

 [image:]

 Securing DevOps

 Security in the Cloud

 Julien Vehent

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image: Manning_M_small]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editors:

 	
 Dan Maharry and Toni Arritola

 	
 Technical development editor:

 	
 Luis Atencio

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Project manager:

 	
 Janet Vail

 	
 Technical proofreader:

 	
 Andrew Bovill

 	
 Typesetter:

 	
 Happenstance Type-o-Rama

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617294136

 dedication

 To my wife, Bogdana

 To all the folks at Mozilla who keep the web secure and open

 front matter

 preface

 I’m scavenging through shelves of discarded hardware in the basement of the old government building, when a pair of sturdy-looking hard drives catch my attention. The year is 2002, and I’m 19 years old and working my first job as a help desk technician at a French tax-collection agency. My boss almost apologizes when she asks me to clean up the basement, thinking I’ll loathe the assignment, but I feel like Ali Baba when he first entered the magical cave. So many old servers, sitting there unused but still ready to run UNIX systems I’ve never heard of, let alone played with. If my apartment were bigger than a single bedroom and a tiny kitchen, I’d take it all and run a huge network at home!

 The two hard drives are 15,000 RPM SCSI drives that belonged to an already-old domain controller. I put them aside and look for an SCSI card to plug them into. I find it in a nearby box, dusty but intact. After several hours of cleaning and inventorying, I ask for permission to take them home with me. My plan is simple: plug them into a spare motherboard I already have and build the fastest Counter Strike (the shooting game) server the internet has ever seen. Then I’ll put it on the internet, using my freshly installed 512 Kbps DSL connection, and invite my gaming crew to train there.

 I spend the better part of a weekend trying to make the hard drives and SCSI card work properly and be recognized by Debian Installer. I search for hours on dozens of forums and mailing lists for help and tips on this particular hardware, but most of it is for other SCSI cards and involves secret kernel incantations I can’t decipher. The weekend passes, then a week, and eventually I succeed in finding the right combination of luck and parameters that triggers the installation of Linux on a RAID 1. Maybe it’s me, I think, but this hardware stuff sure is complicated!

 My success is short-lived, however, and I quickly realize those old 15,000 RPM drives make a crazy lot of noise, way more than I can stand, sitting a few meters away for hours at a time. Sure, my gaming server is working, and it is (moderately) fast, but I have to reluctantly power it off and give up on my plan to turn this tiny apartment into a data center.

 When I learned IT in the late 1990s and early 2000s, the focus was on hardware and networking. Like my peers and my mentors, I spent hours every week reading about the latest servers, the newest CPUs, and the best hard drives. We had to know it all to find the perfect system to run our applications on. Purchasing was slow and expensive, particularly in my government agency, and picking the wrong hardware would mean being stuck with servers that wouldn’t get replaced for another three years.

 Think about this in today’s context. Three years! That’s longer that the lifetime of most start-ups. Longer than the popularity of most JavaScript web frameworks. Longer than most people stay at a company. An eternity, in the world of IT.

 Back then (and I probably sound like your grandpa right now), you couldn’t bring a web service to market in less than a year, maybe even two. There was no cloud, no service provider that would host servers for you or even run services online that you could access remotely. Our internet connections were slow—the government agency had a whopping 128 Kbps uplink, shared across 150 people!—and not suitable for transferring large amounts of data between your local desktop and an online service. Setting up servers was a slow and complicated process that often involved hours of battling hardware drivers and days of complex cabling and installation work. Organizations had entire departments dedicated to doing that stuff, and programmers knew to ask for servers early or risk delaying their projects for several months.

 This focus of IT on hardware and networking also meant security teams shared the same focus. Few people talked about application security, then; instead, they concentrated their efforts on filtering network traffic and access (physical or virtual) to servers. In school, we learned about firewalls, isolated systems across VLANs, and network-based intrusion detection. We didn’t spend much time on web-application security, because we didn’t know then that most of the world would stop using locally installed software, like Outlook, and move to software-as-a-service, like Gmail, in a few years. That shift started in the mid-2000s and only became obvious a few years later.

 When DevOps gained traction and popularized the concepts of continuous integration, continuous deployment, and infrastructure-as-a-service, those frustrated with the long delays in managing hardware pushed hard to adopt the promise of deploying infrastructure in days instead of months. Most security people, however, pushed back, worried that the loss of control over the infrastructure would ultimately compromise security.

 At first, I was one of the people who pushed back. All my hard-earned skills had conditioned me to think of security in terms of hardware control: if you didn’t run the systems yourself, you couldn’t be secure. Little by little, however, I saw my developer friends deploy applications with a handful of commands, when I still needed hours to do it the old way. Surely, they were on to something, so I took a job as an operations engineer and migrated a monolithic Java application over to AWS. It was painful. I didn’t know about provisioning tools like Puppet or Chef, and AWS certainly wasn’t as mature as it is today. I wrote custom Perl scripts to automate the configuration of servers and learned to use APIs to create virtual machines on the fly. My boss loved being able to crash and redeploy the application on a new server in just a few commands, but it was clunky, error prone, and fairly unstable. Still, it was a start, and it instilled in me the belief that security is highly dependent on infrastructure flexibility: if the systems can move fast, issues can be fixed faster, and security is better.

 It was when I joined Mozilla’s Cloud Services that I saw what an experienced team can achieve with advanced DevOps techniques. There is some beauty, at least to my inner nerd, in seeing a service automatically double its servers to absorb an increase in traffic, and then delete those extra servers a few hours later when the load decreases. The focus on deployment automation means new projects are integrated within a day or two of initial setup. This elasticity is what allows small organizations to ramp up quickly, gain popularity, and eventually become tech behemoths. It continues to amaze me how far we’ve come from the weeks it used to take to configure basic Linux servers with two hard drives in RAID 1 connected to some decent internet.

 I strongly believe security must be at the service of the business. When the business screams for modernization, as it does with DevOps, security must follow and support the transformation, not hold it back. I wrote Securing DevOps with the goal of helping aspiring and experienced security engineers support their organizations in adopting modern practices, without putting data or customers at risk. This book is the translation of my own experience with integrating security into web services that need high levels of security, mixed with practices and techniques that an entire security community has spent years perfecting. It’s not set in stone, and DevOps techniques will continue to evolve long after this book is published, but the concepts outlined here will remain relevant for as long as we operate services online.

 acknowledgments

 Writing a book is a lot of work, and this one was no exception. It took more than two years to gather, organize, write, edit, rewrite, proofread, and produce the content you’re about to read. Perhaps my favorite quote about the process of writing a book comes from Gene Fowler, who famously said the following:

 “Writing is easy. All you do is stare at a blank sheet of paper until drops of blood form on your forehead.”

 One might easily give up during this long and excruciating process, and I probably would’ve as well, if it wasn’t for my wife, Bogdana, who continuously motivated me to finish the book and supported me as I was missing out on our family time. I love you, and I can’t thank you enough!

