

 [image: cover]

OCP Java SE 7 Programmer II Certification Guide: Prepare for the 1ZO-804 exam

 Mala Gupta

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Technical editor: George Zurowski
Copyeditor: Jodie Allen
Proofreader: Alyson Brener
Technical proofreaders: Roel De Nijs, Jean-François Morin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291487

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 20 19 18 17 16 15

Dedication

 To Dheeraj, my pillar of strength

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter Introduction

 Chapter 1. Java class design

 Chapter 2. Advanced class design

 Chapter 3. Object-oriented design principles

 Chapter 4. Generics and collections

 Chapter 5. String processing

 Chapter 6. Exceptions and assertions

 Chapter 7. Java I/O fundamentals

 Chapter 8. Java file I/O (NIO.2)

 Chapter 9. Building database applications with JDBC

 Chapter 10. Threads

 Chapter 11. Concurrency

 Chapter 12. Localization

 Answers to “Twist in the Tale” exercises

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter Introduction

 Disclaimer

 Introduction to OCP Java SE 7 Programmer II certification (1Z0-804)

 The importance of the OCP Java SE 7 Programmer II certification

 Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP Java SE 7 Programmer II (1Z0-804) exams

 Complete exam objectives, mapped to book chapters, and readiness checklist

 FAQ

 FAQ on exam preparation

 FAQ on taking the exam

 The testing engine used in the exam

 Chapter 1. Java class design

 1.1. Java access modifiers

 1.1.1. Public access modifier

 1.1.2. Protected access modifier

 1.1.3. Default access (package access)

 1.1.4. The private access modifier

 1.1.5. Access modifiers and Java entities

 1.1.6. Effects of changing access modifiers for existing entities

 1.2. Overloaded methods and constructors

 1.2.1. Argument list

 1.2.2. When methods can’t be defined as overloaded methods

 1.2.3. Overloaded constructors

 1.3. Method overriding and virtual method invocation

 1.3.1. Need of overridden methods

 1.3.2. Correct syntax of overriding methods

 1.3.3. Can you override all methods from the base class or invoke them virtually?

 1.3.4. Identifying method overriding, overloading, and hiding

 1.3.5. Can you override base class constructors or invoke them virtually?

 1.4. Overriding methods of class Object

 1.4.1. Overriding method toString()

 1.4.2. Overriding method equals()

 1.4.3. Overriding method hashCode()

 1.5. Casting and the instanceof operator

 1.5.1. Implicit and explicit casting

 1.5.2. Combinations of casting

 1.5.3. Using the instanceof operator

 1.6. Packages

 1.6.1. The need for packages

 1.6.2. Defining classes in a package using the package statement

 1.6.3. Using simple names with import statements

 1.6.4. Using packages without using the import statement

 1.6.5. Importing a single member versus all members of a package

 1.6.6. The import statement doesn’t import the whole package tree

 1.6.7. Importing classes from the default package

 1.6.8. Static imports

 1.7. Summary

 Review Notes

 Java access modifiers

 Overloaded methods and constructors

 Method overriding and virtual method invocation

 Java packages

 Sample exam questions

 Answers to sample exam questions

 Chapter 2. Advanced class design

 2.1. Abstract classes and their application

 2.1.1. Identify abstract classes

 2.1.2. Construct abstract classes and subclasses

 2.1.3. Understand the need for abstract classes

 2.1.4. Follow the dos and don’ts of creating and using abstract classes

 2.1.5. Compare abstract classes and concrete classes

 2.2. Static and final keywords

 2.2.1. Static modifier

 2.2.2. Nonaccess modifier—final

 2.3. Enumerated types

 2.3.1. Understanding the need for and creating an enum

 2.3.2. Adding implicit code to an enum

 2.3.3. Extending java.lang.Enum

 2.3.4. Adding variables, constructors, and methods to your enum

 2.3.5. Where can you define an enum?

 2.4. Static nested and inner classes

 2.4.1. Advantages of inner classes

 2.4.2. Static nested class (also called static inner class)

 2.4.3. Inner class (also called member class)

 2.4.4. Anonymous inner classes

 2.4.5. Method local inner classes

 2.4.6. Disadvantages of inner classes

 2.5. Summary

 Review Notes

 Abstract classes

 Nonaccess modifier—static

 Nonaccess modifier—final

 Enumerated types

 Static nested classes

 Inner classes

 Anonymous inner classes

 Method local inner classes

 Sample exam questions

 Answers to sample exam questions

 Chapter 3. Object-oriented design principles

 3.1. Interfaces

 3.1.1. Understanding interfaces

 3.1.2. Declaring interfaces

 3.1.3. Implementing interfaces

 3.1.4. Extending interfaces

 3.2. Class inheritance versus interface inheritance

 3.2.1. Comparing class inheritance and interface inheritance

 3.2.2. Preferring class inheritance over interface inheritance

 3.2.3. Preferring interface inheritance over class inheritance

 3.3. IS-A and HAS-A relationships in code

 3.3.1. Identifying and implementing an IS-A relationship

 3.3.2. Identifying and implementing a HAS-A relationship

 3.4. Cohesion and low coupling

 3.4.1. Cohesion

 3.4.2. Coupling

 3.5. Object composition principles

 3.6. Introduction to design patterns

 3.6.1. What is a design pattern?

 3.6.2. Why do you need a design pattern?

 3.7. Singleton pattern

 3.7.1. Why do you need this pattern?

 3.7.2. Implementing the Singleton pattern

 3.7.3. Ensuring creation of only one object in the Singleton pattern

 3.7.4. Comparing Singleton with global data

 3.8. Factory pattern

 3.8.1. Simple Factory pattern (or Static Factory pattern)

 3.8.2. Factory Method pattern

 3.8.3. Abstract Factory pattern

 3.8.4. Benefits of the Factory pattern

 3.8.5. Using the Factory pattern from the Java API

 3.9. DAO pattern

 3.9.1. What is the DAO pattern?

 3.9.2. Implementing the DAO pattern

 3.9.3. Using the Simple Factory pattern with the DAO pattern

 3.9.4. Using the Factory Method or Abstract Factory pattern with the DAO pattern

 3.9.5. Benefits of the DAO pattern

 3.10. 	Summary

 Review Notes

 Interfaces

 Class inheritance versus interface inheritance

 IS-A and HAS-A relationships in code

 Cohesion and low coupling

 Object composition principles

 Singleton pattern

 Factory pattern

 DAO pattern

 Sample exam questions

 Answers to sample exam questions

 Chapter 4. Generics and collections

 4.1. Introducing generics: WARM-UP

 4.1.1. Need for introducing generics

 4.1.2. Benefits and complexities of using generics

 4.2. Creating generic entities

 4.2.1. Creating a generic class

 4.2.2. Working with generic interfaces

 4.2.3. Using generic methods

 4.2.4. Bounded type parameters

 4.2.5. Using wildcards

 4.2.6. Using bounded wildcards

 4.2.7. Type erasure

 4.2.8. Refreshing the commonly used terms

 4.3. Using type inference

 4.3.1. Using type inference to instantiate a generic class

 4.3.2. Using type inference to invoke generic methods

 4.4. Understanding interoperability of collections using raw types and generic types

 4.4.1. Mixing reference variables and objects of raw and generic types

 4.4.2. Subtyping with generics

 4.5. Introducing the collections framework: WARM-UP

 4.6. Working with the Collection interface

 4.6.1. The core Collection interface

 4.6.2. Methods of the Collection interface

 4.7. Creating and using List, Set, and Deque implementations

 4.7.1. List interface and its implementations

 4.7.2. Deque interface and its implementations

 4.7.3. Set interface and its implementations

 4.7.4. Set implementation classes

 4.8. Map and its implementations

 4.8.1. Map interface

 4.8.2. HashMap

 4.8.3. LinkedHashMap

 4.8.4. TreeMap

 4.9. Using java.util.Comparator and java.lang.Comparable

 4.9.1. Comparable interface

 4.9.2. Comparator interface

 4.10. Sorting and searching arrays and lists

 4.10.1. Sorting arrays

 4.10.2. Sorting List using Collections

 4.10.3. Searching arrays and List using collections

 4.11. Using wrapper classes

 4.11.1. Class hierarchy of wrapper classes

 4.11.2. Creating objects of the wrapper classes

 4.11.3. Retrieving primitive values from the wrapper classes

 4.11.4. Parsing a string value to a primitive type

 4.11.5. Difference between using method valueOf() and constructors of wrapper classes

 4.11.6. Comparing objects of wrapper classes

 4.12. Autoboxing and unboxing

 4.13. Summary

 Review Notes

 Creating generic entities

 Using type inference

 Understanding interoperability of collections using raw types and generic types

 Working with the Collection interface

 Creating and using List, Set, and Deque implementations

 Map and its implementations

 Using java.util.Comparator and java.lang.Comparable

 Sorting and searching arrays and lists

 Using wrapper classes

 Autoboxing and Unboxing

 Sample exam questions

 Answers to sample exam questions

 Chapter 5. String processing

 5.1. Regular expressions

 5.1.1. What is a regular expression?

 5.1.2. Character classes

 5.1.3. Predefined character classes

 5.1.4. Matching boundaries

 5.1.5. Quantifiers

 5.1.6. Java’s regex support

 5.2. Searching, parsing, and building strings

 5.2.1. Searching strings

 5.2.2. Replacing strings

 5.2.3. Parsing and tokenizing strings with Scanner and StringTokenizer

 5.3. Formatting strings

 5.3.1. Formatting classes

 5.3.2. Formatting methods

 5.3.3. Defining format strings

 5.3.4. Formatting parameter %b

 5.3.5. Formatting parameter %c

 5.3.6. Formatting parameters %d and %f

 5.3.7. Formatting parameter %s

 5.4. Summary

 Review Notes

 Regular expressions

 Search, parse, and build strings

 Formatting strings

 Sample exam questions

 Answers to sample exam questions

 Chapter 6. Exceptions and assertions

 6.1. Using the throw statement and the throws clause

 6.1.1. Creating a method that throws a checked exception

 6.1.2. Using a method that throws a checked exception

 6.1.3. Creating and using a method that throws runtime exceptions or errors

 6.1.4. Points to note while using the throw statement and the throws clause

 6.2. Creating custom exceptions

 6.2.1. Creating a custom checked exception

 6.2.2. Creating a custom unchecked exception

 6.3. Overriding methods that throw exceptions

 Rule 1: If a base class method doesn’t declare to throw a checked exception, an overriding method in the derived class can’t
 declare to throw a checked exception

 Rule 2: If a base class method declares to throw a checked exception, an overriding method in the derived class can choose
 not to declare to throw any checked exception

 Rule 3: If a base class method declares to throw a checked exception, an overriding method in the derived class cannot declare
 to throw a superclass of the exception thrown by the one in the base class

 Rule 4: If a base class method declares to throw a checked exception, an overriding method in the derived class can declare
 to throw the same exception

 Rule 5: If a base class method declares to throw a checked exception, an overriding method in the derived class can declare
 to throw a derived class of the exception thrown by the one in the base class

 6.4. Using the try statement with multi-catch and finally clauses

 6.4.1. Comparing single-catch handlers and multi-catch handlers

 6.4.2. Handling multiple exceptions in the same exception handler

 6.5. Auto-closing resources with a try-with-resources statement

 6.5.1. How to use a try-with-resources statement

 6.5.2. Suppressed exceptions

 6.5.3. The right ingredients

 6.6. Using assertions

 6.6.1. Exploring the forms of assertions

 6.6.2. Testing invariants in your code

 6.6.3. Understanding appropriate and inappropriate uses of assertions

 6.7. Summary

 Review Notes

 Using the throw statement and the throws clause

 Custom exceptions

 Overriding methods that throw exceptions

 try statement with multi-catch and finally clauses

 Auto-close resources with try-with-resources statement

 Assertions

 Sample exam questions

 Answers to sample exam questions

 Chapter 7. Java I/O fundamentals

 7.1. Introducing Java I/O: WARM-UP

 7.1.1. Understanding streams

 7.1.2. Understanding multiple flavors of data

 7.2. Working with class java.io.File

 7.2.1. Instantiating and querying File instances

 7.2.2. Creating new files and directories on your physical device

 7.3. Using byte stream I/O

 7.3.1. Input streams

 7.3.2. Output streams

 7.3.3. File I/O with byte streams

 7.3.4. Buffered I/O with byte streams

 7.3.5. Primitive values and strings I/O with byte streams

 7.3.6. Object I/O with byte streams: reading and writing objects

 7.4. Using character I/O with readers and writers

 7.4.1. Abstract class java.io.Reader

 7.4.2. Abstract class java.io.Writer

 7.4.3. File I/O with character streams

 7.4.4. Buffered I/O with character streams

 7.4.5. Data streams with character streams: using PrintWriter to write to a file

 7.4.6. Constructor chaining with I/O classes

 7.5. Working with the console

 7.6. Summary

 Review Notes

 Working with class java.io.File

 Using byte stream I/O

 Using character I/O with readers and writers

 Working with the console

 Sample exam questions

 Answers to sample exam questions

 Chapter 8. Java file I/O (NIO.2)

