorithms:

 	
 Chapter 7 explains the HelloWorld application shown in chapter 2. This simple application has no direct benefits (similar to HelloWorld applications in general) but shows how quantum applications can be created.

 	
 Chapter 8 builds on chapters 6 and 7 and shows how a Java application can be created that uses quantum networking and provides a secure communication channel between two parties.

 	
 Chapter 9 explains the Deutsch-Jozsa algorithm. This algorithm is easy to implement in Java with Strange, and it familiarizes you with some of the typical patterns in quantum computing.

 	
 Chapter 10 discusses one of the most famous quantum algorithms: Grover’s search algorithm. This algorithm has real practical implications for developers.

 	
 Chapter 11 is about Shor’s algorithm, which is probably the most popular existing quantum algorithm. This algorithm requires a combination of classical and quantum computing, and is therefore a great topic to conclude the book.

About the code

 Throughout this book, many examples and demo applications are shown and referenced. Those applications use the Strange quantum simulator. Because Strange is an evolving project, the applications in the book are expected to evolve as well.

 The examples in the book depend on the latest public released version of Strange that was available at the time of this writing. This version is tagged and uploaded to well-known repositories (such as Maven Central). Because of this, the code in this book is expected to work in the future, even if the Strange APIs change. A snapshot of the code examples in this book at the time of publication is available at https://www.manning.com/books/quantum-computing-in-action. The evolving code repository for the examples is available at https://github.com/johanvos/quantumjava.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Quantum Computing in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/quantum-computing-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

about the author

 	
 [image:]

 	
 Johan Vos is a Java Champion, active OpenJDK contributor, project lead for OpenJDK Mobile, and co-spec lead for OpenJFX. Johan holds a PhD in applied physics from Delft University of Technology. He is a co-author of ProJava FX2/8/9 and of The Definitive Guide to Modern Java Clients with JavaFX.

 Johan has been active in the development of open source software. He was part of the Blackdown team that ported Java to Linux systems. Apart from his lead role in OpenJFX, he also contributes to a number of Java and JavaFX related libraries, including Strange and StrangeFX, which are discussed in this book.

about the cover illustration

 The figure on the cover of Quantum Computing in Action is captioned “Femme Dalécarlie,” or Dalecarlian woman. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Quantum computing introduction

 Chances are good that you heard about quantum computing before you started reading this book. The core components of quantum computing are rooted in a mind-boggling scientific discipline called quantum physics. The potential consequences of quantum computing are huge and will have a deep impact on our society, including the areas of security, finance, and science. As a consequence, you can read about quantum computing in specialized scientific papers as well as in popular lifestyle magazines.

 But what does quantum computing mean for developers involved in computing today? This book talks about the potential impact of quantum computing on the life of developers.

 In part 1, we briefly explain the concepts and consequences of quantum computing so that we can narrow it down to the parts that are relevant to developers. We first introduce the basic ideas; then, in chapter 2, you learn how to create a simple Java application that uses quantum computing. We introduce the Strange library, which allows you to keep programming in Java (or other high-level languages) and still use quantum concepts. Chapter 3 introduces a fundamental unit of quantum computing: the qubit.

1 Evolution, revolution, or hype?

 This chapter covers

 	
Setting the expectations for quantum computing

 	
Understanding what kinds of problems are suited for quantum computers

 	
Options for Java developers to work with quantum computing

 The number of books, articles, and blog posts about quantum computing is constantly increasing. Even if you read only basic information about quantum computing (QC), it is clear that this is not just an incremental enhancement of classical computing. The core concepts of QC are fundamentally different, and its application area is also different. In some areas, quantum computers are expected to be able to address problems that classical computers can’t.

 Furthermore, because QC is based on quantum physics, there is often some mystery associated with it. Quantum physics is not the simplest part of physics, and some aspects of quantum physics are extremely difficult to understand.

 Thus QC is often pictured as a mysterious new way of working with data that will drastically change the world. The latter is true, at least based on what we know at this moment. Many analysts believe it will take between 5 and 10 years before real, useful QC is possible, and most believe the impact will be huge.

 In this book, we try to stay close to reality. We want to explain to existing and new Java developers how you can use QC in your existing and new applications. As we will show, QC indeed has a huge impact on a number of important issues in the IT industry. We will also explain why it is essential to prepare for the arrival of real quantum computers and how you can do that using Java and your favorite toolset (such as your IDE and build tools). Although it is true that real quantum hardware is not yet available on a wide scale, developers should realize that building software using QC takes time as well. Thanks to quantum simulators and early prototypes, nothing is preventing you from starting to explore QC in your projects today. Doing so will increase the chances that your software will be ready by the time the hardware is available.

