

 [image: cover]

 Ant in Action

 Steve Loughran & Erik Hatcher

[image:]

Copyright

 For online information and ordering of this and other Manning books, please go to www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

 ©2007 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Laura Merrill
Typesetter: Denis Dalinnik
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

Dedication

 To my wife, Bina, and our little deployment project, Alexander. You’ve both been very tolerant of the time I’ve spent on the
 computer, either working on the book or on Ant itself.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface to the Second Edition

 Foreword to the First Edition

 Preface to the First Edition

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 Chapter 0. Introduction to the Second Edition

 1. Learning Ant

 Chapter 1. Introducing Ant

 Chapter 2. A first Ant build

 Chapter 3. Understanding Ant datatypes and properties

 Chapter 4. Testing with JUnit

 Chapter 5. Packaging projects

 Chapter 6. Executing programs

 Chapter 7. Distributing our application

 Chapter 8. Putting it all together

 2. Applying Ant

 Chapter 9. Beyond Ant’s core tasks

 Chapter 10. Working with big projects

 Chapter 11. Managing dependencies

 Chapter 12. Developing for the Web

 Chapter 13. Working with XML

 Chapter 14. Enterprise Java

 Chapter 15. Continuous integration

 Chapter 16. Deployment

 3. Extending Ant

 Chapter 17. Writing Ant tasks

 Chapter 18. Extending Ant further

 Appendix A. Installation

 Appendix B. XML Primer

 Appendix C. IDE Integration

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface to the Second Edition

 Foreword to the First Edition

 Preface to the First Edition

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 Chapter 0. Introduction to the Second Edition

 Welcome to Ant in Action

 The Application: A Diary

 1. Learning Ant

 Chapter 1. Introducing Ant

 1.1. What is Ant?

 1.1.1. The core concepts of Ant

 1.1.2. Ant in action: an example project

 1.2. What makes Ant so special?

 Ant is free and Open Source

 Ant makes it easy to bring developers into a project

 It is well-known and widely supported

 It integrates testing into the build processes

 It enables continuous integration

 It runs inside Integrated Development Environments

 1.3. When to use Ant

 1.4. When not to use Ant

 1.5. Alternatives to Ant

 1.5.1. IDEs

 1.5.2. Make

 1.5.3. Maven

 1.6. The ongoing evolution of Ant

 1.7. Summary

 Chapter 2. A first Ant build

 2.1. Defining our first project

 2.2. Step zero: creating the project directory

 2.3. Step one: verifying the tools are in place

 2.4. Step two: writing your first Ant build file

 2.4.1. Examining the build file

 2.5. Step three: running your first build

 2.5.1. If the build fails

 2.5.2. Looking at the build in more detail

 2.6. Step four: imposing structure

 2.6.1. Laying out the source directories

 2.6.2. Laying out the build directories

 2.6.3. Laying out the distribution directories

 2.6.4. Creating the build file

 2.6.5. Target dependencies

 2.6.6. Running the new build file

 2.6.7. Incremental builds

 2.6.8. Running multiple targets on the command line

 2.7. Step five: running our program

 2.7.1. Why execute from inside Ant?

 2.7.2. Adding an “execute” target

 2.7.3. Running the new target

 2.8. Ant command-line options

 2.8.1. Specifying which build file to run

 2.8.2. Controlling the amount of information provided

 2.8.3. Coping with failure

 2.8.4. Getting information about a project

 2.9. Examining the final build file

 2.10. Running the build under an IDE

 2.11. Summary

 Chapter 3. Understanding Ant datatypes and properties

 3.1. Preliminaries

 3.1.1. What is an Ant datatype?

 3.1.2. Property overview

 3.2. Introducing datatypes and properties with <javac>

 3.3. Paths

 3.3.1. How to use a path

 3.4. Filesets

 3.4.1. Patternsets

 3.5. Selectors

 3.6. Additional Ant datatypes

 Filelist

 Dirset

 Filterset

 3.7. Properties

 3.7.1. Setting properties with the <property> task

 3.7.2. Checking for the availability of files: <available>

 3.7.3. Testing conditions with <condition>

 3.7.4. Creating a build timestamp with <tstamp>

 3.7.5. Setting properties from the command line

 3.8. Controlling Ant with properties

 3.8.1. Conditional target execution

 3.8.2. Conditional build failure

 3.8.3. Conditional patternset inclusion/exclusion

 3.9. References

 3.9.1. Viewing datatypes

 3.10. Managing library dependencies

 3.11. Resources: Ant’s secret data model

 3.12. Best practices

 3.13. Summary

 Chapter 4. Testing with JUnit

 4.1. What is testing, and why do it?

 To show that code works

 To replicate bugs

 To avoid proofs-of-correctness

 To test on different platforms

 To enable regression testing

 To enable refactoring

 4.2. Introducing our application

 4.2.1. The application: a diary

 4.3. How to test a program

 4.4. Introducing JUnit

 Why use JUnit 3.8.2 and not JUnit 4.0?