 I also want to thank my friends and colleagues from Mozilla in the security, development, and operations teams who have helped shape this book through their advice, feedback, and technology. I can’t name them all, though they most certainly deserve it, but would like to particularly thank Guillaume Destuynder, Aaron Meihm, Chris Kolosiwsky, and Simon Bennetts. Your reviews, feedback, and support have made this book a whole lot better.

 My friend Didier Bernaudeau played a critical part in broadening the vision of security in DevOps through his expertise in the banking world. He contributed a vision that was different from mine, and which helped widen the audience for this book.

 I must thank Andrew Bovill and Scott Piper for verifying the technical accuracy of the code and techniques throughout the book. No code is good without proper peer review!

 In addition, many helpful comments were made by Manning’s reviewers, including Adam Montville, Adrien Saladin, Bruce Zamaere, Clifford Miller, Daivid Morgan, Daut Morina, Ernesto Cardenas Cangahuala, Geoff Clark, Jim Amrhein, Morgan Nelson, Rajiv Ranjan, Tony Sweets, andYan Guo.

 Last, but certainly not least, I want to emphasize the essential roles Toni Arritola and Dan Maharry, my development editors, have played in making this book a reality. Dan shaped my disorganized ideas into material that could be taught, and Toni made certain we would ship a manuscript of the highest possible quality. I can confidently say this book would have never happened if not for the two of them, so I thank them!

 about this book

 I wrote this book for Sam, a fictional character who has been doing IT for as long as she can remember, and who spent the last couple of years doing operations and a bit of dev on the side. Sam recently took a job at Flycare as a DevOps engineer. Flycare is building a web and mobile platform for managing medical invoices and billing. It’s a small start-up: two ops on staff, five devs full time, and a couple of people on the business side; small, but with big health-data risks, and they hope Sam can build them a secure platform to run their web services.

 A challenge is exactly what Sam is looking for, but securing a high-risk platform in a start-up where developers like to deploy code in Docker containers from GitHub three times a day is going to be difficult. She needs some help, and I wrote Securing DevOps to help Sam.

 How this book is organized

 Securing DevOps is structured like a tutorial, starting with basic operational concepts to make sure the reader is comfortable with the most elementary DevOps techniques, and gradually delving into more-complex topics. We’ll dive into the security of an example environment in part 1, identify and fight attacks in part 2, and mature the security strategy of the organization in part 3. The chapters are ordered to reflect the way you’d implement a security strategy in an organization that doesn’t yet have one or is just now adopting DevOps. This is a hands-on manual, with a healthy dose of concepts, so you’ll get a chance to put theory into practice right away.

 Roadmap

 Chapter 1 introduces DevOps and the need for integrating security closely with development and operational practices. You’ll learn about the continuous-security approach we’ll implement throughout the book.

 Part 1 contains chapters 2 through 6 and walks the reader through securing an entire DevOps pipeline.

 	
 Chapter 2 covers the DevOps pipeline in AWS. You’ll build a pipeline and deploy a sample application using automation. It’ll be insecure at first, and I’ll highlight areas that need improvement, and then work through them in the following chapters.

 	
 Chapter 3 explains web-application security. We’ll discuss how to test your websites, how to protect against common attacks, how to manage user authentication, and how to keep your code up to date.

 	
 Chapter 4 focuses on hardening the AWS infrastructure. You’ll learn how to run security tests as part of automated deployments, how to restrict network access, how to protect access to the infrastructure, and how to secure a database.

 	
 Chapter 5 dives into communications security with a discussion of TLS, the cryptographic protocol under HTTPS, and how to implement it correctly to secure your websites.

 	
 Chapter 6 covers the security of the delivery pipeline. We’ll discuss how to manage access controls in GitHub, Docker Hub, and AWS. You’ll also learn how to protect the integrity of source code and containers, and how to distribute credentials to applications.

 Part 2 contains chapters 7 through 10 and focuses on watching for anomalies across the infrastructure and protecting services against attacks.

 	
 Chapter 7 explains the structure of a logging pipeline. You’ll see how the collection, streaming, analysis, storage, and access layers work together to efficiently work with logs.

 	
 Chapter 8 focuses on the analysis layer of the logging pipeline. You’ll implement various techniques to work with logs, and detect anomalies and fraudulent activity.

 	
 Chapter 9 discusses intrusion detection. We’ll discuss tools and techniques used to detect fraudulent activity at the network, system, and human levels.

 	
 Chapter 10 presents a case study of a security incident in a fictional organization. You’ll see how to react, respond, and recover from a security incident.

 Part 3 contains chapters 11 through 13 and teaches techniques to mature the security strategy of a DevOps organization.

 	
 Chapter 11 introduces risk assessment. You’ll learn about the CIA triad (confidentiality, integrity, and availability), and the STRIDE and DREAD threat-modeling frameworks. You’ll also learn how to implement a lightweight risk-assessment framework in your organization.

 	
 Chapter 12 covers security testing at the web application, source code, and infrastructure levels. We’ll discuss various tools and techniques you can use to find security issues in your organization.

 	
 Chapter 13 presents a three-year model for implementing continuous security in your organization, and shares some tips to increase your chances of success.

 About the code

 The book contains a lot of small commands and examples and a couple of full-blown applications. Source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature is added to an existing line of code. All code examples in this book are available for download from the book’s website, www.manning.com/books/securing-devops, and on GitHub at https://securing-devops.com/code. The source code contains the invoicer and deployer applications, as well as scripts to set them up, and the logging pipeline mentioned in chapter 8.

 You may find minor differences between the code in the manuscript and the code online, mostly due to formatting requirements. I’ll also keep the code online up to date with bug fixes and changes to third-party tools and services, whereas the code in the book will remain static. Don’t hesitate to open issues in the various repositories if you run into problems or have any questions.

 Book forum

 Purchase of Securing DevOps includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/securing-devops. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 about the author

 [image: c294136fm-1.tif]

 At the time of writing, Julien Vehent leads the Firefox Operations Security team at Mozilla. He’s responsible for defining, implementing, and operating the security of web services that millions of Firefox users interact with daily. Julien has focused on securing services on the web since the early 2000s, starting as a Linux sysadmin and graduating with a master’s degree in Information Security in 2007.

 about the cover illustration

 The figure on the cover of Securing DevOps is captioned “Femme Gacut.” The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly, for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

 1 Securing DevOps

 This chapter covers

 	Getting to know DevOps and its impact on building cloud services

 	Using continuous integration, continuous delivery, and infrastructure as a service

 	Evaluating the role and goals of security in a DevOps culture

 	Defining the three components of a DevOps security strategy

 Connected applications that make little parts of our life easier are the technological revolution of the twenty-first century. From helping us do our taxes, share photos with friends and families, and find a good restaurant in a new neighborhood, to tracking our progress at the gym, applications that allow us to do more in less time are increasingly beneficial. The growth rates of services like Twitter, Facebook, Instagram, and Google show that customers find tremendous value in each application, either on their smartphones’ home screen or in a web browser.

 Part of this revolution was made possible by improved tooling in creating and operating these applications. Competition is tough on the internet. Ideas don’t stay new for long, and organizations must move quickly to collect market shares and lock in users of their products. In the startup world, the speed and cost at which organizations can build an idea into a product is a critical factor for success. DevOps, by industrializing the tools and techniques of the internet world, embodies the revolution that made it possible to run online services at a low cost, and let small startups compete with tech giants.