1.1 Expectation management

 The potential impact of QC is enormous. Researchers are still trying to estimate the impact, but at least in theory, there might be significant consequences for the IT industry, security, healthcare, and scientific research and thus for mankind in general. Because of this substantial impact, a quantum computer is often incorrectly pictured as a huge classical computer. This is not true, and to be able to see the relevance of QC, one must understand why QC is so fundamentally different from classical computing. It has to be stressed that there are still many roadblocks that need to be addressed before the big ambitions can be realized.

 Managing expectations

 	
 Don’t assume QC will fix everything.

 	
 QC is fundamentally different from classical computing.

 	
 QC is mainly suitable for complex problems.

 	
 QC and classical computers will have to work together.

 	
 The hardware is complex and not in our scope.

 	
 Although the hardware is not yet crystallized, we can already work on software, thanks to quantum simulators and early prototypes.

 The potential success of QC depends on various factors that can be put into two categories:

 	
 Hardware—New and complex hardware is needed.

 	
 Software—To use the capabilities offered by quantum hardware, dedicated software needs to be developed.

1.1.1 Hardware

 A number of uncertainties prevent wide-scale use of QC at this moment. In addition, it should be stressed that quantum computers will not fix every problem.

 The hardware needed for QC is by no means ready for mass production. Creating quantum hardware in the form of a quantum computer or a quantum coprocessor is extremely challenging.

 The core principles of QC, which we explain in this book, are based on the core principles of quantum mechanics. Quantum mechanics studies the fundamental particles of nature. It is generally considered to be one of the most challenging aspects of physics, and it is still evolving. Some of the world’s brightest physicists, including Albert Einstein, Max Planck, and Ludwig Boltzmann, have worked on the theory of quantum mechanics. But a significant problem when doing research in quantum mechanics is that it is often extremely difficult to check whether the theory matches the reality. It is no less than amazing that theories were created predicting the existence of some particles that had not yet been observed. Observing the smallest elements of nature and their behavior requires special hardware.

 It is already difficult to investigate and manipulate quantum effects in closed lab environments. Using those quantum effects in a controllable way in real-world situations is an even more significant challenge.

 Many experimental quantum computers that exist today are based on the principles of superconducting and operate at a very low temperature (such as 10 millikelvin, or close to –273 degrees Celsius). This has some practical restrictions that are not encountered with classical computers operating at room temperature.

 In this book, we make an abstraction of the hardware. As we discuss later, there is no reason for software developers to wait until the hardware is ready before they start thinking about software algorithms that should eventually run on quantum hardware. The principles of QC are understood and can be simulated via quantum computer simulators. It is expected that quantum software written for quantum computer simulators will also work on real quantum computers, provided the core quantum concepts are similar.

 A few words about hardware

 Clearly, the hardware problem isn’t solved, and it is generally expected to be several years before hardware is available that can be used to solve problems that are currently impossible to solve with classical computing. The hardware solution needs to support a large number of reliable qubits (the fundamental concept of QC, discussed more later in the chapter) that are available for a reasonable amount of time and can be controlled by classical computers.

 At the time of this writing, a number of early quantum computer prototypes exist. IBM has a 5-qubit quantum computer available for public use through a cloud interface and quantum computer, with more qubits in the research labs and for clients. Google has a quantum processor named Bristlecone that contains 72 qubits. Specialized companies like D-Wave and Rigetti have QC prototypes as well.

 We need to mention that it is not trivial to compare different quantum computers. At first sight, the number of qubits may sound like the most important criterion, but it can be misleading. One of the significant difficulties when building quantum computers is keeping the quantum states as long as possible. The slightest disturbance can destroy the quantum states, and therefore quantum computers are subject to errors that need to be corrected.

1.1.2 Software

 Although there are areas where QC could, in theory, lead to huge breakthroughs, it is generally agreed that quantum computers or quantum processors can take over some tasks from classical computers, but they won’t replace classical computers. The problems that can be solved using QC do not differ from problems that today are tackled using classical computers. However, because QC uses a completely different underlying approach, the problems can be handled in a completely different way; and for a given set of problems, a dramatic increase in performance can be achieved using QC. As a consequence, quantum computers should be able to solve problems that today are not practically solvable because there are not enough computing resources to solve them—for example, to simulate chemical reactions, optimization problems, or integer factorization.

 A few words on time complexity

 The complexity of algorithms is often expressed as the time complexity. In general, algorithms take longer to complete when the amount of input data increases. Problems are often put into different categories that indicate how much harder the problem becomes when the input is larger. This is often expressed in terms of Big O notation (see https://web.mit.edu/16.070/www/lecture/big_o.pdf for a definition).