 JUnit’s architecture

 4.4.1. Writing a test case

 4.4.2. Running a test case

 4.4.3. Asserting desired results

 4.4.4. Adding JUnit to Ant

 4.4.5. Writing the code

 4.5. The JUnit task: <junit>

 4.5.1. Fitting JUnit into the build process

 4.5.2. Halting the build when tests fail

 4.5.3. Viewing test results

 4.5.4. Running multiple tests with <batchtest>

 4.6. Generating HTML test reports

 4.6.1. Halting the builds after generating reports

 4.7. Advanced <junit> techniques

 Running a single test case

 Running JUnit in its own JVM

 Passing information to test cases

 Enabling Java Assertions

 Customizing the <junitreport> reports

 Creating your own test result formatter

 4.8. Best practices

 4.8.1. The future of JUnit

 4.9. Summary

 Chapter 5. Packaging projects

 5.1. Working with files

 Creating Directories

 5.1.1. Deleting files

 5.1.2. Copying files

 5.1.3. Moving and renaming files

 5.2. Introducing mappers

 Identity mapper

 Flatten mapper

 Glob mapper

 Regexp mapper

 Package mapper

 Merge mapper

 Composite mapper

 Chained Mapper

 5.3. Modifying files as you go

 5.4. Preparing to package

 5.4.1. Adding data files to the classpath

 5.4.2. Generating documentation

 5.4.3. Patching line endings for target platforms

 5.5. Creating JAR files

 5.5.1. Testing the JAR file

 5.5.2. Creating JAR manifests

 5.5.3. Adding extra metadata to the JAR

 5.5.4. JAR file best practices

 5.5.5. Signing JAR files

 5.6. Testing with JAR files

 5.7. Creating Zip files

 Planning the redistribution

 5.7.1. Creating a binary Zip distribution

 5.7.2. Creating a source distribution

 5.7.3. Zip file best practices

 5.8. Packaging for Unix

 5.8.1. Tar files

 5.8.2. Generating RPM packages

 5.9. Working with resources

 5.9.1. A formal definition of a resource

 5.9.2. What resources are there?

 5.9.3. Resource collections

 5.10. Summary

 Chapter 6. Executing programs

 6.1. Running programs under Ant—an introduction

 6.1.1. Introducing the <java> task

 6.1.2. Setting the classpath

 6.1.3. Arguments

 6.1.4. Defining system properties

 6.1.5. Running the program in a new JVM

 6.1.6. JVM tuning

 6.1.7. Handling errors

 6.1.8. Executing JAR files

 6.2. Running native programs

 6.2.1. Running our diary as a native program

 6.2.2. Executing shell commands

 6.2.3. Running under different Operating Systems

 6.2.4. Probing for a program

 6.3. Advanced <java> and <exec>

 6.3.1. Setting environment variables

 6.3.2. Handling timeouts

 6.3.3. Running a program in the background

 6.3.4. Input and output

 6.3.5. Piped I/O with an I/O redirector

 6.3.6. FilterChains and FilterReaders

 6.4. Bulk operations with <apply>

 6.5. How it all works

 6.5.1. <java>

 6.5.2. <exec> and <apply>

 6.6. Best practices

 6.7. Summary

 Chapter 7. Distributing our application

 7.1. Preparing for distribution

 Getting Ant’s distribution tasks ready

 7.1.1. Securing our distribution

 7.1.2. Server requirements

 7.2. FTP-based distribution of a packaged application

 7.2.1. Uploading to Unix

 7.2.2. Uploading to a Windows FTP server

 7.2.3. Uploading to SourceForge

 7.2.4. FTP dependency logic

 7.3. Email-based distribution of a packaged application

 7.3.1. Sending HTML messages

 7.4. Secure distribution with SSH and SCP

 7.4.1. Uploading files with SCP

 7.4.2. Downloading files with <scp>

 7.4.3. Remote execution with <sshexec>

 7.4.4. Troubleshooting the SSH tasks

 7.5. HTTP download

 7.5.1. How to probe for a server or web page

 7.5.2. Fetching remote files with <get>

 7.5.3. Performing the download

 7.6. Distribution over multiple channels

 7.6.1. Calling targets with <antcall>

 7.6.2. Distributing with <antcall>

 7.7. Summary

 Chapter 8. Putting it all together

 8.1. How to write good build files

 Begin with the end in mind

 Integrate tests with the build

 Keep it portable

 Enable customization

 8.2. Building the diary library

 8.2.1. Starting the project

 8.2.2. The public entry points

 8.2.3. Setting up the build

 8.2.4. Compiling and testing

 8.2.5. Packaging and creating a distribution

 8.2.6. Distribution

 8.3. Adopting Ant

 Determine your deliverables

 Determine the build stages

 Plan the tests

 Lay out the source

 Creating the core build file

 Evolving the build file

 8.4. Building an existing project under Ant

 8.5. Summary

 2. Applying Ant

 Chapter 9. Beyond Ant’s core tasks

 9.1. The many different categories of Ant tasks

 Optional Tasks

 Third-party tasks

 9.2. Installing optional tasks

 9.2.1. Troubleshooting

 9.3. Optional tasks in action

 9.3.1. Manipulating property files

 9.3.2. Improving <javac> with dependency checking

 9.4. Software configuration management under Ant

 9.5. Using third-party tasks

 9.5.1. Defining tasks with <taskdef>

 9.5.2. Declaring tasks defined in property files

 9.5.3. Defining tasks into a unique namespace

 9.5.4. Defining tasks from an Antlib

 9.6. The Ant-contrib tasks

 9.6.1. The Ant-contrib tasks in action

 9.7. Code auditing with Checkstyle

 Installing and running Checkstyle

 9.8. Summary

 Best practices with third-party and optional tasks

 Chapter 10. Working with big projects

 Building a large project is hard

 10.1. Master builds: managing large projects

 10.1.1. Introducing the <ant> task

 10.1.2. Designing a scalable, flexible master build file

 10.2. Controlling child project builds

 10.2.1. Setting properties in child projects

 10.2.2. Passing down properties and references in <ant>

 10.3. Advanced delegation

 <subant>

 10.3.1. Getting data back

 10.4. Inheriting build files through <import>

 10.4.1. XML entity inclusion

 10.4.2. Importing build files with <import>

 10.4.3. How Ant overrides targets

 10.4.4. Calling overridden targets

 10.4.5. The special properties of <import>

 10.5. Applying <import>

 10.5.1. Extending an existing build file

 10.5.2. Creating a base build file for many projects

 10.5.3. Mixin build files

 10.5.4. Best practices with <import>

 10.6. Ant’s macro facilities

 10.6.1. Redefining tasks with <presetdef>

 10.6.2. The hazards of <presetdef>

 10.7. Writing macros with <macrodef>

 10.7.1. Passing data to a macro

 10.7.2. Local variables

 10.7.3. Effective macro use

 10.8. Summary

 Chapter 11. Managing dependencies

 How to add libraries to an Ant classpath

 11.1. Introducing Ivy

 11.1.1. The core concepts of Ivy

 11.2. Installing Ivy

 11.2.1. Configuring Ivy

 11.3. Resolving, reporting, and retrieving

 11.3.1. Creating a dependency report

 11.3.2. Retrieving artifacts

 11.3.3. Setting up the classpaths with Ivy

 11.4. Working across projects with Ivy

 11.4.1. Sharing artifacts between projects

 11.4.2. Using published artifacts in other projects

 11.4.3. Using Ivy to choreograph builds

 11.5. Other aspects of Ivy

 11.5.1. Managing file versions through Ivy variables

 11.5.2. Finding artifacts on the central repository

 11.5.3. Excluding unwanted dependencies

 11.5.4. Private repositories

 11.5.5. Moving to Ivy

 11.6. Summary

 Chapter 12. Developing for the Web

 What is a web application?