 8.1. Path objects

 8.1.1. Multiple ways to create Path objects

 8.1.2. Methods to access Path components

 8.1.3. Comparing paths

 8.1.4. Converting relative paths to absolute paths

 8.1.5. Resolving paths using methods resolve and resolveSibling

 8.1.6. Method relativize()

 8.2. Class Files

 8.2.1. Create files and directories

 8.2.2. Check for the existence of files and directories

 8.2.3. Copy files

 8.2.4. Move files and directories

 8.2.5. Delete files and directories

 8.2.6. Commonly thrown exceptions

 8.3. Files and directory attributes

 8.3.1. Individual attributes

 8.3.2. Group of attributes

 8.3.3. Basic attributes

 8.3.4. DOS attributes

 8.3.5. POSIX attributes

 8.3.6. AclFileAttributeView interface

 8.3.7. FileOwnerAttributeView interface

 8.3.8. UserDefinedAttributeView interface

 8.4. Recursively access a directory tree

 8.4.1. FileVisitor interface

 8.4.2. Class SimpleFileVisitor

 8.4.3. Initiate traversal for FileVisitor and SimpleFileVisitor

 8.4.4. DirectoryStream interface

 8.5. Using PathMatcher

 8.6. Watch a directory for changes

 8.6.1. Create WatchService object

 8.6.2. Register with WatchService object

 8.6.3. Access watched events using WatchKey interface

 8.6.4. Processing events

 8.7. Summary

 Review Notes

 Path objects

 Class Files

 Files and directory attributes

 Recursively access a directory tree

 Using PathMatcher

 Watch a directory for changes

 Sample exam questions

 Answers to sample exam questions

 Chapter 9. Building database applications with JDBC

 9.1. Introduction

 9.1.1. JDBC API overview

 9.1.2. JDBC architecture

 9.1.3. JDBC drivers

 9.2. Interfaces that make up the JDBC API core

 9.2.1. Interface java.sql.Driver

 9.2.2. Interface java.sql.Connection

 9.2.3. Interface java.sql.Statement

 9.2.4. Interface java.sql.ResultSet

 9.3. Connecting to a database

 9.3.1. Loading JDBC drivers

 9.3.2. Use DriverManager to connect to a database

 9.3.3. Exceptions thrown by database connections

 9.4. CRUD (create, retrieve, update, and delete) operations

 9.4.1. Read table definition and create table

 9.4.2. Mapping SQL data types to Java data types

 9.4.3. Insert rows in a table

 9.4.4. Update data in a table

 9.4.5. Delete data in a table

 9.4.6. Querying database

 9.5. JDBC transactions

 9.5.1. A transaction example

 9.5.2. Create savepoints and roll back partial transactions

 9.5.3. Commit modes and JDBC transactions

 9.6. RowSet objects

 9.6.1. Interface RowSetFactory

 9.6.2. Class RowSetProvider

 9.6.3. An example of working with JdbcRowSet

 9.7. Precompiled statements

 9.7.1. Prepared statements

 9.7.2. Interface CallableStatement

 9.7.3. Database-stored procedures with parameters

 9.8. Summary

 Review Notes

 Introduction

 Interfaces that make up the JDBC API core

 Connecting to a database

 CRUD (create, retrieve, update, and delete) operations

 JDBC transactions

 RowSet objects

 Precompiled statements

 Sample exam questions

 Answers to sample exam questions

 Chapter 10. Threads

 10.1. Create and use threads

 10.1.1. Extending class Thread

 10.1.2. Implement interface Runnable

 10.2. Thread lifecycle

 10.2.1. Lifecycle of a thread

 10.2.2. Methods of class Thread

 10.2.3. Start thread execution

 10.2.4. Pause thread execution

 10.2.5. End thread execution

 10.3. Protect shared data

 10.3.1. Identifying shared data: WARM-UP

 10.3.2. Thread interference

 10.3.3. Thread-safe access to shared data

 10.3.4. Immutable objects are thread safe

 10.3.5. Volatile variables

 10.4. Identify and fix code in a multithreaded environment

 10.4.1. Variables you should care about

 10.4.2. Operations you should care about

 10.4.3. Waiting for notification of events: using wait, notify, and notifyAll

 10.4.4. Deadlock

 10.4.5. Starvation

 10.4.6. Livelock

 10.4.7. Happens-before relationship

 10.5. Summary

 Review Notes

 Create and use threads

 Thread lifecycle

 Methods of class Thread

 Protect shared data

 Identify and fix code in a multithreaded environment

 Sample exam questions

 Answers to sample exam questions

 Chapter 11. Concurrency

 11.1. Concurrent collection classes

 11.1.1. Interface BlockingQueue

 11.1.2. Interface ConcurrentMap

 11.1.3. Class ConcurrentHashMap

 11.2. Locks

 11.2.1. Acquire lock

 11.2.2. Acquire lock and return immediately

 11.2.3. Interruptible locks

 11.2.4. Nonblock-structured locking

 11.2.5. Interface ReadWriteLock

 11.2.6. Class ReentrantReadWriteLock

 11.2.7. Atomic variables

 11.3. Executors

 11.3.1. Interface Executor

 11.3.2. Interface Callable

 11.3.3. Interface ExecutorService

 11.3.4. Thread pools

 11.3.5. Interface ScheduledExecutorService

 11.4. Parallel fork/join framework

 11.5. Summary

 Review Notes

 Concurrent collection classes

 Locks

 Executors

 Parallel fork/join framework

 Sample exam questions

 Answers to sample exam questions

 Chapter 12. Localization

 12.1. Internationalization and localization

 12.1.1. Advantages of localization

 12.1.2. Class java.util.Locale

 12.1.3. Creating and accessing Locale objects

 12.1.4. Building locale-aware applications

 12.2. Resource bundles

 12.2.1. Implementing resource bundles using .properties files

 12.2.2. Implementing resource bundles using ListResourceBundle

 12.2.3. Loading resource bundles for invalid values

 12.3. Formatting dates, numbers, and currencies for locales

 12.3.1. Format numbers

 12.3.2. Format currencies

 12.3.3. Format dates

 12.3.4. Formatting and parsing time for a specific locale

 12.3.5. Formatting and parsing date and time together for a specific locale

 12.3.6. Using custom date and time patterns with SimpleDateFormat

 12.3.7. Creating class Date object using class Calendar

 12.4. Summary

 Review Notes

 Internationalization and localization

 Resource bundles

 Formatting dates, numbers, and currencies for locales

 Sample exam questions

 Answers to sample exam questions

 Answers to “Twist in the Tale” exercises

 A.1. Chapter 1: Java class design

 A.1.1. Twist in the Tale 1.1

 A.1.2. Twist in the Tale 1.2

 A.1.3. Twist in the Tale 1.3

 A.1.4. Twist in the Tale 1.4

 A.2. Chapter 2: Advanced class design

 A.2.1. Twist in the Tale 2.1

 A.2.2. Twist in the Tale 2.2

 A.2.3. Twist in the Tale 2.3

 A.2.4. Twist in the Tale 2.4

 A.2.5. Twist in the Tale 2.5

 A.2.6. Twist in the Tale 2.6

 A.3. Chapter 3: Object-oriented design principles

 A.3.1. Twist in the Tale 3.1

 A.3.2. Twist in the Tale 3.2

 A.3.3. Twist in the Tale 3.3

 A.4. Chapter 4: Generics and collections

 A.4.1. Twist in the Tale 4.1

 A.4.2. Twist in the Tale 4.2

 A.4.3. Twist in the Tale 4.3

 A.4.4. Twist in the Tale 4.4

 A.4.5. Twist in the Tale 4.5

 A.4.6. Twist in the Tale 4.6

 A.4.7. Twist in the Tale 4.7

 A.5. Chapter 5: String processing

 A.5.1. Twist in the Tale 5.1

 A.5.2. Twist in the Tale 5.2

 A.5.3. Twist in the Tale 5.3

 A.6. Chapter 6: Exceptions and assertions

 A.6.1. Twist in the Tale 6.1

 A.6.2. Twist in the Tale 6.2

 A.6.3. Twist in the Tale 6.3

 A.6.4. Twist in the Tale 6.4

 A.7. Chapter 7: Java I/O fundamentals

 A.7.1. Twist in the Tale 7.1

 A.8. Chapter 8: Java file I/O (NIO.2)

 A.8.1. Twist in the Tale 8.1

 A.8.2. Twist in the Tale 8.2

 A.9. Chapter 9: Building database applications with JDBC

 A.10. Chapter 10: Threads

 A.10.1. Twist in the Tale 10.1

 A.10.2. Twist in the Tale 10.2

 A.10.3. Twist in the Tale 10.3

 A.10.4. Twist in the Tale 10.4

 A.11. Chapter 11: Concurrency

 A.11.1. Twist in the Tale 11.1

 A.11.2. Twist in the Tale 11.2

 A.11.3. Twist in the Tale 11.3

 A.12. Chapter 12: Localization

 A.12.1. Twist in the Tale 12.1

 A.12.2. Twist in the Tale 12.2

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 The OCP Java SE Programmer II certification is designed to tell would-be employers that you really know your basic and advanced
 Java stuff. It certifies that you understand and can work with design patterns and advanced Java concepts like concurrency,
 multithreading, localization, string processing, and JDBC. The exam preparation helps you to understand the finer details
 of the Java language and its implementation and usage, which is crucial to writing quality code.

 Cracking this exam is not an easy task. Thorough preparation is crucial if you want to pass the exam the first time with a
 score that you can be proud of. You need to know Java inside and out, and you need to understand the certification process
 so that you’re ready for the challenging questions you’ll face on the exam.

 This book is a comprehensive guide to the 1Z0-804 exam. You’ll explore a wide range of important Java topics as you systematically
 learn how to pass the certification exam. Each chapter starts with a list of the exam objectives covered in that chapter.
 Throughout the book you’ll find sample questions and exercises designed to reinforce key concepts and prepare you for what
 you’ll see on the real exam, along with numerous tips, notes, and visual aids.

 Unlike many other exam guides, this book provides multiple ways to digest important techniques and concepts, including comic
 conversations, analogies, pictorial representations, flowcharts, UML diagrams, and, naturally, lots of well-commented code.

 The book also gives insight into typical exam question mistakes and guides you in avoiding traps and pitfalls. It provides

 	Complete coverage of exam topics, all mapped to chapter and section numbers

 	Hands-on coding exercises, including particularly challenging ones that throw in a twist

 	Instruction on what’s happening behind the scenes using the actual code from the Java API source

 	Everything you need to master both the concepts and the exam

 This book is written for developers with a working knowledge of Java. My hope is that the book will deepen your knowledge,
 prepare you well for the exam, and that you will pass it with flying colors!

Acknowledgments

 First and foremost, I thank Dheeraj. He helped me to get started with this book, and his guidance, encouragement, and love
 enabled me to get over the goal line.

 My sincere gratitude to Marjan Bace, publisher at Manning, for giving me the opportunity to author this book.

 An extremely talented individual, Cynthia Kane, my development editor at Manning, was a pleasure to work with. She not only
 helped me improve the organization of the chapters, she also pulled me up whenever the task of completing the book became
 overwhelming for me.

 The contributions of Roel De Nijs, technical proofreader on this book, are unparalleled. His feedback helped me to improve
 all sections and chapters. Jean-François Morin, technical proofreader for a few chapters, also helped me to improve the book
 just before it went into production.

 Gregor Zurowski, my technical editor, provided great insight and helped iron out technical glitches as the book was being
 written.

 Apart from applying her magic to sentence and language constructions, Jodie Allen, my copyeditor, was very supportive and
 patient in applying changes across all chapters.

 I’d also like to thank Ozren Harlovic, review editor, for managing the review process and meticulously funneling the feedback
 to me to make this book better.

 Mary Piergies, Alyson Brener, and Kevin Sullivan were awesome in their expertise at turning all text, code, and images into
 publishable form. I am also grateful to Candace Gillhoolley and Ana Radic for managing the promotion of this book.

 Next, I’d like to thank all the MEAP readers for trusting me by buying the book while it was being written. I thank them for
 their patience, suggestions, corrections, and encouragement.

 Technical reviewers helped in validating the chapters’ contents at various stages of their development. The reviewers’ detailed
 and helpful feedback helped me to improve the book throughout the writing process: Alexander Schwartz, Ashutosh Sharma, Bill
 Weiland, Colin Hastie, Dylan Scott, Jamie Atkinson, Kevin Vig, Kyle Smith, Manish Verma, Mikael Strand, Mikalai Zaikin, Robin
 Coe, Simon Joseph Aquilina, Steve Etherington, and Witold Bolt. Special shout-out to Mikalai for his detailed feedback—it
 helped me to improve the contents enormously.

 I thank my former colleagues Harry Mantheakis, Paul Rosenthal, and Selvan Rajan, whose names I have used in coding examples
 throughout the book. I have always looked up to them.

 Finally, I thank my parents and my daughters, Shreya and Pavni. This book would have been not been possible without their
 unconditional support, love, and encouragement.

About this Book

 This book is written for developers with a working knowledge of Java who want to earn the OCP Java SE 7 Programmer II certification
 (exam 1Z0-804). It uses powerful tools and features to make reaching your goal of certification a quick, smooth, and enjoyable
 experience. This section will explain the features used in the book and tell you how to use the book to get the most out of
 it as you prepare for the certification exam. More information on the exam and on how the book is organized is available in
 the Introduction.

Start your preparation with the chapter-based exam objective map

 I strongly recommend a structured approach to preparing for this exam. To help you with this task, I’ve developed a chapter-based
 exam objective map, as shown in figure 1. The full version is in the Introduction (table 2).

 Figure 1. The Introduction to this book provides a list of all exam objectives and the corresponding chapter and section numbers where
 they are covered.

 	
 	
 Exam objective as per Oracle’s website

 	
 Covered in chapter/section

 	1
 	Java Class Design
 	Chapter 1

 	1.1
 	Use access modifiers: private, protected, and public
 	Section 1.1

 	1.2
 	Override methods
 	Section 1.3

 	1.3
 	Overload constructors and methods
 	Section 1.2

 The map in the Introduction shows the complete exam objective list mapped to the relevant chapter and section numbers. You
 can jump to the relevant section number to work on a particular exam topic.

Chapter-based objectives

 Each chapter starts with a list of the exam objectives covered in that chapter, as shown in figure 2. This list is followed by a quick comparison of the major concepts and topics covered in the chapter with real-world objects
 and scenarios.

 Figure 2. An example of the list of exam objectives and brief explanations at the beginning of each chapter

 	
 Exam objectives covered in this chapter

 	
 What you need to know

 	[3.1] Write code that declares, implements, and/or extends interfaces
 	The need for interfaces. How to declare, implement, and extend interfaces. Implications of implicit modifiers that are added
 to an interface and its members.

 	[3.2] Choose between interface inheritance and class inheritance
 	The differences and similarities between implementing inheritance by using interfaces and by using abstract or concrete classes.
 Factors that favor using interface inheritance over class inheritance, and vice versa.

Section-based objectives

 Each main section in a chapter starts by identifying the exam objective(s) that it covers. Each listed exam topic starts with
 the exam objective and its subobjective number.

 In figure 3, the number 4.2 refers to section 4.2 in chapter 4 (the complete list of chapters and sections can be found in the contents). The 4.1 preceding the exam objective refers to
 the objective’s numbering in the list of exam objectives on Oracle’s website (the complete numbered list of exam objectives
 is given in table 2 in the Introduction).

 Figure 3. An example of the beginning of a section, identifying the exam objective that it covers

 [image:]

Exam tips

 Each chapter provides multiple exam tips to re-emphasize the points that are the most confusing, overlooked, or frequently answered incorrectly by candidates and
 that therefore require special attention for the exam. Figure 4 shows an example.

 Figure 4. Example of an exam tip; they occur multiple times in a chapter

 [image:]

Notes

 All chapters also include multiple notes, which draw your attention to points that should be noted while you’re preparing
 for the exam. Figure 5 shows an example.

 Figure 5. Example note

 [image:]

Sidebars

 Sidebars contain information that may not be directly relevant to the exam but that is related to it. Figure 6 shows an example.

 Figure 6. Example sidebar

 [image:]

Images

 I’ve used a lot of images in the chapters for an immersive learning experience. I believe that a simple image can help you
 understand a concept quickly, and a little humor can help you to retain information longer.

 Simple images are used to draw your attention to a particular line of code (as shown in figure 7).

 Figure 7. An example image that draws your attention to a particular line of code

 [image:]

 As shown in figure 8, I’ve used pictorial representation to aid better understanding of how Java concepts work.

 Figure 8. An example of pictorial representation of how the compiler handles data in an array

 [image:]

 To reinforce important points and help you retain them longer, a little humor has been added using comic strips (as in figure 9).

 Figure 9. An example of a little humor to help you remember that the finally block always executes

 [image:]

 I’ve also used images to group and represent information for quick reference. Figure 10 shows an example of a rather raw form of the UML diagram that you may draw on an erasable board while taking your exam to
 represent an IS-A relationship between classes and interfaces. I strongly recommend that you try to create a few of your own
 figures like these.

 Figure 10. An example of grouping and representing information for quick reference

 [image:]

 An image can also add more meaning to a sequence of steps explained in the text. For example, figure 11 seems to bring the process of adding and removing items to an ArrayList to life by showing placement of the existing items
 at each step. Again, try a few of your own. It’ll be fun!

 Figure 11. An example image showing how existing elements are placed when items are added to or removed from an ArrayList

 [image:]

 The exam requires that you know multiple methods from collection classes, File I/O, NIO.2, concurrency, and others. The number
 of these methods can be overwhelming, but grouping these methods according to their functionality can make this task a lot
 more manageable. Figure 12 shows an example of an image that groups methods of the Queue class used to work with Deque as FIFO.

 Figure 12. An example image showing Queue methods used to work with Deque as a FIFO data structure

 [image:]

 String processing expressions can be hard to comprehend. Figure 13 is an example of an image that can help you understand the strings that match a regular expression.

 Figure 13. Example of image showing the strings that match a regex pattern

 [image:]

 In multithreading, the same code can be executed by multiple threads. Such code can be difficult to comprehend. Figure 14 is an example of an image that clearly shows how the variable values of book:Book might be modified by multiple threads.

