
 [image: cover]

 Rx.NET in Action

 Tamir Dresher

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Lesley Trites
Review editor: Donna Clements
Technical development editor: Michael Lund
Copyeditor: Sharon Wilkey
Proofreader: Elizabeth Martin
Technical proofreader: Cody Sand
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN 9781617293061

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Dedication

 To Gabi, my wife and best friend, who made this dream a reality

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Getting started with Reactive Extensions

 Chapter 1. Reactive programming

 Chapter 2. Hello, Rx

 Chapter 3. Functional thinking in C#

 2. Core ideas

 Chapter 4. Creating observable sequences

 Chapter 5. Creating observables from .NET asynchronous types

 Chapter 6. Controlling the observer-observable relationship

 Chapter 7. Controlling the observable temperature

 Chapter 8. Working with basic query operators

 Chapter 9. Partitioning and combining observables

 Chapter 10. Working with Rx concurrency and synchronization

 Chapter 11. Error handling and recovery

 Appendix A. Writing asynchronous code in .NET

 Appendix B. The Rx Disposables library

 Appendix C. Testing Rx queries and operators

 Catalog of Rx operators

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Getting started with Reactive Extensions

 Chapter 1. Reactive programming

 1.1. Being reactive

 1.1.1. Reactiveness in your application

 1.2. Introducing Reactive Extensions

 1.2.1. Rx history

 1.2.2. Rx on the client and server

 1.2.3. Observables

 1.2.4. Operators

 1.2.5. The composable nature of Rx operators

 1.2.6. Marble diagrams

 1.2.7. Pull model vs. push model

 1.3. Working with reactive systems and the Reactive Manifesto

 1.3.1. Responsiveness

 1.3.2. Resiliency

 1.3.3. Elasticity

 1.3.4. Message driven

 1.3.5. Where is Rx?

 1.4. Understanding asynchronicity

 1.4.1. It’s all about resource use

 1.4.2. Asynchronicity and Rx

 1.5. Understanding events and streams

 1.5.1. Everything is a stream

 1.6. Summary

 Chapter 2. Hello, Rx

 2.1. Working with traditional .NET events

 2.1.1. Dealing with concurrency

 2.1.2. Retrospective on the solution and looking at the future

 2.2. Creating your first Rx application

 2.2.1. Selecting Rx packages

 2.2.2. Installing from NuGet

 2.3. Writing the event-processing flow

 2.3.1. Subscribing to the event

 2.3.2. Grouping stocks by symbol

 2.3.3. Finding the difference between ticks

 2.3.4. Cleaning resources

 2.3.5. Dealing with concurrency

 2.3.6. Wrapping up

 2.4. Summary

 Chapter 3. Functional thinking in C#

 3.1. The advantages of thinking functionally

 3.1.1. Declarative programming style

 3.1.2. Immutability and side effects

 3.1.3. First-class functions

 3.1.4. Being concise

 3.2. First-class and higher-order functions using delegates and lambdas

 3.2.1. Delegates

 3.2.2. Anonymous methods

 3.2.3. Lambda expressions

 3.2.4. Func and Action

 3.2.5. Using it all together

 3.3. Method chaining with extension methods

 3.3.1. Extending type behavior with extension methods

 3.3.2. Fluent interfaces and method chaining

 3.3.3. Creating a language

 3.4. Querying collections with LINQ

 3.4.1. What does LINQ look like?

 3.4.2. Nested queries and joins

 3.4.3. Anonymous types

 3.4.4. LINQ operators

 3.4.5. Efficiency by deferred execution

 3.5. Summary

 2. Core ideas

 Chapter 4. Creating observable sequences

 4.1. Creating streams of data and events with observables

 4.1.1. Implementing the IObservable<T> interface

 4.1.2. The problem with handcrafted observables

 4.1.3. The ObservableBase

 4.1.4. Creating observables with Observable.Create

 4.1.5. Deferring the observable creation

 4.2. Creating observables from events

 4.2.1. Creating observables that conform to the EventPattern

 4.2.2. Events that aren’t following the event pattern

 4.2.3. Events with multiple parameters

 4.2.4. Dealing with events that have no arguments

 4.3. From enumerables to observables and back

 4.3.1. Enumerable to observable

 4.3.2. Observable to enumerable

 4.4. Using Rx creational operators

 4.4.1. Generating an observable loop

 4.4.2. Reading a file

 4.4.3. The primitive observables

 4.5. Summary

 Chapter 5. Creating observables from .NET asynchronous types

 5.1. Bridging .NET asynchronous types with Rx

 5.1.1. Changing the synchronous method to asynchronous

 5.1.2. Creating the primes observable

 5.1.3. Using async-await in observable creation

 5.1.4. Converting tasks to observables

 5.1.5. Running asynchronous code as part of the pipeline

 5.1.6. Controlling the results order

 5.2. Creating observables of periodic behavior

 5.2.1. Emitting values in time intervals

 5.2.2. Creating an observable timer

 5.2.3. Scheduling an emission with a timer

 5.3. Summary

 Chapter 6. Controlling the observer-observable relationship

 6.1. Creating observers