 In the startup gold rush, data security sometimes suffers. Customers have shown their willingness to trust applications with their data in exchange for features, leading many organizations to store enormous amounts of personal information about their users, often before the organization has a security plan to handle the data. A competitive landscape that makes companies take risks, mixed with large amount of sensitive data, is a perfect recipe for disaster. And so, as the number of online services increases, the frequency of data breaches increases as well.

 Securing DevOps is about helping organizations operate securely and protect the data their customers entrust them with. I introduce a model I refer to as “continuous security,” which focuses on integrating strong security principles into the various components of a DevOps strategy. I explain culture, architectural principles, techniques, and risk management with the goal of going from no security to a mature program. This book is primarily about principles and concepts, but throughout the chapters we’ll use specific tools and environments as examples.

 DevOps can mean many different things, depending on which part of information technology (IT) it’s being applied to. Operating the infrastructure of a nuclear plant is very different from processing credit card payments on websites, yet both equally benefit from DevOps to optimize and strengthen their operations. I couldn’t possibly cover all of DevOps and IT in a single book, and decided to focus on cloud services, an area of IT dedicated to the development and operations of web applications. Throughout the book, I invite the reader to develop, operate, secure, and defend a web application hosted in the cloud. The concepts and examples I present best apply to cloud services, in organizations that don’t yet have a dedicated security team, yet an open-minded reader could easily transfer them into any DevOps environment.

 In this first chapter, we’ll explore how DevOps and security can work together, allowing organizations to take risks without compromising the safety of their customers.

 1.1 The DevOps approach

 DevOps is the process of continuously improving software products through rapid release cycles, global automation of integration and delivery pipelines, and close collaboration between teams. The goal of DevOps is to shorten the time and reduce the cost of transforming an idea into a product that customers use. DevOps makes heavy use of automated processes to speed up development and deployment. Figure 1.1 shows a comparison of a traditional software-building approach at the top, with DevOps at the bottom.

 	
 In the top section, the time between conceptualization and availability to customers is eight days. Deploying the infrastructure consumes most of that time, as engineers need to create the components needed to host the software on the internet. Another big time-consumer is the testing-and-reviewing step between deployments.

 	
 In the bottom section, the time between conceptualization and delivery is reduced to two days. This is achieved by using automated processes to handle the infrastructure deployment and software test/review.

 [image: c01_01.png]

 Figure 1.1 DevOps reduces the time between feature conception and its availability to customers.

 An organization able to build software four times faster than its competitor has a significant competitive advantage. History shows that customers value innovative products that may be incomplete at first but improve quickly and steadily. Organizations adopt DevOps to reduce the cost and latency of development cycles and answer their customers’ demands.

 With DevOps, developers can release new versions of their software, test them, and deploy them to customers in as little as a few hours. That doesn’t mean versions are always released that quickly, and it can take time to do proper quality assurance (QA), but DevOps provides the ability to move quickly if needed. Figure 1.2 zooms into the bottom section of figure 1.1 to detail how the techniques of continuous integration, continuous delivery, and infrastructure as a service are used together to achieve fast release cycles.

 The key component of the pipeline in figure 1.2 is the chaining of automated steps to go from a developer’s patch submission to a service deployed in a production environment in a completely automated fashion. Should any of the automated steps fail along the way, the pipeline is stopped, and the code isn’t deployed. This mechanism ensures that tests of all kinds pass before a new version of the software can be released into production.

 [image: c01_02.png]

 Figure 1.2 Continuous integration (CI), continuous delivery (CD), and infrastructure as a service (IaaS) form an automated pipeline that allows DevOps to speed up the process of testing and deploying software.

 1.1.1 Continuous integration

 The process of quickly integrating new features into software is called continuous integration (CI). CI defines a workflow to implement, test, and merge features into software products. Product managers and developers define sets of small features that are implemented in short cycles. Each feature is added into a branch of the main source code and submitted for review by a peer of the developer who authored it. Automated tests happen at the review stage to verify that the change doesn’t introduce any regressions, and that the quality level is maintained. After review, the change is merged into the central source-code repository, ready for deployment. Quick iterations over small features make the process smooth and prevent breakage of functionalities that come with large code changes.

 1.1.2 Continuous delivery

 The automation of deploying software into services available to customers is called continuous delivery (CD). Rather than managing infrastructure components by hand, DevOps recommends that engineers program their infrastructure to handle change rapidly. When developers merge code changes into the software, operators trigger a deployment of the updated software from the CD pipeline, which automatically retrieves the latest version of the source code, packages it, and creates a new infrastructure for it. If the deployment goes smoothly, possibly after the QA team has manually or automatically reviewed it, the environment is promoted as the new staging or production environment. Users are directed to it, and the old environment is destroyed. The process of managing servers and networks with code alleviates the long delays usually needed to handle deployments.

 1.1.3 Infrastructure as a service

 Infrastructure as a service (IaaS) is the cloud. It’s the notion that the data center, network, servers, and sometimes systems an organization relies on, are entirely operated by a third party, controllable through APIs and code, and exposed to operators as a service. IaaS is a central tool in the DevOps arsenal because it plays an important role in the cost reduction of operating infrastructures. Its programmable nature makes IaaS different from traditional infrastructure and encourages operators to write code that creates and modifies the infrastructure instead of performing those tasks by hand.

 Operating in-house

 Many organizations prefer to keep their infrastructure operated internally for a variety of reasons (regulation, security, cost, and so on). It’s important to note that adopting an IaaS doesn’t necessarily mean outsourcing infrastructure management to a third party. An organization can deploy and operate IaaS in-house, using platforms like Kubernetes or OpenStack, to benefit from the flexibility those intermediate management layers bring over directly running applications on hardware.

 For the purposes of this book, I use an IaaS system operated by a third party—AWS—popular in many organizations for reducing the complexity of managing infrastructure and allowing them to focus on their core product. Yet, most infrastructure security concepts I present apply to any type of IaaS, whether you control the hardware or let a third party do it for you.

 Managing the lower layers of an infrastructure brings a whole new set of problems, like network security and data-center access controls, that you should be taking care of. I don’t cover those in this book, as they aren’t DevOps-specific, but you shouldn’t have trouble finding help in well-established literature.

 Amazon Web Services (AWS), which will be used as our example environment throughout the book, is the most emblematic IaaS. Figure 1.3 shows the components of AWS that are managed by the provider, at the bottom, versus the ones managed by the operator, at the top.

 CI, CD, and IaaS are fundamental components of a successful DevOps strategy. Organizations that master the CI/CD/IaaS workflow can deploy software to end users rapidly, possibly several times a day, in a fully automated fashion. The automation of all the testing and deployment steps guarantees that minimal human involvement is needed to operate the pipeline, and that the infrastructure is fully recoverable in case of disaster.

 Beyond the technical benefits, DevOps also influences the culture of an organization, and in many ways, contributes to making people happier.

