

 [image: cover]

 MacRuby in Action

 Brendan G. Lim with Jerry Cheung and Jeremy McAnally

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 	Special Sales Department
	Manning Publications Co.
	20 Baldwin Road
	PO Box 261
	Shelter Island, NY 11964
	Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Sara Onstine
Technical proofreader: Nick Howard
Copyeditors: Lianna Wlasiuk, Tiffany Taylor
Proofreader: Melody Dolab
Typesetter: Marija Tudor
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Starting with MacRuby

 Chapter 1. Introducing MacRuby

 Chapter 2. Using Macirb and the Apple development tools

 Chapter 3. Going beyond the basics with Xcode Interface Builder

 2. Take it for a Spin

 Chapter 4. Using the delegate pattern

 Chapter 5. Notifications and implementing the observer pattern

 Chapter 6. Using key-value coding and key-value observing

 Chapter 7. Implementing persistence with Core Data

 Chapter 8. Core Animation basics

 3. MacRuby Extras

 Chapter 9. HotCocoa

 Chapter 10. MacRuby testing

 Chapter 11. MacRuby and the Mac App Store

 Appendix A. Scripting with MacRuby

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Starting with MacRuby

 Chapter 1. Introducing MacRuby

 1.1. Introducing MacRuby

 1.1.1. The MacRuby difference

 1.1.2. Setting up your environment

 1.1.3. Hello World, part 1

 1.2. Cocoa: What you need to know

 1.2.1. Important classes and concepts

 1.2.2. How Cocoa implements common design patterns

 1.3. Objective-C and Ruby: what you need to know

 1.3.1. A shared heritage

 1.3.2. Objective-C 101

 1.3.3. Ruby 101

 1.4. Diving into MacRuby

 1.4.1. Class structure

 1.4.2. Creating MacRuby classes

 1.4.3. Syntax and method signatures

 1.4.4. Using Ruby and Objective-C methods

 1.4.5. Creating user interfaces

 1.5. Hello World, part 2

 1.5.1. Creating an Xcode project

 1.5.2. Creating the interface

 1.5.3. Creating the controller

 1.5.4. Connecting the interface and controller

 1.6. Summary

 Chapter 2. Using Macirb and the Apple development tools

 2.1. Using external libraries with MacRuby

 2.1.1. Loading frameworks

 2.1.2. Loading Objective-C libraries as bundles

 2.1.3. Loading Ruby gems

 2.2. Exploring Macirb

 2.2.1. Comparing the Ruby and MacRuby consoles

 2.2.2. Working in the MacRuby console

 2.2.3. Macirb tips and tricks

 2.3. Building a Pomodoro application in Xcode

 2.3.1. Creating a new MacRuby project

 2.3.2. Constructing the interface

 2.3.3. Creating the controller

 2.3.4. Connecting the controller and the interface

 2.3.5. Running the application

 2.3.6. Releasing the application

 2.4. Summary

 Chapter 3. Going beyond the basics with Xcode Interface Builder

 3.1. About Interface Builder

 3.1.1. History of Interface Builder

 3.1.2. Getting around Interface Builder

 3.2. Creating connections

 3.2.1. Understanding outlets

 3.2.2. Understanding actions

 3.3. Creating the Todo List application

 3.3.1. Constructing the user interface

 3.3.2. Creating the model

 3.3.3. Creating the controller

 3.3.4. Connecting outlets and actions

 3.3.5. Running and packaging the application

 3.4. Summary

 2. Take it for a Spin

 Chapter 4. Using the delegate pattern

 4.1. What are delegates?

 4.1.1. How do delegate methods work?

 4.1.2. Implementing the delegate pattern

 4.2. Delegation as an extension technique

 4.2.1. Delegation the Cocoa way

 4.2.2. Delegation using Forwardable

 4.3. Using delegation in a custom MacRuby web browser

 4.3.1. Creating the browser interface

 4.3.2. Setting up the controller

 4.3.3. Implementing delegate methods in the controller

 4.3.4. Connecting outlets and actions

 4.3.5. Taking MacRuby Browser for a spin

 4.4. Summary

 Chapter 5. Notifications and implementing the observer pattern

 5.1. Notifying multiple objects

 5.1.1. When to use notifications

 5.1.2. Managing notifications

 5.2. Setting up notifications

 5.2.1. Creating notifications