 6.1.1. The observable-observer communication

 6.1.2. Creating observers without leaving the pipeline

 6.1.3. Not passing OnError and asynchronous observables

 6.1.4. Replacing the subscription disposal with cancellation

 6.1.5. Creating an observer instance

 6.2. Controlling the observable-observer relationship lifetime

 6.2.1. Delaying subscription

 6.2.2. Stop emitting notifications at a scheduled time

 6.2.3. Discarding items when another observable emits

 6.2.4. Skipping notifications

 6.2.5. Taking or stopping when a condition is met

 6.2.6. Resubscribing

 6.2.7. Adding side effects in the observable pipeline

 6.3. Putting it all together

 6.4. Summary

 Chapter 7. Controlling the observable temperature

 7.1. Multicasting with subjects

 7.1.1. Simple broadcasting with Subject<T>

 7.1.2. Representing asynchronous computation with AsyncSubject

 7.1.3. Preserving the latest state with BehaviorSubject

 7.1.4. Caching the sequence with ReplaySubject

 7.1.5. Hiding your subjects

 7.1.6. Following best practices and guidelines

 7.2. Introducing temperature: cold and hot observables

 7.2.1. Explaining cold and hot observables

 7.2.2. Cold observable

 7.2.3. Hot observables

 7.3. Heating and cooling an observable

 7.3.1. Turning cold into hot

 7.3.2. Using ConnectableObservable

 7.3.3. Publishing and multicasting

 7.3.4. Using Multicast

 7.3.5. Managing the ConnectableObservable connection

 7.3.6. Cooling a hot observable to allow replaying

 7.4. Summary

 Chapter 8. Working with basic query operators

 8.1. Selecting what’s important (mapping)

 8.2. Flattening observables

 8.2.1. Flattening observables of enumerables

 8.2.2. Flattening observables of observables

 8.3. Filtering an observable

 8.3.1. Filtering with the Where operator

 8.3.2. Creating a distinct sequence

 8.3.3. Removing duplicate contiguous values

 8.4. Aggregating the observable sequence

 8.4.1. Using basic aggregation operators

 8.4.2. Finding the maximum and minimum items by condition

 8.4.3. Writing your aggregation logic with Aggregate and Scan

 8.5. Summary

 Chapter 9. Partitioning and combining observables

 9.1. Combining observables

 9.1.1. Pairing items from observables (zipping)

 9.1.2. Combining the latest emitted values

 9.1.3. Concatenating observables

 9.1.4. Merging observables

 9.1.5. Dynamic concatenating and merging

 9.1.6. Switching to the next observable

 9.2. Grouping elements from the observable

 9.3. Joining observables (coincidence-based combining)

 9.3.1. Joining to a flat stream

 9.3.2. Joining into groups

 9.4. Buffers and sliding windows

 9.4.1. Buffering

 9.4.2. Windowing the observable sequence

 9.5. Summary

 Chapter 10. Working with Rx concurrency and synchronization

 10.1. Controlling concurrency with schedulers

 10.1.1. Defining the scheduler

 10.1.2. Parameterizing concurrency

 10.1.3. Types of schedulers

 10.2. Using time-based operators

 10.2.1. Adding a timestamp to a notification

 10.2.2. Adding the time interval between notifications

 10.2.3. Adding a time-out policy

 10.2.4. Delaying the notifications

 10.2.5. Throttling the notifications

 10.2.6. Sampling the observable in intervals

 10.3. Synchronizing the observable emissions

 10.3.1. Changing the observation’s execution context

 10.3.2. Changing the subscription/unsubscription execution context

 10.3.3. Using SubscribeOn and ObserveOn together

 10.3.4. Synchronizing notifications

 10.4. Summary

 Chapter 11. Error handling and recovery

 11.1. Reacting to errors

 11.1.1. Errors from the observable side

 11.1.2. Catching errors

 11.1.3. Retrying to subscribe in case of an error

 11.2. Controlling the lifetime of resources

 11.2.1. Disposing in a deterministic way

 11.2.2. Deterministic finalization

 11.2.3. Dangling observers

 11.3. Dealing with backpressure

 11.3.1. Observables of different rates

 11.3.2. Mitigating backpressure

 11.4. Summary

 Appendix A. Writing asynchronous code in .NET

 A.1. Writing asynchronous code

 A.2. Asynchronous code in .NET

 A.3. Task-Based Asynchronous Pattern

 A.4. Simplifying asynchronous code with async-await

 A.5. Creating tasks

 A.6. Summary

 Appendix B. The Rx Disposables library

 B.1. Disposable.Create

 B.2. Disposable.Empty

 B.3. ContextDisposable

 B.4. ScheduledDisposable

 B.5. SerialDisposable

 B.6. RefCountDisposable

 B.7. MultipleAssignmentDisposable

 B.8. CompositeDisposable

 B.9. SingleAssignmentDisposable

 B.10. CancellationDisposable

 B.11. BooleanDisposable

 B.12. Summary

 Appendix C. Testing Rx queries and operators

 C.1. Testing Rx code

 C.1.1. Writing reactive tests with the TestScheduler

 C.1.2. Observing the TestableObservable

 C.1.3. Testing concurrent Rx code

 C.1.4. Finer control on the TestScheduler

 C.2. Testing Rx queries

 C.2.1. Injecting schedulers

 C.2.2. Injecting the TestScheduler

 C.3. Summary