 Figure 14. An example of how interleaving threads can lead to incorrect results

 [image:]

Twist in the Tale exercises

 Each chapter includes a few Twist in the Tale exercises. For these exercises, I’ve tried to use modified code from the examples
 already covered in a chapter, and the “Twist in the Tale” title refers to modified or tweaked code. These exercises highlight
 how even small code modifications can change the behavior of your code. They should encourage you to carefully examine all
 of the code on the exam.

 My main reason for including these exercises is that on the real exam you may be asked to answer more than one question that
 seems exactly the same as another. But upon closer inspection, you’ll realize that these questions differ slightly, and that
 these differences change the behavior of the code and the correct answer option.

 The answers to all of the Twist in the Tale exercises are given in the appendix.

Review Notes

 When you’re ready to take your exam, don’t forget to reread the review notes a day before or on the morning of the exam. These
 notes contain important points from each chapter as a quick refresher.

Exam questions

 Each chapter concludes with a set of sample exam questions. These follow the same pattern as the real exam questions. Attempt
 these exam questions after completing a chapter.

Answers to exam questions

 The answers to all exam questions provide detailed explanations, including why options are correct or incorrect. Mark your
 incorrect answers and identify the sections that you need to reread. If possible, draw a few diagrams—you’ll be amazed at
 how much they can help you retain the concepts. Give it a try—it’ll be fun!

This book online

 More information and a bonus chapter consisting of a mock exam can be found online at www.manning.com/gupta2.

Author Online

 The purchase of this book includes free access to a private web forum run by Manning Publications, where you can make comments,
 ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/gupta2. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest her interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 Mala Gupta is passionate about making people employable by bridging the gap between their existing and required skills. In
 her quest to fulfill this mission, she is authoring books to help IT professionals and students on industry-recognized Oracle
 Java certifications.

 Mala has a master’s degree in computer applications along with multiple other certifications from Oracle. With over a decade
 and a half of experience working in IT as a developer, architect, trainer, and mentor, she has worked with international training
 and software services organizations on various Java projects. She is experienced in mentoring teams on technical and process
 skills.

 She is the founder and lead mentor of a portal (www.ejavaguru.com) that has offered Java courses for Oracle certification since 2006.

 Mala is a firm believer in creativity as an essential life skill. To popularize the importance of creativity, innovation,
 and design in life, she started “KaagZevar” (www.facebook.com/KaagZevar)—a platform to nurture design and creativity in life.

About the cover illustration

 The figure on the cover this book is captioned “The habit of a French merchant in 1700.” The illustration is taken from Thomas
 Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “geographer to King George III.” An English cartographer
 who was the leading map supplier of his day, Jefferys engraved and printed maps for government and other official bodies and
 produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest
 in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late eighteenth century, and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It is now hard to tell the inhabitants of one continent apart from another. Perhaps, trying to view it optimistically,
 we have traded cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual
 and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jefferys’ pictures.

Introduction

 This introduction covers

 	Introduction to the Oracle Certified Professional (OCP) Java SE 7 Programmer II certification (exam number 1Z0-804)

 	Importance of OCP Java SE 7 Programmer II certification

 	Detailed exam objectives, mapped to book chapters

 	FAQ on exam preparation and on taking the exam

 	Introduction to the testing engine used for the exam

 This book is intended specifically for individuals who wish to earn the Oracle Certified Professional (OCP) Java SE 7 Programmer
 II certification (exam number 1Z0-804). It assumes that you have practical experience of working with Java. If you are completely
 new to Java or to object-oriented languages, I suggest that you start your journey with an entry-level book and then come
 back to this one.

Disclaimer

 The information in this chapter is sourced from Oracle.com, public websites, and user forums. Input has been taken from real
 people who have earned Java certification, including the author. All efforts have been made to maintain the accuracy of the
 content, but the details of the exam—including its objectives, pricing, pass score, total number of questions, and maximum
 duration—are subject to change per Oracle’s policies. The author and publisher of the book shall not be held responsible for
 any loss or damage accrued due to any information contained in this book or due to any direct or indirect use of this information.

Introduction to OCP Java SE 7 Programmer II certification (1Z0-804)

 The Oracle Certified Professional Java SE 7 Programmer II certification exam (1Z0-804) covers intermediate and advanced concepts
 of Java programming, such as the importance of threads, concurrency, localization, JDBC, String processing, and design patterns.

 This exam is the second of the two steps in earning the title of OCP Java SE 7 Programmer. The first step is to earn the OCA
 Java SE 7 Programmer I certification (1Z0-803).

 	

 Note

 [image:]

 Though you can write the exams 1Z0-803 and 1Z0-804 in any order to earn the title of OCP Java SE 7 Programmer, it is highly
 recommended that you write exam 1Z0-803 before exam 1Z0-804. Exam 1Z0-803 covers basics of Java and exam 1Z0-804 covers advanced
 Java topics.

 	

 This exam certifies that an individual possesses strong practical skills in intermediate and advanced Java programming language
 concepts. Table 1 lists the details of this exam.

 Table 1. Details for OCP Java SE 7 Programmer II exam (1Z0-804)

 	Exam number
 	1Z0-804

 	Java version
 	Based on Java version 7

 	Number of questions
 	90

 	Passing score
 	65%

 	Time duration
 	150 minutes

 	Pricing
 	US $245

 	Type of questions
 	Multiple-choice

The importance of the OCP Java SE 7 Programmer II certification

 Real, on-the-job projects need you to understand and work with multiple basic and advanced concepts. Apart from covering the
 finer details of basic Java-like class design, it covers advanced Java topics like threading, concurrency, localization, File
 I/O, string processing, exception handling, assertions, collections API, and design patterns. This certification establishes your expertise with these topics, increasing your prospects for better projects, jobs, remuneration,
 responsibilities, and designations.

 The OCP Java SE 7 Programmer II exam (1Z0-804) is an entry-level exam in your Java certification roadmap, as shown in figure 1. This exam is a prerequisite for most of the other Professional and Expert Oracle certifications in Java. The dashed lines
 and arrows in the figure depict the prerequisites for certifications.

 Figure 1. The OCP Java SE 7 Programmer II certification (1Z0-804) is an entry-level certification in the Java certification roadmap.
 It’s a prerequisite for writing most of the other Professional and Expert certifications in Java.

 [image:]

 As shown in figure 1, the Java certification tracks are offered under the categories Associate, Professional, Expert, and Master.

Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP Java S- SE 7 Programmer II (1Z0-804) exams

 The confusion about these two exams is due to the similarity in their names, but these are separate exams. Starting with Java
 7, Oracle has raised the bar to earn the title of Oracle Certified Professional Java SE 7 Programmer, which now requires successfully
 completing the following two exams:

 	OCA Java SE 7 Programmer I (exam number: 1Z0-803)

 	OCP Java SE 7 Programmer II (exam number: 1Z0-804)

 The OCA Java SE 7 Programmer certification is designed for individuals who possess basic skills in the Java programming language.
 Exam 1Z0-803 covers comparatively basic Java language features, such as data types, operators, decision constructs, arrays,
 methods, inheritance, and exception handling.

Complete exam objectives, mapped to book chapters, and readiness checklist

 Table 2 shows the complete list of exam objectives for the OCP Java SE 7 Programmer II exam, which was taken from Oracle’s website.
 All the objectives are mapped to the book’s chapters and the section numbers that cover them.

 Table 2. Exam objectives and subobjectives mapped to chapter and section numbers

 	
 	
 Exam objective as per Oracle’s website

 	
 Covered in chapter/section

 	1
 	Java class design
 	Chapter 1

 	1.1
 	Use access modifiers: private, protected, and public
 	Section 1.1

 	1.2
 	Override methods
 	Section 1.3

 	1.3
 	Overload constructors and methods
 	Section 1.2

 	1.4
 	Use the instanceof operator and casting
 	Section 1.5

 	1.5
 	Use virtual method invocation
 	Section 1.3

 	1.6
 	Override the hashCode, equals, and toString methods from the Object class to improve the functionality of your class
 	Section 1.4

 	1.7
 	Use package and import statements
 	Section 1.6

 	2
 	Advanced class design
 	Chapter 2

 	2.1
 	Identify when and how to apply abstract classes
 	Section 2.1

 	2.2
 	Construct abstract Java classes and subclasses
 	Section 2.1

 	2.3
 	Use the static and final keywords
 	Section 2.2

 	2.4
 	Create top-level and nested classes
 	Section 2.4

 	2.5
 	Use enumerated types
 	Section 2.3

 	3
 	Object-oriented design principles
 	Chapter 3

 	3.1
 	Write code that declares, implements, and/or extends interfaces
 	Section 3.1

 	3.2
 	Choose between interface inheritance and class inheritance
 	Section 3.2

 	3.3
 	Apply cohesion, low-coupling, IS-A, and HAS-A principles
 	
Sections 3.3, 3.4

 	3.4
 	Apply object composition principles (including HAS-A relationships)
 	Section 3.5

 	3.5
 	Design a class using the Singleton design pattern
 	Section 3.7

 	3.6
 	Write code to implement the Data Access Object (DAO) pattern
 	Section 3.9

 	3.7
 	Design and create objects using a Factory pattern
 	Section 3.8

 	4
 	Generics and collections
 	Chapter 4

 	4.1
 	Create a generic class
 	Section 4.2

 	4.2
 	Use the diamond for type inference
 	Section 4.3

 	4.3
 	Analyze the interoperability of collections that use raw types and generic types
 	Section 4.4

 	4.4
 	Use wrapper classes, autoboxing, and unboxing
 	
Sections 4.11, 4.12

 	4.5
 	Create and use List, Set, and Deque implementations
 	Section 4.7

 	4.6
 	Create and use Map implementations
 	Section 4.8

 	4.7
 	Use java.util.Comparator and java.lang.Comparable
 	Section 4.9

 	4.8
 	Sort and search arrays and lists
 	Section 4.10

 	5
 	String processing
 	Chapter 5

 	5.1
 	Search, parse, and build strings (including Scanner, StringTokenizer, StringBuilder, String, and Formatter)
 	Section 5.1

 	5.2
 	Search, parse, and replace strings by using regular expressions, using expression patterns for matching limited to: . (dot),
 * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b, \B, [], ()

 	
Sections 5.1, 5.2

 	5.3
 	Format strings using the formatting parameters: %b, %c, %d, %f, and %s in format strings
 	Section 5.3

 	6
 	Exceptions and assertions
 	Chapter 6

 	6.1
 	Use throw and throws statements
 	Section 6.1

 	6.2
 	Use the try statement with multi-catch and finally clauses
 	Section 6.4

 	6.3
 	Develop code that uses try-with-resources statements
 	Section 6.5

 	6.4
 	Create custom exceptions
 	Section 6.2

 	6.5
 	Test invariants by using assertions
 	Section 6.6

 	7
 	Java I/O fundamentals
 	Chapter 7

 	7.1
 	Read and write data from the console
 	Section 7.5

 	7.2
 	Use streams to read from and write to files by using classes in the java.io package including BufferedReader, BufferedWriter,
 File, FileReader, FileWriter, DataInput-Stream, DataOutputStream, Object-Output-Stream, ObjectInputStream, and PrintWriter

 	
Sections 7.2, 7.3, 7.4

 	8
 	Java file I/O (NIO.2)
 	Chapter 8

 	8.1
 	Operate on file and directory paths with the Path class
 	Section 8.1

 	8.2
 	Check, delete, copy, or move a file or directory with the Files class
 	Section 8.2

 	8.3
 	Read and change file and directory attributes, focusing on the BasicFileAttributes, DosFileAttributes, and PosixFileAttributes
 interfaces

 	Section 8.3

 	8.4
 	Recursively access a directory tree using the DirectoryStream and FileVisitor interfaces
 	Section 8.4

 	8.5
 	Find a file with the PathMatcher interface
 	Section 8.5

 	8.6
 	Watch a directory for changes with the WatchService interface
 	Section 8.6

 	9
 	Building database applications with JDBC
 	Chapter 9

 	9.1
 	Describe the interfaces that make up the core of the JDBC API (including Driver, Connection, Statement, and ResultSet) and
 their relationships to provider implementations

 	Section 9.2

 	9.2
 	Identify the components required to connect to a database using the DriverManager class (including the JDBC URL)
 	Section 9.3

 	9.3
 	Submit queries and read results from the database (including creating statements, returning result sets, iterating through
 the results, and properly closing result sets, statements, and connections)

 	Section 9.4

 	9.4
 	Use JDBC transactions (including disabling auto-commit mode, committing and rolling back transactions, and setting and rolling
 back to savepoints)

 	Section 9.5

 	9.5
 	Construct and use RowSet objects using the RowSetProvider class and the RowSetFactory interface
 	Section 9.6

 	9.6
 	Create and use PreparedStatement and CallableStatement objects
 	Section 9.7

 	10
 	Threads
 	Chapter 10

 	10.1
 	Create and use the Thread class and the Runnable interface
 	Section 10.1

 	10.2
 	Manage and control thread lifecycle
 	Section 10.2

 	10.3
 	Synchronize thread access to shared data
 	Section 10.3

 	10.4
 	Identify code that may not execute correctly in a multi-threaded environment
 	Section 10.4

 	11
 	Concurrency
 	Chapter 11

 	11.1
 	Use collections from the java.util.concurrent package with a focus on the advantages over and differences from the traditional
 java.util collections

 	Section 11.1

 	11.2
 	Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concurrent.locks package to support lock-free, thread-safe
 programming on single variables

 	Section 11.2

 	11.3
 	Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks using thread pools
 	Section 11.3

 	11.4
 	Use the parallel fork/join framework
 	Section 11.4

 	12
 	Localization
 	Chapter 12

 	12.1
 	Read and set the locale by using the Locale object
 	Section 12.2

 	12.2
 	Build a resource bundle for each locale
 	Section 12.2

 	12.3
 	Call a resource bundle from an application
 	Section 12.2

 	12.4
 	Format dates, numbers, and currency values for localization with the NumberFormat and DateFormat classes (including number
 format patterns)

 	Section 12.3

 	12.5
 	Describe the advantages of localizing an application
 	Section 12.1

 	12.6
 	Define a locale using language and country codes
 	Section 12.1

FAQ

 You might be anxious when you start your exam preparation or even think about getting certified. This section can help calm
 your nerves by answering frequently asked questions on exam preparation and on writing the exam.

FAQ on exam preparation

 This sections answers frequently asked questions on how to prepare for the exam, including the best approach, study material,
 preparation duration, and how to test self-readiness.

Will the exam details ever change for the OCP Java SE 7 Programmer II exam?

 Oracle can change the exam details for a certification even after the certification is made live. The changes can be made
 to any of its details, like exam objectives, pricing, exam duration, exam questions, and others. In the past, Oracle has made
 similar changes to certification exams. Such changes may not be major, but it is always advisable to check Oracle’s website
 for the latest exam information when you start your exam preparation.

What is the best way to prepare for this exam?

 Generally, candidates use a combination of resources, such as books, online study materials, articles on the exam, free and
 paid mock exams, and training to prepare for the exam. Different combinations work best for different people, and there is
 no one perfect formula for preparation. Select the method—training or self-study—that works best for you. Combine it with
 a lot of code practice and mock exams.

How do I know when I am ready for the exam?

 You can be sure about your exam readiness by consistently getting a good score on the mock exams. Generally, a score of 80% and above on approximately 7 mock exams (the more the better)
 attempted consecutively will assure you of a similar score on the real exam.

How many mock tests should I attempt before the real exam?

 Ideally, you should attempt at least five complete mock exams before you attempt the real exam. The more the better!

I have two–fours years’ experience working with Java. Do I still - need to prepare for this certification?

 There is a difference between the practical knowledge of having worked with Java and the knowledge required to pass this certification
 exam. The authors of the Java certification exams employ multiple tricks to test your knowledge. Hence, you need a structured
 preparation and approach to succeed on the certification exam.