 5.2.2. Posting notifications to the notification center

 5.3. Queuing notifications

 5.3.1. Using posting styles

 5.3.2. Coalescing notifications

 5.3.3. Queuing multiple notifications

 5.3.4. Removing notifications

 5.4. Responding to notifications

 5.4.1. Adding notification observers

 5.4.2. Removing notification observers

 5.5. Building an iTunes-notification observer

 5.5.1. Creating the script

 5.5.2. Running the script

 5.6. Summary

 Chapter 6. Using key-value coding and key-value observing

 6.1. Simplifying code with key-value coding

 6.1.1. Accessing object properties with KVC

 6.1.2. Handling unknown keys

 6.1.3. Understanding key paths and collection operators

 6.2. Using KVO to implement observers

 6.2.1. Adding and removing observers

 6.2.2. Manually notifying observers of changes

 6.2.3. Responding to observed objects

 6.3. Building out the Product Inventory application

 6.3.1. Creating the user interface

 6.3.2. Using KVC to retrieve product information

 6.3.3. Adding features with KVC and KVO

 6.4. Summary

 Chapter 7. Implementing persistence with Core Data

 7.1. Introducing Core Data

 7.1.1. Core Data concepts

 7.1.2. Differences between Core Data and traditional databases

 7.1.3. Creating a base Core Data project

 7.2. Understanding the persistent store and managed objects

 7.2.1. Anatomy of a persistent store

 7.2.2. Working with the managed object model

 7.2.3. Working with entity properties

 7.2.4. Defining a managed object class

 7.3. Working with managed objects

 7.3.1. Creating managed objects and updating properties

 7.3.2. Persisting changes to managed objects

 7.4. Retrieving objects from Core Data

 7.4.1. Filtering and sorting with predicates and descriptors

 7.4.2. Fetching objects from Core Data

 7.5. Creating a Core Data version of the Todo List application

 7.5.1. Building the user interface

 7.5.2. Creating the tasks controller

 7.5.3. Connecting the interface to the controller

 7.5.4. Running the application and inspecting the persistent store

 7.6. Summary

 Chapter 8. Core Animation basics

 8.1. Introduction to Core Animation

 8.1.1. What is Core Animation?

 8.1.2. Class structure

 8.1.3. Core Animation’s rendering architecture

 8.1.4. Creating a basic animation with Cocoa Animation

 8.2. Core Animation layers

 8.2.1. Layer coordinate systems

 8.2.2. Layer geometry

 8.2.3. Layer content

 8.3. Animating with Core Animation

 8.3.1. Basic animations

 8.3.2. Keyframe animations

 8.3.3. Grouping animations

 8.4. Summary

 3. MacRuby Extras

 Chapter 9. HotCocoa

 9.1. Introducing HotCocoa

 9.1.1. Getting started

 9.2. Built-in mappings

 9.2.1. Applications and menus

 9.2.2. Windows and controls

 9.2.3. More advanced layouts

 9.3. Building a speech application using HotCocoa

 9.3.1. Laying out the views

 9.3.2. Making your application speak to you

 9.4. Summary

 Chapter 10. MacRuby testing

 10.1. Testing MacRuby applications with MiniTest

 10.2. Installing and configuring MiniTest

 10.3. Application vs. logic testing

 10.4. Where to start testing

 10.4.1. Application initialization

 10.4.2. Core Data

 10.4.3. Managing persistence store for testing

 10.4.4. Testing predicates

 10.5. Summary

 Chapter 11. MacRuby and the Mac App Store

 11.1. Introducing the Mac App Store

 11.1.1. Benefits of releasing on the Mac App Store

 11.1.2. Limitations of the Mac App Store

 11.2. Knowing the App Store rules

 11.2.1. Functionality

 11.2.2. Metadata

 11.2.3. Location

 11.2.4. User interface

 11.2.5. Privacy

 11.2.6. Charities and contributions

 11.2.7. Legal requirements

 11.3. Submitting a MacRuby application

 11.3.1. Creating certificates

 11.3.2. Registering your Mac App ID

 11.3.3. Preparing icons and screenshots

 11.3.4. Adding your application to iTunes Connect

 11.3.5. Packaging and submitting your application

 11.3.6. Dealing with application rejection