 Catalog of Rx operators

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 This book, Rx.NET in Action, does a great job in explaining the details and background that .NET developers need to effectively use Rx. In particular, it explains how to connect the plethora of asynchronous types in .NET to Rx observables, and how to deal with errors, resource allocation, and last but not least, concurrency.

 Since its inception, the .NET Framework has emphasized the importance of asynchronous execution and nonblocking I/O. Through delegates, the .NET Framework has emphasized higher-order functional programming from the beginning, and by automatically defining the BeginInvoke and EndInvoke methods on delegates, developers may call any method asynchronously.

 But the BeginInvoke/EndInvoke pattern for asynchronous operations is tedious and verbose, because it requires converting your code into continuation-passing style. As an alternative, the .NET Framework introduced the event-based asynchronous pattern that uses the built-in support of .NET for events and event handlers. Although the event-based pattern was a big step forward compared to asynchronous delegates, more opportunities remained to streamline the development experience.

 For synchronous streams of values, modeled by the standard interfaces of Enumerable/IEnumerator, the LINQ standard query operators provide a beautiful and elegant algebra for processing streams in a high-level and declarative manner. Wouldn’t it be nice if we could use the fact that events are conceptually also streams of values and hence provide a similar LINQ-based programming model for events?

 Another disadvantage of using events for asynchronous calls is that this ignores the fact that unlike most other events, such as mouse clicks, the events wired up to asynchronous operations produce at most one value. Wouldn’t it be nice if we could use the fact that asynchronous methods return only a single value and hence provide a similar imperative programming model that supports regular control-flow-like conditionals, loops, and exception handling for asynchronous methods?

 As it turns out, the answer to both questions is a resounding yes! By using the mathematical trick of equalization, we can mechanically convert the IEnumerable/IEnumerator interfaces for synchronous pull-based streams into the monadic IObservable/IObserver interfaces for asynchronous push-based streams. The async/await syntax in C# and Visual Basic allows developers to use regular imperative syntax to write both synchronous and asynchronous methods, and the LINQ query comprehensions allow developers to write queries over both synchronous and asynchronous data streams

 This is the heart of Rx. Many languages outside the .NET world have now adopted the magic square of one/many × sync/async, making developers happy and productive no matter what language they’re using.

 If you’re a .NET developer, you’ll want to keep a copy of this book handy to put Rx.NET into action!

 —ERIK MEIJER

 INVENTOR OF RX, FOUNDER OF APPLIED DUALITY

Preface

 Reactive Extensions (Rx) for .NET was first published in November 2009 under the short description “Rx is a .NET Library that allows programmers to write succinct declarative code to orchestrate and coordinate asynchronous and event-based programs based on familiar .NET idioms and patterns.” (See http://mng.bz/gQ31.)

 I remember watching the first examples and reading the discussions. I was amazed by the elegance of the solutions and how simple they looked. Unfortunately, when I sat down and tried to use Rx, things were harder than I thought, and the mental change I needed to make toward reactive programming was significant. In those days, there wasn’t a lot of material on the subject, and I had to struggle to solve my issues and learn things the hard way with a lot of trial and error.

 In 2012, at end of my military service and upon joining CodeValue (www.codevalue.net), I had two major projects that enabled me to really appreciate my Rx knowledge. The first was about a cybersecurity application that needed to react to multiple events and coordinate them in order to show the end user the state of various incidents all happening in parallel. The second was a video chat application, running on mobile and PC devices. The video chat application reacted to events such as users logging in and out of the system and receiving messages of various types that had to be dealt with differently. Though these two systems were different, they shared the same problems of writing a flow based on events—a flow that involves filtering of received values, dealing with asynchronicity and concurrency, and identifying patterns of recurring events so that the application could respond efficiently and correctly. I introduced Rx to both of those systems, and it was one of the things that made each a success. We exceeded expectations and preceded our schedule.