 [image: c01_03.png]

 Figure 1.3 AWS is an IaaS that reduces the operational burden by handling the management of core infrastructure components. In this diagram, equipment in the lower box is managed entirely by Amazon, and the operator manages the components in the upper box. In a traditional infrastructure, operators must manage all the components themselves.

 1.1.4 Culture and trust

 Improved tooling is the first phase of a successful DevOps approach. Culture shifts accompany this change, and organizations that mature the technical aspects of DevOps gain confidence and trust in their ability to bring new products to their users. An interesting side effect of increased trust is the reduced need for management as engineers are empowered to deliver value to the organization with minimal overhead. Some DevOps organizations went as far as experimenting with flat structures that had no managers at all. Although removing management entirely is an extreme that suits few organizations, the overall trend of reduced management is evidently linked to mature DevOps environments.

 Organizations that adopt and succeed at DevOps are often better at finding and retaining talent. It’s common to hear developers and operators express their frustration with working in environments that are slow and cluttered. Developers feel annoyed waiting for weeks to deploy a patch to a production system. Operators, product managers, and designers all dislike slow iterations. People leave those companies and turnover rates can damage the quality of a product. Companies that bring products to market faster have a competitive advantage, not only because they deliver features to their users faster, but also because they keep their engineers happy by alleviating operational complexity.

 DevOps teaches us that shipping products faster makes organizations healthier and more competitive, but increasing the speed of shipping software can make the work of security engineers difficult. Rapid release cycles leave little room for thorough security reviews and require organizations to take on more technological risks than in a slower structure. Integrating security in DevOps comes with a new set of challenges, starting with a fundamental security culture shift.

 1.2 Security in DevOps

 “A ship is safe in harbor, but that’s not what ships are built for.”

 —John A. Shedd

 To succeed in a competitive market, organizations need to move fast, take risks, and operate at a reasonable cost. The role of security teams in those organizations is to be the safety net that protects the company’s assets while helping it to succeed. Security teams need to work closely with the engineers and managers who build the company’s products. When a company adopts DevOps, security must change its culture to adopt DevOps as well, starting with a focus on the customer.

 DevOps and its predecessors—the Agile Manifesto (http://agilemanifesto.org/) and Deming’s 14 principles (https://deming.org/explore/fourteen-points)—have one trait in common: a focus on shipping better products to customers faster. Every successful strategy starts with a focus on the customer (http://mng.bz/GN43):

 “We’re not competitor obsessed, we’re customer obsessed. We start with what the customer needs and we work backwards.”

 —Jeff Bezos, Amazon

 In DevOps, everyone in the product pipeline is focused on the customer:

 	
 Product managers measure engagement and retention ratios.

 	
 Developers measure ergonomics and usability.

 	
 Operators measure uptime and response times.

 The customer is where the company’s attention is. The satisfaction of the customer is the metric everyone aligns their goals against.

 In contrast, many security teams focus on security-centric goals, such as

 	
 Compliance with a security standard

 	
 Number of security incidents

 	
 Count of unpatched vulnerabilities on production systems

 When the company’s focus is directed outward to its customers, security teams direct their focus inward to their own environment. One wants to increase the value of the organization, while the other wants to protect its existing value. Both sides are necessary for a healthy ecosystem, but the goal disconnect hurts communication and efficiency.

 In organizations that actively measure goals and performance of individual teams to mete out bonuses and allocate rewards, each side is pressured to ignore the others and focus on its own achievements. To meet a goal, developers and operators ignore security recommendations when shipping a product that may be considered risky. Security blocks projects making use of unsafe techniques and recommends unrealistic solutions to avoid incidents that could hurt their bottom line. In situations like these, both sides often hold valid arguments, and are well intended, but fail to understand and adapt to the motivation of the other.

 As a security engineer, I’ve never encountered development or operational teams that didn’t care about security, but I have met many frustrated with the interaction and goal disconnects. Security teams that lack the understanding of the product strategy, organize arbitrary security audits that prevent shipping features, or require complex controls that are difficult to implement are all indicators of a security system that’s anything but agile. Seen from the other side, product teams that ignore the experience and feedback of their security team are a source of risk that ultimately hurts the organization.

 DevOps teaches us that a successful strategy requires bringing the operational side closer to the development side and breaking the communication barrier between various developers and operators. Similarly, securing DevOps must start with a close integration between security teams and their engineer peers. Security needs to serve the customer by being a function of the service, and the internal goals of security teams and DevOps teams need to be aligned.

 When security becomes an integral part of DevOps, security engineers can build controls directly into the product rather than bolting them on top of it after the fact. Everyone shares the same goals of making the organization succeed. Goals are aligned, communication is improved, and data safety increases. The core idea behind bringing security into DevOps is for security teams to adopt the techniques of DevOps and switch their focus from defending only the infrastructure to protecting the entire organization by improving it continuously.

 Throughout the book, I call this approach continuous security. In the following section, you’ll see how to implement continuous security gradually, starting with simple and easy-to-implement security controls, and progressively maturing the security strategy to cover the entire organization.

 1.3 Continuous security

 Continuous security is composed of three areas, outlined in the gray boxes of figure 1.4. Each area focuses on a specific aspect of the DevOps pipeline. As customer feedback spurs organizational growth that drives new features, the same is true of continuous security. This book has three parts; each covers one area of continuous security:

 	
 Test-driven security (TDS)—The first step of a security program is to define, implement, and test security controls. TDS covers simple controls like the standard configuration of a Linux server, or the security headers that web applications must implement. A great deal of security can be obtained by consistently implementing basic controls and relentlessly testing those controls for accuracy. In good DevOps, manual testing should be the exception, not the rule. Security testing should be handled the same way all application tests are handled in the CI and CD pipelines: automatically, and all the time. We’ll cover TDS by applying layers of security to a simple DevOps pipeline in part 1.

 [image: c01_04.png]

 Figure 1.4 The three phases of continuous security protect the organization’s products and customers by constantly improving security through feedback loops.

 	
 Monitoring and responding to attacks—It’s the fate of online services that they will get broken into eventually. When incidents happen, organizations turn to their security teams for help, and a team must be prepared to react. The second phase of continuous security is to monitor and respond to threats and protect the services and data the organization relies on. In part 2, I talk about techniques like fraud and intrusion detection, digital forensics, and incident response, with the goal of increasing an organization’s preparedness for an incident.

 	
 Assessing risks and maturing security—I talk about technology a lot in the first two parts of the book, but a successful security strategy can’t succeed when solely focused on technical issues. The third phase of continuous security is to go beyond the technology and look at the organization’s security posture from a high altitude. In part 3, I explain how risk management and security testing, both internal and external, help organizations refocus their security efforts and invest their resources more efficiently.

 Mature organizations trust their security programs and work together with their security teams. Reaching that point requires focus, experience, and a good sense of knowing when to take, or refuse to take, risks. A comprehensive security strategy mixes technology and people to identify areas of improvement and allocate resources appropriately, all in rapid improvement cycles. This book aims to give you the tools you need to reach that level of maturity in your organization.

 With a model of continuous security in mind, let’s now take a detailed look at each of its three components, and what they mean in terms of product security.