 12.1. Developing a web application

 Designing the web application

 Creating the build file

 12.1.1. Writing a feed servlet

 12.1.2. Libraries in web applications

 12.1.3. Writing web pages

 12.1.4. Creating a web.xml file

 12.2. Building the WAR file

 Creating the WAR

 12.3. Deployment

 12.3.1. Deployment by copy

 12.4. Post-deployment activities

 12.4.1. Probing for server availability

 12.4.2. Pausing the build with <sleep>

 12.5. Testing web applications with HttpUnit

 12.5.1. Writing HttpUnit tests

 12.5.2. Compiling the HttpUnit tests

 12.5.3. Running the HttpUnit tests

 12.6. Summary

 Chapter 13. Working with XML

 13.1. Background: XML-processing libraries

 13.2. Writing XML

 13.3. Validating XML

 13.3.1. Validating documents using DTD files

 13.3.2. Validating documents with XML Schema

 13.3.3. Validating RelaxNG documents

 13.4. Reading XML data

 13.5. Transforming XML with XSLT

 13.5.1. Defining the structure of the constants file

 13.5.2. Creating the constants file

 13.5.3. Creating XSL style sheets

 13.5.4. Initializing the build file

 13.6. Summary

 Chapter 14. Enterprise Java

 14.1. Evolving the diary application

 Installing the Java EE SDK

 Selecting an application server

 Databases

 14.2. Making an Enterprise application

 14.3. Creating the beans

 14.3.1. Compiling Java EE-annotated classes

 14.3.2. Adding a session bean

 14.4. Extending the web application

 Packaging the new web application

 14.5. Building the Enterprise application

 Collecting the artifacts

 Creating the application.xml descriptor

 Building the EAR

 14.6. Deploying to the application server

 14.7. Server-side testing with Apache Cactus

 14.7.1. Writing a Cactus test

 14.7.2. Building Cactus tests

 14.7.3. The Cactus Ant tasks

 14.7.4. Adding Cactus to an EAR file

 14.7.5. Running Cactus tests

 14.7.6. Diagnosing EJB deployment problems

 14.8. Summary

 Chapter 15. Continuous integration

 15.1. Introducing continuous integration

 15.1.1. What do you need for continuous integration?

 15.2. Luntbuild

 User

 Version Control System (VCS) adaptors

 Project

 Builders

 Schedule

 15.2.1. Installing Luntbuild

 15.2.2. Running Luntbuild

 15.2.3. Configuring Luntbuild

 15.2.4. Luntbuild in action

 15.2.5. Review of Luntbuild

 15.3. Moving to continuous integration

 Developers

 Management

 15.4. Summary

 Chapter 16. Deployment

 16.1. How to survive deployment

 Start working on deployment early

 Work with operations

 Target the production system

 Automate deployment

 Test the deployment

 Track deployment defects

 16.2. Deploying with Ant

 16.3. Database setup in Ant

 16.3.1. Creating and configuring a database from Ant

 16.3.2. Issuing database administration commands

 16.4. Deploying with SmartFrog

 16.4.1. SmartFrog: a new way of thinking about deployment

 16.4.2. The concepts in more detail

 16.4.3. The SmartFrog components

 16.5. Using SmartFrog with Ant

 Installing SmartFrog

 The Ant tasks

 16.5.1. Deploying with SmartFrog

 16.5.2. Deploying with the <deploy> task

 16.5.3. Summary of SmartFrog

 16.6. Embracing deployment

 Continuous deployment

 16.7. Summary

 3. Extending Ant

 Chapter 17. Writing Ant tasks

 17.1. What exactly is an Ant task?

 17.1.1. The life of a task

 17.2. Introducing Ant’s Java API

 Project

 Target

 ProjectComponent

 Task

 BuildException

 17.2.1. Ant’s utility classes

 17.3. A useful task: <filesize>

 17.3.1. Writing the task

 17.3.2. How Ant configures tasks

 17.3.3. Configuring the <filesize> task

 17.4. Testing tasks with AntUnit

 17.4.1. Using AntUnit

 17.4.2. Testing the <filesize> task

 17.4.3. Running the tests

 17.5. More task attributes

 17.5.1. Enumerations

 17.5.2. User-defined types

 17.6. Supporting nested elements

 17.7. Working with resources

 17.7.1. Using a resource-enabled task

 17.8. Delegating to other tasks

 17.8.1. Setting up classpaths in a task

 17.9. Other task techniques

 Error handling

 Handling inline text

 17.10. Making an Antlib library

 Declaring a tasks.properties file

 Declaring an antlib.xml file

 Adding <presetdef> and <macrodef> declarations

 17.11. Summary

 Chapter 18. Extending Ant further

 18.1. Scripting within Ant

 Running a script

 Implicit objects provided to <script>

 18.1.1. Writing new tasks with <scriptdef>

 18.1.2. Scripting summary

 18.2. Conditions

 Scripted conditions

 18.2.1. Writing a conditional task

 18.3. Writing a custom resource

 18.3.1. Using a custom resource

 18.3.2. How Ant datatypes handle references

 18.4. Selectors

 18.4.1. Scripted selectors

 18.5. Developing a custom mapper

 Scripted mappers

 Testing mappers

 18.6. Implementing a custom filter

 Scripted filter readers

 Filter summary

 18.7. Handling Ant’s input and output

 18.7.1. Writing a custom listener

 18.7.2. Writing a custom logger

 18.7.3. Using loggers and listeners

 18.7.4. Handling user input with an InputHandler

 18.8. Embedding Ant

 Tips on embedding Ant

 18.9. Summary

 Appendix A. Installation

 Before you begin

 The steps to install Ant

 Setting up Ant on Windows

 Setting up Ant on Unix

 Installation configuration

 ANT_OPTS

 ANT_ARGS

 Troubleshooting installation

 Problem: Java not installed/configured

 Problem: JDK not installed/configured

 Problem: Ant not on the path

 Problem: Another version of Ant is on the path

 Problem: Ant fails with an error about a missing task or library

 Problem: The ANT_HOME directory points to the wrong place

 Problem: Incompatible Java libraries on the classpath

 Problem: Java extension libraries conflicting with Ant

 Problem: Sealing violation when running Ant

 Problem: Calling Ant generates a Java usage message

 Problem: Illegal Java options in the ANT_OPTS variable

 Problem: Incomplete source tree on a SYSV Unix installation

 Appendix B. XML Primer

 Attributes

 Nested text and XML elements

 Binary data

 Character sets

 Comments

 XML namespaces

 Namespace best practices

 Appendix C. IDE Integration

 How IDEs use Ant

 Eclipse http://www.eclipse.org/

 Adding an Ant project

 Configuring Ant under Eclipse

 The <import> problem

 Summary

 Sun NetBeans http://www.netbeans.org/

 Adding an Ant project to NetBeans

 Configuring Ant

 Summary

 IntelliJ IDEA http://intellij.com/

 Adding an Ant project

 Configuring Ant under IDEA

 Building with Ant and an IDE

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 “Overall, Java Development with Ant is an excellent resource...rich in valuable information that is well organized and clearly presented.”

 Slashdot.org

 “If you are using Ant, get this book.”

 Rick Hightower, co-author of Java Tools for eXtreme Programming

 “This is the indispensable Ant reference.”

 Nicholas Lesiecki, co-author of Java Tools for eXtreme Programming

 “Java Development with Ant is essential for anyone serious about actually shipping Java applications. I wish I could say I wrote it.”

 Stuart Halloway Chief Technical Officer, DevelopMentor Author, Component Development for the Java Platform

 “Erik and Steve give you the answers to questions you didn’t even know you have. Not only is the subject of Ant covered almost
 in its entirety, but along the way you pick up all these juicy little tidbits that only one who’s used Ant in production environments
 would know.”

 Ted Neward .NET & Java Author, Instructor

 “This should be required reading for all Java developers.”

 Denver Java Users Group

Preface to the Second Edition

 Gosh, is it time for a new edition already? That’s one of the odd aspects of writing about open source projects: the rapid
 release cycles and open development process mean that things date fast—and visibly. In a closed source project, changes are
 invisible until the next release ships; in open source, there’s a gradual divergence between the code at the head of the repository
 and that covered in a book.

 Java Development with Ant shipped in 2002, at the same time as Ant 1.5. Both the build tool and the book were very successful. Ant became the main
 way people built and tested Java projects, and our book showed how to use Ant in big projects and how to solve specific problems.

 Ant 1.6 came along, and people started asking how some of the scalability improvements changed the build, and we would say
 “it makes it easier” without having any specifics to point to. At the same time, other interesting technologies came along
 to help, such as Ivy for dependency management, and other tools for deployment and testing. Java development processes had
 improved—and it was time to document the changes.

 So I did. Erik, having just finished Lucene in Action, took a break from the Ant book series, leaving me the sole author of the second edition. I was blessed with a good start:
 all the text from the first edition. This text was a starting place for what turned out to be a major rewrite. Along with
 the changes to Ant, I had to deal with the changes in Enterprise Java, in XML schema languages, as well as in deployment and
 testing tools and methodologies. This made for some hard choices: whether to stay with JUnit and Java EE or whether to switch
 to Spring, OSGi, and TestNG as the way to package, deliver, and test applications. I chose to stay with the conventional ecosystem,
 because people working in Java EE need as much help as they can get, and because the tooling around JUnit 3 is excellent.
 If and when we do a third edition, things may well change yet again.

 This book is now completely updated to show how to build, test, and deploy modern Java applications using Ant 1.7. I’m excited
 by some of the advanced chapters, especially chapters 10 and 11, which show Ant and Ivy working together to build big projects, managing library dependencies in the process. Chapter 16, deployment, is a favorite of mine, because deployment is where I’m doing my research. If you can automate deployment to
 a three-tier machine, you can automate that deployment to a pay-as-you-go infrastructure, such as Amazon’s EC2 server farm.
 If your application is designed right, you could even roll out the application to a grid of 500 servers hosting the application
 on their spare CPU cycles!

 That’s why building and testing Java applications is so exciting. It may seem like housekeeping, something that an IDE can
 handle for you, but the projects that are the most interesting and fun, are the ones where you attempt to do things that nobody
 has done before. If you are going to be innovative, if you want to be leading edge, you will need tools that deliver both
 power and flexibility. Ant does both and is perfect for developing big Java applications.

 But enough evangelization. I’ve enjoyed writing this book, and hope you will enjoy reading it!

 STEVE LOUGHRAN

Foreword to the First Edition

 Ant started its life on a plane ride, as a quick little hack. Its inventor was Apache member James Duncan Davidson. It joined
 Apache as a minor adjunct—almost an afterthought, really—to the codebase contributed by Sun that later became the foundation
 of the Tomcat 3.0 series. The reason it was invented was simple: it was needed to build Tomcat.

 Despite these rather inauspicious beginnings, Ant found a good home in Apache, and in a few short years it has become the
 de facto standard not only for open source Java projects, but also as part of a large number of commercial products. It even has a
 thriving clone targeting .NET.

 In my mind four factors are key to Ant’s success: its extensible architecture, performance, community, and backward compatibility.

 The first two—extensibility and performance—derive directly from James’s original efforts. The dynamic XML binding approach
 described in this book was controversial at the time, but as Stefano Mazzocchi later said, it has proven to be a “viral design
 pattern”: Ant’s XML binding made it very simple to define new tasks and, therefore, many tasks were written. I played a minor
 role in this as I (along with Costin Manolache) introduced the notion of nested elements discussed in section 17.6. As each task ran in the same JVM and allowed batch requests, tasks that often took several minutes using Make could complete
 in seconds using Ant.

 Ant’s biggest strength is its active development community, originally fostered by Stefano and myself. Stefano acted as a
 Johnny Appleseed, creating build.xml files for numerous Apache projects. Many projects, both Apache and non-Apache, base their
 Ant build definitions on this early work. My own focus was on applying fixes from any source I could find, and recruiting
 new developers. Nearly three dozen developers have become Ant “committers,” with just over a dozen being active at any point
 in time. Two are the authors of this book.

 Much of the early work was experimental, and the rate of change initially affected the user community. Efforts like Gump sprang
 up to track the changes and have resulted in a project that now has quite stable interfaces.

 The combination of these four factors has made Ant the success that it is today. Most people have learned Ant by reading build
 definitions that had evolved over time and were largely developed when Ant’s functionality and set of tasks were not as rich
 as they are today. You have the opportunity to learn Ant from two of the people who know it best and who teach it the way
 it should be taught—by starting with a simple build definition and then showing you how to add in just those functions that
 are required by your project.

 You should find much to like in Ant. And if you find things that you feel need improving, then I encourage you to join Erik,
 Steve, and the rest of us and get involved!

 SAM RUBY

 Director, Apache Software Foundation

Preface to the First Edition

 In early 2000, Steve took a sabbatical from HP Laboratories, taking a break from research into such areas as adaptive, context-aware
 laptops to build web services, a concept that was very much in its infancy at the time.

 He soon discovered that he had entered a world of chaos. Business plans, organizations, underlying technologies—all could
 be changed at a moment’s notice. One technology that remained consistent from that year was Ant. In the Spring of 2000, it
 was being whispered that a “makefile killer” was being quietly built under the auspices of the Apache project: a new way to
 build Java code. Ant was already in use outside the Apache Tomcat group, its users finding that what was being whispered was
 true: it was a new way to develop with Java. Steve started exploring how to use it in web service projects, starting small
 and slowly expanding as his experience grew and as the tool itself added more functionality. Nothing he wrote that year ever
 got past the prototype stage; probably the sole successful deliverable of that period was the “Ant in Anger” paper included
 with Ant distributions.

 In 2001, Steve and his colleagues did finally go into production. Their project—to aggressive deadlines—was to build an image-processing
 web service using both Java and VB/ASP. From the outset, all the lessons of the previous year were applied, not just in architecture
 and implementation of the service, but in how to use Ant to manage the build process. As the project continued, the problems
 expanded to cover deployment to remote servers, load testing, and many other challenges related to realizing the web service
 concept. It turned out that with planning and effort, Ant could rise to the challenges.

 Meanwhile, Erik was working at eBlox, a Tucson, Arizona, consulting company specializing in promotional item industry e-business.
 By early 2001, Erik had come to Ant to get control over a build process that involved a set of Perl scripts crafted by the
 sysadmin wizard. Erik was looking for a way that did not require sysadmin effort to modify the build process; for example,
 when adding a new JAR dependency. Ant solved this problem very well, and in the area of building customized releases for each
 of eBlox’s clients from a common codebase. One of the first documents Erik encountered on Ant was the infamous “Ant in Anger”
 paper written by Steve; this document was used as the guideline for crafting a new build process using Ant at eBlox.