 Let’s assume that there are n items of input data. If each item requires a fixed number of steps, the total time for the algorithm to complete is linear with N. In this case, the algorithm is said to take linear time.

 Many algorithms are more complex than this. When the number of input items increases, the total number of steps required may grow with the square of n, n2, or even with the kth power of n, nk, for a fixed value of k. In this case, the algorithm is said to take polynomial time.

 Some algorithms are even harder to solve when the number of input items grows. If no known algorithm can solve a problem in polynomial time, we say the algorithm takes nonpolynomial time. Algorithms are said to take exponential time if they require exponentially more steps when n increases. When a problem requires 2n steps, it is clear that the complexity increases drastically because n is in the exponent of the number of steps. In another example, which we discuss later, the number of required steps is [image:] with b the number of bits, hence the problem is also said to be of exponential complexity.

 It turns out that quantum computers will be most helpful for tackling problems that cannot be solved by classical computers in polynomial time but that can be solved by a quantum computer in polynomial time. A common example is integer factorization, which is a common operation in encryption (such as the widely used cryptosystem RSA), or breaking encryption, to be more precise. The basic idea in integer factorization is to decompose a number into prime numbers that, when multiplied together, yield the original number: for example, 15 = 3 × 5. Although this is easy to do without a computer, you can imagine that a computer is helpful when the numbers become bigger, as in 146963 = 281 × 523.

 The larger the number we want to factor, the longer it will take to find the solution. This is the basis of many security algorithms. They use the idea that it is close to impossible to factor a number consisting of 1,024 bits. It can be shown that the time required to solve this problem is on the order of

 	
 Equation 1.1

 	
 [image:]

 where b is the number of bits in the original number. The e at the beginning of this equation is the important part: in short, it means that by making b larger, the time required to factor the number becomes exponentially larger. The diagram in figure 1.1 shows the time it takes to factor a number with b bits.

 [image:]

 Figure 1.1 Time grows exponentially with the number of bits.

 Note that the absolute time is not relevant. Even if the fastest existing computers are used, adding a single bit makes a huge difference.

 This problem is said to be nonpolynomial, as no known classical algorithm can solve the problem in polynomial time. Hence, by increasing the number of bits, it is almost impossible for classical computers to find a solution to this problem.

 However, this same problem can be handled by a quantum algorithm in polynomial time. As we will show in chapter 11, using Shor’s algorithm, the time to solve this problem using a quantum computer is on the order of b3.

 To show what that means, we overlay the required time using a quantum algorithm on a quantum computer over the required time using a classical algorithm on a classical computer. This is illustrated in figure 1.2.

 [image:]

 Figure 1.2 Polynomial time versus exponential time

 Starting from a number of bits, the quantum computer will be much faster than the classical computer. Moreover, the greater the number of bits, the greater the difference. This is because the required time for solving the problem on a classical computer increases exponentially when the amount of bits grows, whereas the same increase in bits will cause only a polynomial increase for the quantum algorithm.

 These kinds of problems are said to be polynomial in quantum. They are the ones that it makes the most sense for quantum computers to deal with.

 Note Shor’s algorithm is one of the most popular QC algorithms. There are a few reasons we discuss it only in chapter 11, though. First, to have a reasonable understanding of how the algorithm works, you must have a handle on the foundations of QC. Second, with the current state of the hardware, and even with fast innovations, most experts believe we are still many years from the moment when a quantum computer will be able to factor a reasonably sized key in a practical amount of time. You shouldn’t wait to think about Shor’s algorithm until it is too late, but on the other hand, we don’t want to give you false expectations. Finally, although the impact of Shor’s algorithm can be huge, there are other areas where QC can make an enormous difference, including healthcare, chemistry, and optimization problems.

1.1.3 Algorithms

 Shor’s algorithm is a great example of a computational problem that is hard to solve on a classical computer (nonpolynomial in time) and relatively easy to solve on a quantum computer (polynomial in time). Where does the difference come from? As we discuss in chapter 11, Shor’s algorithm transforms the problem of integer factorization into the problem of finding the periodicity of a function, such as finding the value p for which the function evaluation f(x + p) = f(x) for all possible values of x. This problem is still hard to solve on a classical computer, but it is relatively easy to resolve on a quantum computer.

 Most algorithms that are known today to be suitable for quantum computers are based on the same principle: transform the original problem into a problem space that is easy to solve using quantum computers. The classic approach is shown in figure 1.3. The best known algorithm is applied to the problem, and the result is obtained.