 1.3.1 Test-driven security

 The myth of attackers breaking through layers of firewalls or decoding encryption with their smartphones makes for great movies, but poor real-world examples. In most cases, attackers go for easy targets: web frameworks with security vulnerabilities, out-of-date systems, administration pages open to the internet with guessable passwords, and security credentials mistakenly leaked in open source code are all popular candidates. Our first goal in implementing a continuous security strategy is to take care of the baseline: apply elementary sets of controls on the application and infrastructure of the organization and test them continuously. For example:

 	
 SSH root login must be disabled on all systems.

 	
 Systems and applications must be patched to the latest available version within 30 days of its release.

 	
 Web applications must use HTTPS, never HTTP.

 	
 Secrets and credentials must not be stored with application code, but handled separately in a vault accessible only to operators.

 	
 Administration interfaces must be protected behind a VPN.

 The list of security best practices should be established between the security team and the developers and operators to make sure everyone agrees on their value. A list of baseline requirements can be rapidly assembled by collecting those best practices and adding some common sense. In part 1 of the book, I talk about various steps in securing applications, infrastructure, and CI/CD pipelines.

 Application security

 Modern web applications are exposed to a wide range of attacks. The Open Web Application Security Project (OWASP) ranks the most common attacks in a top-10 list published every three years (http://mng.bz/yXd3): cross-site scripting, SQL injections, cross-site request forgery, brute-force attacks, and so on, seemingly endlessly. Thankfully, each attack vector can be covered using the right security controls in the right places. In chapter 3, which covers application security, we’ll take a closer look at the controls a DevOps team should implement to keep web applications safe.

 Infrastructure security

 Relying on IaaS to run software doesn’t exempt a DevOps team from caring about infrastructure security. All systems have entry points that grant elevated privileges, like VPNs, SSH gateways, or administration panels. When an organization grows, special care must be taken to continuously protect the systems and networks while opening new accesses and integrating more pieces together.

 Pipeline security

 The DevOps way of shipping products through automation is vastly different from traditional operations most security teams are used to. Compromising a CI/CD pipeline can grant an attacker full control over the software that runs in production. Securing the automated steps taken to deliver code to production systems can be done using integrity controls like commit or container signing. I’ll explain how to add trust to the CI/CD pipeline and guarantee the integrity of the code that runs in production.

 Testing continuously

 In each of the three areas I just defined, the security controls implemented remain fairly simple to apply in isolation. The difficulty comes from testing and implementing them everywhere and all the time. This is where test-driven security comes in. TDS is a similar approach to test-driven development (TDD), which recommends developers write tests that represent the desired behavior first, and then write the code that implements the tests. TDS proposes to write security tests first, representing the expected state, and then implement the controls that pass the tests.

 In a traditional environment, implementing TDS is difficult because tests must run on systems that live for years. But in DevOps, every change to the software or infrastructure goes through the CI/CD pipeline and is a perfect place to implement TDS, as shown in figure 1.5.

 [image: c01_05.png]

 Figure 1.5 Test-driven security integrates into CI/CD to run security tests ahead of deployment in the production infrastructure.

 The TDS approach brings several benefits:

 	
 Writing tests forces security engineers to clarify and document expectations. Engineers can build products with the full knowledge of the required controls rather than catching up post-implementation.

 	
 Controls must be small, specific units that are easy to test. Vague requirements such as “encrypt network communication” are avoided; instead, we use the explicit “enforce HTTPS with ciphers X, Y, and Z on all traffic,” which clearly states what’s expected.

 	
 Reusability of the tests across products is high, as most products and services share the same base infrastructure. Once a set of baseline tests is written, the security team can focus on more-complex tasks.

 	
 Missing security controls are detected prior to deployment, giving developers and operators an opportunity to fix the issues before putting customers at risk.

 Tests in the TDS approach will fail initially. This is expected to verify their correctness once they pass, after the feature is implemented. At first, security teams should help developers and operators implement controls in their software and infrastructure, taking each test one by one and providing guidance on implementation, and eventually transferring ownership of the tests to the DevOps teams. When a test passes, the teams are confident the control is implemented correctly, and the test should never fail again.

 An important part of TDS is to treat security as a feature of the product. This is achieved by implementing controls directly into the code or the systems of the product. Security teams that build security outside of the applications and infrastructure will likely instigate a culture of distrust. We should shy away from this approach. Not only does it create tensions between teams, it also provides poor security as controls aren’t aware of the exact behavior of the application and miss things. A security strategy that isn’t owned by the engineering teams won’t survive for long and will slowly degrade over time. It’s critical for the security team to define, implement, and test, but it’s equally critical to delegate ownership of key components to the right people.

 TDS adopts the DevOps principles of automating the pipeline and working closely with teams. It forces security folks to build and test security controls within the environments adopted by developers and operators, instead of building their own separate security infrastructure. Covering the security basics via TDS significantly reduces the risk of a service getting breached but doesn’t remove the need for monitoring production environments.

 1.3.2 Monitoring and responding to attacks

 When security engineers get bored, we like to play games. A popular game we used to play in the mid-2000s was to install a virtual machine with Windows XP completely unpatched, plug it directly into the internet (no firewall, no antivirus, no proxy), and wait. Can you guess how long it took for it to get hacked?

 Scanners operated by malware makers would detect the system in no time and send one of the many exploit codes Windows XP was vulnerable to. Within hours, the system was breached and a backdoor was opened to invite more viruses to contaminate the system. It was fun to watch, but more importantly, it helped teach an important lesson: all systems connected to the internet will eventually get attacked—there are no exceptions.

 Operating a popular service on the public internet is, in essence, similar to our Windows XP experiment: at some point, a scanner will pick it up and attempt to break in. The attack might target specific users and try to guess their passwords, it might take the service down and ask for a ransom, or it might exploit a vulnerability in the infrastructure to reach the data layer and extract information.

 Modern organizations are complex enough that covering every angle at a reasonable cost is often not possible. Security teams must pick priorities. Our approach to monitoring and responding to attacks focuses on three areas:

 	
 Logging and fraud detection

 	
 Detecting intrusions

 	
 Responding to incidents

 Organization that can achieve these three items are prepared to face a security incident. Let’s take a high-level view of each of these phases.

 Logging and detecting fraud

 Generating, storing, and analyzing logs are areas that serve every part of the organization. Developers and operators need logs to track the health of services. Product managers use them to measure the popularity of features or retention of users. With regards to security, we focus on two specific needs:

 	
 Detecting security anomalies

 	
 Providing forensic capabilities when incidents are being investigated

 Although ideal, log collection and analysis is rarely possible. The sheer amount of data makes storing them impractical. In part 2 of this book, I talk about how to select logs for security analysis and focus our efforts on specific parts of the DevOps pipeline.

