

[image:]

		

		

			[image: The DevOps Handbook]
		

	
		

			[image: IT Revolution]
		

			IT Revolution Press, LLC

			25 NW 23rd Pl, Suite 6314

			Portland, OR 97210

			Copyright © 2016 by Gene Kim, Jez Humble, Patrick Debois, and John Willis

			All rights reserved, for information about permission to reproduce selections from this book, write to Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

			First Edition

			Printed in the United States of America

			21 20 19 18 17 16 2 3 4 5 6

			Cover design by Strauber Design Studio

			Cover illustration by eboy

			Book design by Mammoth Collective

			Ebook design by Digital Bindery

			Print ISBN: 978-1942788003

			Ebook–EPUB ISBN: 978-1-942788-07-2

			Ebook–Kindle ISBN: 978-1-942788-08-9

			Library of Congress Control Number: 2016951904

			Library of Congress Control Number: 2016951904

			Publisher’s note to readers: Many of the ideas, quotations, and paraphrases attributed to different thinkers and industry leaders herein are excerpted from informal conversations, correspondence, interviews, conference roundtables, and other forms of oral communication that took place over the last six years during the development and writing of this book. Although the authors and publisher have made every effort to ensure that the information in this book was correct at press time, the authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause.

			The author of the 18F case study on page 325 has dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute, and perform case study 18F, even for commercial purposes, all without asking permission.

			For information about special discounts for bulk purchases or for information on booking authors for an event, please visit ITRevolution.com.

			THE DEVOPS HANDBOOK

	
		
		TABLE OF CONTENTS

			
					Preface

					Foreword

					Imagine a World Where Dev and Ops Become DevOps:
 An Introduction to The DevOps Handbook

					PART I—THE THREE WAYS

						
Part I Introduction
						
								 1 Agile, Continuous Delivery, and the Three Ways

								 2 The First Way: The Principles of Flow

								 3 The Second Way: The Principles of Feedback

								 4 The Third Way: The Principles of Continual Learning and Experimentation

						

					

					PART II—WHERE TO START

						
Part II Introduction
						
								 5 Selecting Which Value Stream to Start With

								 6 Understanding the Work in Our Value Stream, Making it Visible, and Expanding it Across the Organization

								 7 How to Design Our Organization and Architecture with Conway’s Law in Mind

								 8 How to Get Great Outcomes by Integrating Operations into the Daily Work of Development

						

					

					PART III—THE FIRST WAY: THE TECHNICAL PRACTICES OF FLOW

						
Part III Introduction
						
								 9 Create the Foundations of Our Deployment Pipeline

								10 Enable Fast and Reliable Automated Testing

								11 Enable and Practice Continuous Integration

								12 Automate and Enable Low-Risk Releases

								13 Architect for Low-Risk Releases

						

					

					PART IV—THE SECOND WAY: THE TECHNICAL PRACTICES OF FEEDBACK

						
Part IV Introduction
						
								14 Create Telemetry to Enable Seeing and Solving Problems

								15 Analyze Telemetry to Better Anticipate Problems and Achieve Goals

								16 Enable Feedback So Development and Operations Can Safely Deploy Code

								17 Integrate Hypothesis-Driven Development and A/B Testing into Our Daily Work

								18 Create Review and Coordination Processes to Increase Quality of Our Current Work

						

					

					PART V—THE THIRD WAY: THE TECHNICAL PRACTICES OF CONTINUAL LEARNING AND EXPERIMENTATION

						
Part V Introduction
						
								19 Enable and Inject Learning into Daily Work

								20 Convert Local Discoveries into Global Improvements

								21 Reserve Time to Create Organizational Learning and Improvement

						

					

					PART VI—THE TECHNICAL PRACTICES OF INTEGRATING INFORMATION SECURITY, CHANGE MANAGEMENT, AND COMPLIANCE

						
Part VI Introduction
						
								22 Information Security as Everyone’s Job, Every Day

								23 Protecting the Deployment Pipeline and Integrating into Change Management and Other Security and Compliance Controls

								Conclusion to the DevOps Handbook:

								A Call to Action

						

					

					
Additional Material
					
							Appendices

							Additional Resources

							Endnotes

							Index

							Acknowledgments

							Author Biographies

					

				

			

		

		
		Landmarks

			
					Cover

					Contents

					Begin Reading

			

		

		
			
					i

					iv

					ix

					x

					xi

					xii

					xiii

					xiv

					xv

					xvi

					xvii

					xviii

					xix

					xxii

					xxiii

					xxiv

					xxv

					xxvi

					xxvii

					xxviii

					xxix

					xxx

					xxxi

					xxxii

					xxxiii

					xxxiv

					xxxv

					1

					2

					3

					4

					5

					6

					7

					8

					9

					10

					11

					12

					13

					15

					16

					17

					18

					19

					20

					21

					22

					23

					24

					25

					26

					27

					28

					29

					30

					31

					32

					33

					34

					35

					37

					38

					39

					41

					42

					43

					44

					45

					46

					47

					48

					49

					50

					51

					52

					53

					54

					55

					56

					57

					58

					59

					60

					61

					62

					63

					64

					65

					66

					67

					68

					69

					70

					71

					72

					73

					74

					75

					77

					78

					79

					80

					81

					82

					83

					84

					85

					86

					87

					88

					89

					90

					91

					92

					93

					95

					96

					97

					98

					99

					100

					101

					102

					103

					104

					105

					106

					107

					108

					109

					110

					111

					112

					113

					114

					115

					116

					117

					118

					119

					120

					121

					123

					124

					125

					126

					127

					128

					129

					130

					131

					132

					133

					134

					135

					136

					137

					138

					139

					140

					141

					143

					144

					145

					146

					147

					148

					149

					150

					151

					153

					154

					155

					156

					157

					158

					159

					160

					161

					162

					163

					164

					165

					166

					167

					168

					169

					170

					171

					172

					173

					174

					175

					176

					177

					179

					180

					181

					182

					183

					184

					185

					186

					187

					188

					189

					191

					192

					193

					194

					195

					196

					197

					198

					199

					200

					201

					202

					203

					204

					205

					206

					207

					208

					209

					210

					211

					212

					213

					214

					215

					216

					217

					218

					219

					220

					221

					222

					223

					224

					225

					226

					227

					228

					229

					230

					231

					232

					233

					234

					235

					236

					237

					238

					239

					240

					241

					242

					243

					244

					245

					246

					247

					248

					249

					250

					251

					252

					253

					254

					255

					256

					257

					258

					259

					260

					261

					262

					263

					264

					265

					267

					268

					269

					270

					271

					272

					273

					274

					275

					276

					277

					278

					279

					280

					281

					282

					283

					284

					285

					286

					287

					288

					289

					290

					291

					292

					293

					294

					295

					296

					297

					298

					299

					300

					301

					302

					303

					304

					305

					306

					307

					308

					309

					310

					311

					312

					313

					314

					315

					316

					317

					318

					319

					320

					321

					322

					323

					324

					325

					326

					327

					328

					329

					330

					331

					333

					334

					335

					336

					337

					338

					339

					340

					341

					342

					343

					344

					345

					346

					347

					348

					349

					351

					352

					353

					354

					355

					356

					357

					358

					359

					360

					361

					362

					363

					364

					365

					366

					367

					368

					369

					370

					371

					372

					373

					374

					375

					376

					377

					378

					379

					380

					381

					382

					383

					384

					385

					386

					387

					388

					389

					390

					391

					392

					393

					394

					395

					396

					397

					398

					399

					400

					401

					402

					403

					404

					405

					406

					407

					408

					409

					410

					411

					412

					413

					414

					415

					416

					417

					418

					419

					420

					421

					422

					423

					424

					425

					426

					427

					428

					429

					430

					431

					432

					433

					434

					435

					436

					437

					438

					439

			

		

	
		

			[image: The DevOps Handbook]
		

	

		
Preface

		Aha!

			The journey to complete The DevOps Handbook has been a long one—it started with weekly working Skype calls between the co-authors in February of 2011, with the vision of creating a prescriptive guide that would serve as a companion to the as-yet unfinished book The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win.

			More than five years later, with over two thousand hours of work, The DevOps Handbook is finally here. Completing this book has been an extremely long process, although one that has been highly rewarding and full of incredible learning, with a scope that is much broader than we originally envisioned. Throughout the project, all the co-authors shared a belief that DevOps is genuinely important, formed in a personal “aha” moment much earlier in each of our professional careers, which I suspect many of our readers will resonate with.

			Gene Kim

				I’ve had the privilege of studying high-performing technology organizations since 1999. One of the earliest findings was that boundary-spanning between the different functional groups of IT Operations, Information Security, and Development was critical to success. But I still remember the first time I saw the magnitude of the downward spiral that would result when these functions worked toward opposing goals.

				It was 2006, and I had the opportunity to spend a week with the group who managed the outsourced IT Operations of a large airline reservation service. They described the downstream consequences of their large, annual software releases: each release would cause immense chaos and disruption for the outsourcer as well as customers; there would be SLA (service level agreement) penalties, because of the customer-impacting outages; there would be layoffs of the most talented and experienced staff, because of the resulting profit shortfalls; there would be much unplanned work and firefighting so that the remaining staff couldn’t work on the ever-growing service request backlogs coming from customers; the contract would be held together by the heroics of middle management; and everyone felt that the contract would be doomed to be put out for re-bid in three years.

				The sense of hopelessness and futility that resulted created for me the beginnings of a moral crusade. Development seemed to always be viewed as strategic, but IT Operations was viewed as tactical, often delegated away or outsourced entirely, only to return in five years in worse shape than it was first handed over.

				For many years, many of us knew that there must be a better way. I remember seeing the talks coming out of the 2009 Velocity Conference describing amazing outcomes enabled by architecture, technical practices, and cultural norms that we now know as DevOps. I was so excited, because it clearly pointed to the better way that we had all been searching for. And helping spread that word was one of my personal motivations to co-author The Phoenix Project. You can imagine how incredibly rewarding it was to see the broader community react to that book, describing how it helped them achieve their own “aha” moments.

			Jez Humble

				My DevOps “aha” moment was at a start-up in 2000—my first job after graduating. For some time, I was one of two technical staff. I did everything: networking, programming, support, systems administration. We deployed software to production by FTP directly from our workstations.

				Then, in 2004, I got a job at ThoughtWorks, a consultancy where my first gig was working on a project involving about seventy people. I was on a team of eight engineers whose full-time job was to deploy our software into a production-like environment. In the beginning, it was really stressful. But over a few months we went from manual deployments that took two weeks to an automated deployment that took one hour; we could roll forward and back in milliseconds using the blue-green deployment pattern during normal business hours.

				That project inspired a lot of the ideas in both the Continuous Delivery (Addison-Wesley, 2010) book and this one. A lot of what drives me and others working in this space is the knowledge that, whatever your constraints, we can always do better, and the desire to help people on their journey.

			Patrick Debois

				For me, it was a collection of moments. In 2007 I was working on a data center migration project with some Agile teams. I was jealous that they had such high productivity—able to get so much done in so little time.

				For my next assignment, I started experimenting with Kanban in Operations and saw how the dynamic of the team changed. Later, at the Agile Toronto 2008 conference, I presented my IEEE paper on this, but I felt it didn’t resonate widely in the Agile community. We started an Agile system administration group, but I overlooked the human side of things.

				After seeing the 2009 Velocity Conference presentation “10 Deploys per Day” by John Allspaw and Paul Hammond, I was convinced others were thinking in a similar way. So I decided to organize the first DevOpsDays, accidently coining the term DevOps.