 Still, even though I had knowledge of Rx, problems still happened from time to time, and little material on Rx, such as books and guides, was available. Many times problems originated because of my colleagues’ lack of knowledge or situations that were new to us. Luckily, after I identified the problem source, it would be easy to fix, mostly because of the flexibility of Rx operators. In the following years, I started to blog and speak about Rx and how it made solving complex problems easy. That is when the idea for this book started to grow. My vision was to create a step-by-step guide that holds the pieces needed for the .NET programmer to get the maximum out of the Rx library and the reactive programming paradigm. I also wanted to write about the practices that I acquired over the years, as well as the pitfalls and their solutions.

 It took hard and careful work to make sure the book fulfills its aim. Some chapters had to be rewritten, topics were changed, and some material had to be left out in order to concentrate on the important and fundamental features. The result of this hard work is Rx.NET in Action, a book that you can read front to back or go directly to a specific chapter to solve a problem or refresh your memory.

 Rx is an evolving technology that was also ported to numerous other platforms and languages. It is an open source project and part of the .NET Foundation (www.dotnetfoundation.org). My hope is that Rx will become the de facto way to program, orchestrate, and coordinate asynchronous and event-based programs in .NET and that this book will give you everything you need to be ready for this new and exciting world of Rx.

Acknowledgments

 I dedicate this book to my marvelous wife Gabriela. Your support, love, and care throughout my writing process is what allowed me to turn this book into a reality. I love you and admire you for your many efforts while I was busy writing.

 To my beautiful children Shira and Yonatan, you bring joy and light to my life; I love you dearly. Sitting by you while you fell asleep gave me the inspiration for many chapters.

 To my parents Ester and Shlomo, who bought me my first computer and lit the fire of my passion for computer science, I thank you.

 To my cousin, Guy, who had an enormous effect on my life and the way I see things today, much of my software capabilities are rooted in what you taught me.

 To the rest of my family, who had to put up with me while my mind drifted to the book while I was talking with them, I appreciate everything you’ve done.

 A special thanks to my good friend Dror Helper, who without even knowing gave me advice that contributed to this book.

 Thanks also to all my colleagues at CodeValue, who supported me throughout the process.

 A special appreciation goes to Erik Meijer for contributing the wonderful foreword to my book and of course for helping to create Rx.

 Thank you to the staff at Manning. Everyone who worked with me in editorial, production, and promotion, both directly and behind the scenes, helped to create the best book possible. It was truly a team effort.

 Thanks to the many reviewers who provided feedback during the writing and development process: Bruno Sonnino, Bachir Chihani, Carsten Jørgensen, Dror Helper, Edgar Knapp, Fabrizio Cucci, Goetz Heller, Ignacio Rigoni, Jason Hales, Joel Kotarski, Jorge Branco, Mattias Lundell, Michele Mauro, Oscar Vargas, Rohit Sharma, and Stephen Byrne. Thanks also to Cody Sand, the technical proofreader, who meticulously reviewed the sample code of the final manuscript.

 Finally, much gratitude to the Rx team and contributors who built a wonderful technology.

About this Book

 Rx.NET in Action is a full guide for the Reactive Extensions library for .NET developers. It delivers explanations, best practices, and tips and tricks that will allow you to fully use Rx in your applications.

Who should read this book

 Rx.NET in Action is for .NET developers who write event-based and asynchronous applications and need powerful consuming and querying capabilities over events and push-based sources.

 Rx.NET in Action is also suitable for developers who are curious about reactive programming and the Rx library techniques, but who may not have an immediate need to use it. Adding Rx know-how to your toolbox is valuable for future projects; reactive programing is a hot topic and will continue to be in the future.

 This book primarily uses the .NET version of Rx, and the code examples use the C# language. Readers familiar with C# will be right at home.

 This book is suitable for any platform supported by .NET (including .NET Core).

How this book is organized

 The book’s 11 chapters are divided into two sections.

 Part 1 provides an introduction to reactive programming and to the .NET skills you need in order to understand the functional aspects of the library.

 	
Chapter 1 explores the reactive programming paradigm and Reactive Manifesto concepts. The chapter introduces the building blocks of Rx and explains when and why it should be used.

 	
Chapter 2 is where you really meet Rx and the steps needed to incorporate it into your application. It shows a simple case-study of using Rx inside an application and compares two versions of the same application, before and after Rx is used.

 	
Chapter 3 provides an overview of the functional programming concepts and techniques that Rx uses and how they’re provided with the .NET Framework and the C# language.

 Part 2 dives into each of the tasks you’ll do with Rx—from creating observables and observers, to controlling their lifetimes and reacting to queries you create on top of them.

 	
Chapter 4 teaches ways to create observable sequences and it shows how synchronous observables can be created from enumerables and built-in creation operators.

 	
Chapter 5 explains the way Rx handles asynchronous code and how to bridge the native .NET asynchronous types into observables. This chapter also discusses the importance of asynchronous code in the modern application and how to add periodic behavior to your programs.

 	
Chapter 6 concentrates on the observable-observer relationship and how to control it. In this chapter, I explain the best way to create observers for various scenarios and how to limit the lifetime of the observer subscription.