What is the ideal time required to prepare for the exam?

 The preparation time frame mainly depends on your experience with Java and the amount of time that you can spend to prepare
 yourself. On average, you will require approximately 200 hours of study over two or three months to prepare for this exam.
 Again, the number of study hours required depends on individual learning curves and backgrounds.

 It’s important to be consistent with your exam preparation. You cannot study for a month and then restart after, say, a gap
 of a month or more.

Do I need to complete any training from Oracle?

 Though Oracle requires candidates to complete specific Oracle training programs for a few of its certification courses, it
 isn’t mandatory to complete any training from Oracle for this certification.

Does this exam include any unscored questions?

 A few of the questions that you write on any Oracle exam may be marked unscored. Oracle’s policy states that while writing
 an exam, you won’t be informed whether a question will be scored. You may be surprised to learn that as many as 10 out of
 the 90 questions on the OCP Java SE 7 Programmer II exam may be unscored. Even if you answer a few questions incorrectly,
 you stand a chance of scoring 100%.

 Oracle regularly updates its question bank for all its certification exams. These unscored questions may be used for research
 and to evaluate new questions that can be added to an exam.

Can I start my exam preparation with the mock exams?

 If you are quite comfortable with the advanced Java language features, then yes, you can start your exam preparation with
 the mock exams. This will also help you to understand the types of questions to expect on the real certification exam. But
 if you have little or no experience working with advanced Java concepts, I don’t advise you to start with the mock exams.
 The exam authors often use a lot of tricks to evaluate a candidate on the real certification exam. Starting your exam preparation
 with mock exams will only leave you confused about the Java concepts.

Should I really bother getting certified?

 Yes, you should, for the simple reason that employers bother about the certification of employees. Organizations prefer a
 certified Java developer over a noncertified Java developer with similar IT skills and experience. The certification can also
 get you a higher paycheck than uncertified peers with comparable skills.

FAQ on taking the exam

 This section contains a list of frequently asked questions related to exam registration, the exam coupon, do’s and don’t’s
 while taking the exam, and exam retakes.

Where and how do I write this exam?

 You can write this exam at an Oracle Testing Center or Pearson VUE Authorized Testing Center. To sit for the exam, you must
 register and purchase an exam voucher. The following options are available:

 	Register for the exam and pay Pearson VUE directly.

 	Purchase an exam voucher from Oracle and register at Pearson VUE to take the exam.

 	Register at an Oracle Testing Center.

 Look for the nearest testing centers in your area, register yourself, and schedule an exam date and time. Most of the popular
 computer training institutes also have a testing center on their premises. You can locate a Pearson VUE testing site at www.pearsonvue.com/oracle/, which contains detailed information on locating testing centers and scheduling or rescheduling an exam. At the time of registration,
 you’ll need to provide the following details along with your name, address, and contact numbers:

 	Exam title and number (OCP Java SE 7 Programmer II, 1Z0-804)

 	Any discount code that should be applied during registration

 	Oracle Testing ID/Candidate ID, if you have written any other Oracle/Sun certification exam(s)

 	Your OPN Company ID (If your employer is in the Oracle Partner Network, you can find out the company ID and use any available
 discounts on the exam fee.)

How long is the exam coupon valid for?

 Each exam coupon is printed with an expiration date. Beware of any discounted coupons that come with an assurance that they
 can be used past the expiration date.

Can I refer to notes or books while writing this exam?

 You can’t refer to any books or notes while writing this exam. You are not allowed to carry any blank paper for rough work
 or even your mobile phone inside the testing cubicle.

What is the purpose of marking a question while writing the exam?

 By marking a question, you can manage your time efficiently. Don’t spend a lot of time on a single question. You can mark
 a difficult question to defer answering it while writing your exam. You have an option to review answers to the marked questions
 at the end of the exam. Also, navigating from one question to another using Back and Next buttons is usually time-consuming.
 If you are unsure of an answer, mark it and review it at the end.

Can I write down the exam questions and bring them back with me?

 No. The exam centers no longer provide sheets of paper for the rough work that you may need to do while taking the exam. The
 testing center will provide you with either erasable or nonerasable boards. If you’re provided with a nonerasable board, you
 may request another one if you need it.

 Oracle is quite particular about certification candidates distributing or circulating the memorized questions in any form.
 If Oracle finds out that this is happening, it may cancel a candidate’s certificate, bar that candidate forever from writing
 any Oracle certification, inform the employer, or take legal action.

What happens if I complete the exam before or after the total time?

 If you complete the exam before the total exam time has elapsed, review your answers and click the Submit or finish button.

 If you have not clicked the Submit button and you use up all the exam time, the exam engine will no longer allow you to modify
 any of the exam answers and will present the screen with the Submit button.

Will I receive my score immediately after the exam?

 No, you won’t. When you click the Submit exam button, the screen will inform you that your exam results will be available
 in an hour. Usually Oracle sends you an email when the results can be accessed online. Even if you don’t receive an email
 from Oracle, you could log in and check your result. The result includes your score on each exam objective. The certificate
 itself will arrive via mail within six to eight weeks.

What happens if I fail? Can I retake the exam?

 It’s not the end of the world. Don’t worry if you fail. You can retake the exam after 14 days (and the world will not know
 it’s a retake).

 However, you cannot retake a passed exam to improve your score. Also, you cannot retake a beta exam.

The testing engine used in the exam

 The UI of the testing engine used for the certification exam is quite simple. (You could even call it primitive, compared
 to today’s web, desktop, and smartphone applications.)

 Before you can start the exam, you will be required to accept the terms and conditions of the Oracle Certification Candidate
 Agreement. Your computer screen will display all these conditions and give you an option to accept the conditions. You can
 proceed with writing the exam only if you accept these conditions.

 Here are the features of the testing engine used by Oracle:

 	
The engine UI is divided into three sections. The UI of the testing engine is divided into the following three segments:

 	
Static upper section— Displays question number, time remaining, and a checkbox to mark a question for review.

 	
Scrollable middle section— Displays the question text and the answer options.

 	
Static bottom section— Displays buttons to display the previous question, display the next question, end the exam, and review marked questions.

 	
Each question is displayed on a separate screen. The exam engine displays one question on the screen at a time. It does not display multiple questions on a single screen,
 like a scrollable web page. All effort is made to display the complete question and answer options without scrolling, or with
 little scrolling.

 	
Code exhibit button. Many questions include code. Such questions, together with their answers, may require significant scrolling to be viewed.
 As this can be quite inconvenient, such questions include a Code Exhibit button that displays the code in a separate window.

 	
Mark questions to be reviewed. The question screen displays a check box with the text “Mark for review” at the top-left corner. A question can be marked
 using this option. The marked questions can be reviewed at the end of the exam.

 	
Buttons to display previous and next questions. The test includes buttons to display previous and next questions within the bottom section of the testing engine.

 	
Buttons to end the exam and review marked questions. The engine displays buttons to end the exam and to review the marked questions in the bottom section of the testing engine.

 	
Remaining time. The engine displays the time remaining for the exam at the top right of the screen.

 	
Question number. Each question displays its serial number.

 	
Correct number of answer options. Each question displays the correct number of options that should be selected from multiple options.

 On behalf of all at Manning Publications, I wish you good luck and hope that you score very well on your exam.

Chapter 1. Java class design

 	
 Exam objectives covered in this chapter

 	
 What you need to know

 	[1.1] Use access modifiers: private, protected, and public
 	How to use appropriate access modifiers to design classes
 How to limit accessibility of classes, interfaces, enums, methods, and variables by using the appropriate access modifiers
 The correct combination of access modifiers and the entities (classes, interfaces, enums, methods, and variables) to which
 they can be applied
 The implications of modifying the access modifier of a Java entity

 	[1.2] Override methods
 	The conditions and requirements that make a subclass override a base class method
 How to differentiate among overloaded, overridden, and hidden methods

 	[1.3] Overload constructors and methods
 	The need and right rules to overload constructors and methods

 	[1.4] Use the instanceof operator and casting
 	Understand the right use of the instanceof operator, and implicit and explicit object casting and their implications
 Compilation errors and runtime exceptions associated with the use of the instanceof operator and casting

 	[1.5] Use virtual method invocation
 	The methods that can and can’t be invoked virtually

 	[1.6] Override methods from the Object class to improve the functionality of your class
 	The need to override methods from class Object—differentiate correct, incorrect, appropriate, and inappropriate overriding

 	[1.7] Use package and import statements
 	How to package classes and use package, import, and static import statements

 Classes and interfaces are building blocks of an application. Efficient and effective class design makes a significant impact
 on the overall application design. Imagine if, while designing your classes, you didn’t consider effective packaging, correct
 overloaded or overridden methods, or access protection—you might lose on extensibility, flexibility, and usability of your
 classes. For example, if you didn’t override methods hashCode() and equals() correctly in your classes, your seemingly “equal” objects might not be considered equal by collection classes like HashSet or HashMap. Or, say, imagine if you didn’t use the right access modifiers to protect your classes and their members, they could be subject
 to unwanted manipulation by other classes from the same or different packages. The creation of overloaded methods is another
 domain, which is an important class design decision. It eases instance creation and use of methods.

 Class design decisions require an insight into understanding correct and appropriate implementation practices. When armed
 with adequate information you’ll be able to select the best practices and approach to designing your classes. The topics covered
 in this chapter will help you design better classes by taking you through multiple examples. This chapter covers

 	Access modifiers

 	Method overloading

 	Method overriding

 	Virtual method invocation

 	Use of the instanceof operator and casting

 	Override methods from class Object to improve the functionality of your class

 	How to create packages and use classes from other packages

 Let’s get started with how to control access to your classes and their members, using access modifiers.

1.1. Java access modifiers

 	

 [image:] [1.1] Use access modifiers: private, protected, and public

 	

 When you design applications and create classes, you need to answer multiple questions:

 	How do I restrict other classes from accessing certain members of a class?

 	How do I prevent classes from modifying the state of objects of a class, both within the same and separate packages?

 Java access modifiers answer all these questions. Access modifiers control the accessibility of a class or an interface, including
 its members (methods and variables), by other classes and interfaces within the same or separate packages. By using the appropriate
 access modifiers, you can limit access to your class or interface, and its members.

 Access modifiers can be applied to classes, interfaces, and their members (instance and class variables and methods). Local
 variables and method parameters can’t be defined using access modifiers. An attempt to do so will prevent the code from compiling.

 In this section, we’ll cover all of the access modifiers—public, protected, and private—as well as default access, which is the result when you don’t use an access modifier. You’ll also discover the effects of changing the access
 levels of existing types on other code.

 	

 Note

 [image:]

 Access modifiers are also covered in the OCA Java SE 7 Programmer I exam (1Z0-803). If you’ve written this exam recently,
 then perhaps you might like to skip sections 1.1.1–1.1.4.

 	

 To understand all of these access modifiers, we’ll use the same set of classes: Book, CourseBook, Librarian, StoryBook, and House. Figure 1.1 depicts these classes using UML notation.

 Figure 1.1. A set of classes and their relationships to help understand access modifiers

 [image:]

 Classes Book, CourseBook, and Librarian are defined in the package library. Classes StoryBook and House are defined in the package building. Classes StoryBook and CourseBook (defined in separate packages) extend class Book. Using these classes, you’ll see how the accessibility of a class and its members varies with different access modifiers, from unrelated to derived
 classes, across packages.

 As we cover each of the access modifiers, we’ll add a set of instance variables and a method to class Book with the relevant access modifier.

 1.1.1. Public access modifier

 This is the least restrictive access modifier. Classes and interfaces defined using the public access modifier are accessible across all packages, from derived to unrelated classes.

 To understand the public access modifier, let’s define class Book as a public class and add a public instance variable (isbn) and a public method (printBook()) to it. Figure 1.2 shows the UML notation.

 Figure 1.2. Understanding the public access modifier

 [image:]

 Examine the following definition of class Book:

 [image:]

 The public access modifier is said to be the least restrictive, so let’s try to access the public class Book and its public members from class House. We’ll use class House because House and Book are defined in separate packages and they’re unrelated. Class House doesn’t enjoy any advantages of being defined in the same package or being a derived class.

 Here’s the code for class House:

 [image:]

 In the preceding example, class Book and its public members—instance variable isbn and method printBook()—are accessible to class House. They’re also accessible to the other classes: StoryBook, Librarian, and CourseBook. Figure 1.3 shows the classes that can access a public class and its members.

 Figure 1.3. Classes that can access a public class and its members

 [image:]

 1.1.2. Protected access modifier

 The members of a class defined using the protected access modifier are accessible to

 	Classes and interfaces defined in the same package

 	All derived classes, even if they’re defined in separate packages

 	

 Exam Tip

 [image:]

 Members of an interface are implicitly public. If you define interface members as protected, the interface won’t compile.

 	

 Let’s add a protected instance variable author and method modifyTemplate() to class Book. Figure 1.4 shows the class representation.

 Figure 1.4. Understanding the protected access modifier

 [image:]

 Here’s the code for class Book (I’ve deliberately left out its public members because they aren’t required in this section):

 [image:]

 Figure 1.5 illustrates how classes from the same and separate packages, derived classes, and unrelated classes access class Book and its protected members.

 Figure 1.5. Access of protected members of class Book in unrelated and derived classes, from the same and separate packages

 [image:]

 Class House fails compilation for trying to access method modifyTemplate() and variable author, as follows:

 House.java:8: modifyTemplate()has protected access in library.Book
 book.modifyTemplate();
 ^

 A derived class inherits the protected members of its base class, irrespective of the packages in which they are defined.

 Notice that the derived classes CourseBook and StoryBook inherit class Book’s protected member variable author and method modifyTemplate(). If class StoryBook tries to instantiate Book using a reference variable and then tries to access its protected variable author and method modifyTemplate(), it won’t compile:

 [image:]

 	

 Exam Tip

 [image:]

 A concise but not too simple way of stating the previous rule is this: A derived class can inherit and access protected members
 of its base class, regardless of the package in which it’s defined. A derived class in a separate package can’t access protected
 members of its base class using reference variables.

 	

 Figure 1.6 shows the classes that can access protected members of a class or an interface.

 Figure 1.6. Classes that can access protected members

 [image:]

 1.1.3. Default access (package access)

 The members of a class defined without using any explicit access modifier are defined with package accessibility (also called default accessibility). The members with package access are only accessible to classes and interfaces defined in the same package. The default access is also referred to as package-private. Think of a package as your home, classes as rooms, and things in rooms as variables with default access. These things aren’t
 limited to one room—they can be accessed across all the rooms in your home. But they’re still private to your home—you wouldn’t
 want them to be accessed outside your home. Similarly, when you define a package, you might want to make accessible members
 of classes to all the other classes across the same package.

 	

 Note

 [image:]

 While the package-private access is as valid as the other access levels, in real projects, it often appears as the result
 of inexperienced developers forgetting to specify the access modifier of Java components.

 	

 Let’s define an instance variable issueCount and a method issueHistory() with default access in class Book. Figure 1.7 shows the class representation with these new members.

 Figure 1.7. Understanding class representations for the default access

 [image:]

 Here’s the code for class Book (I’ve deliberately left out its public and protected members because they aren’t required in this section):

 [image:]

 You can see how classes from the same package and separate packages, derived classes, and unrelated classes access class Book and its members (instance variable issueCount and method issueHistory()) in figure 1.8.