 At the same time, eBlox began exploring Extreme Programming and the JUnit unit-testing framework. While working on JUnit and
 Ant integration, Erik dug under the covers of Ant to see what made it tick. To get JUnit reports emailed automatically from
 an Ant build, Erik pulled together pieces of a MIME mail task submitted to the antdev team. After many dumb-question emails
 to the Ant developers asking such things as “How do I build Ant myself?” and with the help of Steve and other Ant developers,
 his first contributions to Ant were accepted and shipped with the Ant 1.4 release.

 In the middle of 2001, Erik proposed the addition of an Ant Forum and FAQ to jGuru, an elegant and top-quality Java-related
 search engine. From this point, Erik’s Ant knowledge accelerated rapidly, primarily as a consequence of having to field tough
 Ant questions. Soon after that, Erik watched his peers at eBlox develop the well-received Java Tools for Extreme Programming
 book. Erik began tossing around the idea of penning his own book on Ant, when Dan Barthel, formerly of Manning, contacted
 him. Erik announced his book idea to the Ant community email lists and received very positive feedback, including from Steve
 who had been contacted about writing a book for Manning. They discussed it, and decided that neither of them could reasonably
 do it alone and would instead tackle it together. Not to make matters any easier on himself, Erik accepted a new job, and
 relocated his family across the country while putting together the book proposal. The new job gave Erik more opportunities
 to explore how to use Ant in advanced J2EE projects, learning lessons in how to use Ant with Struts and EJB that readers of
 this book can pick up without enduring the same experience. In December of 2001, after having already written a third of this
 book, Erik was honored to be voted in as an Ant committer, a position of great responsibility, as changes made to Ant affect
 the majority of Java developers around the world.

 Steve, meanwhile, already an Ant committer, was getting more widely known as a web service developer, publishing papers and
 giving talks on the subject, while exploring how to embed web services into devices and use them in a LAN-wide, campus-wide,
 or Internet-wide environment. His beliefs that deployment and integration are some of the key issues with the web service
 development process, and that Ant can help address them, are prevalent in his professional work and in the chapters of this
 book that touch on such areas. Steve is now also a committer on Axis, the Apache project’s leading-edge SOAP implementation,
 so we can expect to see better integration between Axis and Ant in the future.

 Together, in their “copious free time,” Erik and Steve coauthored this book on how to use Ant in Java software projects. They
 combined their past experience with research into side areas, worked with Ant 1.5 as it took shape—and indeed helped shape
 this version of Ant while considering it for this book. They hope that you will find Ant 1.5 to be useful—and that Java Development
 with Ant will provide the solution to your build, test, and deployment problems, whatever they may be.

Acknowledgments

 Writing a book about software is similar to a software project. There’s much more emphasis on documentation, but it’s still
 essential to have an application that works.

 Writing a second edition of a book is a form of software maintenance. You have existing code and documentation—information
 that needs to be updated to match a changed world. And how the world has changed! Since the last edition, what people write
 has evolved: weblogs, REST services, XMPP-based communications, and other technologies are now on the feature lists of many
 projects, while deadlines remain as optimistic as ever. The Java building, testing, and deployment ecosystem has evolved to
 match.

 I’ve had to go back over every page in the first edition and rework it to deal with these changes, which took quite a lot
 of effort. The result, however, is a book that should remain current for the next three-to-five years.

 Like software, books are team projects. We must thank the Manning publishing team: Laura Merrill; Cynthia Kane; Mary Piergies;
 Karen Tegtmeyer; Katie Tennant; Denis Dalinnik; and, of course, Marjan Bace, the publisher. There are also the reviewers and
 the members of the Manning Early Access Program, who found and filed bug reports against early drafts of the book. The reviewers
 were Bas Vodde, Jon Skeet, Doug Warren, TVS Murthy, Kevin Jackson, Joe Rainsberger, Ryan Cox, Dave Dribin, Srinivas Nallapati,
 Craeg Strong, Stefan Bodewig, Jeff Cunningham, Dana Taylor, and Michael Beauchamp. The technical reviewer was Kevin Jackson.

 The Ant team deserves to be thanked for the ongoing evolution of Ant, especially when adding features and bug fixes in line
 with the book’s needs. I’d like to particularly thank Stefan Bodewig, Matt Benson, Peter Reilly, Conor MacNeill, Martijn Kruithof,
 Antoine Levy-Lambert, Dominique Devienne, Jesse Glick, Stephane Balliez, and Kevin Jackson. Discussions on Ant’s developer
 and user mailing lists also provided lots of insight—all participants on both mailing lists deserve gratitude.

 Alongside Ant come other tools and products, those covered in the book and those used to create it. There’s a lot of really
 good software out there, from operating systems to IDEs and networking tools: Linux and the CVS and Subversion tools deserve
 special mention.

 I’d also like to thank my HP colleagues working on SmartFrog for their tolerance of my distracted state and for their patience
 when I experimented with their build process. The best way to test some aspects of big-project Ant is on a big project, and
 yours was the one I had at hand. This book should provide the documentation of what the build is currently doing. Julio Guijarro,
 Patrick Goldsack, Paul Murray, Antonio Lain, Kumar Ganesan, Ritu Sabharwal, and Peter Toft—thank you all for being so much
 fun to work with.

 Finally, I’d like to thank my friends and family for their support. Writing a book in your spare time is pretty time-consuming.
 Now that it is finished, I get to rest and spend time with my wife, my son, our friends, and my mountain bike, while the readers
 get to enjoy their own development projects, with their own deadlines. Have fun out there!

About this Book

 This book is about Ant, the award-winning Java build tool. Ant has become the centerpiece of so many projects’ build processes
 because it’s easy to use, is platform-independent, and addresses the needs of today’s projects to automate testing and deployment.
 From its beginnings as a helper application to compile Tomcat, Apache’s Java web server, it has grown to be a stand-alone
 tool adopted across the Java community, and in doing so has changed people’s expectations of their development tools.

 If you have never before used Ant, this book will introduce you to it, taking you systematically through the core stages of
 most Java projects: compilation, testing, execution, packaging, and delivery. If you’re an experienced Ant user, we’ll show
 you how to “push the envelope” in using Ant. We place an emphasis on how to use Ant as part of a large project, drawing out
 best practices from our own experiences.

 Whatever your experience with Ant, we believe that you will learn a lot from this book and that your software projects will
 benefit from using Ant as the way to build, test, and release your application.

Who Should Read this Book

 This book is for Java developers working on software projects ranging from the simple personal project to the enterprise-wide
 team effort. We assume no prior experience of Ant, although even experienced Ant users should find much to interest them in
 the later chapters. We do expect our readers to have basic knowledge of Java, although the novice Java developer will benefit
 from learning Ant in conjunction with Java. Some of the more advanced Ant projects, such as building Enterprise Java applications
 and web services, are going to be of interest primarily to the people working in those areas. We’ll introduce these technology
 areas, but we’ll defer to other books to cover them fully.

How this Book is Organized

 We divided this book into three parts. Part 1 introduces the fundamentals of Ant and shows how to use it to build, test, package, and deliver a Java library. Part 2 takes the lessons of Part 1 further, exploring how to use Ant to solve specific problems, including coordinating a multi-project build, and deploying
 and testing web and Enterprise applications. Part 3 is a short but detailed guide on how to extend Ant in scripting languages and Java code, enabling power users to adapt Ant
 to their specific needs, or even embed it in their own programs.

Part 1

 In chapter 1, we first provide a gentle introduction to what Ant is, what it is not, and what makes Ant the best build tool for building
 Java projects.

 Chapter 2 digs into Ant’s syntax and mechanics, starting with a simple project to compile a single Java file and evolving it into an
 Ant build process, which compiles, packages, and executes a Java application.

 To go further with Ant beyond the basic project shown in chapter 2, Ant’s abstraction mechanisms need defining. Chapter 3 introduces Ant’s properties and datatypes, which let build-file writers share data across parts of the build. This is a key
 chapter for understanding what makes Ant shine.

 Ant and test-centric development go hand in hand, so chapter 4 introduces our showcase application alongside JUnit, the tool that tests the application itself. From this chapter onwards,
 expect to see testing a recurrent theme of the book.

 After packaging the Java code in chapter 5, we look in chapter 6 at launching Java and native programs. Chapter 7 takes what we’ve packaged and distributes it by email and FTP and SCP uploads.

 It’s often difficult to envision the full picture when looking at fragments of code in a book. In chapter 8, we show a single build file that merges all the stages of the previous chapters. Chapter 8 also discusses the issues involved in migrating to Ant and adopting a sensible directory structure, along with other general
 topics related to managing a project with Ant.

Part 2

 The second part of the book extends the core build process in different ways, solving problems that different projects may
 encounter. Chapter 9 starts by showing how to extend Ant with optional and third-party tasks to perform new activities, such as checking out files
 from revision control, auditing code, and adding iteration and error-handling to a build file.