 11.3.7. Submitting an update

 11.4. Summary

 Appendix A. Scripting with MacRuby

 A.1. Before, there was AppleScript

 A.1.1. Introduction to AppleScript

 A.1.2. AppleScript dictionaries

 A.2. MacRuby scripting

 A.2.1. Creating a BridgeSupport file

 A.2.2. Controlling iTunes With MacRuby

 A.2.3. Updating your iChat status

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I was first learning Ruby, I immediately fell in love with the language. I knew early on that I wanted to work with Ruby
 professionally, which became possible later when I created my first startup using Ruby on Rails.

 I later worked for a Ruby on Rails consulting company where I spent a few years focusing on Ruby before I headed up the mobile
 development department. I’ve had an interest in mobile development since I was young and it was a very exciting time to work
 on iOS and Android applications. With iOS development came the need to learn Objective-C, which ultimately led me into the
 world of Cocoa for Mac development.

 I developed a few Mac applications personally and professionally and thought how great it would be if I could write Mac applications
 using Ruby. I’d heard of RubyCocoa, but I knew of its shortcomings. Then I learned about MacRuby: it was the solution I’d
 been waiting for.

 When I was contacted by Manning to work on this book, I knew I’d be able to reach many other individuals who were Rubyists
 and who wanted to create rich Mac applications without having to use Objective-C. This book is meant for you if you love the
 Ruby language and want to get into Mac development

 BRENDAN G. LIM

Acknowledgments

 Putting together a book like this is no easy feat, and many people behind the scenes worked countless hours to get the book
 into your hands. First and foremost, everyone at Manning deserves all the thanks we can give them. Without them, we wouldn’t
 have been able to create such a great book for you.

 We interacted frequently with a few individuals from Manning and would like to specifically mention them. We’d like to thank
 Troy Mott, our acquisitions editor, who originally came to us to work on this book and helped us through thick and thin. Sara
 Onstine, our development editor, guided us through the formalities of writing a book like this. And Marjan Bace, our publisher,
 always challenged us to find ways to improve the book’s content and organization.

 We’d also like to thank our book’s production team. Lianna Wlasiuk, Tiffany Taylor, and Melody Dolab, our copyeditors and
 proofreader, read the entire manuscript and made sure everything was organized and presented properly. Nick Howard, our technical
 proofreader, caught errors that we didn’t know were there.

 Over the course of the development of the book, many people generously volunteered to review it to help make it as good as
 it could be. These reviewers deserve a tremendous amount of credit for the impact they made through their feedback. Our thanks
 to Pradeep Elankumaran, Brent Collier, Adam Bair, Philip Hallstrom, Mike Stok, Alex Vollmer, Coby Randquist, Jerry Cheung,
 Greg Vaughn, Warner Onstine, and Daniel Bretoi.

 BRENDAN would like to thank his father, Chhorn, his mother, Brenda, and his two brothers, Chhorn and Chhun, for their support and
 encouragement. He also wants to thank his wife, Edelweiss, for her love and support and for letting him spend night and day
 working on this book. Last but not least, thanks to Pradeep Elankumaran, who let Brendan spend so much time writing this book
 after they both quit their jobs to focus on their startup, Kicksend.

 JERRY would like to thank his parents, Margaret and Kevin, and his wise-guy brother Randall. He’d also like to remind Wendy that
 he beat her to her thesis (thanks, love, for letting me win this one). A special shout-out goes to Brendan for getting Jerry
 interested in MacRuby and Mac development in the first place.