 Figure 1.8. Access of members with default access to class Book in unrelated and derived classes from the same and separate packages

 [image:]

 Because classes CourseBook and Librarian are defined in the same package as class Book, they can access the members issueCount and issueHistory(). Because classes House and StoryBook aren’t defined in the same package as class Book, they can’t access the members issueCount and issueHistory(). Class StoryBook fails compilation with the following error message:

 StoryBook.java:6: issueHistory () is not public in library.Book; cannot be accessed from outside package
 book.issueHistory ();
 ^

 Class House is unaware of the existence of issueHistory()—it fails compilation with the following error message:

 House.java:9: cannot find symbol
symbol : method issueHistory ()
location: class building.House
 issueHistory ();

Defining a class Book with default access

 What happens if you define a class with default access? What will happen to the accessibility of its members if the class
 itself has default (package) accessibility?

 Consider this situation: Assume that Superfast Burgers opens a new outlet on a beautiful island and offers free meals to people
 from all over the world, which obviously includes inhabitants of the island. But the island is inaccessible by all means (air
 and water). Would the existence of this particular Superfast Burger outlet make any sense to people who don’t inhabit the
 island? An illustration of this example is shown in figure 1.9.

 Figure 1.9. This Superfast Burgers cannot be accessed from outside the island because the island is inaccessible by air and water.

 [image:]

 The island is like a package in Java, and the Superfast Burger outlet is like a class defined with default access. In the
 same way that the Superfast Burger outlet can’t be accessed from outside the island on which it exists, a class defined with
 default (package) access is visible and accessible only within the package in which it’s defined. It can’t be accessed from
 outside its package.

 Let’s redefine class Book with default (package) access as follows:

 [image:]

 The behavior of class Book remains the same for classes CourseBook and Librarian, which are defined in the same package. But class Book can’t be accessed by classes House and StoryBook, which reside in a separate package.

 Let’s start with class House. Examine the following code:

 [image:]

 Class House fails compilation with the following error message:

 House.java:2: library.Book is not public in library; cannot be accessed from outside package
import library.Book;

 Here’s the code of class StoryBook:

 [image:]

 Figure 1.10 shows which classes can access members of a class or an interface with default (package) access.

 Figure 1.10. Classes that can access members with default (package) access

 [image:]

 Because a lot of programmers are confused about which members are made accessible by using the protected access modifier and no modifier (default), the following exam tip offers a simple and interesting rule to help you remember
 their differences.

 	

 Exam Tip

 [image:]

 Default access can be compared to package-private (accessible only within a package) and protected access can be compared
 to package-private + kids (kids refers to derived classes). Kids can access protected members only by inheritance and not by reference (accessing members
 by using the dot operator on an object).

 	

 1.1.4. The private access modifier

 The private access modifier is the most restrictive access modifier. The members of a class defined using the private access modifier are accessible only to them. For example, the internal organs of your body (heart, lungs, etc.) are private
 to your body. No one else can access them. It doesn’t matter whether the class or interface in question is from another package
 or has extended the class—private members aren’t accessible outside the class in which they’re defined.

 	

 Exam Tip

 [image:]

 Members of an interface are implicitly public. If you define interface members as private, the interface won’t compile.

 	

 Let’s see the private members in action by adding a private method countPages() to class Book. Figure 1.11 depicts the class representation using UML.

 Figure 1.11. Understanding the private access modifier

 [image:]

 Examine the following definition of class Book:

 [image:]

 None of the classes defined in any of the packages (whether derived or not) can access the private method countPages(). But let’s try to access it from class CourseBook. I chose class CourseBook because both of these classes are defined in the same package, and class CourseBook extends class Book. Here’s the code of CourseBook:

 [image:]

 Because class CourseBook tries to access private members of class Book, it will not compile. Similarly, if any of the other classes (StoryBook, Librarian, or House) try to access private method countPages() of class Book, it will not compile. Figure 1.12 shows the classes that can access the private members of a class.

 Figure 1.12. No classes can access private members of another class.

 [image:]

 	

 Note

 [image:]

 For your real projects, it is possible to access private members of a class outside them, using Java Reflection. But Java Reflection isn’t on the exam. So don’t consider it when answering questions on the accessibility of private members.

 	

 1.1.5. Access modifiers and Java entities

 Can every access modifier be applied to all the Java entities? The simple answer is no. Table 1.1 lists the Java entities and the access modifiers that can be used with them.

 Table 1.1. Java entities and the access modifiers that can be applied to them

 	
 Entity name

 	
 public

 	
 protected

 	
 private

 	Top-level class, interface, enum
 	✓
 	✗
 	✗

 	Nested class, interface, enum
 	✓
 	✓
 	✓

 	Class variables and methods
 	✓
 	✓
 	✓

 	Instance variables and methods
 	✓
 	✓
 	✓

 	Method parameters and local variables
 	✗
 	✗
 	✗

 What happens if you try to code the combinations for an X above? None of these combinations will compile. Here’s the code:

 [image:]

 Watch out for these combinations on the exam. It’s simple to insert these small and invalid combinations in any code snippet
 and still make you believe that you’re being tested on a rather complex topic like threads or concurrency.

 	

 Exam Tip

 [image:]

 Watch out for invalid combinations of a Java entity and an access modifier. Such code won’t compile.

 	

 1.1.6. Effects of changing access modifiers for existing entities

 Shreya, a programmer, changed the access modifier of a member in her class, Book, and see what Harry (another programmer) had to go through the next morning (figure 1.13).

 Figure 1.13. A change in the access modifier of a member of a class can break the code of other classes.

 [image:]

 Let’s analyze what happened. Why did Harry’s code break when Shreya changed her own code? As shown in figure 1.14, Harry’s class StoryBook extends class Book created by Shreya. Before the modifications, Harry’s class StoryBook accessed the protected member author from its parent class Book. But when Shreya modified the access modifier of the member author from protected to default access, it could no longer be accessed by class StoryBook because they reside in separate packages. So, even though Harry didn’t change his code, it didn’t compile.

 Figure 1.14. Code before and after modification showing why Harry’s code failed to compile, even though he didn’t change a bit of it.

 [image:]

 You can change the access modifier of a member in two ways:

 	Accessibility is decreased—for example, a public member is made private

 	Accessibility is increased—for example, a private member is made public

When accessibility of an entity is decreased (more restrictive)

 As shown in figure 1.14, when an entity is made more restrictive, there are chances that other code that uses that entity might break.

 	

 Impact of decreasing accessibility in real-life projects

 Decreasing the accessibility of entities can affect the overall application in a big way. This is especially important for
 designing APIs and maintaining software. Many Java developers make the mistake of carelessly decreasing the accessibility
 of methods or fields, which can result in access issues with other components in a system.

 	

When accessibility of an entity is increased (less restrictive)

 There are no issues when an entity is made less restrictive, say, when access of an entity is changed from default to protected or public. With increased access, an entity may become visible to other classes, interfaces, and enums to which it wasn’t visible earlier.

 Apart from being an important exam topic, you’re sure to encounter issues related to access modifiers at your workplace in
 real projects. Let’s see whether you can spot a similar issue in the first “Twist in the Tale” exercise.

 	

 About the “Twist in the Tale” exercises

 For these exercises, I’ve tried to use modified code from the examples already covered in the chapter. The “Twist in the Tale”
 title refers to modified or tweaked code. These exercises will help you understand how even small code modifications can change
 the behavior of your code. They should also encourage you to carefully examine all of the code on the exam. The reason for
 these exercises is that on the exam, you may be asked more than one question that seems to require the same answer. But on
 closer inspection, you’ll realize that the questions differ slightly, and this will change the behavior of the code and the
 correct answer option. All answers to “Twist in the Tale” exercises are in the appendix.

 	

Twist in the Tale 1.1

 Here are the classes written by Shreya and Harry (residing in separate source code files) that work without any issues:

 package library; // Class written by Shreya
public class Book {
 protected String author;
}

package building; // Class written by Harry
import library.Book;
class StoryBook extends Book {
 { author = "Selvan"; }
}

 On Friday evening, Shreya modified her code and checked it in to the organization’s version control system. Do you think Harry
 would be able to run his code without any errors when he checks out the modified code on Monday morning, and why? Here’s the
 modified code:

 package library; // Class written by Shreya
class Book {
 protected String author;
}

package building; // Class written by Harry
import library.Book;
class StoryBook extends Book {
 { author = "Selvan"; }
}

 In the next section, we’ll cover the need and semantics of defining overloaded methods. You can compare overloaded methods
 with any action that you might specify with multiple, different, or additional details. Let’s get started with understanding
 the need of defining overloaded methods.

1.2. Overloaded methods and constructors

 	

 [image:] [1.3] Overload constructors and methods

 	

 Overloaded methods are methods with the same name but different method parameter lists. In this section, you’ll learn how to create and use
 overloaded methods.

 Imagine that you’re delivering a lecture and need to instruct the audience to take notes using paper, a Smartphone, or a laptop—whichever
 is available to them for the day. One way to do this is to give the audience a list of instructions like

 	Take notes using paper.

 	Take notes using Smartphones.

 	Take notes using laptops.

 Another method is to instruct them to “take notes” and then provide them with the paper, a Smartphone, or a laptop they’re
 supposed to use. Apart from the simplicity of the latter method, it also gives you the flexibility to add other media on which
 to take notes (such as one’s hand, some cloth, or the wall) without needing to remember the list of all the instructions.

 This second approach—providing one set of instructions (with the same name) but a different set of input values—can be compared
 to overloaded methods in Java, as shown in figure 1.15.

 Figure 1.15. Real-life examples of overloaded methods

 [image:]

 The implementation of the example shown in figure 1.15 in code is as follows:

 [image:]

 Overloaded methods are usually referred to as methods that are defined in the same class, with the same name, but with a different
 method argument list. A derived class can also overload the methods inherited from its base class as follows:

 [image:]

 Overloaded methods make it easier to add methods with similar functionality that work with a different set of input values.
 Let’s work with an example from the Java API classes that we all use frequently: System.out.println(). Method println() accepts multiple types of method parameters:

 [image:]

 When you use method println(), you know that whatever you pass to it as a method argument will be printed to the console. Wouldn’t it be crazy to use methods
 like printlnInt(), printlnBool(), and printlnString() for the same functionality? I think so, too.

 Let’s examine in detail the method parameters passed to overloaded methods, their return types, and their access and nonaccess
 modifiers.

 	

 Note

 [image:]

 The exam will test you on how you can define correct overloaded methods, which overloaded methods get invoked when you use
 a set of arguments, and also whether a compiler is unable to resolve the call.

 	

 1.2.1. Argument list

 Overloaded methods accept different lists of arguments. The argument lists can differ in terms of

 	The change in the number of parameters that are accepted

 	The change in the type of the method parameters that are accepted

 	The change in the positions of the parameters that are accepted (based on parameter type, not variable names)

 Let’s work with some examples to verify these points.

Change in the number of method parameters

 Overloaded methods that define a different number of method parameters are the simplest among all the method types. Let’s
 work with an example of an overloaded method, calcAverage(), which accepts a different count of method parameters:

 [image:]

Change in the type of method parameters

 In the following example, the difference is in the argument list—due to the change in the type of parameters it accepts—to
 calculate the average of integer and decimal numbers:

 [image:]

 When you define overloaded methods with object references as parameters, their classes might or might not share an inheritance
 relationship. When the classes don’t share an inheritance relationship, there isn’t any confusion with the version of the
 method that will be called:

 [image:]

 For the preceding code, if you call method bookTicket() by passing it a CEO object, it will call the method that accepts a parameter of type CEO—no confusion here. Now, what happens if you define overloaded methods that accept object references of classes which share
 an inheritance relationship? For example (modifications in code are in bold)

 [image:]

 Which of these methods do you think would be called if you pass a CEO object to method bookTicket()? Can a CEO object be assigned to both CEO and Employee?

 [image:]

 The preceding code calls overloaded method bookTicket()that accepts a CEO, because without any explicit reference variable, new CEO() is referred to using a CEO variable. Now, try to determine the output of the following code:

 [image:]

 The preceding code prints “economy class" and not “business class" because the type of the reference variable emp is Employee. The overloaded methods are bound at compile time and not runtime. To resolve the call to the overloaded methods, the compiler
 considers the type of variable that’s used to refer to an object.

 	

 Exam Tip

 [image:]

 Calls to the overloaded methods are resolved during compilation.

 	

 Using the preceding Employee and CEO example, figure 1.16 shows a fun way to remember calls to the overloaded methods are resolved during compilation.

 Figure 1.16. Overloaded methods are resolved during compilation.

 [image:]

 For the overloaded method bookTicket() that defines the method parameter of either Engineer or CEO, watch out for exam questions that try to call it using a reference variable of Employee:

 [image:]

Change in the positions of method parameters

 The methods are correctly overloaded if they only change the positions of the parameters that are passed to them, as follows:

 [image:]

 Although you might argue that the arguments being accepted are the same, with only a difference in their positions, the Java
 compiler treats them as different argument lists. Therefore, the previous code is a valid example of overloaded methods. But
 an issue arises when you try to execute this method using values that can be passed to both versions of the overloaded method.
 In this case, the code in method main() will fail to compile:

 [image:]

 In the previous code, [image:] defines the calcAverage() method, which accepts two method parameters: a double and an int. The code at [image:] defines overloaded method calcAverage(), which accepts two method parameters: first an int and then a double. Because an int literal value can be passed to a variable of type double, literal values 2 and 3 can be passed to both overloaded methods, declared at [image:] and [image:]. Because this method call is dubious, the code at [image:] fails to compile, with the following message:

 MyClass.java:10: error: reference to calcAverage is ambiguous, both method calcAverage(double,int) in MyClass and method calcAverage(int,double) in MyClass match
 calcAverage(2, 3);
 ^
1 error

 	

 Exam Tip

 [image:]

 For primitive method arguments, if a call to an overloaded method is dubious, the code won’t compile.

 	

 Here’s an interesting question: Would an overloaded method with the following signature solve this specific problem?

 static double calcAverage(int marks1, int marks2)

 Yes, it will. Because the type of literal integer value is int, the compiler will be able to resolve the call calcAverage(2, 3) to calcAverage(int marks1, int marks2) and compile successfully.

 1.2.2. When methods can’t be defined as overloaded methods

 The overloaded methods give you the flexibility of defining methods with the same name that can be passed a different set
 of arguments. But it doesn’t make sense to define overloaded methods with a difference in only their return types or access
 or nonaccess modifiers.

Return type

 Methods can’t be defined as overloaded methods if they only differ in their return types, as follows:

 [image:]

 The methods defined in the preceding code aren’t correctly overloaded methods—they won’t compile.

 	

 Exam Tip

 [image:]

 When the Java compiler differentiates methods, it doesn’t consider their return types. So you can’t define overloaded methods
 with the same parameter list and different return types.

 	

Access modifier

 Methods can’t be defined as overloaded methods if they only differ in their access modifiers, as follows:

 [image:]

Nonaccess modifier

 Methods can’t be defined as overloaded methods if they only differ in their nonaccess modifiers, as follows:

 [image:]

 Let’s revisit the rules for defining overloaded methods.

 	

 Rules to remember for defining overloaded methods

 Here’s a quick list of rules to remember for the exam for defining and using overloaded methods:

 	A class can overload its own methods and methods inherited from its base class.

 	Overloaded methods must be defined with the same name.

 	Overloaded methods must be defined with different parameter lists.

 	Overloaded methods might define a different return type or access or nonaccess modifier, but they can’t be defined with only
 a change in their return types or access or nonaccess modifiers.

 	

 In the next section, we’ll create overloaded versions of special methods, called constructors, which are used to create objects of a class.

 1.2.3. Overloaded constructors

 While creating instances of a class, you might need to assign default values to some of its variables and assign explicit
 values to the rest. You can do so by overloading the constructors. Overloaded constructors follow the same rules as discussed in the previous section on overloaded methods:

 	Overloaded constructors must be defined using a different argument list.

 	Overloaded constructors can’t be defined by a mere change in their access modifiers.

 	

 Exam Tip

 [image:]

 Watch out for exam questions that use nonaccess modifiers with constructors.