				The energy at the event was unique and contagious. When people started to thank me because it changed their life for the better, I understood the impact. I haven’t stopped promoting DevOps since.

			John Willis

				In 2008, I had just sold a consulting business that focused on large-scale, legacy IT operations practices around configuration management and monitoring (Tivoli) when I first met Luke Kanies (the founder of Puppet Labs). Luke was giving a presentation on Puppet at an O’Reilly open source conference on configuration management (CM).

				At first I was just hanging out at the back of the room killing time and thinking, “What could this twenty-year-old tell me about configuration management?” After all, I had literally been working my entire life at some of the largest enterprises in the world, helping them architect CM and other operations management solutions. However, about five minutes into his session, I moved up to the first row and realized everything I had been doing for the last twenty years was wrong. Luke was describing what I now call second generation CM.

				After his session I had an opportunity to sit down and have coffee with him. I was totally sold on what we now call infrastructure as code. However, while we met for coffee, Luke started going even further, explaining his ideas. He started telling me he believed that operations was going to have to start behaving like software developers. They were going to have to keep their configurations in source control and adopt CI/CD delivery patterns for their workflow. Being the old IT Operations person at the time, I think I replied to him with something like, “That idea is going to sink like Led Zeppelin with Ops folk.” (I was clearly wrong.)

				Then about a year later in 2009 at another O’Reilly conference, Velocity, I saw Andrew Clay Shafer give a presentation on Agile Infrastructure. In his presentation, Andrew showed this iconic picture of a wall between developers and operations with a metaphorical depiction of work being thrown over the wall. He coined this “the wall of confusion.” The ideas he expressed in that presentation codified what Luke was trying to tell me a year earlier. That was the light bulb for me. Later that year, I was the only American invited to the original DevOpsDays in Ghent. By the time that event was over, this thing we call DevOps was clearly in my blood.

				Clearly, the co-authors of this book all came to a similar epiphany, even if they came there from very different directions. But there is now an overwhelming weight of evidence that the problems described above happen almost everywhere, and that the solutions associated with DevOps are nearly universally applicable.

				The goal of writing this book is to describe how to replicate the DevOps transformations we’ve been a part of or have observed, as well as dispel many of the myths of why DevOps won’t work in certain situations. Below are some of the most common myths we hear about DevOps.

				Myth—DevOps is Only for Startups: While DevOps practices have been pioneered by the web-scale, Internet “unicorn” companies such as Google, Amazon, Netflix, and Etsy, each of these organizations has, at some point in their history, risked going out of business because of the problems associated with more traditional “horse” organizations: highly dangerous code releases that were prone to catastrophic failure, inability to release features fast enough to beat the competition, compliance concerns, an inability to scale, high levels of distrust between Development and Operations, and so forth.

				However, each of these organizations was able to transform their architecture, technical practices, and culture to create the amazing outcomes that we associate with DevOps. As Dr. Branden Williams, an information security executive, quipped, “Let there be no more talk of DevOps unicorns or horses but only thoroughbreds and horses heading to the glue factory.”

				Myth—DevOps Replaces Agile: DevOps principles and practices are compatible with Agile, with many observing that DevOps is a logical continuation of the Agile journey that started in 2001. Agile often serves as an effective enabler of DevOps, because of its focus on small teams continually delivering high quality code to customers.

				Many DevOps practices emerge if we continue to manage our work beyond the goal of “potentially shippable code” at the end of each iteration, extending it to having our code always in a deployable state, with developers checking in to trunk daily, and that we demonstrate our features in production-like environments.

				Myth—DevOps is Incompatible with ITIL: Many view DevOps as a backlash to ITIL or ITSM (IT Service Management), which was originally published in 1989. ITIL has broadly influenced multiple generations of Ops practitioners, including one of the co-authors, and is an ever-evolving library of practices intended to codify the processes and practices that underpin world-class IT Operations, spanning service strategy, design, and support.

				DevOps practices can be made compatible with ITIL process. However, to support the shorter lead times and higher deployment frequencies associated with DevOps, many areas of the ITIL processes become fully automated, solving many problems associated with the configuration and release management processes (e.g., keeping the configuration management database and definitive software libraries up to date). And because DevOps requires fast detection and recovery when service incidents occur, the ITIL disciplines of service design, incident, and problem management remain as relevant as ever.

				Myth—DevOps is Incompatible with Information Security and Compliance: The absence of traditional controls (e.g., segregation of duty, change approval processes, manual security reviews at the end of the project) may dismay information security and compliance professionals.

				However, that doesn’t mean that DevOps organizations don’t have effective controls. Instead of security and compliance activities only being performed at the end of the project, controls are integrated into every stage of daily work in the software development life cycle, resulting in better quality, security, and compliance outcomes.

				Myth—DevOps Means Eliminating IT Operations, or “NoOps”: Many misinterpret DevOps as the complete elimination of the IT Operations function. However, this is rarely the case. While the nature of IT Operations work may change, it remains as important as ever. IT Operations collaborates far earlier in the software life cycle with Development, who continues to work with IT Operations long after the code has been deployed into production.

				Instead of IT Operations doing manual work that comes from work tickets, it enables developer productivity through APIs and self-serviced platforms that create environments, test and deploy code, monitor and display production telemetry, and so forth. By doing this, IT Operations become more like Development (as do QA and Infosec), engaged in product development, where the product is the platform that developers use to safely, quickly, and securely test, deploy, and run their IT services in production.

				Myth—DevOps is Just “Infrastructure as Code” or Automation: While many of the DevOps patterns shown in this book require automation, DevOps also requires cultural norms and an architecture that allows for the shared goals to be achieved throughout the IT value stream. This goes far beyond just automation. As Christopher Little, a technology executive and one of the earliest chroniclers of DevOps, wrote, “DevOps isn’t about automation, just as astronomy isn’t about telescopes.”

				Myth—DevOps is Only for Open Source Software: Although many DevOps success stories take place in organizations using software such as the LAMP stack (Linux, Apache, MySQL, PHP), achieving DevOps outcomes is independent of the technology being used. Successes have been achieved with applications written in Microsoft.NET, COBOL, and mainframe assembly code, as well as with SAP and even embedded systems (e.g., HP LaserJet firmware).

		SPREADING THE AHA! MOMENT

			Each of the authors has been inspired by the amazing innovations happening in the DevOps community and the outcomes they are creating: they are creating safe systems of work and enabling small teams to quickly and independently develop and validate code that can be safely deployed to customers. Given our belief that DevOps is a manifestation of creating dynamic, learning organizations that continually reinforce high-trust cultural norms, it is inevitable that these organizations will continue to innovate and win in the marketplace.

			It is our sincere hope that The DevOps Handbook will serve as a valuable resource for many people in different ways: a guide for planning and executing DevOps transformations; a set of case studies to research and learn from; a chronicle of the history of DevOps; a means to create a coalition that spans product owners, Architecture, Development, QA, IT Operations, and Information Security to achieve common goals; a way to get the highest levels of leadership support for DevOps initiatives, as well as a moral imperative to change the way we manage technology organizations to enable better effectiveness and efficiency; and enable a happier and more humane work environment, helping everyone become lifelong learners—this not only helps everyone achieve their highest goals as human beings, but also helps their organizations win.

		

		
Foreword

		John Allspaw, CTO, Etsy
Brooklyn, NY, August 2016

			In the past, many fields of engineering have experienced a sort of notable evolution, continually “leveling-up” their understanding of their own work. While there are university curricula and professional support organizations situated within specific disciplines of engineering (civil, mechanical, electrical, nuclear, etc.), the fact is, modern society needs all forms of engineering to recognize the benefits of and work in a multidisciplinary way.

			Think about the design of a high-performance vehicle. Where does the work of a mechanical engineer end and the work of an electrical engineer begin? Where (and how, and when) should someone with domain knowledge of aerodynamics (who certainly would have well-formed opinions on the shape, size, and placement of windows) collaborate with an expert in passenger ergonomics? What about the chemical influences of fuel mixture and oil on the materials of the engine and transmission over the lifetime of the vehicle? There are other questions we can ask about the design of an automobile, but the end result is the same: success in modern technical endeavors absolutely requires multiple perspectives and expertise to collaborate.

			In order for a field or discipline to progress and mature, it needs to reach a point where it can thoughtfully reflect on its origins, seek out a diverse set of perspectives on those reflections, and place that synthesis into a context that is useful for how the community pictures the future.

			This book represents such a synthesis and should be seen as a seminal collection of perspectives on the (I will argue, still emerging and quickly evolving) field of software engineering and operations.

			No matter what industry you are in, or what product or service your organization provides, this way of thinking is paramount and necessary for survival for every business and technology leader.

		
		

		Imagine a World Where Dev and Ops Become DevOps

		An Introduction to The DevOps Handbook

			Imagine a world where product owners, Development, QA, IT Operations, and Infosec work together, not only to help each other, but also to ensure that the overall organization succeeds. By working toward a common goal, they enable the fast flow of planned work into production (e.g., performing tens, hundreds, or even thousands of code deploys per day), while achieving world-class stability, reliability, availability, and security.

			In this world, cross-functional teams rigorously test their hypotheses of which features will most delight users and advance the organizational goals. They care not just about implementing user features, but also actively ensure their work flows smoothly and frequently through the entire value stream without causing chaos and disruption to IT Operations or any other internal or external customer.

			Simultaneously, QA, IT Operations, and Infosec are always working on ways to reduce friction for the team, creating the work systems that enable developers to be more productive and get better outcomes. By adding the expertise of QA, IT Operations, and Infosec into delivery teams and automated self-service tools and platforms, teams are able to use that expertise in their daily work without being dependent on other teams.

			This enables organizations to create a safe system of work, where small teams are able to quickly and independently develop, test, and deploy code and value quickly, safely, securely, and reliably to customers. This allows organizations to maximize developer productivity, enable organizational learning, create high employee satisfaction, and win in the marketplace.

			These are the outcomes that result from DevOps. For most of us, this is not the world we live in. More often than not, the system we work in is broken, resulting in extremely poor outcomes that fall well short of our true potential. In our world, Development and IT Operations are adversaries; testing and Infosec activities happen only at the end of a project, too late to correct any problems found; and almost any critical activity requires too much manual effort and too many handoffs, leaving us to always be waiting. Not only does this contribute to extremely long lead times to get anything done, but the quality of our work, especially production deployments, is also problematic and chaotic, resulting in negative impacts to our customers and our business.

			As a result, we fall far short of our goals, and the whole organization is dissatisfied with the performance of IT, resulting in budget reductions and frustrated, unhappy employees who feel powerless to change the process and its outcomes.† The solution? We need to change how we work; DevOps shows us the best way forward.

			To better understand the potential of the DevOps revolution, let us look at the Manufacturing Revolution of the 1980s. By adopting Lean principles and practices, manufacturing organizations dramatically improved plant productivity, customer lead times, product quality, and customer satisfaction, enabling them to win in the marketplace.

			Before the revolution, average manufacturing plant order lead times were six weeks, with fewer than 70% of orders being shipped on time. By 2005, with the widespread implementation of Lean practices, average product lead times had dropped to less than three weeks, and more than 95% of orders were being shipped on time. Organizations that did not implement Lean practices lost market share, and many went out of business entirely.