 [image:]

 Figure 1.3 Typical approach: solving a problem on a classical computer

 If we can somehow transform the original problem into a different problem that can be handled easily by a quantum computer, we can expect a performance improvement. This is shown in figure 1.4.

 [image:]

 Figure 1.4 Transforming a problem to an area where quantum computers can make a significant difference

 Note that we have to consider the cost of transforming the original problem into a different problem, and vice versa, for the final result. However, when talking about computation-intensive algorithms, this cost should be negligible.

 Note When you see a quantum algorithm being explained, you may wonder why it seems to take a detour from the original problem. Quantum computers are capable of solving particular problems quickly, so moving an original problem to one of those particular problems allows for a much faster algorithm using QC.

 Coming up with those algorithms often requires a deep mathematical background. Typically, developers do not create new quantum algorithms for applications that will benefit from quantum computers—they will use existing algorithms. However, developers who know the basics of quantum algorithms, why they are faster, and how to use them, will have an advantage.

1.1.4 Why start with QC today?

 Programmers sometimes wonder why they should start learning QC when real, usable quantum computers are still years away. You have to realize, though, that writing software that involves QC is different from writing classical software. Although it is expected that there will be libraries that make it convenient for developers to use quantum computers, those libraries have to be written; and even then, it will require skills and knowledge to use the best tools for a particular project.

 Any developer working on a project that requires encryption or secure communication can benefit from learning QC. Some existing classical encryption algorithms will become insecure when quantum computers are available. It would be a bad idea to wait until the first time a quantum computer breaks encryption before hardening the encryption software. On the contrary, you want to be prepared before the hardware is available. Because QC is really disruptive, it can be expected that most developers will need more time to learn QC than they typically need when using a new library.

 Although we do not want to scare you with doom scenarios, it is important to understand that there is no need for a wide base of quantum computers to be installed before existing encryption techniques can be compromised. Cyberattacks do not require a large number of computers and can be carried out from anywhere.

 Tip There is a reasonable chance that some existing communication protocols and encryption techniques will be vulnerable once quantum computers become more powerful. It is essential for developers to understand what kind of software might be vulnerable and how to address this issue. This is not something that can be done overnight, so it is recommended that you start looking into this sooner rather than later.

 The software examples we discuss in this book are basic applications. They illustrate the core principles of QC, and they make it clear what kind of problems can benefit from QC. But the gap between basic algorithms and fully functional software is significant. Hence, although it will be years before the hardware is ready, developers have to understand that it will probably also take a long time before they have optimized their software projects to use QC as much as possible, where applicable.

 In the middle of the previous century, when the first digital computers were built, software languages needed to be created as well. The difference today is that we can use classical computers to simulate quantum computers. We can work on software for quantum computers without having access to a quantum computer.

 This is an important benefit, and it highlights the importance of quantum simulators. Developers who start looking into QC today using simulators will have a huge advantage over other developers when quantum hardware becomes more widely available.

1.2 The disruptive parts of QC: Getting closer to nature

 One of the main application areas of QC is anything related to physics. For a long time, scientists have been trying to understand the core concepts of modern physics by simulating the concepts on classical computers. However, because the most elementary particles of nature do not follow classic laws, it is complex to simulate them on classical computers. Using those quantum particles and their laws as the cornerstones of quantum computers makes it much easier to tackle those problems.

 The nature of bits

 The notion of a bit often seems to correspond with the smallest piece of information that can exist. Information such as music, books, videos, and functionality (applications) can be expressed in a sequence of bits. As we briefly explain later in this chapter, nature itself, including all matter that is contained in the universe, cannot be described purely as a sequence of 0s and 1s. At a small scale, particles behave differently, as rather successfully described by quantum mechanics. The fundamental building blocks of nature are not 0s and 1s but a set of elementary particles with different properties, and QC uses those particles and their properties.

OEBPS/OEBPS/Images/01-02.png
required to factor

Time Complexity

o 2 4 6 8 10 2 1 i3 18 20
number of bits

@ classic © shor

OEBPS/OEBPS/Images/01-00_equation_1-1.png
oV (64/9)b(log b)?

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/Vos_Author.png

OEBPS/cover.jpeg
Examples in Java

IN ACTIC

Johan Vos

/ll MANNING

OEBPS/OEBPS/Images/01-03.png

OEBPS/OEBPS/Images/01-01.png
Time Complexity

55.000
50.000
45.000
40.000

35,000

required to factor
@
8
3
8

25,000

ime
8
8
8
g

15.000

10.000

5.000

number of bits

@ classic

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/01-04.png
Original problem ’-

Related problem ’

hd

Slow original Fast quantum
algorithm algorithm

hd

Solution Related solution