 	

 Using nonaccess modifiers with constructors is illegal—the code won’t compile. Here’s an example of class Employee, which defines four overloaded constructors:

 [image:]

 In the previous code, the code at [image:] defines a constructor that doesn’t accept any arguments, and the code at [image:] defines another constructor that accepts a single argument. Note the constructors defined at [image:] and [image:]. Both of these accept two arguments, String and int. But the placement of these two arguments is different in [image:] and [image:], which is acceptable and valid for overloaded constructors and methods.

Invoking an overloaded constructor from another constructor

 It’s common to define multiple constructors in a class. Unlike overloaded methods, which can be invoked using the name of
 a method, overloaded constructors are invoked by using the keyword this—an implicit reference, accessible to an object, to refer to itself. For instance

 [image:]

 The code at [image:] defines a no-argument constructor. At [image:], this constructor calls the overloaded constructor by passing to it values null and 0. [image:] defines an overloaded constructor that accepts two arguments.

 Because a constructor is defined using the name of its class, it’s a common mistake to try to invoke a constructor from another
 constructor using the class’s name:

 [image:]

 Also, when you invoke an overloaded constructor using the keyword this, it must be the first statement in your constructor:

 [image:]

 That’s not all: you can’t call a constructor from any other method in your class. None of the other methods of class Employee can invoke its constructor.

 	

 Rules to remember for defining overloaded constructors

 Here’s a quick list of rules to remember for the exam for defining and using overloaded constructors:

 	Overloaded constructors must be defined using different argument lists.

 	Overloaded constructors can’t be defined by just a change in the access modifiers.

 	Overloaded constructors can be defined using different access modifiers.

 	A constructor can call another overloaded constructor by using the keyword this.

 	A constructor can’t invoke a constructor by using its class’s name.

 	If present, the call to another constructor must be the first statement in a constructor.

 	

Instance initializers

 Apart from constructors, you can also define an instance initializer to initialize the instance variables of your class. An instance initializer is a code block defined within a class, using
 a pair of {}. You can define multiple instance initializers in your class. Each instance initializer is invoked when an instance is created, in the order they’re defined in a class. They’re invoked before
 a class constructor is invoked.

 Why do you think you need an instance initializer if you can initialize your instances using constructors? Multiple reasons
 exist:

 	For a big class, it makes sense to place the variable initialization just after its declaration.

 	
All the initializers are invoked, irrespective of the constructor that’s used to instantiate an object.

 	Initializers can be used to initialize variables of anonymous classes that can’t define constructors. (You’ll work with anonymous
 classes in the next chapter.)

 Here’s a simple example:

 [image:]

 The output of the preceding code is

 Pencil:init1
Pencil:init2
Pencil:constructor
Pencil:init1
Pencil:init2
Pencil:constructor2

 The next “Twist in the Tale” exercise hides an important concept within its code, which you can get to know only if you try
 to compile and execute the modified code.

Twist in the Tale 1.2

 Let’s modify the definition of class Employee used in the section on overloaded constructors as follows:

 class Employee {
 String name;
 int age;
 Employee() {
 this("Shreya", 10);
 }
 Employee (String newName, int newAge) {
 this();
 name = newName;
 age = newAge;
 }
 void print(){
 print(age);
 }
 void print(int age) {
 print();
 }
}

 What is the output of this modified code, and why?

 The instance initializer blocks are executed after an implicit or explicit call to the parent class’s constructor:

 class Instrument {
 Instrument() {
 System.out.println("Instrument:constructor");
 }
}
class Pencil extends Instrument {
 public Pencil() {
 System.out.println("Pencil:constructor");
 }
 {
 System.out.println("Pencil:instance initializer");
 }
 public static void main(String[] args) {
 new Pencil();
 }
}

 The output of the preceding code is

 Instrument:constructor
Pencil:instance initializer
Pencil:constructor

 Figure 1.17 shows a fun way of remembering the order of execution of a parent class constructor, instance initializers, and a class constructor.
 Paul, our programmer, was having a very hard time remembering the order of execution of all these code blocks. He literally
 had to stand upside down to get the order right.

 Figure 1.17. The order of execution of constructors and instance initializers in parent and child classes

 [image:]

 	

 Exam Tip

 [image:]

 If a parent or child class defines static initializer block(s), they execute before all parent and child class constructors
 and instance initializers—first for the parent and then for the child class.

 	

 Now that you’ve seen how to create the overloaded variants of methods and constructors, let’s dive deep into method overriding.
 These two concepts, overloading and overriding, seem to be confusing for a lot of programmers. Let’s get started by clearing
 the cobwebs.

1.3. Method overriding and virtual method invocation

 	

 [image:] [1.2] Override methods

 	

 	

 [image:] [1.5] Use virtual method invocation

 	

 Do you celebrate a festival or an event in exactly the same manner as celebrated by your parents? Or have your modified it?
 Perhaps you celebrate the same festivals and events, but in your own unique manner. In a similar manner, classes can inherit behavior from other classes. But they can redefine the behavior that they inherit—this is also referred to as method overriding.

 Method overriding is an object-oriented programming (OOP) language feature that enables a derived class to define a specific
 implementation of an existing base class method to extend its own behavior. A derived class can override an instance method defined in a base class by defining an instance method with the same method signature/method name and
 number and types of method parameters. Overridden methods are also synonymous with polymorphic methods. The static methods of a base can’t be overridden, but they can be hidden by defining methods with the same signature in the derived class.

 A method that can be overridden by a derived class is called a virtual method. But beware: Java has always shied away from using the term virtual methods and you will not find a mention of this term in Java’s vocabulary. This term is used in other OO languages like C and C++.
 Virtual method invocation is the invocation of the correct overridden method, which is based on the type of the object referred to by an object reference
 and not by the object reference itself. It’s determined at runtime, not at compilation time.

 The exam will question you on the need for overridden methods; the correct syntax of overridden methods; the differences between
 overloaded, overridden, and hidden methods; common mistakes while overriding methods; and virtual method invocation. Let’s
 get started with the need for overridden methods.

 	

 Note

 [image:]

 A base class method is referred to as the overridden method and the derived class method is referred to as the overriding method.

 	

 1.3.1. Need of overridden methods

 In the same way we inherit our parents’ behaviors but redefine some of the inherited behavior to suit our own needs, a derived
 class can inherit the behavior and properties of its base class but still be different in its own manner—by defining new variables
 and methods. A derived class can also choose to define a different course of action for its base class method by overriding
 it. Here’s an example of class Book, which defines a method issueBook() that accepts days as a method parameter:

 class Book {
 void issueBook(int days) {
 if (days > 0)
 System.out.println("Book issued");
 else
 System.out.println("Cannot issue for 0 or less days");
 }
}

 Following is another class, CourseBook, which inherits class Book. This class needs to override method issueBook() because a CourseBook can’t be issued if it’s only for reference. Also, a CourseBook can’t be issued for 14 or more days. Let’s see how this is accomplished by overriding method issueBook():

 [image:]

 The code at [image:] uses the annotation @Override, which notifies the compiler that this method overrides a base class method. Though optional, this annotation can come in
 very handy if you try to override a method incorrectly. The code at [image:] defines method issueBook() with the same name and method parameters as defined in class Book. The code at [image:] calls method issueBook() defined in class Book; however, it isn’t mandatory to do so. It depends on whether the derived class wants to execute the same code as defined
 by the base class.

 	

 Note

 [image:]

 Whenever you intend to override methods in a derived class, use the annotation @Override. It will warn you if a method can’t be overridden or if you’re actually overloading a method rather than overriding it.

 	

 The following example can be used to test the preceding code:

 [image:]

 Figure 1.18 represents the compilation and execution process of class BookExample, as Step 1 and Step 2:

 	Step 1: The compile time uses the reference type for the method check.

 	Step 2: The runtime uses the instance type for the method invocation.

 Figure 1.18. To compile b.issueBook(), the compiler refers only to the definition of class Book. To execute b.issueBook(), the Java Runtime Environment (JRE) uses the actual method implementation of issueBook() from class CourseBook.

 [image:]

 Now let’s move on to how to correctly override a base class method in a derived class.

 1.3.2. Correct syntax of overriding methods

 Let’s start with an example of overridden method review(), as follows:

 [image:]

 Figure 1.19 shows the components of a method declaration: access modifiers, nonaccess modifiers, return type, method name, parameter
 list, and a list of exceptions that can be thrown (method declaration isn’t the same as method signature). The figure also
 compares the review method defined in base class Book with overriding method review() defined in class CourseBook with respect to these identified parts.

 Figure 1.19. Comparing parts of a method declaration for a base class method and overriding method

 [image:]

 Table 1.2 compares the method components shown in figure 1.19.

 Table 1.2. Comparison of method components and their acceptable values for an overriding method

 	
 Method component

 	
 Value in class Book

 	
 Value in class CourseBook

 	
 Overriding method review() in class CourseBook

 	Access modifier
 	protected
 	public
 	Define same access or less restrictive access than method review() in the base class.

 	Nonaccess modifier
 	synchronized
 	final
 	Overriding method can use any nonaccess modifier for an overridden method. A nonabstract method can also be overridden to
 an abstract method. But a final method in the base class cannot be overridden. A static method cannot be overridden to be
 nonstatic.

 	Return type
 	List
 	ArrayList
 	Define the same or a subtype of the return type used in the base class method (covariant return types).

 	Method name
 	review
 	review
 	Exact match.

 	Parameter list
 	(int id, List names)
 	(int id, List names)
 	Exact match.

 	Exceptions thrown
 	throws Exception
 	throws IOException
 	Throw none, same, or a subclass of the exception thrown by the base class method.

 	

 Exam Tip

 [image:]

 The rule listed in table 1.2 on exceptions in overriding methods only applies to checked exceptions. An overriding method can throw any unchecked exception
 (RuntimeException or Error) even if the overridden method doesn’t. The unchecked exceptions aren’t part of the method signature and aren’t checked by
 the compiler.

 	

 Chapter 6 includes a detailed explanation on overridden and overriding methods that throw exceptions. Let’s walk through a couple of
 invalid combinations that are important and very likely to be on the exam.

 	

 Note

 [image:]

 Though a best practice, I’ve deliberately not preceded the definition of the overriding methods with the annotation @Override because you might not see it on the exam.

 	

Access modifiers

 A derived class can assign the same or more access but not a weaker access to the overriding method in the derived class:

 [image:]

Nonaccess modifiers

 A derived class can’t override a base class method marked final:

 [image:]

Argument list and covariant return types

 When the overriding method returns a subclass of the return type of the overridden method, it’s known as a covariant return type. To override a method, the parameter list of the methods in the base and derived classes must be exactly the same. It you try to use covariant types in the argument list, you’ll end up overloading the methods and not overriding
 them. For example

 [image:]

 At [image:] method review() in base class Book accepts an object of type List. Method review() in derived class CourseBook accepts a subtype ArrayList (ArrayList implements List). These methods aren’t overridden—they’re overloaded:

 [image:]

 The code at [image:] uses a reference variable of type Book to refer to an object of type CourseBook. The compilation process assigns execution of method review() from base class Book to the reference variable book. Because method review() in class CourseBook doesn’t override the review method in class Book, the JRE doesn’t have any confusion regarding whether to call method review() from class Book or from class CourseBook. It moves forward with calling review() from Book.

 	

 Exam Tip

 [image:]

 It’s the reference variable type that dictates which overloaded method will be chosen. This choice is made at compilation
 time.

 	

Exceptions thrown

 An overriding method must either declare to throw no exception, the same exception, or a subtype of the exception declared
 to be thrown by the base class method, or else it will fail to compile. This rule, however, doesn’t apply to error classes
 or runtime exceptions. For example

 [image:]

 	

 Exam Tip

 [image:]

 An overriding method can declare to throw any RuntimeException or Error, even if the overridden method doesn’t.

 	

 To remember this preceding point, let’s compare exceptions with monsters. Figure 1.20 shows a fun way to remember the exceptions (monsters) that can be on the list of an overriding method, when the overridden method doesn’t declare to throw a checked exception and when it declares to throw a
 checked exception.

 Figure 1.20. Comparing exceptions to monsters. When an overridden method declares to throw a checked exception (monster), the overriding
 method can declare to throw none, the same, or a narrower checked exception. An overriding method can declare to throw any
 Error or RuntimeException.

 [image:]

 1.3.3. Can you override all methods from the base class or invoke them virtually?

 The simple answer is no. You can override only the following methods from the base class:

 	Methods accessible to a derived class

 	Nonstatic base class methods

Methods accessible to a base class

 The accessibility of a method in a derived class depends on its access modifier. For example, a private method defined in
 a base class isn’t available to any of its derived classes. Also, a method with default access in a base class isn’t available
 to a derived class in another package. A class can’t override the methods that it can’t access.

Only nonstatic methods can be overridden

 If a derived class defines a static method with the same name and signature as the one defined in its base class, it hides its base class method and doesn’t override it. You can’t override static methods. For example

 [image:]

 Method printName() in class CourseBook hides printName() in class Book. It doesn’t override it. Because the static methods are bound at compile time, the method printName() that’s called depends on the type of the reference variable:

 [image:]

 1.3.4. Identifying method overriding, overloading, and hiding

 It’s easy to get confused with method overriding, overloading, and hiding. Figure 1.21 identifies these methods in classes Book and CourseBook. On the left are the class definitions, and on the right their UML representations.

 Figure 1.21. Identifying method overriding, method overloading, and method hiding in a base and derived class

 [image:]

 	

 Exam Tip

 [image:]

 When a class extends another class, it can overload, override, or hide its base class methods. A class can’t override or hide
 its own methods—it can only overload its own methods.

 	

 Let’s check out the correct code for defining a static or nonstatic method in a derived class that overrides or hides a static
 or nonstatic method in a base class using the next “Twist in the Tale” exercise.

Twist in the Tale 1.3

 Let’s modify the code of classes Book and CourseBook and define multiple combinations of static and nonstatic method print()
 in both these classes as follows:

 a class Book{
 static void print(){}
 }
 class CourseBook extends Book{
 static void print(){}
 }
b class Book{
 static void print(){}
 }
 class CourseBook extends Book{
 void print(){}
 }
c class Book{
 void print(){}
 }
 class CourseBook extends Book{
 static void print(){}
 }
d class Book{
 void print(){}
 }
 class CourseBook extends Book{
 void print(){}
 }

 Your task is to first tag them with one of the options and then compile them on your system to see if they’re correct. On
 the actual exam, you’ll need to verify (without a compiler) if a code snippet compiles or not:

 	Overridden print() method

 	Hidden print() method

 	Compilation error

 1.3.5. Can you override base class constructors or invoke them virtually?

 The simple answer is no. Constructors aren’t inherited by a derived class. Because only inherited methods can be overridden,
 constructors cannot be overridden by a derived class. If you attempt an exam question that queries you on overriding a base
 class constructor, you know that it’s trying to trick you.

 	

 Exam Tip

 [image:]

 Constructors can’t be overridden because a base class constructor isn’t inherited by a derived class.

 	

 Now that you know why and how to override methods in your own classes, let’s see in the next section why it’s important to
 override the methods of class java.lang.Object.

1.4. Overriding methods of class Object

 	

 [image:] [1.6] Override methods from the Object class to improve the functionality of your class

 	

 All the classes in java—classes from the Java API, user-defined classes, or classes from any other API—extend class java.lang.Object, either implicitly or explicitly. Because this section talks about overriding the methods from class Object, let’s take a look at its nonfinal and final methods in figure 1.22.