 	
Chapter 7 explains the differences between hot and cold observables and introduces Rx subjects. This chapter teaches you how to control the state of the observable when observers subscribe to it and how to share emissions between the observers.

 	
Chapter 8 provides a catalog of the basic query operators provided in the Rx library. Rx is often referred to as LINQ to Events, and knowing the details of the Rx operators will help you build powerful queries that will save you time and effort.

 	
Chapter 9 continues where chapter 8 leaves off and shows advanced ways to partition and combine observables. You’ll learn how to group elements by condition or by coincidence and how to react to correlations between observables.

 	
Chapter 10 delves deep into the Rx concurrency model and synchronization. I introduce the concept of schedulers and explain the schedulers Rx has to offer. Then I explain how to control the time and computation location of your Rx queries.

 	
Chapter 11 teaches you to protect your Rx queries from faults and to react to errors that might happen in the query processing. This chapter also covers ways to manage resources that are consumed by the observables and the Rx queries.

 The book also has three appendices:

 	
Appendix A summarizes the concepts of asynchronous programming in .NET.

 	
Appendix B presents the Rx Disposables library and explains how to use the utilities it provides.

 	
Appendix C explains how to test Rx operators and queries.

 The book is intended to be used as a guide and as a reference. If you’re new to Rx, I recommend reading from the beginning. If you’re already familiar with Rx concepts, you might find it useful to read a specific chapter based on the task you’re trying to accomplish.

About the code

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The source code for this book is available to download from the publisher’s website (www.manning.com/books/rx-dot-net-in-action) and from GitHub (https://github.com/tamirdresher/RxInAction). Instructions for using this code are provided in the README file included in the repository root.

 In the e-book, color is used in some listings and code snippets. Blue is used for primitive types and saved keywords. Aqua highlights user-defined types, and red is used for string literals. Brown is used for string parameters placeholders, and green is for comments. As always, black is user code.

Author Online

 Purchase of Rx.NET in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser at www.manning.com/books/rx-dot-net-in-action. This page provides information on how to get on the forum after you’re registered, the kinds of help available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions, lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 If you’re interested in Rx, you may also want to check out the Rx portal http://reactivex.io, which provides a Developer Center. It contains the most recent information about the library and its ports.

 Rx.NET is an open source project, and you can find the full code and discussions at https://github.com/Reactive-Extensions/Rx.NET.

 If you want to ask a question about Rx, you can visit the gitter channel (https://gitter.im/Reactive-Extensions/Rx.NET) or the slack #rx channel, which requires you to subscribe through the sign-up page for the .NET Core Slack Channel (http://tattoocoder.com/aspnet-slack-sign-up/).

About the Author

 [image:]

 TAMIR DRESHER is a senior software architect working as a consultant at CodeValue in Israel. As a prominent member of the Microsoft programming community, Tamir frequently speaks on software development topics at developers conferences, and as a lecturer for software engineering at the Ruppin Academic Center.

 As an expert in .NET Framework and software craftsmanship, Tamir has trained hundreds of developers and helped many high-profile clients in the commercial and public sector.

 Tamir has used Rx since it was released and fell in love instantly. Being one of the early adopters helped Tamir understand the Rx library internals, and he has the passion to explain it to other developers and help them enhance their programming skills with the power of the reactive programming paradigm.

 Tamir writes about his coding adventures at his blog, www.tamirdresher.com.

About the Cover Illustration

 The figure on the cover of Rx.NET in Action is captioned “Habit of a Bonza or Priest in China.” The illustration is taken from publisher Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” An English cartographer, he was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has faded away. It’s now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures.

 Part 1. Getting started with Reactive Extensions

 What are reactive applications? What are they good for? How does programming with Reactive Extensions (Rx) change the way you write code? What should you do before you start working with Rx? And why is Rx better than traditional event-driven programming? These are the questions we’ll begin to address in these first three chapters.

 You’ll learn what reactive systems and applications are, and why you should care. You’ll see a real example of creating an application that uses Rx and what you need to do to create your own Rx applications. You’ll also look at the functional programming foundations that Rx is based on, to make it easier to understand the rest of the concepts that this book introduces.

 Chapter 1. Reactive programming

 This chapter covers

 	Being reactive

 	Thinking about events as streams

 	Introducing Reactive Extensions (Rx)

 The reactive programming paradigm has gained increasing popularity in recent years as a model that aims to simplify the implementation of event-driven applications and the execution of asynchronous code. Reactive programming concentrates on the propagation of changes and their effects—simply put, how to react to changes and create data flows that depend on them.[1]

 1

 This book is about reactive programming and not about functional reactive programming (FRP). FRP can operate on continuous time, whereas Rx can operate only on discrete points of time. More info can be found at the FRP creator’s keynote, http://mng.bz/TcB6.