 JEREMY would like to thank his wife, friends, and dogs for sustaining him through yet another writing project. Without their support,
 he would likely end up a raving maniac under an overpass tapping out code examples while throwing cans at passing cars.

About this Book

 MacRuby in Action was written to give Rubyists the ability to create rich Cocoa applications for the Mac OS X platform without having to learn
 Objective-C. Our goal is to have you, the reader, creating amazing Cocoa applications using MacRuby by the end of the book.
 Throughout the book, you’ll learn in the ins and outs of MacRuby while exploring the Cocoa framework, design patterns, system
 scripting, testing, and getting your application into the Mac App Store. We know that sometimes the best way to learn is to
 get your feet wet. That’s why you’ll be creating useful Mac applications along the way so you can apply the key topics as
 you learn them.

Who should read this book

 This book is aimed at developers interested in writing software for the Mac platform. It doesn’t matter if you’re new to both
 the Mac and the Ruby language or you’re an experienced Ruby developer looking to learn how to write Mac apps. If you have
 the desire to create beautiful Cocoa applications for the Mac platform and want to do so using the elegant and highly productive
 Ruby language, then this book is for you. If you’re new to Ruby, we give you a brief overview of the language so you’ll feel
 comfortable enough to take on the rest of the book.

 MacRuby in Action is also a more approachable introduction to Cocoa development than traditional Objective-C books. Throughout the book, we
 explore practical code examples that you’ll face when creating your own applications. MacRuby in Action can act as a guide for using MacRuby and Cocoa from the ground up, or you can use it as a reference if you’re looking to
 dive deeper into MacRuby.

Roadmap

 The book has 11 chapters divided into three parts as follows:

 Chapter 1 explores the inner workings of MacRuby and how to set up your development environment. There’s also an introduction to Ruby
 and an overview of Objective-C syntax. We then go into the MacRuby syntax, give a few examples, and end with two “Hello World”
 examples.

 Chapter 2 takes a deeper dive into MacRuby with more in-depth examples. We look into using external frameworks, Ruby gems, and the
 MacRuby console. At the end of the chapter, you build a MacRuby Pomodoro application.

 Chapter 3 talks about Apple’s development environment tools. You spend more time using Xcode’s Interface Builder to create rich Cocoa
 user interfaces. You then use your Interface Builder knowledge to create an application to manage to-do lists.

 Chapter 4 introduces and explains a code design technique known as delegation. This design pattern is used often in the Cocoa framework and is important to know because it’s a core concept. You explore
 delegation by creating a web browser with MacRuby.

 Chapter 5 covers Cocoa’s notification system, which lets you set observers throughout an application to listen for and react to changes.
 This is another pattern that is used frequently in Cocoa. At the end of the chapter, you build an iTunes notification observer.

 Chapter 6 explores key value coding (KVC) and observing. KVC is a mechanism in Objective-C that’s used throughout Cocoa. You learn
 about KVC, bindings, and key-value observing.

 Chapter 7 introduces the Core Data framework. Core Data is Apple’s answer to object-relational mapping. We compare Core Data with other
 persistence solutions that you may be familiar with. At the end of the chapter, you use Core Data to add persistence to the
 Todo List application you built in chapter 3.

 Chapter 8 discusses image manipulation, animation, and much more with Core Animation. Throughout the chapter, we go through examples
 to showcase what you can do with Core Animation once you scratch the surface.

 Chapter 9 dives into the MacRuby-oriented mapping library HotCocoa. HotCocoa gives developers an alternative to Interface Builder by
 making it easy to create interfaces in code. You end up building a small application of your own.

 Chapter 10 discusses testing with MacRuby. Testing is an essential part of software development, and it has gained a strong focus within
 the Ruby community. We look at different ways to test with MacRuby.

 Chapter 11 explains how to release a MacRuby application to the world with the Mac App Store. We go into detail about the different
 review guidelines, how to provision your application for submission, and finally how to submit it for review.