 We’ll explore the concept of a logging pipeline to process and centralize log events from various sources. Logging pipelines are powerful because they provide a single tunnel where anomaly detection can be performed. It’s a simpler model than asking each component to perform detection themselves but can be difficult to implement in a large environment. Figure 1.6 shows an overview of the core components of a logging pipeline, which I cover in detail in chapter 7. It has five layers:

 	
 A collection layer to record log events from various components of the infrastructure

 	
 A streaming layer to capture and route the log events

 	
 An analysis layer to inspect the content of logs, detect fraud, and raise alerts

 	
 A storage layer to archive logs

 	
 An access layer to allow operators and developers to access logs

 A powerful logging pipeline gives a security team the core functionalities it needs to keep an eye on the infrastructure. In chapter 8, I talk about how to build a solid analysis layer in the logging pipeline and demonstrate various techniques that are useful for monitoring systems and applications. It will set the foundations that we need to work on intrusion detection in chapter 9.

 [image: c01_06.png]

 Figure 1.6 A logging pipeline implements a standard tunnel where events generated by the infrastructure are analyzed and stored.

 Detecting intrusions

 When breaking into an infrastructure, attackers typically follow these four steps:

 	
 Drop a payload on the target servers. The payload is some kind of backdoor script or malware small enough to be downloaded and executed without attracting attention.

 	
 Once deployed, the backdoor contacts the mother ship to receive further instructions using a command-and-control (C2) channel. C2 channels can take the form of an outbound IRC connection, HTML pages that contain special keywords hidden in the body of the page, or DNS requests with commands embedded in TXT records.

 	
 The backdoor applies the instructions and attempts to move laterally inside the network, scanning and breaking into other hosts until it finds a valuable target.

 	
 When a target is found, its data must be exfiltrated, possibly through a channel parallel to the C2 channel.

 In chapter 9, I explain how every single one of these steps can be detected by a vigilant security team. Our focus will be on watching and analyzing network traffic and system events using these security tools:

 	
 Intrusion detection system (IDS)—Figure 1.7 shows how an IDS can detect a C2 channel by continuously analyzing a copy of the network traffic and applying complex logic to network connections to detect fraudulent activity. IDSs are great at inspecting gigabytes of network traffic in real time for patterns of fraudulent activity and, as such, have gained the trust of many security teams. We explore how to use them in an IaaS environment.

 [image: c01_07.png]

 Figure 1.7 Intrusion-detection systems can detect compromised hosts calling home by finding patterns of fraudulent activity and applying statistical analysis to outbound traffic.

 	
 Connection auditing—Analyzing the entire network traffic going through an infrastructure isn’t always a realistic approach. NetFlow provides an alternative to audit network connections by logging them into the pipeline. NetFlow is a great way to audit the activity of the network layer in an IaaS environment when low-level access isn’t available.

 	
 System auditing—Auditing the integrity of live systems is an excellent way to keep track of what’s happening across the infrastructure. On Linux, the audit subsystem of the kernel can log system calls performed on a system. Attackers often trip on this type of logging when breaching systems, and sending audit events into the logging pipeline can help detect intrusions.

 Detecting intrusions is difficult and often requires security and operations teams to work closely together. When done wrong, these systems can consume resources that should be dedicated to operating production services. You’ll see how a progressive and conservative approach to intrusion detection helps integrate it into DevOps effectively.

 Incident response

 Perhaps the most stressful situation any organization can find itself in is dealing with a security breach. Security incidents create chaos and bring uncertainty that can severely damage the health of even the most stable companies. As engineering teams scramble to recover the integrity of their systems and applications, leadership must deal with damage control and ensure the business will return to normal operations as quickly as possible.

 In chapter 10, I introduce the six-phases playbook organizations should follow when reacting to a security incident. They are as follows:

 	
 Preparation—Make sure you have the bare minimum processes to deal with an incident.

 	
 Identification—Decide quickly whether an anomaly is a security incident.

 	
 Containment—Prevent the breach from going any further.

 	
 Eradication—Remove threats from the organization.

 	
 Recovery—Bring the organization back to normal operations.

 	
 Lessons learned—Revisit the incident after the fact to learn from it.

 Every security breach is different, and organizations react to them in specific ways, making it difficult to generalize actionable advice to the reader. In chapter 10, we’ll approach incident response as a case study to demonstrate how a typical company goes through this disruptive process, while using DevOps techniques as much as possible.

 1.3.3 Assessing risks and maturing security

 A complete continuous-security strategy goes beyond the technical aspects of implementing security controls and responding to incidents. Although present throughout the book, the "people" aspect of continuous security is the most critical when approaching risk management.

 Assessing risks

 For many engineers and managers, risk management is about making large spreadsheets with colored boxes that pile up in our inbox. This is, unfortunately, too often the case and has led many organizations to shy away from risk management. In part 3 of this book, I talk about how to break away from this pattern and bring lean and efficient risk management to a DevOps organization.

 Managing risk is about identifying and prioritizing issues that threaten survival and growth. Colored boxes in spreadsheets can indeed help, but they’re not the main point. A good risk-management approach must reach three targets:

 	
 Run in small iterations, often and quickly. Software and infrastructure change constantly, and an organization must be able to discuss risks without involving weeks of procedures.

 	
 Automate! This is DevOps, and doing things by hand should be the exception, not the rule.

 	
 Require everyone in the organization to take part in risk discussions. Making secure products and maintaining security is a team effort.

 A risk-management framework that achieves all three of these targets is presented in chapter 11. When implemented properly, it can be a real asset to an organization and become a core component of the product lifecycle that everyone in the organization welcomes and seeks.

 Security testing

 Another core strength of a mature security program is the ability to evaluate how well it’s doing on a regular basis through security testing. In chapter 12, we’ll examine three important areas of a successful testing strategy that help mature the security of an organization:

 	
 Evaluating the security of applications and infrastructure internally, using security techniques like vulnerability scanning, fuzzing, static code analysis, or configuration auditing. We’ll discuss various techniques that can be integrated in a CI/CD pipeline and become part of the software development lifecycle (SDLC) of a DevOps strategy.

 	
 Using external firms to audit the security of core services. When targeted properly, security audits bring a lot of value to an organization and help bring fresh ideas and new perspectives to a security program. We’ll discuss how to use external audit and “red teams” efficiently and make the best use of their involvement.

 	
 Establishing a bug bounty program. DevOps organizations often embrace open source and publish large amounts of their source code publicly. These are great resources for independent security researchers that, in exchange for a few thousand dollars, will perform testing of your applications and report security findings to you.

 Maturing a continuous security program takes years, but the effort leads security teams to become an integral part of the product strategy of an organization. In chapter 13, we’ll end this book with a discussion on how to implement a successful security program over a period of three years. Through close collaboration across teams, good handling of security incidents, and technical guidance, security teams acquire the trust they need from their peers to keep customers safe. At its core, a successful continuous security strategy is about bringing security people, with their tools and knowledge, as close as possible to the rest of DevOps.

 Summary

 	
 To truly protect customers, security must be integrated into the product and work closely with developers and operators.

 	
 Test-driven security, monitoring and responding to attacks, and maturing security are the three phases that drive an organization to implement a continuous security strategy.

 	
 Techniques from traditional security, such as vulnerability scanning, intrusion detection, and log monitoring, should be reused and adapted to fit in the DevOps pipeline.