			Similarly, the bar has been raised for delivering technology products and services—what was good enough in previous decades is not good enough now. For each of the last four decades, the cost and time required to develop and deploy strategic business capabilities and features has dropped by orders of magnitude. During the 1970s and 1980s, most new features required one to five years to develop and deploy, often costing tens of millions of dollars.

			By the 2000’s, because of advances in technology and the adoption of Agile principles and practices, the time required to develop new functionality had dropped to weeks or months, but deploying into production would still require weeks or months, often with catastrophic outcomes.

			And by 2010, with the introduction of DevOps and the neverending commoditization of hardware, software, and now the cloud, features (and even entire startup companies) could be created in weeks, quickly being deployed into production in just hours or minutes—for these organizations, deployment finally became routine and low risk. These organizations are able to perform experiments to test business ideas, discovering which ideas create the most value for customers and the organization as a whole, which are then further developed into features that can be rapidly and safely deployed into production.

			
				Table 1. The ever accelerating trend toward faster, cheaper, low-risk delivery of software

				
					[image: Table 1]
				

				(Source: Adrian Cockcroft, “Velocity and Volume (or Speed Wins),” presentation at FlowCon, San Francisco, CA, November 2013.)

			

			Today, organizations adopting DevOps principles and practices often deploy changes hundreds or even thousands of times per day. In an age where competitive advantage requires fast time to market and relentless experimentation, organizations that are unable to replicate these outcomes are destined to lose in the marketplace to more nimble competitors and could potentially go out of business entirely, much like the manufacturing organizations that did not adopt Lean principles.

			These days, regardless of what industry we are competing in, the way we acquire customers and deliver value to them is dependent on the technology value stream. Put even more succinctly, as Jeffrey Immelt, CEO of General Electric, stated, “Every industry and company that is not bringing software to the core of their business will be disrupted.” Or as Jeffrey Snover, Technical Fellow at Microsoft, said, “In previous economic eras, businesses created value by moving atoms. Now they create value by moving bits.”

			It’s difficult to overstate the enormity of this problem—it affects every organization, independent of the industry we operate in, the size of our organization, whether we are profit or non-profit. Now more than ever, how technology work is managed and performed predicts whether our organizations will win in the marketplace, or even survive. In many cases, we will need to adopt principles and practices that look very different from those that have successfully guided us over the past decades. See Appendix 1.

			Now that we have established the urgency of the problem that DevOps solves, let us take some time to explore in more detail the symptomatology of the problem, why it occurs, and why, without dramatic intervention, the problem worsens over time.

		THE PROBLEM: SOMETHING IN YOUR ORGANIZATION MUST NEED IMPROVEMENT (OR YOU WOULDN’T BE READING THIS BOOK)

			Most organizations are not able to deploy production changes in minutes or hours, instead requiring weeks or months. Nor are they able to deploy hundreds or thousands of changes into production per day; instead, they struggle to deploy monthly or even quarterly. Nor are production deployments routine, instead involving outages and chronic firefighting and heroics.

			In an age where competitive advantage requires fast time to market, high service levels, and relentless experimentation, these organizations are at a significant competitive disadvantage. This is in large part due to their inability to resolve a core, chronic conflict within their technology organization.

		THE CORE, CHRONIC CONFLICT

			In almost every IT organization, there is an inherent conflict between Development and IT Operations which creates a downward spiral, resulting in ever-slower time to market for new products and features, reduced quality, increased outages, and, worst of all, an ever-increasing amount of technical debt.

			The term “technical debt” was first coined by Ward Cunningham. Analogous to financial debt, technical debt describes how decisions we make lead to problems that get increasingly more difficult to fix over time, continually reducing our available options in the future—even when taken on judiciously, we still incur interest.

			One factor that contributes to this is the often competing goals of Development and IT Operations. IT organizations are responsible for many things. Among them are the two following goals, which must be pursued simultaneously:

			
					Respond to the rapidly changing competitive landscape

					Provide stable, reliable, and secure service to the customer

			

			Frequently, Development will take responsibility for responding to changes in the market, deploying features and changes into production as quickly as possible. IT Operations will take responsibility for providing customers with IT service that is stable, reliable, and secure, making it difficult or even impossible for anyone to introduce production changes that could jeopardize production. Configured this way, Development and IT Operations have diametrically opposed goals and incentives.

			Dr. Eliyahu M. Goldratt, one of the founders of the manufacturing management movement, called these types of configuration “the core, chronic conflict”—when organizational measurements and incentives across different silos prevent the achievement of global, organizational goals.‡

			This conflict creates a downward spiral so powerful it prevents the achievement of desired business outcomes, both inside and outside the IT organization. These chronic conflicts often put technology workers into situations that lead to poor software and service quality, and bad customer outcomes, as well as a daily need for workarounds, firefighting, and heroics, whether in Product Management, Development, QA, IT Operations, or Information Security. See Appendix 2.

		DOWNWARD SPIRAL IN THREE ACTS

			The downward spiral in IT has three acts that are likely familiar to most IT practitioners.

			The first act begins in IT Operations, where our goal is to keep applications and infrastructure running so that our organization can deliver value to customers. In our daily work, many of our problems are due to applications and infrastructure that are complex, poorly documented, and incredibly fragile. This is the technical debt and daily workarounds that we live with constantly, always promising that we’ll fix the mess when we have a little more time. But that time never comes.

			Alarmingly, our most fragile artifacts support either our most important revenue-generating systems or our most critical projects. In other words, the systems most prone to failure are also our most important and are at the epicenter of our most urgent changes. When these changes fail, they jeopardize our most important organizational promises, such as availability to customers, revenue goals, security of customer data, accurate financial reporting, and so forth.

			The second act begins when somebody has to compensate for the latest broken promise—it could be a product manager promising a bigger, bolder feature to dazzle customers with or a business executive setting an even larger revenue target. Then, oblivious to what technology can or can’t do, or what factors led to missing our earlier commitment, they commit the technology organization to deliver upon this new promise.

			As a result, Development is tasked with another urgent project that inevitably requires solving new technical challenges and cutting corners to meet the promised release date, further adding to our technical debt—made, of course, with the promise that we’ll fix any resulting problems when we have a little more time.

			This sets the stage for the third and final act, where everything becomes just a little more difficult, bit by bit—everybody gets a little busier, work takes a little more time, communications become a little slower, and work queues get a little longer. Our work becomes more tightly-coupled, smaller actions cause bigger failures, and we become more fearful and less tolerant of making changes. Work requires more communication, coordination, and approvals; teams must wait just a little longer for their dependent work to get done; and our quality keeps getting worse. The wheels begin grinding slower and require more effort to keep turning. See Appendix 3.

			Although it’s difficult to see in the moment, the downward spiral is obvious when one takes a step back. We notice that production code deployments are taking ever-longer to complete, moving from minutes to hours to days to weeks. And worse, the deployment outcomes have become even more problematic, resulting in an ever-increasing number of customer-impacting outages that require more heroics and firefighting in Operations, further depriving them of their ability to pay down technical debt.

			As a result, our product delivery cycles continue to move slower and slower, fewer projects are undertaken, and those that are, are less ambitious. Furthermore, the feedback on everyone’s work becomes slower and weaker, especially the feedback signals from our customers. And, regardless of what we try, things seem to get worse—we are no longer able to respond quickly to our changing competitive landscape, nor are we able to provide stable, reliable service to our customers. As a result, we ultimately lose in the marketplace.

			Time and time again, we learn that when IT fails, the entire organization fails. As Steven J. Spear noted in his book The High-Velocity Edge, whether the damages “unfold slowly like a wasting disease” or rapidly “like a fiery crash...the destruction can be just as complete.”

		WHY DOES THIS DOWNWARD SPIRAL HAPPEN EVERYWHERE?

			For over a decade, the authors of this book have observed this destructive spiral occur in countless organizations of all types and sizes. We understand better than ever why this downward spiral occurs and why it requires DevOps principles to mitigate. First, as described earlier, every IT organization has two opposing goals, and second, every company is a technology company, whether they know it or not.

			As Christopher Little, a software executive and one of the earliest chroniclers of DevOps, said, “Every company is a technology company, regardless of what business they think they’re in. A bank is just an IT company with a banking license.”§

			To convince ourselves that this is the case, consider that the vast majority of capital projects have some reliance upon IT. As the saying goes, “It is virtually impossible to make any business decision that doesn’t result in at least one IT change.”

			In the business and finance context, projects are critical because they serve as the primary mechanism for change inside organizations. Projects are typically what management needs to approve, budget for, and be held accountable for; therefore, they are the mechanism that achieve the goals and aspirations of the organization, whether it is to grow or even shrink.¶

			Projects are typically funded through capital spending (i.e., factories, equipment, and major projects), and expenditures are capitalized when payback is expected to take years, of which 50% is now technology related. This is even true in “low tech” industry verticals with the lowest historical spending on technology, such as energy, metal, resource extraction, automotive, and construction. In other words, business leaders are far more reliant upon the effective management of IT in order to achieve their goals than they think.**

		THE COSTS: HUMAN AND ECONOMIC

			When people are trapped in this downward spiral for years, especially those who are downstream of Development, they often feel stuck in a system that pre-ordains failure and leaves them powerless to change the outcomes. This powerlessness is often followed by burnout, with the associated feelings of fatigue, cynicism, and even hopelessness and despair.

			Many psychologists assert that creating systems that cause feelings of powerlessness is one of the most damaging things we can do to fellow human beings—we deprive other people of their ability to control their own outcomes and even create a culture where people are afraid to do the right thing because of fear of punishment, failure, or jeopardizing their livelihood. This can create the condition of learned helplessness, where people become unwilling or unable to act in a way that avoids the same problem in the future.

			For our employees, it means long hours, working on weekends, and a decreased quality of life, not just for the employee but for everyone who depends on them, including family and friends. It is not surprising that when this occurs we lose our best people (except for those that feel like they can’t leave because of a sense of duty or obligation).

			In addition to the human suffering that comes with the current way of working, the opportunity cost of the value that we could be creating is staggering—the authors believe that we are missing out on approximately $2.6 trillion of value creation per year, which is, at the time of this writing, equivalent to the annual economic output of France, the sixth-largest economy in the world.

			Consider the following calculation—both IDC and Gartner estimated that in 2011, approximately 5% of the worldwide gross domestic product ($3.1 trillion) was spent on IT (hardware, services, and telecom). If we estimate that 50% of that $3.1 trillion was spent on operating costs and maintaining existing systems, and that one-third of that 50% was spent on urgent and unplanned work or rework, approximately $520 billion was wasted.

			If adopting DevOps could enable us, through better management and increased operational excellence, to halve that waste and redeploy that human potential into something that’s five times the value (a modest proposal), we could create $2.6 trillion of value per year.

		THE ETHICS OF DEVOPS: THERE IS A BETTER WAY

			In the previous sections, we described the problems and the negative consequences of the status quo due to the core, chronic conflict, from the inability to achieve organizational goals to the damage we inflict on fellow human beings. By solving these problems, DevOps astonishingly enables us to simultaneously improve organizational performance, achieve the goals of all the various functional technology roles (e.g., Development, QA, IT Operations, Infosec), and improve the human condition.

			This exciting and rare combination may explain why DevOps has generated so much excitement and enthusiasm in so many in such a short time, including technology leaders, engineers, and much of the software ecosystem we reside in.