 Figure 1.22. Categorization of final and nonfinal methods of class java.lang.Object

 [image:]

 You might write a Java class to be used in your small in-house project or a commercial project, or it could be a part of a
 library that may be released to be used by other programmers. As you have less control over who uses your class and how it’s
 used, the importance of correctly overriding methods from class Object rises. It’s important to override the nonfinal Object class methods so that these classes can be used efficiently by other users. Apart from being able to be used as desired,
 incorrect overriding of these methods can also result in increased debug time.

 Because the final methods can’t be overridden, I’ll discuss the nonfinal methods of class Object in this section. These methods—clone(), equals(), hashCode(), toString(), and finalize()—define a contract, a set of rules on how to override these methods, specified by the Java API documentation.

 1.4.1. Overriding method toString()

 Method toString() is called when you try to print out the value of a reference variable or use a reference variable in a concatenation operator.
 The default implementation of method toString() returns the name of the class, followed by @ and the hash code of the object it represents. Following is the code of method toString(), as defined in class Object in the Java API:

 [image:]

 Following is an example of class Book, which doesn’t override method toString(). In this case, a request to print the reference variable of this class will call method toString() defined in class Object:

 [image:]

 Let’s override method toString() in class Book. The contract of method toString() specifies that it should return a concise but informative textual representation of the object that it represents. This is usually accomplished by using the value of the instance
 variables of an object:

 [image:]

 If a class defines a lot of instance variables, method toString()might include only the important ones—that is, the ones that provide its concise description. In the following example, class Book defines multiple instance variables and uses a few of them in method toString():

 [image:]

 You have overridden method toString() inappropriately if it returns any text that’s specific to a particular class, for example, the name of a class or a value
 of a static variable:

 [image:]

 In this code, [image:] shows inappropriate overriding of method toString() because it uses a static variable. The code at [image:] defines a static variable bookCopies in class CourseBook. Because static members are bound at compile time, method toString() will refer to the variable bookCopies defined in class Book, even if the object it refers to is of the type CourseBook. [image:] prints the value of the static variable defined in class Book.

 Overriding methods of class Object is an important concept. Let it sink in. The next “Twist in the Tale” exercise will ensure that you get the hang of correct
 overriding of method toString(), before moving on to the next section.

Twist in the Tale 1.4

 Which of the following classes—Book1, Book2, Book3, or Book4—shows an appropriate overridden method toString()?

 class Book1 {
 String title;
 int copies = 1000;
 public String toString() {
 return "Class Book, Title: " + title;
 }
}
class Book2 {
 String title;
 int copies = 1000;
 public String toString() {
 return ""+copies * 11;
 }
}
class Book3 {
 String title;
 int copies = 1000;
 public String toString() {
 return title;
 }
}
class Book4 {
 String title;
 int copies = 1000;
 public String toString() {
 return getClass().getName() + ":" + title;
 }
}

 1.4.2. Overriding method equals()

 Method equals() is used to determine whether two objects of a class should be considered equal or not. Figure 1.23 shows a conversation between two objects, wondering whether they’re equal or not.

 Figure 1.23. Applying a twist on Shakespeare’s quote: “Equal or not equal, that is the question.” Method equals() returns a boolean value that determines whether two objects should be considered equal or not.

 [image:]

 The default implementation of method equals() in class Object compares the object references and returns true if both reference variables refer to the same object, or false otherwise. In essence, it only returns true if an object is compared to itself. Following is the default implementation of method equals() in class java.lang.Object:

 public boolean equals(Object obj) {
 return (this == obj);
}

 The exam will question you on the following points:

 	The need to override method equals()

 	Overriding method equals() correctly

 	Overriding method equals() incorrectly

The need to override method equals()

 You need to override method equals() for objects that you wish to equate logically, which normally depends on the state of an object (that is, the value of its instance variables). The goal of overriding
 method equals() is to check for equality of the objects, not to check for the same variable references. For two objects of the same class, say, object1 and object2, equals() checks whether object1 is logically equal to object2, but object1 isn’t necessarily pointing to the exact same object as object2.

 For example, class String overrides method equals() to check whether two String objects define the exact same sequence of characters:

 [image:]

 In the preceding code, name1 and name2 refer to separate String objects but define the exact same sequence of characters—"Harry". So name1.equals(name2) returns true.

An example

 You might need to find out whether the same undergraduate course is or is not offered by multiple universities. In an application,
 you can represent a university using a class, say, University, and each course being offered using a class, say, Course. Assuming that each university offers a list of courses, you can override method equals() in class Course to determine if two Course objects can be considered equal, as follows:

 class Course {
 String title;
 int duration;
 public boolean equals(Object o) {
 if (o != null && o instanceof Course) {
 Course c = (Course)o;
 return (title.equals(c.title) && duration==c.duration);
 }
 else
 return false;
 }
}

Rules for overriding method equals()

 Method equals() defines an elaborate contract (set of rules), as follows (straight from the Java API documentation):

 	It’s reflexive—For any non-null reference value x, x.equals(x) should return true. This rule states that an object should be equal to itself, which is reasonable.

 	It’s symmetric—For any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true. This rule states that two objects should be comparable to each other in the same way.

 	It’s transitive—For any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true. This rule states that while comparing objects, you shouldn’t selectively compare the values based on the type of an object.

 	It’s consistent—For any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified. This rule states that method equals() should rely on the value of instance variables that can be accessed from the memory and shouldn’t try to rely on values like
 the IP address of a system, which may be assigned a separate value upon reconnection to a network.

 	For any non-null reference value x, x.equals(null) should return false. This rule states that a non-null object can never be equal to null.

 Quite a lot of rules to remember! Let’s use an interesting way to remember all these rules, by comparing equals() to love. So when you see “x.equals(x),” read it as “x.loves(x).” Read “if x.equals(y) returns true, y.equals(x) must return true” as “if x loves y, y loves x.” All these rules are shown in figure 1.24. They’ll make more sense when you cover them using these examples.

 Figure 1.24. A fun way to remember all the rules of the equals() contract by comparing equals() with love.

 [image:]

Correct and incorrect overriding of method equals()

 To override method toString() correctly, follow the method overriding rules defined in section 1.3. Note that the type of parameter passed to equals() is Object. Watch out for exam questions that seem to override equals()

OEBPS/xxviifig03_alt.jpg
Using instanceof versus getClass in method equals()
Using instanceof versus getClass is a common subject of debate about proper use:
and object orientation in general (including performance aspects, design patters,
and so on). Though important, this discussion is beyond the scope of this book. If
you're interested in further details, refer to Josh Bloch's book Effective Java.

OEBPS/xxviiifig01_alt.jpg
Calling Calling
method 1 method 2

public static Singleton getInstance() {
if (anInstance == null)

anInstance ={new)Singleton() ;

return anInstance;

Create new
Singleton object

OEBPS/xxviifig01_alt.jpg
EXAM TIP A fype argument must be passed 10 the type parameter of a base
class. You can do so while extending the base class or while instantiating
the derived class.

OEBPS/xxviifig02_alt.jpg
&

NOTE Though the exam might not include explicit questions on the
contents of a class file after type erasure, it will help you to understand
generics better and answer all questions on generics.

OEBPS/common01.jpg

OEBPS/xxvifig01_alt.jpg
4.2 Creating generic entities

L e |

On the exam, you'll be tested on how 10 create generic classes, interfaces, and meth-
‘ods—uwithin generic and nongeneric classes or interfaces.

OEBPS/common02.jpg

OEBPS/031fig02_alt.jpg
class
class
class
class

static String bookTicket (Engineer val) {

}

static String bookTicket (CEO val

}

Employee {}

Engineer extends Employee {}
CEO extends Employee {}
Travel {

return "economy class";

return "business class";

{

Engineer and CEO
aren’t in the same
inheritance tree

OEBPS/032fig01_alt.jpg
class TravelAgent {
public static void main(String... args) { Prints
System.out .println(Travel.bookTicket (new CEO())); “business
) class”

OEBPS/031fig03_alt.jpg
class Employee {}
class CEO extends Employee {}
class Travel (
static String bookTicket (Employee val) { <—
return "economy class”; Methad
) parameters—CEQ
static String bookTicket (CEO val) { o] extends Employee
return "business class";
¥

OEBPS/01fig16_alt.jpg
Betause
vere valeertd b5
35 an enployee.

Please book a
ticket o Paris for

our employee

Group Travel cEo Travel
socretary desk. desk.

OEBPS/xxviiifig02_alt.jpg
class outer {
class Inner{} |

OutersInner.class

before byte code

Code added

generation class outer {

class Inner(

{ private final Outer this§o;
Tnner (outer outer) {
thisso - outer;

OEBPS/032fig02_alt.jpg
class TravelAgent {
public static void main(String... args) {
Employee emp = new CEO(); Prints
System.out.println(Travel.bookTicket (emp)) ; <—{ “economy
class”

OEBPS/xxixfig01_alt.jpg
it x.equals (y)

rue

x.hashCode () ==

1€ we are
love .. we must veside

at the same address.

<9

[4

v.hashCode () Before
mustbe true marriage
fx.equals (y) ==false 1€ we ave not
in love... we might
x.hashcode () and or might nok veside
y.hashCode () can be o et Sdrass Post
same o different g breakup..

OEBPS/029fig01.jpg
class Paper {}
class Smartphone ()
class Laptop {}

class Lecture

void takeNotes (Paper paper) {} Overloaded
void takeNotes (Smartphone phone) {} method—
void takeNotes (Laptop laptop) {} takeNotes()

OEBPS/cover.jpg
CERTIFICATION GUIDE

Mala Gupta

OEBPS/01fig15_alt.jpg
Unrelated methods Overloaded methods
ifferent names ‘Same names

takeNotesUsingPaper takellotes (Paper)

takeNotesUsingSmartphone takeNotes (Smartphone]

Q coketotestainsLopton Q cakenotes (Lapiop)

OEBPS/030fig01_alt.jpg
int intvVal = 10;

boolean boolvVal = false; Frints an)
: int value
String name = "eJava";
" " Prints a
System.out.println(intval) ;
- Ly ; : boolean value | Prints a

System.out .println(boolval) ;

System.out .println (name) ; string value

OEBPS/029fig02_alt.jpg
class Paper {}
class Smartphone {}
class Laptop {}

class Lecture {
void takeNotes (Paper paper) {}
void takeNotes (Smartphone phone) {}
void takeNotes (Laptop laptop) {}

}

class Canvas {}

class FineArtLecture extends Lecture {
void takeNotes (Canvas canvas) {}

}

takeNotes() in FineArtLecture
overloads takeNotes() from
Lecture by specifying a
different parameter list.

OEBPS/031fig01_alt.jpg
class Result {

double calcAverage (int marksl, double marks2) { Arguments—
return (marksl + marks2)/2; Ll

}

double calcAverage (double marksl, double marks2) { Arguments—
return (marksl + marks2)/2; bl st

}

3 double

OEBPS/030fig02_alt.jpg
class Result {

double calcAverage (int marksl, int marks2) { Two method
return (marksl + marks2)/2; Argsments.

}

double calchverage (int marksl, int marks2, int marks3) { Three
return (marksl + marks2 + marks3)/

) feusn; (; method

) arguments

OEBPS/034fig01_alt.jpg
class Result {
Gouble calchverage (int marksl, int marks2)

Return type of
return (marksl + marks2)/2; calcAverage() is double
}
int calchverage (int marksl, int marks2) { -
return (marksl + marks2)/2; = o

j calchverage() is int

OEBPS/num-03.jpg

OEBPS/035fig02_alt.jpg
class Result {

Nonaccess
public synchronized double calcAverage (int marksl, int marks2) { ‘modifier—
return (marksl + marks2)/2; synchronized
}
public final double calcAverage (int marksl, int marks2) { —
return (marksl + marks2) /2; modifier—
}

final
}

OEBPS/035fig01_alt.jpg
Blans: Rasnlr |
public double calchverage (int marksl, int marks2) { ’
return (marksl + marks2)/2; 7] Access—public

}

protected double calchverage (int marksl, int marks2) {
return (marksl + marks2)/2; Access—protected
}

OEBPS/num-04.jpg
4]

OEBPS/036fig01_alt.jpg
class Employee {
String name;

int age; No-argument
Employee () { constructor
name = "John";
j e J Constructor with one
Employee (String newName) { String argument

name
age

newName ;
25;

)

Employee (int newAge, String newName) {
name = newName;
age = newhge;

)

Employee (String newName, int newAge) {
name = newName;
age = newhge;

© Constructor with
two arguments—
<) intand String

@ Constructor with
two arguments—
<) Stringand int

OEBPS/033fig02_alt.jpg
double calcAverage(double marksl, int marks2) { Argument:
return (marksl + marks2)/2;

) double and int
double calcAverage (int marksl, double marks2) { Arguments.
return (marksl + marks2)/2; int and double

}

OEBPS/033fig01_alt.jpg
class Employee {}
class Engineer extends Employee {}
class CEO extends Employee (}

class Travel { :“elm

static String bookTicket (Engineer val) { .| Engineer
return "economy class”;

}

static String bookTicket (CEO val) { <) Accepts CEO
return "business class’;

} 't

public static void main(string args(l) { Won't compile—Trave
Employee emp = new CEO(); d::l“"d‘ﬁ"; method
Syatemout .printin (bookTicket (emp)); < thataccepts Emploee

OEBPS/num-01.jpg

OEBPS/033fig03_alt.jpg
Method

class MyClass (parameters—
static double calcAverage (double marksl, int marks2) { double and int

return(marksl + marks2) /2;
) Method
static double calchAverage (int marksl, double marks2) { parsmetars

return (narksl + marks2) /2; fncar dewbl

}
public static void main(String(] args) { Compiller can't determine

calcaverage (2, 3); overloaded calcAverage)
} that should be called

OEBPS/num-02.jpg

OEBPS/01fig17_alt.jpg
Alphabeti

Child constructor

Child iniftialization block

Parent constructor

Parent initialization block

Got
the exetution
order.

Execution order

OEBPS/042fig02_alt.jpg
class BookExample {

public static void main(Stringl] args) { | Prints“Reference

Book b = new CourseBook (true) ; book
b.issueBook (100) ;
b = new CourseBook (false) ; Prints “days
b.issueBook (100) ; b
b = new Book() ; 47 ! s

i ; now refers to
b.issueBook (100) ; Prints “Book & Booklstaince

} issued”

OEBPS/042fig01_alt.jpg
class CourseBook extends Book {
boolean onlyForReference;
CourseBook (boolean val) {
onlyForReference = val;
}

@override

x Annotation—
void issueBook (int days) { @Override
if (omlyForReference)
System.out.println("Reference book") ; Overrides issueBook()
else in base class Book
if (days < 14)
super . issueBook (days) ; Calls issueBook()
else defined in Book

System.out.println(*days >= 14");

OEBPS/044fig01_alt.jpg
review()in
base class
Book

class Book {

synchronized protected List review(int id,

return null;
)
}

Class CourseBook extends Book {
soverride

List names) throws Exception {

CourseBook
extends Book

final public Arraylist review(int id,

return null;

List nanes) throws IoException {

Overridden method review()
in derived class CourseBook

OEBPS/01fig18_alt.jpg
p 1

Book b = new CourseBook (true) ;

b.issueBook (100) ;

Java
compiler

Step 2
BookExample. class

Book b = new CourseBook (true) ;

b.issueBook (100) ;

Consult

Compilation
successful

runtime

Confusion

Because method signatures

arefexactythe same, call

issueBook () from CourseBook
(type of object is CourseBook).

Type of vefevence variable ‘6" is

Book. | must consult ¢lass Book to
verifly existence of method issueBook () .

class Book {
void issueBook (int days) {

BookExample. class

Type of object veferred by ‘b is
CourseBook. | misk consult Coursesock

for deseription of method issuerook () .

class CourseBook extends Book {
void issueBook (int days) {

Classes Book and ook

CourseBook define

method issueBook ()

with identieal

CourseBook

signabures.

onlyForReference

OEBPS/045fig01_alt.jpg
class Book {

protected void review(int id, List names) {} Won't compile;
) overriding methods in
class CourseBook extends Book { derived classes can't
void review(int id, List names) {} use a weaker access.