 With the rise of applications such as Facebook and Twitter, every change happening on one side of the ocean (for example, a status update) is immediately observed on the other side, and a chain of reactions occurs instantly inside the application. It shouldn’t come as a surprise that a simplified model to express this reaction chain is needed. Today, modern applications are highly driven by changes happening in the outside environment (such as in GPS location, battery and power management, and social networking messages) as well as by changes inside the application (such as web call responses, file reading and writing, and timers). To all of those events, the applications are reacting accordingly—for instance, by changing the displayed view or modifying stored data.

 We see the necessity for a simplified model for reacting to events in many types of applications: robotics, mobile apps, health care, and more. Reacting to events in a classic imperative way leads to cumbersome, hard-to-understand, and error-prone code, because the poor programmer who is responsible for coordinating events and data changes has to work manually with isolated islands of code that can change that same data. These changes might happen in an unpredictable order or even at the same time. Reactive programming provides abstractions to events and to states that change over time so that we can free ourselves from managing the dependencies between those values when we create the chains of execution that run when those events occur.

 Reactive Extensions (Rx) is a library that provides the reactive programming model for .NET applications. Rx makes event-handling code simpler and more expressive by using declarative operations (in LINQ style) to create queries over a single sequence of events. Rx also provides methods called combinators (combining operations) that enable you to join sequences of events in order to handle patterns of event occurrences or the correlations between them. At the time of this writing, more than 600 operations (with overloads) are in the Rx library. Each one encapsulates recurring event-processing code that otherwise you’d have to write yourself.

 This book’s purpose is to teach you why you should embrace the reactive programming way of thinking and how to use Rx to build event-driven applications with ease and, most important, fun. The book will teach you step by step about the various layers that Rx is built upon, from the building blocks that allow you to create reactive data and event streams, through the rich query capabilities that Rx provides, and the Rx concurrency model that allows you to control the asynchronicity of your code and the processing of your reactive handlers. But first you need to understand what being reactive means, and the difference between traditional imperative programming and the reactive way of working with events.

1.1. Being reactive

 As changes happen in an application, your code needs to react to them; that’s what being reactive means. Changes come in many forms. The simplest one is a change of a variable value that we’re so accustomed to in our day-to-day programming. The variable holds a value that can be changed at a particular time by a certain operation. For instance, in C# you can write something like this:

 int a = 2;
int b = 3;
int c = a + b;
Console.WriteLine("before: the value of c is {0}",c);

a=7;
b=2;
Console.WriteLine("after: the value of c is {0}",c);

 The output is

 before: the value of c is 5
after: the value of c is 5

 In this small program, both printouts show the same value for the c variable. In our imperative programming model, the value of c is 5, and it will stay 5 unless you override it explicitly.

 Sometimes you want c to be updated the moment a or b changes. Reactive programming introduces a different type of variable that’s time varying: this variable isn’t fixed to its assigned value, but rather the value varies by reacting to changes that happen over time.

 Look again at our little program; when it’s running in a reactive programming model, the output is

 before: the value of c is 5
after: the value of c is 9

 “Magically” the value of c has changed. This is due to the change that happened to its dependencies. This process works just like a machine that’s fed from two parallel conveyers and produces an item from the input on either side, as shown in figure 1.1.

 Figure 1.1. A reactive representation of the function c = a + b. As the values of a and b are changing, c’s value is changing as well. When a is 7 and b is 2, c automatically changes to 9. When b changes to 1, c becomes 8 because a’s value is still 7.

 [image:]

 You might find it surprising, but you’ve probably worked with reactive applications for years. This concept of reactiveness is what makes your favorite spreadsheet application so easy and fun to use. When you create this type of equation in a spreadsheet cell, each time you change the value in cells that feed into the equation, the result in the final cell changes automatically.

 1.1.1. Reactiveness in your application

 In a real-world application, you can spot possible time-variant variables in many circumstances—for instance, GPS location, temperature, mouse coordinates, or even text-box content. All of these hold a value that’s changing over time, to which the application reacts, and are, therefore, time variant. It’s also worth mentioning that time itself is a time variant; its value is changing all the time. In an imperative programming model such as C#, you’d use events to create the mechanism of reacting to change, but that can lead to hard-to-maintain code because events are scattered among various code fragments.

 Imagine a mobile application that helps users find discounts and specials in shops located in their surrounding area. Let’s call it Shoppy. Figure 1.2 describes the Shoppy architecture.

 Figure 1.2. The Shoppy application architecture. The mobile app receives the current location from the GPS and can query about shops and deals via the application service. When a new deal is available, the application service sends a push notification through the push notifications server.

 [image:]

 One of the great features you want from Shoppy is to make the size of the shop icon bigger on the map as the user gets closer (from a certain minimal radius), as shown in figure 1.3. You also want the system to push new deals to the application when updates are available.

 Figure 1.3. The Shoppy application view of the map. When the user is far from the Rx shop, the icon is small (on the left), and as the user gets closer, the icon gets bigger (on the right).