 Part 1. Case study: applying layers of security to a simple DevOps pipeline

 In this first part, we’ll build a small DevOps environment to operate a web application with almost no security. Our pipeline is riddled with holes we’ll plug at every level: application, infrastructure, communications, and deployment. The goal is to add security layer by layer while making use of automated testing, as presented in the test-driven security concept from chapter 1.

 Security is a journey. The process of building your own pipeline in chapter 2 will highlight various problems organizations commonly run into and provide a starting point to discuss integrating security into the CI/CD pipeline. We’ll first address the application layer in chapter 3 and discuss common attacks on web applications and ways to test and protect against them. In chapter 4, we’ll focus on the infrastructure layer and discuss techniques to protect data in the cloud. Chapter 5 implements HTTPS to secure communications between end users and your infrastructure. Finally, chapter 6 covers the security of the deployment pipeline and methods to guarantee the integrity of the code, from submission by developers to running it in production.

 By the time we’re done with part 1, your environment will have solid security and will be ready for part 2, where we'll discuss attacks from the outside.

 2 Building a barebones DevOps pipeline

 This chapter covers

 	Configuring a CI pipeline for an example invoicer application

 	Deploying the invoicer in AWS

 	Identifying areas of a DevOps pipeline that require security attention

 In chapter 1, I outlined an ambitious security strategy and described why security must be an integral component of the product. For security to be a part of DevOps, we must first understand how applications are built, deployed, and operated in DevOps. We’ll ignore security in this chapter and focus on building a fully functional DevOps pipeline to understand the techniques of DevOps and set the stage for security discussions we’ll have in chapters 3, 4, and 5.

 DevOps is more about concepts, ideas, and workflows than it is about recommending one specific technology. A DevOps standard may not exist, yet it has consistent patterns across implementations. In this chapter, we take a specific example to implement those patterns: the invoicer, a small web API that manages invoices through a handful of HTTP endpoints. It’s written in Go and its source code is available at https://securing-devops.com/ch02/invoicer.

 2.1 Implementation roadmap

 We want to manage and operate the invoicer the DevOps way. To achieve this, we’ll implement the various steps of CI, CD, and IaaS that will allow us to quickly release and deploy new versions of the software to our users. Our goal is to go from patch submission to deploying in production in under 15 minutes with a mostly automated process. The pipeline you’ll build is described in figure 2.1 and is composed of six steps:

 	
 A developer writes a patch and publishes it to a feature branch of the code repository.

 	
 Automated tests are run against the application.

 	
 A peer of the developer reviews the patch and merges it into the master branch of the code repository.

 	
 A new version of the application is automatically built and packaged into a container.

 	
 The container is published to a public registry.

 	
 The production infrastructure retrieves the container from the registry and deploys it.

 [image: c02_01.png]

 Figure 2.1 The complete CI/CD/IaaS pipeline to host the invoicer is composed of six steps that take a patch to a deployed application.

 Building this pipeline requires integrating several components to work with each other. Your environment will need the following:

 	
 A source code repository—Open source and proprietary solutions exist to manage source code: Bitbucket, Beanstalk, GitHub, GitLab, SourceForge, and so on. A popular choice at the time of writing is GitHub, which we’ll use to host the invoicer’s code.

 	
 A CI platform—Again, the options are numerous: Travis CI, CircleCI, Jenkins, GitLab, and so on. Depending on your needs and environment, there’s a CI platform for you. In this example, we’ll use CircleCI because it integrates easily with GitHub and allows SSH access to build instances, which is handy for debugging the build steps.

 	
 A container repository—The container world is evolving rapidly, but Docker is the standard choice at the time of writing. We’ll use the repository provided by Docker Hub at hub.docker.com.

 	
 An IaaS provider—Google Cloud Platform and Amazon Web Services (AWS) are the two most popular IaaS providers at the time of writing. Some organizations prefer to self-host their IaaS and turn to solutions like Kubernetes or OpenStack to implement a layer of management on top of their own hardware (note that Kubernetes can also be used on top of EC2 instances in AWS). In this book, I use AWS because it’s the most popular and mature IaaS on the market.

 Let’s summarize your toolkit: GitHub hosts the code and calls CircleCI when patches are sent. CircleCI builds the application into a container and pushes it to Docker Hub. AWS runs the infrastructure and retrieves new containers from Docker Hub to upgrade the production environment to the latest version. Simple, yet elegant.

 Every environment is different

 It’s unlikely that the environment your organization uses is an exact match with the one in this book, and some of the more specific security controls won’t apply directly to the tools you use. This is expected, and I highlight security concepts before specific implementations, so you can transport them to your environment without too much trouble.

 For example, the use of GitHub, Docker, or AWS may be disconcerting if your organization uses different tools. I use them as teaching tools, to explain the techniques of DevOps. Treat this chapter as a laboratory to learn and experiment with concepts, and then implement these concepts in whichever platform works best for you.

 Keep in mind that even traditional infrastructures can benefit from modern DevOps techniques by building the exact same CI/CD/IaaS pipeline third-party tools provide, only internally. When you change technologies, the tools and terminology change, but the overall concepts, particularly the security ones, remain the same.

 This pipeline uses tools and services that are available for free, at least long enough for you to follow along. The code and examples that follow are designed to be copied and reused in order to build your own pipeline. Setting up your own environment is an excellent companion to reading this chapter.

 2.2 The code repository: GitHub

 When you head over to https://securing-devops.com/ch02/invoicer, you’ll be redirected to the invoicer’s GitHub repository. This repository hosts the source code of the invoicer application, as well as scripts that simplify the setup of the infrastructure. If you want to create your own version of the pipeline, fork the repository into your own account, which will copy Git files under your personal space, and follow the instructions in the README file to set up your environment. This chapter details all the steps to get your environment up and running, some of which are automated in scripts hosted in the repository.

 2.3 The CI platform: CircleCI

 In this section, you’ll configure CircleCI to run tests and build a Docker container when changes are applied to the invoicer. The example in this section is specific to CircleCI, but the concept of using a CI platform to test and build an application is general and can easily be reproduced in other CI platforms.

 Code repositories and CI platforms like GitHub and CircleCI implement a concept called webhooks to pass notifications around. When a change happens in the code repository, a webhook pushes a notification to a web address hosted by the CI platform. The body of the notification contains information about the change the CI platform uses to perform tasks.

 When you sign in to CircleCI using your GitHub account, CircleCI asks you for permission to perform actions on your behalf in your GitHub account. One of these actions will be to automatically configure a webhook into the invoicer’s GitHub repository to notify CircleCI of new events. Figure 2.2 shows the result of the automatic webhook configuration in GitHub.

 This webhook is used in steps 2 and 4 of figure 2.1. Every time GitHub needs to notify CircleCI of a change, GitHub posts a notification to https://circleci.com/hooks/github. CircleCI receives the notification and triggers a build at the invoicer. The simplicity of the webhook technique makes it popular for interface services operated by different entities.

 Security note

 GitHub has a sophisticated permission model allowing users to delegate fine-grained permissions to third-party applications. Yet, CI platforms want read and write access to all the repositories of a user. Rather than using your own highly privileged user to integrate with a CI platform, in chapter 6 we’ll discuss how to use a low-privilege account and keep your accesses under control.