		
BREAKING THE DOWNWARD SPIRAL WITH DEVOPS

			Ideally, small teams of developers independently implement their features, validate their correctness in production-like environments, and have their code deployed into production quickly, safely, and securely. Code deployments are routine and predictable. Instead of starting deployments at midnight on Friday and spending all weekend working to complete them, deployments occur throughout the business day when everyone is already in the office and without our customers even noticing—except when they see new features and bug fixes that delight them. And, by deploying code in the middle of the workday, for the first time in decades IT Operations is working during normal business hours like everyone else.

			By creating fast feedback loops at every step of the process, everyone can immediately see the effects of their actions. Whenever changes are committed into version control, fast automated tests are run in production-like environments, giving continual assurance that the code and environments operate as designed and are always in a secure and deployable state.

			Automated testing helps developers discover their mistakes quickly (usually within minutes), which enables faster fixes as well as genuine learning—learning that is impossible when mistakes are discovered six months later during integration testing, when memories and the link between cause and effect have long faded. Instead of accruing technical debt, problems are fixed as they are found, mobilizing the entire organization if needed, because global goals outweigh local goals.

			Pervasive production telemetry in both our code and production environments ensure that problems are detected and corrected quickly, confirming that everything is working as intended and customers are getting value from the software we create.

			In this scenario, everyone feels productive—the architecture allows small teams to work safely and architecturally decoupled from the work of other teams who use self-service platforms that leverage the collective experience of Operations and Information Security. Instead of everyone waiting all the time, with large amounts of late, urgent rework, teams work independently and productively in small batches, quickly and frequently delivering new value to customers.

			Even high-profile product and feature releases become routine by using dark launch techniques. Long before the launch date, we put all the required code for the feature into production, invisible to everyone except internal employees and small cohorts of real users, allowing us to test and evolve the feature until it achieves the desired business goal.

			And, instead of firefighting for days or weeks to make the new functionality work, we merely change a feature toggle or configuration setting. This small change makes the new feature visible to ever-larger segments of customers, automatically rolling back if something goes wrong. As a result, our releases are controlled, predictable, reversible, and low stress.

			It’s not just feature releases that are calmer—all sorts of problems are being found and fixed early, when they are smaller, cheaper, and easier to correct. With every fix, we also generate organizational learnings, enabling us to prevent the problem from recurring and enabling us to detect and correct similar problems faster in the future.

			Furthermore, everyone is constantly learning, fostering a hypothesis-driven culture where the scientific method is used to ensure nothing is taken for granted—we do nothing without measuring and treating product development and process improvement as experiments.

			Because we value everyone’s time, we don’t spend years building features that our customers don’t want, deploying code that doesn’t work, or fixing something that isn’t actually the cause of our problem.

			Because we care about achieving goals, we create long-term teams that are responsible for meeting them. Instead of project teams where developers are reassigned and shuffled around after each release, never receiving feedback on their work, we keep teams intact so they can keep iterating and improving, using those learnings to better achieve their goals. This is equally true for the product teams who are solving problems for our external customers, as well as our internal platform teams who are helping other teams be more productive, safe, and secure.

			Instead of a culture of fear, we have a high-trust, collaborative culture, where people are rewarded for taking risks. They are able to fearlessly talk about problems as opposed to hiding them or putting them on the backburner—after all, we must see problems in order to solve them.

			And, because everyone fully owns the quality of their work, everyone builds automated testing into their daily work and uses peer reviews to gain confidence that problems are addressed long before they can impact a customer. These processes mitigate risk, as opposed to approvals from distant authorities, allowing us to deliver value quickly, reliably, and securely—even proving to skeptical auditors that we have an effective system of internal controls.

			And when something does go wrong, we conduct blameless post-mortems, not to punish anyone, but to better understand what caused the accident and how to prevent it. This ritual reinforces our culture of learning. We also hold internal technology conferences to elevate our skills and ensure that everyone is always teaching and learning.

			Because we care about quality, we even inject faults into our production environment so we can learn how our system fails in a planned manner. We conduct planned exercises to practice large-scale failures, randomly kill processes and compute servers in production, and inject network latencies and other nefarious acts to ensure we grow ever more resilient. By doing this, we enable better resilience, as well as organizational learning and improvement.

			In this world, everyone has ownership in their work, regardless of their role in the technology organization. They have confidence that their work matters and is meaningfully contributing to organizational goals, proven by their low-stress work environment and their organization’s success in the marketplace. Their proof is that the organization is indeed winning in the marketplace.

		 THE BUSINESS VALUE OF DEVOPS

			We have decisive evidence of the business value of DevOps. From 2013 through 2016, as part of Puppet Labs’ State Of DevOps Report, to which authors Jez Humble and Gene Kim contributed, we collected data from over twenty-five thousand technology professionals, with the goal of better understanding the health and habits of organizations at all stages of DevOps adoption.

			The first surprise this data revealed was how much high-performing organizations using DevOps practices were outperforming their non–high performing peers in the following areas:

			
					Throughput metrics

					Code and change deployments (thirty times more frequent)

					Code and change deployment lead time (two hundred times faster)

					Reliability metrics

					Production deployments (sixty times higher change success rate)

					Mean time to restore service (168 times faster)

					Organizational performance metrics

					Productivity, market share, and profitability goals (two times more likely to exceed)

					Market capitalization growth (50% higher over three years)

			

			In other words, high performers were both more agile and more reliable, providing empirical evidence that DevOps enables us to break the core, chronic conflict. High performers deployed code thirty times more frequently, and the time required to go from “code committed” to “successfully running in production” was two hundred times faster—high performers had lead times measured in minutes or hours, while low performers had lead times measured in weeks, months, or even quarters.

			Furthermore, high performers were twice as likely to exceed profitability, market share, and productivity goals. And, for those organizations that provided a stock ticker symbol, we found that high performers had 50% higher market capitalization growth over three years. They also had higher employee job satisfaction, lower rates of employee burnout, and their employees were 2.2 times more likely to recommend their organization to friends as a great place to work.†† High performers also had better information security outcomes. By integrating security objectives into all stages of the development and operations processes, they spent 50% less time remediating security issues.

		DEVOPS HELPS SCALE DEVELOPER PRODUCTIVITY

			When we increase the number of developers, individual developer productivity often significantly decreases due to communication, integration, and testing overhead. This is highlighted in the famous book by Frederick P. Brooks, The Mythical Man-Month, where he explains that when projects are late adding more developers not only decreases individual developer productivity but also decreases overall productivity.

			On the other hand, DevOps shows us that when we have the right architecture, the right technical practices, and the right cultural norms, small teams of developers are able to quickly, safely, and independently develop, integrate, test, and deploy changes into production. As Randy Shoup, formerly a director of engineering at Google, observed, large organizations using DevOps “have thousands of developers, but their architecture and practices enable small teams to still be incredibly productive, as if they were a startup.”

			The 2015 State of DevOps Report examined not only “deploys per day” but also “deploys per day per developer.” We hypothesized that high performers would be able to scale their number of deployments as team sizes grew.

			[image:] Figure 1. Deployments/day vs. number of developers (Source: Puppet Labs, 2015 State Of DevOps Report.)‡‡

			Indeed, this is what we found. Figure 1 shows that in low performers, deploys per day per developer go down as team size increases, stays constant for medium performers, and increases linearly for high performers.

			In other words, organizations adopting DevOps are able to linearly increase the number of deploys per day as they increase their number of developers, just as Google, Amazon, and Netflix have done.§§

		
THE UNIVERSALITY OF THE SOLUTION

			One of the most influential books in the Lean manufacturing movement is The Goal: A Process of Ongoing Improvement written by Dr. Eliyahu M. Goldratt in 1984. It influenced an entire generation of professional plant managers around the world. It was a novel about a plant manager who had to fix his cost and product due date issues in ninety days, otherwise his plant would be shut down.

			Later in his career, Dr. Goldratt described the letters he received in response to The Goal. These letters would typically read, “You have obviously been hiding in our factory, because you’ve described my life [as a plant manager] exactly…” Most importantly, these letters showed people were able to replicate the breakthroughs in performance that were described in the book in their own work environments.

			The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win, written by Gene Kim, Kevin Behr, and George Spafford in 2013, was closely modeled after The Goal. It is a novel that follows an IT leader who faces all the typical problems that are endemic in IT organizations: an over-budget, behind-schedule project that must get to market in order for the company to survive. He experiences catastrophic deployments; problems with availability, security, and compliance; and so forth. Ultimately, he and his team use DevOps principles and practices to overcome those challenges, helping their organization win in the marketplace. In addition, the novel shows how DevOps practices improved the workplace environment for the team, creating lower stress and higher satisfaction because of greater practitioner involvement throughout the process.

			As with The Goal, there is tremendous evidence of the universality of the problems and solutions described in The Phoenix Project. Consider some of the statements found in the Amazon reviews: “I find myself relating to the characters in The Phoenix Project...I’ve probably met most of them over the course of my career,” “If you have ever worked in any aspect of IT, DevOps, or Infosec you will definitely be able to relate to this book,” or “There’s not a character in The Phoenix Project that I don’t identify with myself or someone I know in real life…not to mention the problems faced and overcome by those characters.”

			In the remainder of this book, we will describe how to replicate the transformation described in The Phoenix Project, as well as provide many case studies of how other organizations have used DevOps principles and practices to replicate those outcomes.

		
THE DEVOPS HANDBOOK: AN ESSENTIAL GUIDE

			The purpose of the DevOps Handbook is to give you the theory, principles, and practices you need to successfully start your DevOps initiative and achieve your desired outcomes. This guidance is based on decades of sound management theory, study of high-performing technology organizations, work we have done helping organizations transform, and research that validates the effectiveness of the prescribed DevOps practices. As well as interviews with relevant subject matter experts and analyses of nearly one hundred case studies presented at the DevOps Enterprise Summit.

			Broken into six parts, this book covers DevOps theories and principles using the Three Ways, a specific view of the underpinning theory originally introduced in The Phoenix Project. The DevOps Handbook is for everyone who performs or influences work in the technology value stream (which typically includes Product Management, Development, QA, IT Operations, and Information Security), as well as for business and marketing leadership, where most technology initiatives originate.

			The reader is not expected to have extensive knowledge of any of these domains, or of DevOps, Agile, ITIL, Lean, or process improvement. Each of these topics is introduced and explained in the book as it becomes necessary.

			Our intent is to create a working knowledge of the critical concepts in each of these domains, both to serve as a primer and to introduce the language necessary to help practitioners work with all their peers across the entire IT value stream and to frame shared goals.

			This book will be of value to business leaders and stakeholders who are increasingly reliant upon the technology organization for the achievement of their goals.

			Furthermore, this book is intended for readers whose organizations might not be experiencing all the problems described in the book (e.g., long deployment lead times or painful deployments). Even readers in this fortunate position will benefit from understanding DevOps principles, especially those relating to shared goals, feedback, and continual learning.

			In Part I, we present a brief history of DevOps and introduce the underpinning theory and key themes from relevant bodies of knowledge that span over decades. We then present the high level principles of the Three Ways: Flow, Feedback, and Continual Learning and Experimentaion.

			Part II describes how and where to start, and presents concepts such as value streams, organizational design principles and patterns, organizational adoption patterns, and case studies.

			Part III describes how to accelerate Flow by building the foundations of our deployment pipeline: enabling fast and effective automated testing, continuous integration, continuous delivery, and architecting for low-risk releases.

			Part IV discusses how to accelerate and amplify Feedback by creating effective production telemetry to see and solve problems, better anticipate problems and achieve goals, enable feedback so that Dev and Ops can safely deploy changes, integrate A/B testing into our daily work, and create review and coordination processes to increase the quality of our work.