 Chapter 10 looks at big-project Ant—how to build a big project from multiple subsidiary projects. This chapter is complemented by Chapter 11, which uses the Ivy libraries to address the problem of library management. Having a tool to manage your library dependencies
 and to glue together the output of different projects keeps Java projects under control, especially large ones.

 Web development is where many Java developers spend their time these days. Chapter 12 shows how to package, deploy, and then test a web application. You can test a web application only after deploying it, so
 the development process gets a bit convoluted.

 Chapter 13 discusses a topic that touches almost all Java developers: XML. Whether you’re using XML simply for deployment descriptors
 or for transforming documentation files into presentation format during a build process, this chapter covers it.

 Chapter 14 is for developers working with Enterprise Java; it looks at how to make an application persistent, how to deploy it on the
 JBoss application server, and how to test it with Apache Cactus.

 The final two chapters of Part 2 look at how to improve your development processes. Chapter 15 introduces continuous integration, the concept of having a server automatically building and testing an application whenever
 code is checked in. Chapter 16 automates deployment. This is a topic that many developers neglect for one reason or another, but it typically ends up coming
 back to haunt us. Automating this—which is possible—finishes the transformation of how a Java project is built, tested, and
 deployed.

Part 3

 The final part of our book is about extending Ant beyond its built-in capabilities. Ant is designed to be extensible in a
 number of ways. Chapter 17 provides all the information needed to write sophisticated custom Ant tasks, with many examples.

 Beyond custom tasks, Ant is extensible by scripting languages, and it supports many other extension points, including Resources,
 Conditions, FilterReaders, and Selectors. Monitoring or logging the build process is easy to customize, too, and all of these
 techniques are covered in detail in chapter 18.

At the back

 Last but not least are three appendices. Appendix A is for new Ant users; it explains how to install Ant and covers common installation problems and solutions. Because Ant uses
 XML files to describe build processes, appendix B is an introduction to XML for those unfamiliar with it. All modern Java integrated development environments (IDEs) now tie
 in to Ant. Using an Ant-enabled IDE allows you to have the best of both worlds. Appendix C details the integration available in several of the popular IDEs.

 What we do not have in this edition is a quick reference to the Ant tasks. When you install Ant, you get an up-to-date copy
 of the documentation, which includes a reference of all Ant’s tasks and types. Bookmark this documentation in your browser,
 as it is invaluable.

Online Resources

 There’s a web site that accompanies this book: http://antbook.org/. It can also be reached from the publisher’s web site, www.manning.com/loughran. You’ll find links to the source and the author forum plus some extra content that isn’t in the book, including a couple
 of chapters from the previous edition and a bibliography with links. Expect more coverage of Ant-related topics as time progresses.

 This antbook.org web site links to all the source code and Ant build files in the book, which are released under the Apache
 license. They are hosted on the SourceForge open source repository at http://sourceforge.net/projects/antbook.

 The other key web site for Ant users is Ant’s own home page at http://ant.apache.org/. Ant and its online documentation can be found here, while the Ant user and developer mailing lists will let you meet other
 users and ask for help.

Code Conventions

 Courier typeface is used to denote Java code and Ant build files. Bold Courier typeface is used in some code listings to highlight important or changed sections.

 Code annotations accompany many segments of code. Certain annotations are marked with numbered bullets. These annotations
 have further explanations that follow the code.

Author Online

 Purchase of Ant in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/loughran. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s web site as long
 as the book is in print.

About the Authors

 STEVE LOUGHRAN works at HP Laboratories in Bristol, England, developing technologies to make deployment and testing of large-scale servers
 and other distributed applications easier. His involvement in Ant started in 2000, when he was working on early web services
 in Corvallis, Oregon; he is a long-standing committer on Ant projects and a member of the Apache Software Foundation. He holds
 a degree in Computer Science from Edinburgh University, and lives in Bristol with his wife Bina and son Alexander. In the
 absence of any local skiing, he makes the most of the off-road and on-road cycling in the area.

 ERIK HATCHER, an Apache Software Foundation Member, has been busy since the first edition of the Ant book, co-authoring Lucene in Action, becoming a dad for the third time, and entering the wonderful world of humanities computing. He currently works for the
 Applied Research in Patacriticism group at the University of Virginia, and consults on Lucene and Solr through eHatcher Solutions,
 Inc. Thanks to the success of the first edition, Erik has been honored to speak at conferences and to groups around the world,
 including JavaOne, ApacheCon, OSCON, and the No Fluff, Just Stuff symposium circuit. Erik lives in Charlottesville, Virginia,
 with his beautiful wife, Carole, and his three wonderful sons, Blake, Ethan, and Jakob. Erik congratulates Steve, his ghost
 writer, for single-handedly tackling this second edition.

About the Cover Illustration

 The figure on the cover of Ant in Action is a “Paysan de Bourg de Batz,” an inhabitant from the city of Batz in Brittany, France, located on the Atlantic coast. The
 illustration is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs. This book
 was first published in Paris in 1788, one year before the French Revolution.

 The colorful diversity of the illustrations in the collection speaks vividly of the uniqueness and individuality of the world’s
 towns and regions just 200 years ago. This was a time when the dress codes of two regions separated by a few dozen miles identified
 people uniquely as belonging to one or the other. The collection brings to life a sense of isolation and distance of that
 period—and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Chapter 0. Introduction to the Second Edition

Welcome to Ant in Action

 We took a rest after the first edition of this book, Java Development with Ant. Erik went on to work on Lucene in Action, (Manning Publications Co., 2005) exploring the index/search tool in wonderful detail. Steve returned to HP Laboratories,
 in the UK, getting into the problem of grid-scale deployment.

 In the meantime, Ant 1.6 shipped, not breaking anything in the first edition, but looking slightly clunky. There were easier
 ways to do some of the things we described, especially in the area of big projects. We finally sat down and began an update
 while Ant 1.7 was under development.

 Starting the update brought it home to us how much had changed while we weren’t paying attention. Nearly every popular task
 has had some tweak to it, from a bit of minor tuning to something more fundamental. Along with Ant’s evolution, many of the
 technologies that we covered evolved while we weren’t looking—even the Java language itself has changed.

 We had to carefully choose which technologies to cover with this book. We’ve put the effort into coverage of state-of-the-art
 build techniques, including library management, continuous integration, and automated deployment.

 We also changed the name to Ant in Action. Without the wonderful response to the first edition, we would never have written it. And we can say that without the wonderful
 tools at our disposal—Ant, JUnit, IntelliJ IDEA, jEdit, and Eclipse—we wouldn’t have been able to write it so well. We owe
 something to everyone who has worked on those projects. If you’re one of those people, remind us of this fact if you ever
 happen to meet us, and we shall honor our debt in some way.

The Application: A Diary

 We’re going to write a diary application. It will store appointments and allow all events on a given day/range to be retrieved.
 It will not be very useful, but we can use it to explore many features of a real application and the build process to go with
 it: persistence, server-side operation, RSS feeds, and whatever else we see fit. We’re writing this Extreme Programming-style,
 adding features on demand and writing the tests as we do so. We’re also going to code in an order that matches the book’s
 chapters. That’s the nice thing about XP: you can put off features until you need them, or, more importantly, until you know
 exactly what you need.

 All the examples in the book are hosted on SourceForge in the project antbook and are available for download from http://antbook.org/. Everything is Apache licensed; do with it what you want.

 What’s changed since the first edition? The first edition of this book, Java Development with Ant, was written against the version of Ant then in development, Ant 1.5. This version, Ant in Action, was written against Ant 1.7. If you have an older version, upgrade now, as the build files in this book are valid only in
 Ant 1.7 or later.

 To show experienced Ant users when features of Ant 1.6 and 1.7 are being introduced, we mark the appropriate paragraph. Here’s
 an example:

 [image:]

 The spawn attribute of the <java> task lets you start a process that will outlive the Ant run, letting you use Ant as a launcher of applications.

 If you’ve been using Ant already, all your existing build files should still work. Ant is developed by a rigorous process
 and a wide beta test program. That’s one of the virtues of a software build tool as an open source project: it’s well engineered
 by its end users, and it’s tested in the field long before a product ships. Testing is something that Ant holds dear.

Part 1. Learning Ant

 Welcome to Ant in Action, an in-depth guide to the ubiquitous Java build tool. In this book, we’re going to explore the tool thoroughly, using it
 to build everything from a simple little Java library to a complete server-side application.

 Chapters 1 through 8 lay the foundation for using Ant. In this section, you’ll learn the fundamentals of Java build processes—including compilation,
 packaging, testing, and distribution—and how Ant facilitates each step. Ant’s reusable datatypes and properties play an important
 role in writing maintainable and extensible build files. After reading this section, you’ll be ready to use Ant in your own
 projects.

Chapter 1. Introducing Ant

	
1.1

 	What is Ant?
 	

	1.2
 	What makes Ant so special?
 	

	1.3
 	When to use Ant
 	

	1.4
 	When not to use Ant
 	

	1.5
 	Alternatives to Ant
 	

	1.6
 	The ongoing evolution of Ant
 	

	1.7
 	Summary
 	

Welcome to the future of your build process.