 [image:]

 In this scenario, you could say that the store.Location, myLocation, and iconSize variables are time variant. For each store, the icon size could be written:

 distance = store.Location – myLocation;
iconSize = (MINIMAL_RADIUS / distance)*MinIconSize

 Because you’ve used time-variant variables, each time a change occurs in the my-Location variable, a change is triggered in the distance variable. The application will eventually react by making the store icon appear bigger or smaller, depending on the distance from the store. Note that for simplicity, I didn’t handle the boundary check on the minimum allowed icon size, and that distance might be 0 or close to it.

 This is a simple example, but as you’ll see, the great power of using the reactive programming model lies in its ability to combine and join, as well as to partition and split the stream of values that each time-variant variable is pushing. This is because reactive programming lets you focus on what you’re trying to achieve rather than on the technical details of making it work. This leads to simple and readable code and eliminates most boilerplate code (such as change tracking or state management) that distracts you from the intent of your code logic. When the code is short and focused, it’s less buggy and easier to grasp.

 We can now stop talking theoretically so you can see how to bring reactive programming into action in .NET with the help of Rx.

1.2. Introducing Reactive Extensions

 Now that we’ve covered reactive programming, it’s time to get to know our star: Reactive Extensions, which is often shortened to Rx. Microsoft developed the Reactive Extensions library to make it easy to work with streams of events and data. In a way, a time-variant value is by itself a stream of events; each value change is a type of event that you subscribe to and that updates the values that depend on it.

 Rx facilitates working with streams of events by abstracting them as observable sequences, which is also the way Rx represents time-variant values. Observable means that you as a user can observe the values that the sequence carries, and sequence means an order exists to what’s carried. Rx was architected by Erik Meijer and Brian Beckman and drew its inspiration from the functional programming style. In Rx, a stream is represented by observables that you can create from .NET events, tasks, or collections, or can create by yourself from another source. Using Rx, you can query the observables with LINQ operators and control the concurrency with schedulers;[2] that’s why Rx is often defined in the Rx.NET sources as Rx = Observables + LINQ + Schedulers.[3] The layers of Rx.NET are shown in figure 1.4.

 2

 A scheduler is a unit that holds an internal clock and is used to determine when and where (thread, task, and even machine) notifications are emitted.

 3

 Reactive-Extensions/Rx.Net github repository, https://github.com/Reactive-Extensions/Rx.NET.

 Figure 1.4. The Rx layers. In the middle are the key interfaces that represent event streams and on the bottom are the schedulers that control the concurrency of the stream processing. Above all is the powerful operators library that enables you to create an event-processing pipeline in LINQ style.

 [image:]

 You’ll explore each component of the Rx layers as well as their interactions throughout this book, but first let’s look at a short history of Rx origins.

 1.2.1. Rx history

 I believe that to get full control of something (especially technology), you should know the history and the details behind the scenes. Let’s start with the Rx logo which features an electric eel, shown in figure 1.5; this eel was Microsoft Live Labs’ Volta project logo.

 Figure 1.5. The Rx electric eel logo, inspired from the Volta project

 [image:]

 The Volta project was an experimental developer toolset for creating multitier applications for the cloud, before the term cloud was formally defined. Using Volta, you could specify which portion of your application needed to run in the cloud (server) and which on the client (desktop, JavaScript, or Silverlight), and the Volta compiler would do the hard work for you. Soon it became apparent that a gap existed in transferring events arising from the server to the clients. Because .NET events aren’t first-class citizens, they couldn’t be serialized and pushed to the clients, so the observable and observer pair was formed (though it wasn’t called that at the time).

 Rx isn’t the only technology that came out of project Volta. An intermediate language (IL) to the JavaScript compiler was also invented and is the origin of Microsoft TypeScript. The same team that worked on Volta is the one that brought Rx to life.

 Since its release in 2010, Rx has been a success story that’s been adopted by many companies. Its success was seen in other communities outside .NET, and it was soon being ported to other languages and technologies. Netflix, for example, uses Rx extensively in its service layer and is responsible for the RxJava port.[4] Microsoft also uses Rx internally to run Cortana—the intelligent personal assistant that’s hosted inside every Windows Phone device; when you create an event, an observable is created in the background.

 4

 See “Reactive Programming in the Netflix API with RxJava” by Ben Christensen and Jafar Husain (http://techblog.netflix.com/2013/02/rxjava-netflix-api.html) for details.

 At the time of this writing, Rx is supported in more than 10 languages, including JavaScript, C++, Python, and Swift. Reactive Extensions is now a collection of open source projects. You can find information about them as well as documentation and news at http://reactivex.io/. Reactive Extensions for .NET is hosted under the GitHub repo at https://github.com/Reactive-Extensions/Rx.NET.

 Now that we’ve covered a bit of the history and survived to tell about it, let’s start exploring the Rx internals.