			Part V describes how we accelerate Continual Learning by establishing a just culture, converting local discoveries into global improvements, and properly reserving time to create organizational learning and improvements.

			Finally, in Part VI we describe how to properly integrate security and compliance into our daily work, by integrating preventative security controls into shared source code repositories and services, integrating security into our deployment pipeline, enhancing telemetry to better enable detection and recovery, protecting the deployment pipeline, and achieving change management objectives.

			By codifying these practices, we hope to accelerate the adoption of DevOps practices, increase the success of DevOps initiatives, and lower the activation energy required for DevOps transformations.

		

			
				
					† This is just a small sample of the problems found in typical IT organizations.

				

				
					‡ In the manufacturing realm, a similar core, chronic conflict existed: the need to simultaneously ensure on-time shipments to customers and control costs. How this core, chronic conflict was broken is described in Appendix 2.

				

				
					§ In 2013, the European bank HSBC employed more software developers than Google.

				

				
					¶ For now, let us suspend the discussion of whether software should be funded as a “project” or a “product.” This is discussed later in the book.

				

				
					** For instance, Dr. Vernon Richardson and his colleagues published this astonishing finding. They studied the 10-K SEC filings of 184 public corporations and divided them into three groups: A) firms with material weaknesses with IT-related deficiencies, B) firms with material weaknesses with no IT-related deficiencies, and C) “clean firms” with no material weaknesses. Firms in Group A saw eight times higher CEO turnover than Group C, and there was four times higher CFO turnover in Group A than in Group C. Clearly, IT may matter far more than we typically think.

				

				
					†† As measured by employee Net Promoter Score (eNPS). This is a significant finding, as research has shown that “companies with highly engaged workers grew revenues two and a half times as much as those with low engagement levels. And [publicly traded] stocks of companies with a high-trust work environment outperformed market indexes by a factor of three from 1997 through 2011.”

				

				
					‡‡ Only organizations that are deploying at least once per day are shown.

				

				
					§§ Another more extreme example is Amazon. In 2011, Amazon was performing approximately seven thousand deploys per day. By 2015, they were performing 130,000 deploys per day.

				

			

		

			[image: Part 1: The Three Ways]
		

		

			
Part I

			Introduction

			In Part I of The DevOps Handbook, we will explore how the convergence of several important movements in management and technology set the stage for the DevOps movement. We describe value streams, how DevOps is the result of applying Lean principles to the technology value stream, and the Three Ways: Flow, Feedback, and Continual Learning and Experimentation.

			Primary focuses within these chapters include:

			
					The principles of Flow, which accelerate the delivery of work from Development to Operations to our customers

					The principles of Feedback, which enable us to create ever safer systems of work

					The principles of Continual Learning and Experimentation, which foster a high-trust culture and a scientific approach to organizational improvement risk-taking as part of our daily work

			

		A BRIEF HISTORY

			DevOps and its resulting technical, architectural, and cultural practices represent a convergence of many philosophical and management movements. While many organizations have developed these principles independently, understanding that DevOps resulted from a broad stroke of movements, a phenomenon described by John Willis (one of the co-authors of this book) as the “convergence of DevOps,” shows an amazing progression of thinking and improbable connections. There are decades of lessons learned from manufacturing, high-reliability organization, high-trust management models, and others that have brought us to the DevOps practices we know today.

			DevOps is the outcome of applying the most trusted principles from the domain of physical manufacturing and leadership to the IT value stream. DevOps relies on bodies of knowledge from Lean, Theory of Constraints, the Toyota Production System, resilience engineering, learning organizations, safety culture, human factors, and many others. Other valuable contexts that DevOps draws from include high-trust management cultures, servant leadership, and organizational change management. The result is world-class quality, reliability, stability, and security at ever lower cost and effort; and accelerated flow and reliability throughout the technology value stream, including Product Management, Development, QA, IT Operations, and Infosec.

			While the foundation of DevOps can be seen as being derived from Lean, the Theory of Constraints, and the Toyota Kata movement, many also view DevOps as the logical continuation of the Agile software journey that began in 2001.

		THE LEAN MOVEMENT

			Techniques such as Value Stream Mapping, Kanban Boards, and Total Productive Maintenance were codified for the Toyota Production System in the 1980s. In 1997, the Lean Enterprise Institute started researching applications of Lean to other value streams, such as the service industry and healthcare.

			Two of Lean’s major tenets include the deeply held belief that manufacturing lead time required to convert raw materials into finished goods was the best predictor of quality, customer satisfaction, and employee happiness, and that one of the best predictors of short lead times was small batch sizes of work.

			Lean principles focus on how to create value for the customer through systems thinking by creating constancy of purpose, embracing scientific thinking, creating flow and pull (versus push), assuring quality at the source, leading with humility, and respecting every individual.

		THE AGILE MANIFESTO

			The Agile Manifesto was created in 2001 by seventeen of the leading thinkers in software development. They wanted to create a lightweight set of values and principles against heavyweight software development processes such as waterfall development, and methodologies such as the Rational Unified Process.

			One key principle was to “deliver working software frequently, from a couple of months to a couple of weeks, with a preference to the shorter timescale,” emphasizing the desire for small batch sizes, incremental releases instead of large, waterfall releases. Other principles emphasized the need for small, self-motivated teams working in a high-trust management model.

			Agile is credited for dramatically increasing the productivity of many development organizations. And interestingly, many of the key moments in DevOps history also occurred within the Agile community or at Agile conferences, as described below.

		AGILE INFRASTRUCTURE AND VELOCITY MOVEMENT

			At the 2008 Agile conference in Toronto, Canada, Patrick Debois and Andrew Shafer held a “birds of a feather” session on applying Agile principles to infrastructure as opposed to application code. Although they were the only people who showed up, they rapidly gained a following of like-minded thinkers, including co-author John Willis.

			Later, at the 2009 Velocity conference, John Allspaw and Paul Hammond gave the seminal “10 Deploys per Day: Dev and Ops Cooperation at Flickr” presentation, where they described how they created shared goals between Dev and Ops and used continuous integration practices to make deployment part of everyone’s daily work. According to first hand accounts, everyone attending the presentation immediately knew they were in the presence of something profound and of historic significance.

			Patrick Debois was not there, but was so excited by Allspaw and Hammond’s idea that he created the first DevOpsDays in Ghent, Belgium, (where he lived) in 2009. There the term “DevOps” was coined.

		THE CONTINUOUS DELIVERY MOVEMENT

			Building upon the development discipline of continuous build, test, and integration, Jez Humble and David Farley extended the concept to continuous delivery, which defined the role of a “deployment pipeline” to ensure that code and infrastructure are always in a deployable state, and that all code checked in to trunk can be safely deployed into production. This idea was first presented at the 2006 Agile conference, and was also independently developed in 2009 by Tim Fitz in a blog post on his website titled “Continuous Deployment.”¶¶

		TOYOTA KATA

			In 2009, Mike Rother wrote Toyota Kata: Managing People for Improvement, Adaptiveness and Superior Results, which framed his twenty-year journey to understand and codify the Toyota Production System. He had been one of the graduate students who flew with GM executives to visit Toyota plants and helped develop the Lean toolkit, but he was puzzled when none of the companies adopting these practices replicated the level of performance observed at the Toyota plants.

			He concluded that the Lean community missed the most important practice of all, which he called the improvement kata. He explains that every organization has work routines, and the improvement kata requires creating structure for the daily, habitual practice of improvement work, because daily practice is what improves outcomes. The constant cycle of establishing desired future states, setting weekly target outcomes, and the continual improvement of daily work is what guided improvement at Toyota.

			The above describes the history of DevOps and relevant movements that it draws upon. Throughout the rest of Part I, we look at value streams, how Lean principles can be applied to the technology value stream, and the Three Ways of Flow, Feedback, and Continual Learning and Experimentation.

		

			
				
					¶¶ DevOps also extends and builds upon the practices of infrastructure as code, which was pioneered by Dr. Mark Burgess, Luke Kanies, and Adam Jacob. In infrastructure as code, the work of Operations is automated and treated like application code, so that modern development practices can be applied to the entire development stream. This further enabled fast deployment flow, including continuous integration (pioneered by Grady Booch and integrated as one of the key 12 practices of Extreme Programming), continuous delivery (pioneered by Jez Humble and David Farley), and continuous deployment (pioneered by Etsy, Wealthfront, and Eric Ries’s work at IMVU).

				

			

			
		
1Agile, Continuous Delivery, and the Three Ways

			In this chapter, an introduction to the underpinning theory of Lean Manufacturing is presented, as well as the Three Ways, the principles from which all of the observed DevOps behaviors can be derived.

			Our focus here is primarily on theory and principles, describing many decades of lessons learned from manufacturing, high-reliability organizations, high-trust management models, and others, from which DevOps practices have been derived. The resulting concrete principles and patterns, and their practical application to the technology value stream, are presented in the remaining chapters of the book.

		THE MANUFACTURING VALUE STREAM

			One of the fundamental concepts in Lean is the value stream. We will define it first in the context of manufacturing and then extrapolate how it applies to DevOps and the technology value stream.

			Karen Martin and Mike Osterling define value stream in their book Value Stream Mapping: How to Visualize Work and Align Leadership for Organizational Transformation as “the sequence of activities an organization undertakes to deliver upon a customer request” or “the sequence of activities required to design, produce, and deliver a good or service to a customer, including the dual flows of information and material.”

			In manufacturing operations, the value stream is often easy to see and observe: it starts when a customer order is received and the raw materials are released onto the plant floor. To enable fast and predictable lead times in any value stream there is usually a relentless focus on creating a smooth and even flow of work, using techniques such as small batch sizes, reducing work in process (WIP), preventing rework to ensure we don’t pass defects to downstream work centers, and constantly optimizing our system toward our global goals.

		THE TECHNOLOGY VALUE STREAM

			The same principles and patterns that enable the fast flow of work in physical processes are equally applicable to technology work (and, for that matter, for all knowledge work). In DevOps, we typically define our technology value stream as the process required to convert a business hypothesis into a technology-enabled service that delivers value to the customer.

			The input to our process is the formulation of a business objective, concept, idea, or hypothesis, and starts when we accept the work in Development, adding it to our committed backlog of work.

			From there, Development teams that follow a typical Agile or iterative process will likely transform that idea into user stories and some sort of feature specification, which is then implemented in code into the application or service being built. The code is then checked in to the version control repository, where each change is integrated and tested with the rest of the software system.

			Because value is created only when our services are running in production, we must ensure that we are not only delivering fast flow, but that our deployments can also be performed without causing chaos and disruptions such as service outages, service impairments, or security or compliance failures.

		FOCUS ON DEPLOYMENT LEAD TIME

			For the remainder of this book, our attention will be on deployment lead time, a subset of the value stream described above. This value stream begins when any engineer*** in our value stream (which includes Development, QA, IT Operations, and Infosec) checks a change in to version control and ends when that change is successfully running in production, providing value to the customer and generating useful feedback and telemetry.

			The first phase of work, which includes Design and Development, is akin to Lean Product Development and is highly variable and highly uncertain, often requiring high degrees of creativity and work that may never be performed again, resulting in high variability of process times. In contrast, the second phase of work, which includes Testing and Operations, is akin to Lean Manufacturing. It requires creativity and expertise, and strives to be predictable and mechanistic, with the goal of achieving work outputs with minimized variability (e.g., short and predictable lead times, near zero defects).