 This is a book about Ant. It’s more than just a reference book for Ant syntax, it’s a collection of best practices demonstrating
 how to use Ant to its greatest potential in real-world situations. If used well, you can develop and deliver your software
 projects better than you have done before.

 Let’s start with a simple question: what is Ant?

1.1. What is Ant?

 Ant is a build tool, a small program designed to help software teams develop big programs by automating all the drudge-work tasks of compiling
 code, running tests, and packaging the results for redistribution. Ant is written in Java and is designed to be cross-platform,
 easy to use, extensible, and scalable. It can be used in a small personal project, or it can be used in a large, multiteam
 software project. It aims to automate your entire build process.

 The origin of Ant is a fascinating story; it’s an example of where a spin-off from a project can be more successful than the
 main project. The main project in Ant’s case is Tomcat, the Apache Software Foundation’s Java Servlet engine, the reference
 implementation of the Java Server Pages (JSP) specification. Ant was written by James Duncan Davidson, then a Sun employee, to make it easier for people to compile Tomcat on different platforms. The tool he wrote did that, and, with help from other developers, became the way that Apache
 Java projects were built. Soon it spread to other open source projects, and trickled out into helping Java developers in general.

 That happened in early 2000. In that year and for the following couple of years, using Ant was still somewhat unusual. Nowadays,
 it’s pretty much expected that any Java project you’ll encounter will have an Ant build file at its base, along with the project’s
 code and—hopefully—its tests. All Java IDEs come with Ant support, and it has been so successful that there are versions for
 the .NET framework (NAnt) and for PHP (Phing). Perhaps the greatest measure of Ant’s success is the following: a core feature
 of Microsoft’s .NET 2.0 development toolchain is its implementation of a verson: MSBuild. That an XML-based build tool, built
 in their spare time by a few developers, is deemed worthy of having a “strategic” competitor in the .NET framework is truly
 a measure of Ant’s success.

 In the Java world, it’s the primary build tool for large and multiperson projects—things bigger than a single person can do
 under an IDE. Why? Well, we’ll get to that in section 1.2—the main thing is that it’s written in Java and focuses on building and testing Java projects.

 Ant has an XML syntax, which is good for developers already familiar with XML. For developers unfamiliar with XML, well, it’s
 one place to learn the language. These days, all Java developers need to be familiar with XML.

 In a software project experiencing constant change, an automated build can provide a foundation of stability. Even as requirements
 change and developers struggle to catch up, having a build process that needs little maintenance and remembers to test everything
 can take a lot of housekeeping off developers’ shoulders. Ant can be the means of controlling the building and deployment
 of Java software projects that would otherwise overwhelm a team.

 1.1.1. The core concepts of Ant

 We have just told you why Ant is great, but now we are going to show you what makes it great: its ingredients, the core concepts.
 The first is the design goal: Ant was designed to be an extensible tool to automate the build process of a Java development
 project.

 A software build process is a means of going from your source—code and documents—to the product you actually deliver. If you have a software project,
 you have a build process, whether or not you know it. It may just be “hit the compile button on the IDE,” or it may be “drag
 and drop some files by hand.” Neither of these are very good because they aren’t automated and they’re often limited in scope.

 With Ant, you can delegate the work to the machine and add new stages to your build process. Testing, for example. Or the
 creation of XML configuration files from your Java source. Maybe even the automatic generation of the documentation.

 Once you have an automated build, you can let anyone build the system. Then you can find a spare computer and give it the
 job of rebuilding the project continuously. This is why automation is so powerful: it starts to give you control of your project.

 Ant is Java-based and tries to hide all the platform details it can. It’s also highly extensible in Java itself. This makes
 it easy to extend Ant through Java code, using all the functionality of the Java platform and third-party libraries. It also
 makes the build very fast, as you can run Java programs from inside the same Java virtual machine as Ant itself.

 Putting Ant extensions aside until much later, here are the core concepts of Ant as seen by a user of the tool.

Build Files

 Ant uses XML files called build files to describe how to build a project. In the build file developers list the high-level various goals of the build—the targets—and actions to take to achieve each goal—the tasks.

A build file contains one project

 Each build file describes how to build one project. Very large projects may be composed of multiple smaller projects, each
 with its own build file. A higher-level build file can coordinate the builds of the subprojects.

Each project contains multiple targets

 Within the build file’s single project, you declare different targets. These targets may represent actual outputs of the build,
 such as a redistributable file, or activities, such as compiling the source or running the tests.

Targets can depend on other targets

 When declaring a target, you can declare which targets have to be built first. This can ensure that the source gets compiled
 before the tests are run and built, and that the application is not uploaded until the tests have passed. When Ant builds
 a project, it executes targets in the order implied by their dependencies.

Targets contain tasks

 Inside targets, you declare what work is needed to complete that stage of the build process. You do this by listing the tasks
 that constitute each stage. When Ant executes a target, it executes the tasks inside, one after the other.

Tasks do the work

 Ant tasks are XML elements, elements that the Ant runtime turns into actions. Behind each task is a Java class that performs
 the work described by the task’s attributes and nested data. These tasks are expected to be smart—to handle much of their
 own argument validation, dependency checking, and error reporting.

New tasks extend Ant

 The fact that it’s easy to extend Ant with new classes is one of its core strengths. Often, someone will have encountered
 the same build step that you have and will have written the task to perform it, so you can just use their work. If not, you
 can extend it in Java, producing another reusable Ant task or datatype.

 To summarize, Ant reads in a build file containing a project. In the project are targets that describe different things the
 project can do. Inside the targets are the tasks, tasks that do the individual steps of the build. Ant executes targets in
 the order implied by their declared dependencies, and the tasks inside them, thereby building the application. That’s the
 theory. What does it look like in practice?

 1.1.2. Ant in action: an example project

 Figure 1.1 shows the Ant build file as a graph of targets, each target containing tasks. When the project is built, Ant determines which
 targets need to be executed, and in what order. Then it runs the tasks inside each target. If a task somehow fails, Ant halts
 the build. This lets simple rules such as “deploy after compiling” be described, as well as more complex ones such as “deploy
 only after the unit tests have succeeded.”

 Figure 1.1. Conceptual view of a build file. The project encompasses a collection of targets. Inside each target are task declarations,
 which are statements of the actions Ant must take to build that target. Targets can state their dependencies on other targets,
 producing a graph of dependencies. When executing a target, all its dependents must execute first.

 [image:]

 Listing 1.1 shows the build file for this typical build process.

 Listing 1.1. A typical scenario: compile, document, package, and deploy

 [image:]

 [image:]

 While listing 1.1 is likely to have some confusing pieces to it, it should be mostly comprehensible to a Java developer new to Ant. For example,
 packaging (target name="package") depends on the successful javac compilation and javadoc documentation (depends="compile,doc"). Perhaps the most confusing piece is the ${...} notation used in the FTP task (<ftp>). That indicates use of Ant properties, which are values that can be expanded into strings. The output of our build is

 > ant -propertyfile ftp.properties
Buildfile: build.xml
init:
 [mkdir] Created dir: /home/ant/ex/build/classes
 [mkdir] Created dir: /home/ant/ex/dist
compile:
 [javac] Compiling 1 source file to /home/ant/ex/build/classes
doc:
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source files for package
 org.example.antbook.lesson1...
 [javadoc] Constructing Javadoc information...
 [javadoc] Building tree for all the packages and classes...
 [javadoc] Building index for all the packages and classes...
 [javadoc] Building index for all classes...
package:
 [jar] Building jar: /home/ant/ex/dist/project.jar
deploy:
 [ftp] sending files
 [ftp] 1 files sent
BUILD SUCCESSFUL
Total time: 5 seconds.

 Why did we invoke Ant with -propertyfile ftp.properties? We have a file called ftp.properties containing the three properties server.name, ftp. username, and ftp.password. The property handling mechanism allows parameterization and reusability of our build file. This particular example, while
 certainly demonstrative, is minimal and gives only a hint of things to follow. In this build, we tell Ant to place the generated
 documentation alongside the compiled classes, which isn’t a typical distribution layout but allows this example to be abbreviated.
 Using the -propertyfile command-line option is also atypical and is used in situations where forced override control is desired, such as forcing
 a build to upload to a different server. This example shows Ant’s basics well: target dependencies, use of properties, compiling,
 documenting, packaging, and, finally, distribution.

 For the curious, here are pointers to more information on the specifics of this build file: chapter 2 covers build file syntax, target dependencies, and <javac> in more detail; chapter 3 explains Ant properties, including -propertyfile; chapter 5 delves into <jar> and <javadoc>; and, finally, <ftp> is covered in chapter 7.

 Because Ant tasks are Java classes, the overhead of invoking each task is quite small. For each task, Ant creates a Java object,
 configures it, then calls its execute() method. A simple task such as <mkdir> would call a Java library method to create a directory. A more complex task such as <ftp> would invoke a third-party FTP library to talk to the remote server, and, optionally, perform dependency checking to upload
 only files that were newer than those at the destination. A very complex task such as <javac> not only uses dependency checking to decide which files to compile, it supports multiple compiler back ends, calling Sun’s
 Java compiler in the same Java Virtual Machine (JVM), or executing a different compiler as an external executable.