 Appendix A talks about scripting with MacRuby. We first provide a little history and an introduction to AppleScript. We then look at
 how you can use MacRuby to create scripts to automate functionality.

Code conventions

 There are many code examples throughout this book. These examples always appear in a fixed-width code font. If we want you to pay special attention to a part of an example, it appears in a bolded code font. Any class name or method within the normal text of the book appears in code font as well.

 Many of Cocoa’s methods have exceptionally long and verbose names. Because of this, line-continuation markers ([image:]) may be included in code listings when necessary.

 Not all code examples in this book are complete. Often we show only a method or two from a class to focus on a particular
 topic. Complete source code for the applications found throughout the book can be downloaded from the publisher’s website
 at www.manning.com/MacRubyinAction.

Software requirements

 An Intel-based Macintosh running OS X 10.6 or higher is required to develop MacRuby applications. You also need to download
 MacRuby, but it’s freely available at http://macruby.org.

 The book offers full coverage of MacRuby and Xcode 4.

Author Online

 Purchase of MacRuby in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/MacRubyinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 BRENDAN G. LIM is a professional Ruby and Objective-C developer. He is also a noted conference speaker who specializes in developing Ruby
 on Rails, Android, iOS, and Mac applications. Brendan graduated from Auburn University where he studied Wireless Software
 Engineering. He is also a Y Combinator alum and cofounded the filesharing startup Kicksend. During his free time, Brendan
 enjoys rock climbing and taking photos and videos.

 JERRY CHEUNG loves creating software. He started experimenting with Ruby on Rails in 2007 and has been hooked on Ruby ever since. Upon
 graduating from Berkeley, he joined Coupa, and later he went on to start his own company, Outspokes, with several friends
 from Berkeley. He currently works as a Rails engineer at Intridea and experiments with emerging technologies like MacRuby
 and Node.js. When he’s not furiously typing, Jerry might be out running, brewing beer, or enjoying a BBQ and getting a serious
 sunburn.

 JEREMY MCANALLY is founder and principal at Arcturo, a web and mobile development firm. He spends his days hacking Ruby and Objective-C.

About the Cover Illustration

 The figure on the cover of MacRuby in Action is captioned “A man from Ubli, Dalmatia.” The illustration is taken from a reproduction of an album of Croatian traditional
 costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003.
 The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
 core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book
 includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes
 and of everyday life.

 Ubli is a town on the island of Lastovo, one of a number of small islands in the Adriatic off the western coast of Croatia.
 The figure on the cover wears blue woolen trousers and a white linen shirt, over which he dons a blue vest and black jacket,
 richly trimmed with the colorful embroidery typical for this region. A red turban and colorful socks complete the costume.
 The man is also holding a pistol and has a short sword tucked under his belt.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Starting with MacRuby

 MacRuby is a combination of technologies that together create a powerful and very usable new technology. Part 1 of this book provides the basics needed for new MacRuby users to understand the background and underlying details of how
 MacRuby works so the development environment, language, and platform make sense. With this grounding, you’ll be able to pick
 any sections in the rest of the book and learn about the areas that are most interesting or relevant to you.

Chapter 1. Introducing MacRuby

	

 This chapter covers

	Exploring and installing MacRuby

 	Important Cocoa concepts

 	Objective-C and Ruby fundamentals

 	MacRuby syntax and methods

 	Developing with the Xcode IDE

	

MacRuby gives you the ability to write full-fledged Mac applications while enjoying the benefits of the Ruby language. You
 won’t take a deep dive into writing your first releasable application worthy of the Mac App Store just yet—you’ll do that
 in chapter 2. To write great MacRuby applications, you first need to become familiar with its foundation. The MacRuby language is deeply
 rooted in the Ruby and Objective-C languages so it’s important to have a good understanding of both of these to fully leverage
 all that MacRuby offers.