			Instead of large batches of work being processed sequentially through the design/development value stream and then through the test/operations value stream (such as when we have a large batch waterfall process or long-lived feature branches), our goal is to have testing and operations happening simultaneously with design/development, enabling fast flow and high quality. This method succeeds when we work in small batches and build quality into every part of our value stream.†††

		Defining Lead Time vs. Processing Time

			In the Lean community, lead time is one of two measures commonly used to measure performance in value streams, with the other being processing time (sometimes known as touch time or task time).‡‡‡

			Whereas the lead time clock starts when the request is made and ends when it is fulfilled, the process time clock starts only when we begin work on the customer request—specifically, it omits the time that the work is in queue, waiting to be processed (figure 2).

			[image:] Figure 2. Lead time vs. process time of a deployment operation

			Because lead time is what the customer experiences, we typically focus our process improvement attention there instead of on process time. However, the proportion of process time to lead time serves as an important measure of efficiency—achieving fast flow and short lead times almost always requires reducing the time our work is waiting in queues.

		The Common Scenario: Deployment Lead Times Requiring Months

			In business as usual, we often find ourselves in situations where our deployment lead times require months. This is especially common in large, complex organizations that are working with tightly-coupled, monolithic applications, often with scarce integration test environments, long test and production environment lead times, high reliance on manual testing, and multiple required approval processes.When this occurs, our value stream may look like figure 3:

			[image:] Figure 3: A technology value stream with a deployment lead time of three months (Source: Damon Edwards, “DevOps Kaizen,” 2015.)

			When we have long deployment lead times, heroics are required at almost every stage of the value stream. We may discover that nothing works at the end of the project when we merge all the development team’s changes together, resulting in code that no longer builds correctly or passes any of our tests. Fixing each problem requires days or weeks of investigation to determine who broke the code and how it can be fixed, and still results in poor customer outcomes.

		Our DevOps Ideal: Deployment Lead Times of Minutes

			In the DevOps ideal, developers receive fast, constant feedback on their work, which enables them to quickly and independently implement, integrate, and validate their code, and have the code deployed into the production environment (either by deploying the code themselves or by others).

			We achieve this by continually checking small code changes in to our version control repository, performing automated and exploratory testing against it, and deploying it into production. This enables us to have a high degree of confidence that our changes will operate as designed in production and that any problems can be quickly detected and corrected.

			This is most easily achieved when we have architecture that is modular, well encapsulated, and loosely-coupled so that small teams are able to work with high degrees of autonomy, with failures being small and contained, and without causing global disruptions.

			In this scenario, our deployment lead time is measured in minutes or, in the worst case, hours. Our resulting value stream map should look something like figure 4:

			[image:] Figure 4: A technology value stream with a lead time of minutes

		OBSERVING “%C/A” AS A MEASURE OF REWORK

			In addition to lead times and process times, the third key metric in the technology value stream is percent complete and accurate (%C/A). This metric reflects the quality of the output of each step in our value stream. Karen Martin and Mike Osterling state that “the %C/A can be obtained by asking downstream customers what percentage of the time they receive work that is ‘usable as is,’ meaning that they can do their work without having to correct the information that was provided, add missing information that should have been supplied, or clarify information that should have and could have been clearer.”

		THE THREE WAYS: THE PRINCIPLES UNDERPINNING DEVOPS

			The Phoenix Project presents the Three Ways as the set of underpinning principles from which all the observed DevOps behaviors and patterns are derived (figure 5).

			The First Way enables fast left-to-right flow of work from Development to Operations to the customer. In order to maximize flow, we need to make work visible, reduce our batch sizes and intervals of work, build in quality by preventing defects from being passed to downstream work centers, and constantly optimize for the global goals.

			[image:] Figure 5: The Three Ways (Source: Gene Kim, “The Three Ways: The Principles Underpinning DevOps,” IT Revolution Press blog, accessed August 9, 2016, http://itrevolution.com/the-three-ways-principles-underpinning-devops/.)

			By speeding up flow through the technology value stream, we reduce the lead time required to fulfill internal or customer requests, especially the time required to deploy code into the production environment. By doing this, we increase the quality of work as well as our throughput, and boost our ability to out-experiment the competition.

			The resulting practices include continuous build, integration, test, and deployment processes; creating environments on demand; limiting work in process (WIP); and building systems and organizations that are safe to change.

			The Second Way enables the fast and constant flow of feedback from right to left at all stages of our value stream. It requires that we amplify feedback to prevent problems from happening again, or enable faster detection and recovery. By doing this, we create quality at the source and generate or embed knowledge where it is needed—this allows us to create ever-safer systems of work where problems are found and fixed long before a catastrophic failure occurs.

			By seeing problems as they occur and swarming them until effective countermeasures are in place, we continually shorten and amplify our feedback loops, a core tenet of virtually all modern process improvement methodologies. This maximizes the opportunities for our organization to learn and improve.

			The Third Way enables the creation of a generative, high-trust culture that supports a dynamic, disciplined, and scientific approach to experimentation and risk-taking, facilitating the creation of organizational learning, both from our successes and failures. Furthermore, by continually shortening and amplifying our feedback loops, we create ever-safer systems of work and are better able to take risks and perform experiments that help us learn faster than our competition and win in the marketplace.

			As part of the Third Way, we also design our system of work so that we can multiply the effects of new knowledge, transforming local discoveries into global improvements. Regardless of where someone performs work, they do so with the cumulative and collective experience of everyone in the organization.

		CONCLUSION

			In this chapter, we described the concepts of value streams, lead time as one of the key measures of the effectiveness for both manufacturing and technology value streams, and the high-level concepts behind each of the Three Ways, the principles that underpin DevOps.

			In the following chapters, the principles for each of the Three Ways are described in greater detail. The first of these principles is Flow, which is focused on how we create the fast flow of work in any value stream, whether it’s in manufacturing or technology work. The practices that enable fast flow are described in Part III.

		

			
				
					*** Going forward, engineer refers to anyone working in our value stream, not just developers.

				

				
					††† In fact, with techniques such as test-driven development, testing occurs even before the first line of code is written.

				

				
					‡‡‡ In this book, the term process time will be favored for the same reason Karen Martin and Mike Osterling cite: “To minimize confusion, we avoid using the term cycle time as it has several definitions synonymous with processing time and pace or frequency of output, to name a few.”

				

			

		

			
2The First Way:
The Principles of Flow

			In the technology value stream, work typically flows from Development to Operations, the functional areas between our business and our customers. The First Way requires the fast and smooth flow of work from Development to Operations, to deliver value to customers quickly. We optimize for this global goal instead of local goals, such as Development feature completion rates, test find/fix ratios, or Ops availability measures.

			We increase flow by making work visible, by reducing batch sizes and intervals of work, and by building quality in, preventing defects from being passed to downstream work centers. By speeding up the flow through the technology value stream, we reduce the lead time required to fulfill internal and external customer requests, further increasing the quality of our work while making us more agile and able to out-experiment the competition.

			Our goal is to decrease the amount of time required for changes to be deployed into production and to increase the reliability and quality of those services. Clues on how we do this in the technology value stream can be gleaned from how the Lean principles were applied to the manufacturing value stream.

			MAKE OUR WORK VISIBLE

			A significant difference between technology and manufacturing value streams is that our work is invisible. Unlike physical processes, in the technology value stream we cannot easily see where flow is being impeded or when work is piling up in front of constrained work centers. Transferring work between work centers is usually highly visible and slow because inventory must be physically moved.

			However, in technology work the move can be done with a click of a button, such as by re-assigning a work ticket to another team. Because it is so easy, work can bounce between teams endlessly due to incomplete information, or work can be passed onto downstream work centers with problems that remain completely invisible until we are late delivering what we promised to the customer or our application fails in the production environment.

			To help us see where work is flowing well and where work is queued or stalled, we need to make our work as visible as possible. One of the best methods of doing this is using visual work boards, such as kanban boards or sprint planning boards, where we can represent work on physical or electronic cards. Work originates on the left (often being pulled from a backlog), is pulled from work center to work center (represented in columns), and finishes when it reaches the right side of the board, usually in a column labeled “done” or “in production.”

			[image:] Figure 6: An example kanban board, spanning Requirements, Dev, Test, Staging, and In Production (Source: David J. Andersen and Dominica DeGrandis, Kanban for ITOps, training materials for workshop, 2012.)

			Not only does our work become visible, we can also manage our work so that it flows from left to right as quickly as possible. Furthermore, we can measure lead time from when a card is placed on the board to when it is moved into the “Done” column.

			Ideally, our kanban board will span the entire value stream, defining work as completed only when it reaches the right side of the board (figure 6). Work is not done when Development completes the implementation of a feature—rather, it is only done when our application is running successfully in production, delivering value to the customer.

			By putting all work for each work center in queues and making it visible, all stakeholders can more easily prioritize work in the context of global goals. Doing this enables each work center to single-task on the highest priority work until it is completed, increasing throughput.

			LIMIT WORK IN PROCESS (WIP)

			In manufacturing, daily work is typically dictated by a production schedule that is generated regularly (e.g., daily, weekly), establishing which jobs must be run based on customer orders, order due dates, parts available, and so forth.

			In technology, our work is usually far more dynamic—this is especially the case in shared services, where teams must satisfy the demands of many different stakeholders. As a result, daily work becomes dominated by the priority du jour, often with requests for urgent work coming in through every communication mechanism possible, including ticketing systems, outage calls, emails, phone calls, chat rooms, and management escalations.

			Disruptions in manufacturing are also highly visible and costly, often requiring breaking the current job and scrapping any incomplete work in process to start the new job. This high level of effort discourages frequent disruptions.

			However, interrupting technology workers is easy, because the consequences are invisible to almost everyone, even though the negative impact to productivity may be far greater than in manufacturing. For instance, an engineer assigned to multiple projects must switch between tasks, incurring all the costs of having to re-establish context, as well as cognitive rules and goals.

			Studies have shown that the time to complete even simple tasks, such as sorting geometric shapes, significantly degrades when multitasking. Of course, because our work in the technology value stream is far more cognitively complex than sorting geometric shapes, the effects of multitasking on process time is much worse.

			We can limit multitasking when we use a kanban board to manage our work, such as by codifying and enforcing WIP (work in progress) limits for each column or work center that puts an upper limit on the number of cards that can be in a column.

			For example, we may set a WIP limit of three cards for testing. When there are already three cards in the test lane, no new cards can be added to the lane unless a card is completed or removed from the “in work” column and put back into queue (i.e., putting the card back to the column to the left). Nothing can be worked on until it is represented first in a work card, reinforcing that all work must be made visible.

			Dominica DeGrandis, one of the leading experts on using kanbans in DevOps value streams, notes that “controlling queue size [WIP] is an extremely powerful management tool, as it is one of the few leading indicators of lead time—with most work items, we don’t know how long it will take until it’s actually completed.”

			Limiting WIP also makes it easier to see problems that prevent the completion of work.† For instance, when we limit WIP, we find that we may have nothing to do because we are waiting on someone else. Although it may be tempting to start new work (i.e., “It’s better to be doing something than nothing”), a far better action would be to find out what is causing the delay and help fix that problem. Bad multitasking often occurs when people are assigned to multiple projects, resulting in many prioritization problems.

			In other words, as David J. Andersen, author of Kanban: Successful Evolutionary Change for Your Technology Business, quipped, “Stop starting. Start finishing.”