 These are implementation details. Simply ask Ant to compile some files—how Ant decides which compiler to use and what its
 command line is are issues that you rarely need to worry about. It just works.

 That’s the beauty of Ant: it just works. Specify the build file correctly, and Ant will work out target dependencies and call
 the targets in the right order. The targets run through their tasks in order, and the tasks themselves deal with file dependencies
 and the actual execution of the appropriate Java package calls or external commands needed to perform the work. Because each
 task is usually declared at a high level, one or two lines of XML is often enough to describe what you want a task to do.
 Ten lines might be needed for something as complex as creating a database table. With only a few lines needed per task, you
 can keep each build target small, and keep the build file itself under control.

 That is why Ant is popular, but that’s not the only reason.

1.2. What makes Ant so special?

 Ant is the most popular build tool in Java projects. Why is that? What are its unique attributes that helped it grow from
 a utility in a single project to the primary build system of Java projects?

Ant is free and Open Source

 Ant costs nothing to download. It comes with online documentation that covers each task in detail, and has a great online
 community on the Ant developer and user mail lists. If any part of Ant doesn’t work for you, you can fix it. All the Ant developers
 got into the project by fixing bugs that mattered to them or adding features that they needed. The result is an active project
 where the end users are the developers.

Ant makes it easy to bring developers into a project

 One of the benefits of using Ant comes when a new developer joins a team. With a nicely crafted build process, the new developer
 can be shown how to get code from the source code repository, including the build file and library dependencies. Even Ant
 itself could be stored in the repository for a truly repeatable build process.

It is well-known and widely supported

 Ant is the primary build tool for Java projects. Lots of people know how to use it, and there is a broad ecosystem of tools
 around it. These tools include third-party Ant tasks, continuous-integration tools, and editors/IDEs with Ant support.

It integrates testing into the build processes

 The biggest change in software development in the last few years has been the adoption of test-centric processes. The agile processes, including Extreme Programming and Test-Driven Development, make writing tests as important as writing the functional code. These test-first processes say that developers should write the tests before the code.

 Ant doesn’t dictate how you write your software—that’s your choice. What it does do is let anyone who does write tests integrate
 those tests into the build process. An Ant build file can mandate that the unit tests must all pass before the web application
 is deployed, and that after deploying it, the functional tests must be run. If the tests fail, Ant can produce a nice HTML
 report that highlights the problems.

 Adopting a test-centric development process is probably the most important and profound change a software project can make.
 Ant is an invaluable adjunct to that change.

It enables continuous integration

 With tests and an automated build that runs those tests, it becomes possible to have a machine rebuild and retest the application
 on a regular basis. How regularly? Nightly? How about every time someone checks something into the code repository?

 This is what continuous integration tools can do: they can monitor the repository and rerun the build when something changes.
 If the build and tests work, they update a status page on their web site. If something fails, developers get email notifying
 them of the problem. This catches errors within minutes of the code being checked in, stopping bugs from hiding unnoticed
 in the source.

It runs inside Integrated Development Environments

 Integrated Development Environments (IDEs) are great for editing, compiling, and debugging code, and they’re easy to use. It’s hard to convince users of a good IDE
 that they should abandon it for a build process based on a text file and a command line prompt. Ant integrates with all mainstream
 IDEs, so users do not need to abandon their existing development tools to use Ant.

 Ant doesn’t replace an IDE; a good editor with debugging and even refactoring facilities is an invaluable tool to have and
 use. Ant just takes control of compilation, packaging, testing, and deployment stages of the build process in a way that’s
 portable, scalable, and often reusable. As such, it complements IDEs. The latest generation of Java IDEs all support Ant.
 This means that developers can choose whatever IDE they like, and yet everyone can share the same automated build process.

1.3. When to use Ant

 When do you need Ant? When is an automated build tool important? The approximate answer is “whenever you have any project
 that needs to compile or test Java code.” At the start of the project, if only one person is coding, then an IDE is a good
 starting point. As soon as more people work on the code, its deliverables get more complex, or the test suite starts to be
 written, then its time to turn to Ant. This is also a great time to set up the continuous integration server, or to add the
 project to a running one.

 Another place to use Ant is in your Java programs, if you want to use its functionality in your own project. While Ant was
 never designed with this reuse in mind, it can be used this way. Chapter 18 looks at embedding Ant inside another program.

1.4. When not to use Ant

 Although Ant is a great build tool, there are some places where it isn’t appropriate.

 Ant is not the right tool to use outside of the build process. Its command line and error messages are targeted at developers
 who understand English and Java programming. You should not use Ant as the only way end-users can launch an application. Some
 people do this: they provide a build file to set up the classpath and run a Java program, or they use Ant to glue a series
 of programs together. This works until there’s a problem and Ant halts with an error message that only makes sense to a developer.

 Nor is Ant a general-purpose workflow engine; it lacks the persistence or failure handling that such a system needs. Its sole
 options for handling failure are “halt” or “ignore,” and while it may be able to run for days at a time, this is something
 that’s never tested. The fact that people do try to use Ant for workflow shows that there’s demand for a portable, extensible,
 XML-based workflow engine. Ant is not that; Ant is a tool for making development easier, not solving every problem you can
 imagine.

 Finally, setting up a build file takes effort. If you’re just starting out writing some code, it’s easier to stay in the IDEs,
 using the IDE to set up your classpath, to build, and to run tests. You can certainly start off a project that way, but as
 soon as you want HTML test reports, packaging, and distribution, you’ll need Ant. It’s good to start work on the build process
 early, rather than try to live in the IDE forever.

1.5. Alternatives to Ant

 Ant is not the only build tool available. How does it fare in comparison to its competition and predecessors? We’ll compare
 Ant to its most widely used comptetitors—IDEs Make, and Maven.

 1.5.1. IDEs

 IDEs are the main way people code: Eclipse, NetBeans, and IntelliJ IDEA are all great for Java development. Their limitations
 become apparent as a project proceeds and grows.

	It’s very hard to add complex operations, such as XSL stylesheet operations, Java source generation from IDL/WSDL processing,
 and other advanced tricks.

 	It can be near-impossible to transfer one person’s IDE settings to another user. Settings can end up tied to an individual’s
 environment.

 	IDE-based build processes rarely scale to integrate many different subprojects with complex dependencies.

 	Producing replicable builds is an important part of most projects, and it’s risky to use manual IDE builds to do so.

All modern IDEs have Ant support, and the IDE teams all help test Ant under their products. One IDE, NetBeans, uses Ant as
 its sole way of building projects, eliminating any difference between the IDE and Ant. The others integrate Ant within their
 own build process, so you can call Ant builds at the press of button.

 1.5.2. Make

 The Unix Make tool is the original build tool; it’s the underpinnings of Unix and Linux. In Make, you list targets, their
 dependencies, and the actions to bring each target up-to-date.

 The tool is built around the file system. Each target in a makefile is either the name of a file to bring up-to-date or what,
 in Make terminology, is called a phony target. A named target triggers some actions when invoked. Make targets can depend upon files or other targets. Phony targets have
 names like clean or all and can have no dependencies (that is, they always execute their commands) or can be dependent upon real targets.

 One of the best parts of Make is that it supports pattern rules to determine how to build targets from the available inputs,
 so that it can infer that to create a .class file, you compile a .java file of the same name.

 All the actions that Make invokes are actually external programs, so the rule to go from .java files to .class files would invoke the javac program to compile the source, which doesn’t know or care that it has been invoked by Make.

 Here’s an example of a very simple GNU makefile to compile two Java classes and archive them into a JAR file:

 all: project.jar
project.jar: Main.class XmlStuff.class
 jar -cvf $@ $<
%.class: %.java
 javac $<

 The makefile has a phony target, all, which, by virtue of being first in the file, is the default target. It depends upon project.jar, which depends on two compiled Java files, packaging them with the JAR program. The final rule states how to build class
 (.class) files from Java (.java) files. In Make, you list the file dependencies, and the tool determines which rules to apply and in what sequence, while
 the developer is left tracking down bugs related to the need for invisible tab characters rather than spaces at the start
 of each action.

 When someone says that they use Make, it usually means they use Make-on-Unix, or Make-on-Windows. It’s very hard to build
 across both, and doing so usually requires a set of Unix-compatible applications, such as the Cygwin suite. Because Make handles
 the dependencies, it’s limited to that which can be declared in the file: either timestamped local files or phony targets.
 Ant’s tasks contain their own dependency logic. This adds work for task authors, but benefits task users. This is because specialized tasks to update JAR
 files or copy files to FTP servers can contain the code to decide if an entry in a JAR file or a file on a remote FTP server
 is older than a local file.

Ant versus Make

 Ant and Make have the same role: they automate a build process by taking a specification file and using that and source files
 to create the desired artifacts. However, Ant and Make do have some fundamentally different views of how the build process
 should work.