 In this chapter, we’ll briefly cover the Cocoa framework, Ruby, and Objective-C. After you have an understanding of these
 topics, we’ll dive into some real MacRuby code. You’ll even get a chance to write a Hello World application; we’ll show you
 two approaches to user interface development.

 To get started, let’s learn what MacRuby is all about and get it installed on your system.

1.1. Introducing MacRuby

 MacRuby is an Apple-sponsored development project. Over the years, Apple has shown support for Ruby as a language, and, since
 2002, Apple has included Ruby as part of the Mac OS X operating system. Apple bundled a Ruby Scripting Bridge implementation
 called RubyCocoa with Mac OS X Leopard. Prior to MacRuby, RubyCocoa was the only way to work with Ruby and the Cocoa framework
 together.

 In this section, you’ll learn how MacRuby is different from past attempts at combining Ruby and Objective-C and what makes
 it such a great language. We’ll also jump right into getting MacRuby installed onto your system and introduce you to MacRuby’s
 class structure.

 Let’s set the stage for MacRuby.

 1.1.1. The MacRuby difference

 The goal of MacRuby is to provide an implementation of the Ruby language on top of core Mac OS X technologies, such as the
 Objective-C runtime, garbage collection, and Core Foundation. In MacRuby, all classes are Objective-C classes, all methods
 are Objective-C methods, and all objects are Objective-C objects. Unlike RubyCocoa, you don’t need a bridge between Ruby,
 Objective-C, and the Cocoa framework. MacRuby is implemented on top of the Objective-C runtime as shown in figure 1.1.

 Figure 1.1. MacRuby is built on top of the Objective-C runtime.

 [image:]

 MacRuby gives you the ability to do almost anything you want with the Mac platform—all while giving you the clean, concise
 syntax of the Ruby language. Another thing that sets it apart from RubyCocoa is that you get this functionality without making
 performance sacrifices because MacRuby doesn’t rely on a bridge implementation.

 MacRuby is similar in concept to the IronRuby and JRuby projects in that it’s an implementation of Ruby on top of another
 runtime. IronRuby runs on the .NET runtime for Windows, and JRuby runs on the Java Virtual Machine (JVM) runtime. MacRuby
 is currently under active development by Apple, which gives the language a great deal of support and momentum.

 Think of MacRuby as the child of two languages: Objective-C and Ruby. MacRuby is rooted in the Objective-C object hierarchy,
 but it also has the Ruby 1.9 core functionality layered on top. Syntax-wise, MacRuby resembles Ruby more than Objective-C.
 Theoretically, you could write a Ruby 1.9 script and run it under MacRuby. The key difference in MacRuby is that you can directly
 access Objective-C frameworks, classes, objects, and methods.

 Before you write any code, you’ll want to install MacRuby and Xcode on your system. Xcode is Apple’s suite of developer tools
 needed to create Mac OS X applications. After all, what good are code examples if you can’t follow along?

 1.1.2. Setting up your environment

 Install the Xcode development environment first. It’s best to install MacRuby after you have Xcode set up on your machine. If you don’t install in this order, tools such as Interface Builder (which is now
 built into Xcode 4) won’t be able to recognize your MacRuby code.

Installing Xcode

 Registered Apple Developers can download the latest version of Xcode for free at https://developer.apple.com/xcode/. If you don’t have an Apple Developer Account, you can purchase Xcode for $4.99 from the Mac App Store.

	

Tip

 Xcode is a big file; take a break while you wait for it to download.

	

After the download is complete, run the installer to set up Xcode on your system. Xcode will be available from your /Developer/Applications
 folder.

Installing Macruby

 Installing MacRuby is a simple two-step process:

	

Note

 Make sure that you’re running an Intel-based system with Mac OS X 10.6 or higher, which is the minimum requirement for MacRuby.

	

 1. Download the latest stable release. From http://macruby.org, proceed to the download section. A self-installable binary should be available for you to save and run, which should install
 the latest version of MacRuby on your system.