			REDUCE BATCH SIZES

			Another key component to creating smooth and fast flow is performing work in small batch sizes. Prior to the Lean manufacturing revolution, it was common practice to manufacture in large batch sizes (or lot sizes), especially for operations where job setup or switching between jobs was time-consuming or costly. For example, producing large car body panels requires setting large and heavy dies onto metal stamping machines, a process that could take days. When changeover cost is so expensive, we would often stamp as many panels at a time as possible, creating large batches in order to reduce the number of changeovers.

			However, large batch sizes result in skyrocketing levels of WIP and high levels of variability in flow that cascade through the entire manufacturing plant. The result is long lead times and poor quality—if a problem is found in one body panel, the entire batch has to be scrapped.

			One of the key lessons in Lean is that in order to shrink lead times and increase quality, we must strive to continually shrink batch sizes. The theoretical lower limit for batch size is single-piece flow, where each operation is performed one unit at a time.‡

			The dramatic differences between large and small batch sizes can be seen in the simple newsletter mailing simulation described in Lean Thinking: Banish Waste and Create Wealth in Your Corporation by James P. Womack and Daniel T. Jones.

			Suppose in our own example we have ten brochures to send and mailing each brochure requires four steps: fold the paper, insert the paper into the envelope, seal the envelope, and stamp the envelope.

			The large batch strategy (i.e., “mass production”) would be to sequentially perform one operation on each of the ten brochures. In other words, we would first fold all ten sheets of paper, then insert each of them into envelopes, then seal all ten envelopes, and then stamp them.

			On the other hand, in the small batch strategy (i.e., “single-piece flow”), all the steps required to complete each brochure are performed sequentially before starting on the next brochure. In other words, we fold one sheet of paper, insert it into the envelope, seal it, and stamp it—only then do we start the process over with the next sheet of paper.

			The difference between using large and small batch sizes is dramatic (see figure 7). Suppose each of the four operations takes ten seconds for each of the ten envelopes. With the large batch size strategy, the first completed and stamped envelope is produced only after 310 seconds.

			Worse, suppose we discover during the envelope sealing operation that we made an error in the first step of folding—in this case, the earliest we would discover the error is at two hundred seconds, and we have to refold and reinsert all ten brochures in our batch again.

			[image:] Figure 7: Simulation of “envelope game” (fold, insert, seal, and stamp the envelope)
(Source: Stefan Luyten, “Single Piece Flow: Why mass production isn’t the most efficient way of doing ‘stuff’,” Medium.com, August 8, 2014, https://medium.com/@stefanluyten/single-piece-flow-5d2c2bec845b#.9o7sn74ns.)

			In contrast, in the small batch strategy the first completed stamped envelope is produced in only forty seconds, eight times faster than the large batch strategy. And, if we made an error in the first step, we only have to redo the one brochure in our batch. Small batch sizes result in less WIP, faster lead times, faster detection of errors, and less rework.

			The negative outcomes associated with large batch sizes are just as relevant to the technology value stream as in manufacturing. Consider when we have an annual schedule for software releases, where an entire year’s worth of code that Development has worked on is released to production deployment.

			Like in manufacturing, this large batch release creates sudden, high levels of WIP and massive disruptions to all downstream work centers, resulting in poor flow and poor quality outcomes. This validates our common experience that the larger the change going into production, the more difficult the production errors are to diagnose and fix, and the longer they take to remediate.

			In a post on Startup Lessons Learned, Eric Ries states, “The batch size is the unit at which work-products move between stages in a development [or DevOps] process. For software, the easiest batch to see is code. Every time an engineer checks in code, they are batching up a certain amount of work. There are many techniques for controlling these batches, ranging from the tiny batches needed for continuous deployment to more traditional branch-based development, where all of the code from multiple developers working for weeks or months is batched up and integrated together.”

			The equivalent to single piece flow in the technology value stream is realized with continuous deployment, where each change committed to version control is integrated, tested, and deployed into production. The practices that enable this are described in Part IV.

			
REDUCE THE NUMBER OF HANDOFFS

			In the technology value stream, whenever we have long deployment lead times measured in months, it is often because there are hundreds (or even thousands) of operations required to move our code from version control into the production environment. To transmit code through the value stream requires multiple departments to work on a variety of tasks, including functional testing, integration testing, environment creation, server administration, storage administration, networking, load balancing, and information security.

			Each time the work passes from team to team, we require all sorts of communication: requesting, specifying, signaling, coordinating, and often prioritizing, scheduling, deconflicting, testing, and verifying. This may require using different ticketing or project management systems; writing technical specification documents; communicating via meetings, emails, or phone calls; and using file system shares, FTP servers, and Wiki pages.

			Each of these steps is a potential queue where work will wait when we rely on resources that are shared between different value streams (e.g., centralized operations). The lead times for these requests are often so long that there is constant escalation to have work performed within the needed timelines.

			Even under the best circumstances, some knowledge is inevitably lost with each handoff. With enough handoffs, the work can completely lose the context of the problem being solved or the organizational goal being supported. For instance, a server administrator may see a newly created ticket requesting that user accounts be created, without knowing what application or service it’s for, why it needs to be created, what all the dependencies are, or whether it’s actually recurring work.

			To mitigate these types of problems, we strive to reduce the number of handoffs, either by automating significant portions of the work or by reorganizing teams so they can deliver value to the customer themselves instead of having to be constantly dependent on others. As a result, we increase flow by reducing the amount of time that our work spends waiting in queue, as well as the amount of non–value-added time. See Appendix 4.

			CONTINUALLY IDENTIFY AND ELEVATE OUR CONSTRAINTS

			To reduce lead times and increase throughput, we need to continually identify our system’s constraints and improve its work capacity. In Beyond the Goal, Dr. Goldratt states, “In any value stream, there is always a direction of flow, and there is always one and only one constraint; any improvement not made at that constraint is an illusion.” If we improve a work center that is positioned before the constraint, work will merely pile up at the bottleneck even faster, waiting for work to be performed by the bottlenecked work center.

			On the other hand, if we improve a work center positioned after the bottleneck, it remains starved, waiting for work to clear the bottleneck. As a solution, Dr. Goldratt defined the “five focusing steps”:

			
					Identify the system’s constraint.

					Decide how to exploit the system’s constraint.

					Subordinate everything else to the above decisions.

					Elevate the system’s constraint.

					If in the previous steps a constraint has been broken, go back to step one, but do not allow inertia to cause a system constraint.

			

			In typical DevOps transformations, as we progress from deployment lead times measured in months or quarters to lead times measured in minutes, the constraint usually follows this progression:

			
					Environment creation: We cannot achieve deployments on-demand if we always have to wait weeks or months for production or test environments. The countermeasure is to create environments that are on demand and completely self-serviced, so that they are always available when we need them.

					Code deployment: We cannot achieve deployments on demand if each of our production code deployments take weeks or months to perform (i.e., each deployment requires 1,300 manual, error-prone steps involving up to three hundred engineers). The countermeasure is to automate our deployments as much as possible, with the goal of being completely automated so they can be done self-service by any developer.

					Test setup and run: We cannot achieve deployments on demand if every code deployment requires two weeks to set up our test environments and data sets, and another four weeks to manually execute all our regression tests. The countermeasure is to automate our tests so we can execute deployments safely and to parallelize them so the test rate can keep up with our code development rate.

					Overly tight architecture: We cannot achieve deployments on demand if overly tight architecture means that every time we want to make a code change we have to send our engineers to scores of committee meetings in order to get permission to make our changes. Our countermeasure is to create more loosely-coupled architecture so that changes can be made safely and with more autonomy, increasing developer productivity.

			

			After all these constraints have been broken, our constraint will likely be Development or the product owners. Because our goal is to enable small teams of developers to independently develop, test, and deploy value to customers quickly and reliably, this is where we want our constraint to be. High performers, regardless of whether an engineer is in Development, QA, Ops, or Infosec, state that their goal is to help maximize developer productivity.

			When the constraint is here, we are limited only by the number of good business hypotheses we create and our ability to develop the code necessary to test these hypotheses with real customers.

			The progression of constraints listed above are generalizations of typical transformations—techniques to identify the constraint in actual value streams, such as through value stream mapping and measurements, are described later in this book.

			ELIMINATE HARDSHIPS AND WASTE IN THE VALUE STREAM

			Shigeo Shingo, one of the pioneers of the Toyota Production System, believed that waste constituted the largest threat to business viability—the commonly used definition in Lean is “the use of any material or resource beyond what the customer requires and is willing to pay for.” He defined seven major types of manufacturing waste: inventory, overproduction, extra processing, transportation, waiting, motion, and defects.

			More modern interpretations of Lean have noted that “eliminating waste” can have a demeaning and dehumanizing context; instead, the goal is reframed to reduce hardship and drudgery in our daily work through continual learning in order to achieve the organization’s goals. For the remainder of this book, the term waste will imply this more modern definition, as it more closely matches the DevOps ideals and desired outcomes.

			In the book Implementing Lean Software Development: From Concept to Cash, Mary and Tom Poppendieck describe waste and hardship in the software development stream as anything that causes delay for the customer, such as activities that can be bypassed without affecting the result.

			The following categories of waste and hardship come from Implementing Lean Software Development unless otherwise noted:

			
					Partially done work: This includes any work in the value stream that has not been completed (e.g., requirement documents or change orders not yet reviewed) and work that is sitting in queue (e.g., waiting for QA review or server admin ticket). Partially done work becomes obsolete and loses value as time progresses.

					Extra processes: Any additional work that is being performed in a process that does not add value to the customer. This may include documentation not used in a downstream work center, or reviews or approvals that do not add value to the output. Extra processes add effort and increase lead times.

					Extra features: Features built into the service that are not needed by the organization or the customer (e.g., “gold plating”). Extra features add complexity and effort to testing and managing functionality.

					Task switching: When people are assigned to multiple projects and value streams, requiring them to context switch and manage dependencies between work, adding additional effort and time into the value stream.

					Waiting: Any delays between work requiring resources to wait until they can complete the current work. Delays increase cycle time and prevent the customer from getting value.

					Motion: The amount of effort to move information or materials from one work center to another. Motion waste can be created when people who need to communicate frequently are not colocated. Handoffs also create motion waste and often require additional communication to resolve ambiguities.

					Defects: Incorrect, missing, or unclear information, materials, or products create waste, as effort is needed to resolve these issues. The longer the time between defect creation and defect detection, the more difficult it is to resolve the defect.

					Nonstandard or manual work: Reliance on nonstandard or manual work from others, such as using non-rebuilding servers, test environments, and configurations. Ideally, any dependencies on Operations should be automated, self-serviced, and available on demand.

					Heroics: In order for an organization to achieve goals, individuals and teams are put in a position where they must perform unreasonable acts, which may even become a part of their daily work (e.g., nightly 2:00 a.m. problems in production, creating hundreds of work tickets as part of every software release).§

			

			Our goal is to make these wastes and hardships—anywhere heroics become necessary—visible, and to systematically do what is needed to alleviate or eliminate these burdens and hardships to achieve our goal of fast flow.

			CONCLUSION

			Improving flow through the technology value stream is essential to achieving DevOps outcomes. We do this by making work visible, limiting WIP, reducing batch sizes and the number of handoffs, continually identifying and evaluating our constraints, and eliminating hardships in our daily work.

			The specific practices that enable fast flow in the DevOps value stream are presented in Part IV. In the next chapter, we present The Second Way: The Principles of Feedback.

			

			
				
					† Taiichi Ohno compared enforcing WIP limits to draining water from the river of inventory in order to reveal all the problems that obstruct fast flow.