 With Ant, you list sequences of operations and the dependencies between them, and you let file dependencies sort themselves
 out through the tasks. The only targets that Ant supports are similar to Make’s phony targets: targets that are not files
 and exist only in the build file. The dependencies of these targets are other targets. You omit file dependencies, along with
 any file conversion rules. Instead, the Ant build file states the stages used in the process. While you may name the input
 or output files, often you can use a wildcard or even a default wildcard to specify the source files. For example, here the
 <javac> task automatically includes all Java files in all subdirectories below the source directory:

 <?xml version="1.0" ?>
<project name="makefile" default="all">
 <target name="all">
 <javac srcdir="."/>
 <jar destfile="project.jar" includes="*.class" />
 </target>
</project>

 Both the <javac> and <jar> tasks will compare the sources and the destinations and decide which to compile or add to the archive. Ant will call each
 task in turn, and the tasks can choose whether or not to do work. The advantage of this approach is that the tasks can contain
 more domain-specific knowledge than the build tool, such as performing directory hierarchy-aware dependency checking, or even
 addressing dependency issues across a network. The other subtlety of using wildcards to describe source files, JAR files on
 the classpath, and the like is that you can add new files without having to edit the build file. This is nice when projects
 start to grow because it keeps build file maintenance to a minimum.

 Ant works best with programs that are wrapped by Java code into a task. The task implements the dependency logic, configures
 the application, executes the program, and interprets the results. Ant does let you execute native and Java programs directly,
 but adding the dependency logic is harder than it is for Make. Also, with its Java focus, there’s still a lot to be said for
 using Make for C and C++ development, at least on Linux systems, where the GNU implementation is very good, and where the
 development tools are installed on most end users’ systems. For Java projects, Ant has the edge, as it is portable, Java-centric, and even redistributable if you need to use it inside your application.

 1.5.3. Maven

 Maven is a competing build tool from Apache, hosted at http://maven.apache.org. Maven uses templates—archetypes—to define how a specific project should be built. The standard archetype is for a Java library,
 but others exist and more can be written.

 Like Ant, Maven uses an XML file to describe the project. Ant’s file explicitly lists the stages needed for each step of the
 build process, but neglects other aspects of a project such as its dependencies, where the source code is kept under revision
 control, and other things. Maven’s Project Object Model (POM) file declares all this information, information that Maven plugins use to manage all parts of the build process, from retrieving
 dependent libraries to running tests and generating reports.

 Central to Maven is the idea that the tools should encode a set of best practices as to how projects should be laid out and
 how they should test and release code. Ant, in comparison, has no formal knowledge of best practices; Ant leaves that to the
 developers to decide on so they can implement their own policy.

Ant versus Maven

 There is some rivalry between the two Apache projects, though it is mostly good-natured. The developer teams are friends,
 sharing infrastructure bits and, sometimes, even code.

 Ant views itself as the more flexible of the two tools, while Maven considers itself the more advanced of the pair. There
 are some appealing aspects to Maven, which can generate a JAR and a web page with test results from only a minimal POM file.
 It pulls this off if the project is set up to follow the Maven rules, and every library, plugin, and archetype that it depends
 upon is in the central Maven artifact repository. Once a project starts to diverge from the templates the Maven team have
 provided, however, you end up looking behind the curtains and having to fix the underpinnings. That transition from “Maven
 user” to “plugin maintainer” can be pretty painful, by all accounts.

 Still, Maven does have some long-term potential and it’s worth keeping an eye on, but in our experience it has a hard time
 building Java projects with complex stages in the build process. To be fair, building very large, very complex Java projects
 is hard with any tool. Indeed, coping with scale is one of the ongoing areas of Ant evolution, which is why chapters 10 and 11 in this book are dedicated to that problem.

1.6. The ongoing evolution of Ant

 Ant is still evolving. As an Apache project, it’s controlled by their bylaws, which cover decision-making and write-access
 to the source tree. Those with write-access to Ant’s source code repository are called committers, because they’re allowed to commit code changes directly. All Ant users are encouraged to make changes to the code, to extend
 Ant to meet their needs, and to return those changes to the Ant community.

 As table 1.1 shows, the team releases a new version of Ant on a regular basis. When this happens, the code is frozen during a brief beta
 release program. When they come out, public releases are stable and usable for a long period.

 Table 1.1. The release history of Ant. Major revisions come out every one to two years; minor revisions release every three to six months.

	
 Date

 	
 Ant version

 	
 Notes

	March 2000
 	Ant 1.0
 	Really Ant 0.9; with Tomcat 3.1

	July 2000
 	Ant 1.1
 	First standalone Ant release

	October 2000
 	Ant 1.2
 	

	March 2001
 	Ant 1.3
 	

	September 2001
 	Ant 1.4
 	Followed by Ant 1.4.1 in October

	July 2002
 	Ant 1.5
 	Along with the first edition of Java Development with Ant

	September 2003
 	Ant 1.6
 	With regular 1.6.x patches

	June 2005
 	Ant 1.6.5
 	Last of the 1.6 branch

	December 2006
 	Ant 1.7.0
 	The version this edition of the book was written against

New releases come out every 12–24 months; point releases, mostly bug fixes, come out about every quarter. The team strives
 to avoid breaking existing builds when adding new features and bug fixes. Nothing in this book is likely to break over time,
 although there may be easier ways of doing things and the tool will offer more features. Build files written for later versions
 of Ant do not always work in older releases—this book has targeted Ant 1.7.0, which was released in December 2006. Users of
 older versions should upgrade before continuing, while anyone without a copy of Ant should download and install the latest
 version. If needed, Appendix A contains instructions on how to do so.

1.7. Summary

 This chapter has introduced Ant, a Java tool that can build, test, and deploy Java projects ranging in size from the very
 small to the very, very large.

	Ant uses XML build files to describe what to build. Each file covers one Ant project; a project is divided into targets; targets contain tasks. These tasks are the Java classes that actually perform the construction work. Targets can depend on other targets. Ant orders
 the execution so targets execute in the correct order.

 	Ant is a free, open source project with broad support in the Java community. Modern IDEs support it, as do many developer
 tools. It also integrates well with modern test-centric development processes, bringing testing into the build process.

 	There are other tools that have the same function as Ant—to build software—but Ant is the most widely used, broadly supported
 tool in the Java world.

 	Ant is written in Java, is cross platform, integrates with all the main Java IDEs, and has a command-line interface.

Using Ant itself does not guarantee a successful Java project; it just helps. It is a tool and, like any tool, provides greatest
 benefit when used properly. We’re going to explore how to do that by looking at the tasks and types of Ant, using it to compile,
 test, package, execute, and then redistribute a Java project. Let’s start with a simple Java project, and a simple build file.

Chapter 2. A first Ant build

	2.1
 	Defining our first project
 	

	2.2
 	Step zero: creating the project directory
 	

	2.3
 	Step one: verifying the tools are in place
 	

	2.4
 	Step two: writing your first Ant build file
 	

	2.5
 	Step three: running your first build
 	

	2.6
 	Step four: imposing structure
 	

	2.7
 	Step five: running our program
 	

	2.8
 	Ant command-line options
 	

	2.9
 	Examining the final build file
 	

	2.10
 	Running the build under an IDE
 	

	2.11
 	Summary
 	

Let’s start this gentle introduction to Ant with a demonstration of what it can do. The first chapter described how Ant views
 a project: a project contains targets, each of which is a set of actions—tasks—that perform part of the build. Targets can
 depend on other targets, all of which are declared in an XML file, called a build file.

 This chapter will show you how to use Ant to compile and run a Java program, introducing Ant along the way.

2.1. Defining our first project

 Compiling and running a Java program under Ant will introduce the basic concepts of Ant—its command line, the structure of
 a build file, and some of Ant’s tasks.

 Table 2.1 shows the steps we will walk though to build and run a program under Ant.

 Table 2.1. The initial steps to building and running a program

	
 Task

 	
 Covered in

	Step zero: creating the project directory
 	Section 2.2

	Step one: verifying the tools are in place
 	Section 2.3

	Step two: writing your first Ant build file

OEBPS/ch01ex01-1.jpg
packagenames="org.*" /> | org.” source files
</targets

starget hame="packsger depends=rcompilerdscr 5

£ : Create a JAR file
<jar destfile-rdist/project.jar)
basedir-rbuild/classes"/> e i
</target>
<target name-"deploy" depends-"package" >
<ftp server-r3(server.name)"
userid="${ftp.username}" Upload all files in
password="3(ftp.password)"> | the dist directory
<fileset dir="dist"/> to the ftp server
</gtps
</target>

</project>

OEBPS/01fig01.jpg
ourproject: Project
init : Target

-~
compile : Target doo : Target
O davacTask) (djavadoc> Task

OEBPS/ch01ex01-0.jpg
<project name=rourproject” default=rdeploy"s

<target name="initns
<mkdir dirs'build/classes’ />
<mkdir dir=rdist® />
</target>

Create two output
directories for
generated files

<target name="compile" depends="init"s
<javac sredir=rercr
destdir="build/classes’/>
</target>

Compile the Java source

<target name-rdoc depends="init’ >
<javadoc destdir="build/classes’ | Create the
sourcepath=rsrcr javadocs of all

OEBPS/iiifig01.jpg

OEBPS/ant-logo.jpg
ANT 1.7

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/ivfig01.jpg

OEBPS/cover.jpg
Steve Lovghran
ik Hatcher

IN ACTION

uuuuuuu