 1.2.2. Rx on the client and server

 Rx is a good fit with event-driven applications. This makes sense because events (as you saw earlier) are the imperative way to create time-variant values. Historically, event-driven programming was seen mainly in client-side technologies because of the user interaction that was implemented as events. For example, you may have worked with OnMouseMove or OnKeyPressed events. For that reason, it’s no wonder that you see many client applications using Rx. Furthermore, some client frameworks are based on Rx, such as ReactiveUI (http://reactiveui.net).

 But let me assure you that Rx isn’t client-side-only technology. On the contrary, many scenarios exist for server-side code that Rx will fit perfectly. In addition, as I said before, Rx is used for large applications such as Microsoft Cortana, Netflix, and complex event processing (CEP) using Microsoft StreamInsight. Rx is an excellent library for dealing with messages that the application receives, and it doesn’t matter whether it’s running on a service layer or a client layer.

 1.2.3. Observables

 Observables are used to implement time-variant values (which we defined as observable sequences) in Rx. They represent the push model, in which new data is pushed to (or notifies) the observers.

 Observables are defined as the source of the events (or notifications) or, if you prefer, the publishers of a stream of data. And the push model means that instead of having the observers fetch data from the source and always checking whether there’s new data that wasn’t already taken (the pull model), the data is delivered to the observers when it’s available.

 Observables implement the IObservable<T> interface that has resided in the System namespace since version 4.0 of the .NET Framework.

 Listing 1.1. The IObservable interface

 [image:]

 The IObservable<T> interface has only one method, Subscribe, that allows observers to be subscribed for notifications. The Subscribe method returns an IDisposable object that represents the subscription and allows the observer to unsubscribe at any time by calling the Dispose method. Observables hold the collection of subscribed observers and notify them when there’s something worth notifying. This is done using the IObserver<T> interface, which also has resided in the System namespace since version 4.0 of the .NET Framework, as shown here.

 Listing 1.2. The IObserver interface

 [image:]

 The basic flow of using IObservable and IObserver is shown in figure 1.6. Observables don’t always complete; they can be providers of a potentially unbounded number of sequenced elements (such as an infinite collection). An observable also can be “quiet,” meaning it never pushed any element and never will. Observables can also fail; the failure can occur after the observable has already pushed elements or it can happen without any element ever being pushed.

 Figure 1.6. A sequence diagram of the happy path of the observable and observer flow of interaction. In this scenario, an observer is subscribed to the observable by the application; the observable “pushes” three messages to the observers (only one in this case), and then notifies the observers that it has completed.

 [image:]

 This observable algebra is formalized in the following expression (where * indicates zero or more times, ? indicates zero or one time, and | is an OR operator):

 OnNext(t)* (OnCompleted() | OnError(e))?

 When failing, the observers will be notified using the OnError method, and the exception object will be delivered to the observers to be inspected and handled (see figure 1.7). After an error (as well as after completion), no more messages will be pushed to the observers. The default strategy Rx uses when the observer doesn’t provide an error handler is to escalate the exception and cause a crash. You’ll learn about the ways to handle errors gracefully in chapter 10.

OEBPS/OEBPS/Images/01fig02_alt.jpg
New

Push deals
notifications —

servers

Shops
and deals ADDIImuan
DB server

Location

OEBPS/OEBPS/Images/01fig03.jpg

OEBPS/OEBPS/Images/xxifig01.jpg

OEBPS/OEBPS/Images/01fig01_alt.jpg

OEBPS/OEBPS/Images/common0a.jpg

OEBPS/OEBPS/Images/enter.jpg

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/common0b.jpg

OEBPS/OEBPS/Images/010fig01_alt.jpg
i e e L
{ Subscribes an observer to

IDisposable Subscribe (I0bserver<T> observer) ; the observable sequence
}

OEBPS/OEBPS/Images/01fig04_alt.jpg
i . Windowi
Jois — Aggregating indowing
Timeout Re Sharir
iMooty - 0¥ 6 uiping Sampling 2009
Projection Merging Throtting

LINQ operators for events

[lonservame<T>| [ISubject<T>) (1opserver<T>]

Event streams

2 o A O

Threads Dispatchers Time
Schedulers

OEBPS/OEBPS/Images/01fig05.jpg
C

OEBPS/OEBPS/Images/cover.jpg
Rx.
INACT

Tamir Dresher
Forowono oy rik Meijer

OEBPS/OEBPS/Images/01fig06_alt.jpg
Application

Observable<string>

anObserver:
Observer<string>

Subscribe(anObserver)

OnNext("Hello")

OnNext("World")

OnCompleted()

OnNext("Reactive”)

OEBPS/OEBPS/Images/010fig02_alt.jpg
L e i
{ Notifes the observer of a new

e ——— et n the sarvbie sequence
PERIDOTIR <eic) Lir

observer that b e Notifies the observer that the observable
nexcepton | } Sequonc ha completed i 10 mere
oo it PEICHCE TNy Compicten