 2. Test the MacRuby installation. Open the Terminal application, type macirb, and then press Enter. You should see something similar to the following code:

$ macirb
irb(main):001:0>

 This puts you directly into Macirb, the MacRuby console, which is a great tool for experimenting with MacRuby. You’ll learn
 about Macirb in more detail in chapter 2.

 Next, type this command:

 p "Hello World!"

 If your installation was successful, you’ll see the words Hello World! printed out without any errors. If you see errors,
 try installing again.

	

Note

 If Xcode doesn’t recognize MacRuby files, return to this page and reinstall MacRuby.

	

If everything went as planned, congratulations! You’ve written your first line of MacRuby! You can now follow along throughout
 the book. Let’s start with a MacRuby script.

 1.1.3. Hello World, part 1

 The MacRuby scripting runtime provides a way to execute MacRuby scripts as Cocoa applications, without the need for any other
 tools. To get a taste of MacRuby, you’re going to write a script that, when run, looks like figure 1.2.

 Figure 1.2. The MacRuby script in action

 [image:]

 Open your favorite text editor, and create a file and save it with the name hello.rb. The .rb indicates that it’s a Ruby source
 file. MacRuby uses the same file extension as standard Ruby, but it uses its own command to run scripts, as you’ll soon see.

 The Hello World application shown in listing 1.1 is 25 lines long because you’re creating it programmatically rather than using the interface development tools built into
 Xcode. Most of the code is for the user interface, which is why most people choose to use HotCocoa or Xcode.

 Let’s start by looking at the code in the script, and then we’ll break it down into digestible bits.

 Listing 1.1. MacRuby Hello World script

 [image:]

 The first line uses the framework method to load the Cocoa base framework for MacRuby. This method loads both the Foundation and AppKit frameworks into your
 environment so that your application has access to the core Cocoa classes.

 You start by initializing the NSApplication singleton [image:] for the app. Every Cocoa program has a singleton instance of NSApplication responsible for managing the application’s run loop. You create a variable, app, and assign it a reference to the NSApplication singleton.

 Next, you set up the application window. At [image:], you create an instance of NSWindow with parameters and assign it to the win variable for reference. To add subviews to the application, you reference the main window (win). You also specify the size of the window as the first parameter of the NSWindow instance.

 To display the Hello World! message, you need an element to display the text. You create an instance of NSTextField [image:] and then set the text for it to Hello World! You also set its bounds so that it displays centered in the window [image:]. The frame origin of the text field is set to roughly the center of the window based on the window’s dimensions.

OEBPS/01list01_alt.jpg
sEpNBWOEY.

app

win

NSApplication. sharedApplication

NSWindow.alloc. initiithContentRect

Initializes
NShpplication

(130,500, 400, 2001,
styleMask:NSTitledwindowlask | NSClosableWindowtask
| NSMiniaturizablelindowMask | NSResizableiindouMask,
backing: NSBackingStoreBuffered, defer:false)

Sets up
NSWindow

label = NSTextField.alloc.initWithFrame
~ CGRectake(0,0,250, 45])

label .setstringValue *Hello World!"

label .drawsBackground = false

label .bezeled = false

label.font = NSFont.fontWithName("Arial®,
label.editable = false

Creates

siz

label . frameOrigin = NSMakePoint
* ((win.contentView. frameSize.width/2.0)
- (label. franesize.width/2.0),
(win.contentView. frameSize.height/2.0)
© -{label.framesize.height/2.0))

Centers
label

win.contentView.addSubview (1abel)

<1 Adds

win.title = “Hello World® © subview

win.display
win.orderFrontRegardless
win . makeKeyiindow

Configures

app window

B Fii

OEBPS/one.jpg

OEBPS/01fig01.jpg
Objective-C
Ry orares

Objective-C runtime

OEBPS/01fig02.jpg
Hello World!

OEBPS/manning.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/marker.jpg

OEBPS/infin.jpg

OEBPS/four.jpg

OEBPS/two.jpg

OEBPS/three.jpg

OEBPS/cover.jpg
Brendan G. Lim
Jerry Cheung
Jeremy Mchnally