}

OEBPS/01fig19_alt.jpg
Method
review()
in Book

Method
review() in
| coursesook,

Same or diflerent
(conditons apply)

Exception

ArrayList throus
ToException

Same or Exact match None, same,

or subclass

OEBPS/037fig01_alt.jpg
olANS Bepleyws {
String name;
int age;

Employee() { Won't compile—you can't
Employee (null, 0); invoke a constructor within a
) class by using the class’s name.

Employee (String newName, int newAge) {
name = newName;
age = newAge;

OEBPS/036fig02_alt.jpg
class Employee {
String name; No-argument
int age; constructor
Employee () {

this(ould, i0)7 Invokes constructor that

} accepts two arguments
Employee (String newName, int newAge) {
name = newName; Constructor
age = newAge; that accepts

) two arguments

OEBPS/039fig01_alt.jpg
class Pencil {
public Pencil() {

System.out.println("Pencil:constructor");

}

public Pencil(String a) {
System.out.printlin("Pencil:constructor2") ;

)

{
System.out.println("Penciliinitl’); <

y B Added to both

{ overloaded
System.out.println("Pencil:init2"); - -constructors

}

public static void main(String(] args) {
new Pencil();
new Pencil("aValue");

OEBPS/037fig02_alt.jpg
class Employee {
string name;

int age;)
Employee) { Won't compile—cal o
-) overloaded construc
Systen.out.priscla ("Ho-ssgument constructor*); ooatad comstr e
) o in constructor.

Employee (String newName, int newhge) {
name = newName
age = newhge;

OEBPS/01fig20_alt.jpg
Exception list
overridden method

(in base class)

IC

X

Exception list
overriding method
(in derived class)

X

None

Same

i JIx8&Y

Narrower

Error

Runtime-
Exception

None

Error

Runtime-
Exception

OEBPS/047fig01_alt.jpg
an
overriding
method can
declare to
throw any
Runtime-
Exception.

T O . v
void review() throvs Exception ()
void read() throws Exception {}
void close () throws Exception (}
void write() throws NullPointerException (}
void skip() throws IoException {}
void modiey () {}
}
Class CourseBook extends Book (
void review() ()
void read() throws IoException (}
void close () throws Error (}
void write() throws RuntimeException (}
void skip() throws Exception {}
void modify () throws ToException () <

Doesn't compile; declares to throw I0Exception.
‘Overriding method can' declare to throw a checked
‘exaatin ¥ ovirviidas ssthid dosse’t.

Comples;
declares o throw
o exception.

Compiles; dectres to
throw 10Exception, a
subclass o Exception.

Compiles; an overriding
‘method can declare to

| throw any Error.

Doesn't compile; declares to
throw Exception, superclass of
10Exception. Overriding method
can't declare o throw broader
exceptions than declared to be
thrown by overridden method.

OEBPS/048fig02.jpg
class BookExampleStaticMethod {

public static void main(String[] args) { .
Book base = new Book () ; Prints
base.printName () ; Book

Book derived = new CourseBook () ;

derived.printName () ; Piiits

“Book”

OEBPS/048fig01_alt.jpg
class Book {
static void printName() { N
System.out .println("Book") ; Static method
) in base class

}
class CourseBook extends Book {
static void printName() {

5 Static method
tem.out.println ("Cy Book") ; b
i System.out .println("CourseBook") in derived class

OEBPS/01fig22_alt.jpg
java.lang.Object

Nonfinal methods

Final methods

clone ()

finalize()

getclass ()

notify()

equals ()

tostring ()

notifyAll ()

wait ()

hashCode ()

OEBPS/01fig21_alt.jpg
lass Book{
public static void princName() {

)
public int issueBook(int days)

)
public int returnBook (int days)

Method
hiding

Lass CourseBook extends Book(
public static void princName() {

)

public int issueBook (int days) {

)
public int issueBook(){

1

public int recurnBook(int a, int b){

Method
overloading

Book

printNane ()
LosucBook (int) =-
returnBook (int)

Method

Coursepook

overriding

printame)
issueBook (int)
[
returnBook (int, int)

overloading

OEBPS/052fig02_alt.jpg
class Book {
String title;
)

class PrintBook {
public static void main(string(] args) {
Book b = new Book () ; Prints a value
System.out .println(b) ; to Book@45a877

lar

OEBPS/052fig01_alt.jpg
toString()as | public String toString() {
defined in return getClass () .getNane () + "

javatang.Object | }

+ Tnteger.toHexstring (hashCode ())

OEBPS/046fig02_alt.jpg
class Book {
void review(int id, List names) throws Exception { Argument list—
System.out.printin("Base:review"); int and List
}

)

class CourseBook extends Book {

void review(int id, Arraylist names) throws IOException { Jr—
System.out .println("Derived:review") ; e
} ArrayList

OEBPS/046fig01_alt.jpg
class Book {
final void review(int id, List names) {}
} Won't compil; fina
class CourseBook extends Book { methods can’t be
void review(int id, List names) {} overridden.
}

OEBPS/046fig03_alt.jpg
class Verify {
public static void main(string[) args)throws Exception {

Book book = new CourseBook () ; Reference variable
book.review(1, null); G Calls review of type Book used
) to refer to object

CourseBook.

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/053fig01_alt.jpg
class Book {
string title;
static int bookCopies = 1000;

aoverride
public String tostring() { Overridden
return title + ", Copies:" + bookCopies; toString() uses static
) variable of Book.
}
class CourseBook extends Book {
static int bookCopies = 99999 S Static variable
) bookCopies also
class BookoverrideTostring { defined In CourseBook
public static void main(String(] args) (
CourseBook b = new CourseBook () ;
b.title "Java Smart Apps";
System.out.println(b) ; Prints “Java Smart
) 4} Apps, Copies:1000”

OEBPS/055fig01_alt.jpg
String namel = "Harry";
String name2 new String ("Harry"); i %
System.out.printin(namel.equals (name2)) ; ‘true’

OEBPS/01fig23.jpg
equals ()
knows it

better!

OEBPS/01fig24_alt.jpg
x.equals (x) is true

ix.equals(y
then y. equals (x)
should be true

ifx.equals (y) ==true

andify.equals (z) s=true
then x equals (z)
should be true

ifx.equals (y) setrue
then itis always true

1€ we love cach other now.
well shuays love each other.

if (x 1= null)
then x.equals (null) is false

OEBPS/xxixfig02.jpg
Movable ()

N

Animal O Hunter
A

(

Con —> Herbivore
Gost —

Carnivore “--—"

Ay

Lion Tiger

OEBPS/052fig04_alt.jpg
toString
uses tite,
sbn, and the
first element
of array
author to

aBook.

class Book {

String title; Instance

String isbn; variables to

String(] author; store a Book's

Java.util.Date publishDate; state

double price;

ok versice Instance variables
: tostore a Book's

String publisher; o5

boolean eBookReady;
soverride
public String tostring() {
return title + *, ISEN:*sisbn +
)
}

class Test {

", Lead Author:"+author (0] ;

public static void main(Stringl] args) {

Book b = new Book();
b.title - "Java Smart Apps"
b.author = new String(] {*Paul",
b.isbn = "9810-9643-987";
System.out.println(b) ;

“Larry")

Prints “Java Smart
Apps, ISBN:9810-9643.
987, Lead Author:Paul”

OEBPS/052fig03_alt.jpg
class Book {
string title;)
@Override toString() uses title
public String toString() { to represent Book
return title;
}
}

class Test {
public static void main(String(] args) {
Book b = new Book () ;
b.title = "Java Certification"; Prints book title,
System.out.println(b); “Java Certification”

OEBPS/016fig02_alt.jpg
PRCcKage builaingr
import library.Book;
public class House {

public House() { . .
Book is Book book = new Book () ; n is accessible
accessible String value = book.isbn; to House
book.printBook () ;
0 Houss e printBook() is
N accessible to House

OEBPS/016fig01.jpg
package library; P Bk public
public class Book { variable

public String isbn; isbn

public void printBook() {}
} public method
printBook()

OEBPS/xxxfig02.jpg
head ——{ fo—— tail

f— Remove elements Add elements J

i

t— Query elements

]

L— Query and remove

]

OEBPS/xxxfig01_alt.jpg
- - ¢ - °f 5 ° ' " ~ e)Ceaeanarraylist

weatoanaraytist [|| | |1 vinnalcapaciy o
<sting> b)Size=0
o 1 2 3 4 5 6 7 8 5 aaddeemensin
eadrery) [Ty T T [T [T [T] sewerce
istadd (‘Seivan’) 1) bySize=3
istadd (Harry') @ .
g N g
G NN 4 s 6 7 89 aadpara
list.add (0 “Paul’) Posiion 0
v G T T T T T T T T e
/M

OEBPS/xxxifig02_alt.jpg
‘book:Book book:Book.

title = "davar | [oom oy | title - ndava®
FARKL copiessold = 0 < copiessold = 1

book; Book book :Book.

title = *Java® n
cask2 [Coptossold o o [T ooRiessold = 0 }——in

title = "Java®
copiessold = 1

book :Book book :Book

title - "Javar
copiessold = 0

title = "Javar
copiessold = -1

cask3 copiesSold = 0-1

e

OEBPS/xxxifig01_alt.jpg
S S
[e[h[e[TiTe[alenel<] [iTn[Te[n[e[il<] Tclofale] In[a[d]e] [he[<] TsTee[cTu]e]
0123456789101 21314151617 18192021 2223 26 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40

|

Regex Matcha
nonword boundary,
| folowed by "the”
Matching result

(c[n[e] [i[cTa[EIBI8I=] [i[n] [e[n[c[i[=[[c[ol[alc[[nlalale[[nle[=] Ts[e]-[Elnle]

e G P g R o e P o 7 T e

OEBPS/003fig01_alt.jpg
Associate. Professional Expert Master

JavaSE7 -
JavaSE6 | | JavasE
-{= Developer
Java SE 5/6
Exam JavaEE 5
covered by Enterprise.
book Architect
Java EE 6
Enterprise.
Architect
f-Java EE
-Java ME

Inoreaeing iliculty level

OEBPS/common05.jpg

OEBPS/01fig01_alt.jpg
library building
<<extends>>
Book StoryBook
Librarian House
<<extends>>
CourseBook.

OEBPS/common03.jpg

OEBPS/01fig02_alt.jpg
library building
<<extends>>
Book StoryBook
+isbn:stri
= House
+printBook () Librarian
<<extends>>
CourseBook

OEBPS/020fig01.jpg
public class

package library; Book issueCount with
public class Book { R default access
int issueCount;

void issueHistory () {} issueHistory() with
} default access

OEBPS/01fig09_alt.jpg
A

Can be accessed
only by inhabitants
of the island

Far-away island
inaccessble by
air and water

OEBPS/01fig08_alt.jpg
library

Can access

package library;
public class Book {

building

Cannot access

Can access

}

<cextends>>

package

publ

}

Vi e -
V sseueiistory ()

Tibrary

public class CourseBook extends Book {

ic CourseBook() {

issuecount;

<<oxtends>>

package building;
import. 1ibrary.Book;
public class StoryBook extends
public StoryBook() {
int c - issuecount;
R issuekistory () ;
)

Book{

package 1ibrary;

public class Librarian {
public Librarian()

V Book b

¢/ int ¢ = b.issueCount

new Book() 1

¥/ b.issueHistory() ;

package building;
inport 1ibrary.Book;

public class House(

public House () {
/ Book b - new Book(

% b.issuenistory ()

% int ¢ « b.issueCount;

OEBPS/common04.jpg

OEBPS/01fig03.jpg
Same package Separate package

Derived classes / /

Unrelated classes v v

OEBPS/018fig01_alt.jpg
public class Book { variable author
protected String author;

protected void modifyTemplate () {} protected method
modifyTemplate()

package library; protected

OEBPS/01fig04_alt.jpg
library building
<<extends>>
‘Book storyBook
#author :String
House
fimodifyTemplate () | [Librarian
<<extends>>

CourseBook

OEBPS/019fig01_alt.jpg
package building; Book and StoryBook
import library.Book; defined in separate
class StoryBook extends Book { packages
StoryBook () {
Book book = new Book () ;
String v = book.author; Protected members of Book aren't
bodk:modifyTeupiate (s accessible in StoryBook f accessed

) using an instance of Book.

OEBPS/01fig05_alt.jpg
library

package library:

building

public class Book {

) Can access

<orenis |

package library;
public class CourseBook extends Book |
public CourseBook () {
V/ author="ascr;
¥/ modifyTenplate () ;
1

Ssa008 jouleg

package building;

import 1ibrary.Book;

publlic class StoryBook excends Book(
public Storysook() {

o/ author="ascr;
o modityTenplate () ;
}

package Library

public class Librarian {

public Librarian() {

package building;

import 1ibrary.Book;

public class House{

/Book book = new Book();

/book.author = "ABC™;
¥/ book .modi fyTemplate () ;
1

public House () {
/ Book bookenew Book();

% book. author="Agcr;
% book nodifyTenplate) ;

}

OEBPS/01fig07_alt.jpg
library building
<<extends>>
StoryBook
House
~issueHistory () Librarian
<<extends>>

CourseBook

OEBPS/01fig06.jpg
Using Using
inheritence reference variable

Same package (Separate package)

Derived classes v v X

Unrelated classes v X

OEBPS/025fig01_alt.jpg
protected class MyTopLevelClass {} ‘Won't compile—top-level

private class MyTopLevelClass {} class, interface, and enums
protected interface TopLevelInterface {} can't be defined with protected
protected enum TopLevelEnum {} and private access.

void myMethod (private int param) {} ‘Won't compile—method parameters
void myMethod (int param) { and local variables can't be defined

10; using any explicit access modif

public int localvVariable rs.

}

OEBPS/01fig12.jpg
Same package Separate package

Derived classes X x

Unrelated classes X x

OEBPS/01fig14_alt.jpg
Before modification

building

package library:

publlic class Book {

1

package building;

import. 1ibrary.Book;
Class Storysook extends Book{
V/ (author - "selvan®;)

)

Shreya's code.

Harry's code

After modifcation

Library

package Library:
public class Book {

package building:

import 1ibrary.Book:

}

Class storymook extends Book(
% (auhor = *selvan;}

}

Ao dods:

s bode.

OEBPS/01fig13.jpg
Project status: code by Harry fails compliiation

d' zmixe!
| didn't thange
any code.’m5

Then how did
this happen?

Hany Paul

OEBPS/022fig02.jpg
package building;

import library.Book; 4—‘ B”kl's;lt‘ "
public class House {} accessible in House

OEBPS/022fig01.jpg
package library;
class Book {

Book now has
//.. class members
}

default access

OEBPS/01fig10.jpg
Same package Separate package

Derived classes v x

Unrelated classes v X

OEBPS/023fig01.jpg
Bookisn’t accessible
package building; in StoryBook
import library.Book;

class StoryBook extends Book {} StoryBook cannot

extend Book

OEBPS/024fig01_alt.jpg
package library;

class Book { éJ Private method
private void countPages () {}
protected void modifyTemplate () { Only Book can access
countPages () its own private
) method countPages()

OEBPS/01fig11_alt.jpg
library

Book

-countPages ()

<<extends>>

building

#imodifyTemplate ()

Librarian

<<extends>>

CourseBook

StoryBook

House

OEBPS/024fig02_alt.jpg
package library; Cours;B;okk
class CourseBook extends Book { QJ extends Bool

CourseBook () {
countPages () ; CourseBook cannot

) access private method
y countPages()