				

				
					‡ Also known as “batch size of one” or “1x1 flow,” terms that refer to batch size and a WIP limit of one.

				

				
					§ Although heroics is not included in the Poppendieck categories of waste, it is included here because of how often it occurs, especially in Operation shared services.

				

			

		

OEBPS/image/table-1.jpg
Era

Representative
technology
of era

Cycle time

Cost

At risk

Cost of failure

1970s-1980s

Mainframes

COBOL, DB2 on
MVS, etc.

1-5years

$1M-$100M

The whole company

Bankruptcy, sell
the company,
massive layoffs

1990s

Client/Server

C++, Oracle,
Solaris, etc.

3-12 months
$100k-$10M
A productline or

division

Revenue miss,
CIO's job

2000s—Present

Commoditization
and Cloud

Java, MySQL, Red
Hat, Ruby on
Rails, PHP, etc.

2-12 weeks

$10k-31M

A product feature

Negligible

OEBPS/image/cover.jpg
The

DevOps
Handbook

HOW TO CREATE WORLD-CLASS
AGILITY, RELIABILITY, & SECURITY
IN TECHNOLOGY ORGANIZATIONS

GENE KIM,

JEZ HUMBLE,
PATRICK DEBOIS,
& JOHN WILLIS

FOREWORD BY JOHN ALLSPAW

OEBPS/image/logo.jpg

Copyright (c) 2013-2016, Sorkin Type Co (www.sorkintype.com) with Reserved Font Name 'Merriweather'. Merriweather is a trademark of Sorkin Type Co.

This Font Software is licensed under the SIL Open Font License, Version 1.1.

This license is copied below, and is also available with a FAQ at:

http://scripts.sil.org/OFL

Copyright (c) 2011, Sol Matas (www.huertatipografica.com.ar),

with Reserved Font Name "Bitter"

This Font Software is licensed under the SIL Open Font License, Version 1.1.

This license is copied below, and is also available with a FAQ at:

http://scripts.sil.org/OFL

SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007

PREAMBLE

The goals of the Open Font License (OFL) are to stimulate worldwide

development of collaborative font projects, to support the font creation

efforts of academic and linguistic communities, and to provide a free and

open framework in which fonts may be shared and improved in partnership

with others.

The OFL allows the licensed fonts to be used, studied, modified and

redistributed freely as long as they are not sold by themselves. The

fonts, including any derivative works, can be bundled, embedded,

redistributed and/or sold with any software provided that any reserved

names are not used by derivative works. The fonts and derivatives,

however, cannot be released under any other type of license. The

requirement for fonts to remain under this license does not apply

to any document created using the fonts or their derivatives.

DEFINITIONS

"Font Software" refers to the set of files released by the Copyright

Holder(s) under this license and clearly marked as such. This may

include source files, build scripts and documentation.

"Reserved Font Name" refers to any names specified as such after the

copyright statement(s).

"Original Version" refers to the collection of Font Software components as

distributed by the Copyright Holder(s).

"Modified Version" refers to any derivative made by adding to, deleting,

or substituting -- in part or in whole -- any of the components of the

Original Version, by changing formats or by porting the Font Software to a

new environment.

"Author" refers to any designer, engineer, programmer, technical

writer or other person who contributed to the Font Software.

PERMISSION & CONDITIONS

Permission is hereby granted, free of charge, to any person obtaining

a copy of the Font Software, to use, study, copy, merge, embed, modify,

redistribute, and sell modified and unmodified copies of the Font

Software, subject to the following conditions:

1) Neither the Font Software nor any of its individual components,

in Original or Modified Versions, may be sold by itself.

2) Original or Modified Versions of the Font Software may be bundled,

redistributed and/or sold with any software, provided that each copy

contains the above copyright notice and this license. These can be

included either as stand-alone text files, human-readable headers or

in the appropriate machine-readable metadata fields within text or

binary files as long as those fields can be easily viewed by the user.

3) No Modified Version of the Font Software may use the Reserved Font

Name(s) unless explicit written permission is granted by the corresponding

Copyright Holder. This restriction only applies to the primary font name as

presented to the users.

4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font

Software shall not be used to promote, endorse or advertise any

Modified Version, except to acknowledge the contribution(s) of the

Copyright Holder(s) and the Author(s) or with their explicit written

permission.

5) The Font Software, modified or unmodified, in part or in whole,

must be distributed entirely under this license, and must not be

distributed under any other license. The requirement for fonts to

remain under this license does not apply to any document created

using the Font Software.

TERMINATION

This license becomes null and void if any of the above conditions are

not met.

DISCLAIMER

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT

OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE

COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM

OTHER DEALINGS IN THE FONT SOFTWARE.

 Apache License

 Version 2.0, January 2004

 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,

 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by

 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all

 other entities that control, are controlled by, or are under common

 control with that entity. For the purposes of this definition,

 "control" means (i) the power, direct or indirect, to cause the

 direction or management of such entity, whether by contract or

 otherwise, or (ii) ownership of fifty percent (50%) or more of the

 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity

 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,

 including but not limited to software source code, documentation

 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical

 transformation or translation of a Source form, including but

 not limited to compiled object code, generated documentation,

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or

 Object form, made available under the License, as indicated by a

 copyright notice that is included in or attached to the work

 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object

 form, that is based on (or derived from) the Work and for which the

 editorial revisions, annotations, elaborations, or other modifications

 represent, as a whole, an original work of authorship. For the purposes

 of this License, Derivative Works shall not include works that remain

 separable from, or merely link (or bind by name) to the interfaces of,

 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including

 the original version of the Work and any modifications or additions

 to that Work or Derivative Works thereof, that is intentionally

 submitted to Licensor for inclusion in the Work by the copyright owner

 or by an individual or Legal Entity authorized to submit on behalf of

 the copyright owner. For the purposes of this definition, "submitted"

 means any form of electronic, verbal, or written communication sent

 to the Licensor or its representatives, including but not limited to

 communication on electronic mailing lists, source code control systems,

 and issue tracking systems that are managed by, or on behalf of, the

 Licensor for the purpose of discussing and improving the Work, but

 excluding communication that is conspicuously marked or otherwise

 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity

 on behalf of whom a Contribution has been received by Licensor and

 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of

 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

 copyright license to reproduce, prepare Derivative Works of,

 publicly display, publicly perform, sublicense, and distribute the

 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of

 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

 (except as stated in this section) patent license to make, have made,

 use, offer to sell, sell, import, and otherwise transfer the Work,

 where such license applies only to those patent claims licensable

 by such Contributor that are necessarily infringed by their

 Contribution(s) alone or by combination of their Contribution(s)

 with the Work to which such Contribution(s) was submitted. If You

 institute patent litigation against any entity (including a

 cross-claim or counterclaim in a lawsuit) alleging that the Work

 or a Contribution incorporated within the Work constitutes direct

 or contributory patent infringement, then any patent licenses

 granted to You under this License for that Work shall terminate

 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the

 Work or Derivative Works thereof in any medium, with or without

 modifications, and in Source or Object form, provided that You

 meet the following conditions:

 (a) You must give any other recipients of the Work or

 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices

 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works

 that You distribute, all copyright, patent, trademark, and

 attribution notices from the Source form of the Work,

 excluding those notices that do not pertain to any part of

 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its

 distribution, then any Derivative Works that You distribute must

 include a readable copy of the attribution notices contained

 within such NOTICE file, excluding those notices that do not

 pertain to any part of the Derivative Works, in at least one

 of the following places: within a NOTICE text file distributed

 as part of the Derivative Works; within the Source form or

 documentation, if provided along with the Derivative Works; or,

 within a display generated by the Derivative Works, if and

 wherever such third-party notices normally appear. The contents

 of the NOTICE file are for informational purposes only and

 do not modify the License. You may add Your own attribution

 notices within Derivative Works that You distribute, alongside

 or as an addendum to the NOTICE text from the Work, provided

 that such additional attribution notices cannot be construed

 as modifying the License.

 You may add Your own copyright statement to Your modifications and

 may provide additional or different license terms and conditions

 for use, reproduction, or distribution of Your modifications, or

 for any such Derivative Works as a whole, provided Your use,

 reproduction, and distribution of the Work otherwise complies with

 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,

 any Contribution intentionally submitted for inclusion in the Work

 by You to the Licensor shall be under the terms and conditions of

 this License, without any additional terms or conditions.

 Notwithstanding the above, nothing herein shall supersede or modify

 the terms of any separate license agreement you may have executed

 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade

 names, trademarks, service marks, or product names of the Licensor,

 except as required for reasonable and customary use in describing the

 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or

 agreed to in writing, Licensor provides the Work (and each

 Contributor provides its Contributions) on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied, including, without limitation, any warranties or conditions

 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

 PARTICULAR PURPOSE. You are solely responsible for determining the

 appropriateness of using or redistributing the Work and assume any

 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,

 whether in tort (including negligence), contract, or otherwise,

 unless required by applicable law (such as deliberate and grossly

 negligent acts) or agreed to in writing, shall any Contributor be

 liable to You for damages, including any direct, indirect, special,

 incidental, or consequential damages of any character arising as a

 result of this License or out of the use or inability to use the

 Work (including but not limited to damages for loss of goodwill,

 work stoppage, computer failure or malfunction, or any and all

 other commercial damages or losses), even if such Contributor

 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing

 the Work or Derivative Works thereof, You may choose to offer,

 and charge a fee for, acceptance of support, warranty, indemnity,

 or other liability obligations and/or rights consistent with this

 License. However, in accepting such obligations, You may act only

 on Your own behalf and on Your sole responsibility, not on behalf

 of any other Contributor, and only if You agree to indemnify,

 defend, and hold each Contributor harmless for any liability

 incurred by, or claims asserted against, such Contributor by reason

 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following

 boilerplate notice, with the fields enclosed by brackets "[]"

 replaced with your own identifying information. (Don't include

 the brackets!) The text should be enclosed in the appropriate

 comment syntax for the file format. We also recommend that a

 file or class name and description of purpose be included on the

 same "printed page" as the copyright notice for easier

 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

OEBPS/image/ch_013.png
(Business)

Dev .

(Customer)

— Ops

—

ev _

> Ops

OEBPS/image/ch_01.png
Lead Time
N
' A

| | |
1 1 1
Ticket Work Work
Created Started Comp|eted

—

Process Time

OEBPS/image/intro.png
deploys / day

I High (linear)

25
2 /

15 /

1 / — Medium
i ><L

TN\l

10 100 1000

of developers

OEBPS/image/ch_012.png
10m

Automatic approval

=) Manual approval

-

10m

5m

OEBPS/image/pt-1.jpg
PART

The Three Ways

OEBPS/image/ch_021.png
Large Batches
EREREDDENE sosasistafss
Single-Piece Flow

[i1 2 1z 6] - [s - i Jisa) - s Jeil

OEBPS/image/ch_011.png

OEBPS/image/halftitle.jpg
THE DEVOPS
HANDBOOK

OEBPS/image/ch_02.png
Delivered

T
< A
-]

.-

| o
=

] [
a

le

Nl il il

I

I A

I

Tl

| o

12| 8

Sla

I €

5t -

[

()
1Q
A
I
L -
[
8
[
a0
=
(%]
[
>
£
| ¢
B %
5| e
x| 4

OEBPS/image/titlepage.jpg
THE DEVOPS
HANDBOOK

How to Create World-Class

Agility, Reliability, & Security in
Technology Organizations

By Gene Kim, Jez Humble, Patrick Debois, and John Willis

O
<4