 [image: c02_02.png]

 Figure 2.2 The webhook between GitHub and CircleCI is automatically created in the invoicer’s repository to trigger a build of the software when changes are applied.

 [image: c02_03.png]

 Figure 2.3 The CircleCI configuration is stored under the .circleci directory in the repository of the application.

 The config.yml file shown in figure 2.3 is placed in the repository of the application. It is written in YAML format and configures the CI environment to run specific tasks on every change recorded by GitHub. Specifically, you’ll configure CircleCI to test and compile the invoicer application, and then build and publish a Docker container, which you’ll later deploy to the AWS environment.

 NOTE YAML is a data-serialization language commonly used to configure applications. Compared to formats like JSON or XML, YAML has the benefit of being much more accessible to humans.

 The full CircleCI configuration file is shown next. You may notice some parts of the file are command-line operations, whereas others are parameters specific to CircleCI. Most CI platforms allow operators to specify command-line operations, which makes them well suited to run custom tasks.

 Listing 2.1 config.yml configures CircleCI for the application

 version: 2
jobs:
 build:
 working_directory:
➥/go/src/github.com/Securing-DevOps/invoicer-chapter2 ❶
 docker:
 - image: circleci/golang:1.8 ❷
 steps:
 - checkout
 - setup_remote_docker

 - run:
 name: Setup environment
 command: |
 gb="/src/github.com/${CIRCLE_PROJECT_USERNAME}";
 if [${CIRCLE_PROJECT_USERNAME} == 'Securing-DevOps']; then
 dr="securingdevops"
 else
 dr=$DOCKER_USER
 fi
 cat >> $BASH_ENV << EOF
 export GOPATH_HEAD="$(echo ${GOPATH}|cut -d ':' -f 1)" ❸
 export GOPATH_BASE="$(echo ${GOPATH}|cut -d ':' -f 1)${gb}" ❸
 export DOCKER_REPO="$dr" ❸
 EOF

 - run: mkdir -p "${GOPATH_BASE}"
 - run: mkdir -p "${GOPATH_HEAD}/bin"

 - run:
 name: Testing application ❹
 command: |
 go test \
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}

 - deploy:
 command: | ❺
 if ["${CIRCLE_BRANCH}" == "master"]; then
 docker login -u ${DOCKER_USER} -p ${DOCKER_PASS}; ❻
 go install --ldflags '-extldflags "-static"' \ ❼
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME};
 mkdir bin;
 cp "$GOPATH_HEAD/bin/${CIRCLE_PROJECT_REPONAME}" bin/invoicer;
 docker build -t ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME} .; ❽
 docker images --no-trunc | awk '/^app/ {print $3}' | \
 sudo tee $CIRCLE_ARTIFACTS/docker-image-shasum256.txt;
 docker push ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME}; ❾
 fi

 ❶ Configures a working directory to build the Docker container of the application

 ❷ Declares the environment the job will run on

 ❸ Environment variables needed to build the application

 ❹ Runs the unit tests of the application

 ❺ If changes are applied to the master branch, builds the Docker container of the application

 ❻ Logs into the Docker Hub service

 ❼ Builds the application binary

 ❽ Builds a container of the application using a Dockerfile

 ❾ Pushes the container to Docker Hub

 Parts of this file may appear obscure, particularly Docker and Go. Ignore them for now; we’ll get back to them later, and focus on the idea behind the configuration file. As you can see in this listing, the syntax is declarative, similar to how we’d write a shell script that performs these exact operations.

 The configuration file must be kept in the code repository. When present, CircleCI will use its instructions to take actions when a webhook notification is received from GitHub. To trigger a first run, add the configuration file from listing 2.1 to a feature branch of the Git repository, and push the branch to GitHub.

 Listing 2.2 Creating a Git feature branch with a patch to add the CircleCI configuration

 $ git checkout -b featbr1 ❶
$ git add .circleci/config.yml ❷
$ git commit -m “initial circleci conf” ❷
$ git push origin featbr1 ❸

 ❶ Creates a Git feature branch

 ❷ Adds config.yml to the branch

 ❸ Pushes changes to the code repository

 For CircleCI to run the tests defined in config.yml, create a pull request to merge the patch from the feature branch into the master branch.

 What is a pull request?

 “Pull request” is a term popularized by GitHub that represents a request to pull changes from a given branch into another branch, typically between a feature and a master branch. A pull request is opened when a developer submits a patch for review. Webhooks triggers on pull requests to run automated tests in CI (see step 2 of figure 2.1), and peers review the proposed patch before agreeing to merge it (see step 3 of figure 2.1).

 Figure 2.4 shows the user interface of a GitHub pull request waiting for tests in CircleCI to finish. CircleCI retrieves a copy of the feature branch, reads the configuration in config.yml and follows all the steps to build and test the application.

 [image: c02_04.png]

 Figure 2.4 The web interface of a GitHub pull request displays the status of tests running in CircleCI. Running tests are yellow; they turn green if CircleCI completed successfully, or red if a failure was encountered.

 Note that, per your configuration, only unit tests that run as part of the go test command are executed. The deploy section of the configuration will only be executed after the pull request is accepted and code is merged into the master branch.

 Let’s assume that your reviewer is satisfied with the changes and approves the pull request, completing step 3 of the pipeline. The patch is merged into the master branch and the pipeline enters steps 4 and 5 of figure 2.1. CircleCI will run again, execute the deployment section to build a Docker container of the application, and push it to Docker Hub.

 2.4 The container repository: Docker Hub

 Our CircleCI configuration shows several commands that call Docker to build a container for the application, such as docker build and docker push. In this section, I first explain why Docker is an important component of DevOps, and then we’ll take a close look at how the container is built.

 Containers, and Docker containers in particular, are popular because they help solve the complex problem of managing code dependencies. Applications usually rely on external libraries and packages to avoid reimplementing common code. On systems, operators prefer to share these libraries and packages for ease of maintenance. If an issue is found in one library used by 10 applications, only that one library is updated, and all applications automatically benefit from the update.

 Issues arise when various applications require different versions of the same library. For example, a package wanting to use OpenSSL 1.2 on a system that uses OpenSSL 0.9 by default won’t work. Should the base system have all versions of OpenSSL installed? Are they going to conflict? The answer is rarely simple, and these issues have caused many headaches for operators and developers. This problem has several solutions, all of which are based on the idea that applications should manage their dependencies in isolation. Containers provide a packaging mechanism to implement this kind of isolation.

 New to Docker?

 In this chapter, we focus on a limited usage of Docker containers to package the invoicer application. For a full introduction to Docker, please refer to Jeff Nickoloff’s Docker in Action (Manning, 2016).

 As shown in the CircleCI configuration file we discussed previously, Docker containers are built according to a configuration file called a Dockerfile. Docker does a good job of abstracting the tedious task of building, shipping, and running containers. The Dockerfile that follows is used to build the container of the invoicer application. It’s short, yet hides a surprising amount of complexity. Let’s examine what it does.

 Listing 2.3 Dockerfile used to build the invoicer’s container

