

 [image:]

 [image:]

 Full Stack Python Security

 Cryptography, TLS, and attack resistance

 Dennis Byrne

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image: Manning_M_small]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Toni Arritola

 	

 Technical development editor:

 	

 Michael Jensen

 	

 Review editor:

 	

 Aleks Dragosavljević

 	

 Production editor:

 	

 Andy Marinkovich

 	

 Copy editor:

 	

 Sharon Wilkey

 	

 Proofreader:

 	

 Jason Everett

 	

 Technical proofreader:

 	

 Ninoslav Cerkez

 	

 Typesetter:

 	

 Marija Tudor

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617298820

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Defense in depth

 1.1 Attack surface

 1.2 Defense in depth

 Security standards

 Best practices

 Security fundamentals

 1.3 Tools

 Staying practical

 Part 1 Cryptographic foundations

 2 Hashing

 2.1 What is a hash function?

 Cryptographic hash function properties

 2.2 Archetypal characters

 2.3 Data integrity

 2.4 Choosing a cryptographic hash function

 Which hash functions are safe?

 Which hash functions are unsafe?

 2.5 Cryptographic hashing in Python

 2.6 Checksum functions

 3 Keyed hashing

 3.1 Data authentication

 Key generation

 Keyed hashing

 3.2 HMAC functions

 Data authentication between parties

 3.3 Timing attacks

 4 Symmetric encryption

 4.1 What is encryption?

 Package management

 4.2 The cryptography package

 Hazardous materials layer

 Recipes layer

 Key rotation

 4.3 Symmetric encryption

 Block ciphers

 Stream ciphers

 Encryption modes

 5 Asymmetric encryption

 5.1 Key-distribution problem

 5.2 Asymmetric encryption

 RSA public-key encryption

 5.3 Nonrepudiation

 Digital signatures

 RSA digital signatures

 RSA digital signature verification

 Elliptic-curve digital signatures

 6 Transport Layer Security

 6.1 SSL? TLS? HTTPS?

 6.2 Man-in-the-middle attack

 6.3 The TLS handshake

 Cipher suite negotiation

 Key exchange

 Server authentication

 6.4 HTTP with Django

 The DEBUG setting

 6.5 HTTPS with Gunicorn

 Self-signed public-key certificates

 The Strict-Transport-Security response header

 HTTPS redirects

 6.6 TLS and the requests package

 6.7 TLS and database connections

 6.8 TLS and email

 Implicit TLS

 Email client authentication

 SMTP authentication credentials

 Part 2 Authentication and authorization

 7 HTTP session management

 7.1 What are HTTP sessions?

 7.2 HTTP cookies

 Secure directive

 Domain directive

 Max-Age directive

 Browser-length sessions

 Setting cookies programmatically

 7.3 Session-state persistence

 The session serializer

 Simple cache-based sessions

 Write-through cache-based sessions

 Database-based session engine

 File-based session engine

 Cookie-based session engine

 8 User authentication

 8.1 User registration

 Templates

 Bob registers his account

 8.2 User authentication

 Built-in Django views

 Creating a Django app

 Bob logs into and out of his account

 8.3 Requiring authentication concisely

 8.4 Testing authentication

 9 User password management

 9.1 Password-change workflow

 Custom password validation

 9.2 Password storage

 Salted hashing

 Key derivation functions

 9.3 Configuring password hashing

 Native password hashers

 Custom password hashers

 Argon2 password hashing

 Migrating password hashers

 9.4 Password-reset workflow

 10 Authorization

 10.1 Application-level authorization

 Permissions

 User and group administration

 10.2 Enforcing authorization

 The low-level hard way

 The high-level easy way

 Conditional rendering

 Testing authorization

 10.3 Antipatterns and best practices

 11 OAuth 2

 11.1 Grant types

 Authorization code flow

 11.2 Bob authorizes Charlie

 Requesting authorization

 Granting authorization

 Token exchange

 Accessing protected resources

 11.3 Django OAuth Toolkit

 Authorization server responsibilities

 Resource server responsibilities

 11.4 requests-oauthlib

 OAuth client responsibilities

 Part 3 Attack resistance

 12 Working with the operating system

 12.1 Filesystem-level authorization

 Asking for permission

 Working with temp files

 Working with filesystem permissions

 12.2 Invoking external executables

 Bypassing the shell with internal APIs

 Using the subprocess module

 13 Never trust input

 13.1 Package management with Pipenv

 13.2 YAML remote code execution

 13.3 XML entity expansion

 Quadratic blowup attack

 Billion laughs attack

 13.4 Denial of service

 13.5 Host header attacks

 13.6 Open redirect attacks

 13.7 SQL injection

 Raw SQL queries

 Database connection queries

 14 Cross-site scripting attacks

 14.1 What is XSS?

 Persistent XSS

 Reflected XSS

 DOM-based XSS

 14.2 Input validation

 Django form validation

 14.3 Escaping output

 Built-in rendering utilities

 HTML attribute quoting

 14.4 HTTP response headers

 Disable JavaScript access to cookies

 Disable MIME type sniffing

 The X-XSS-Protection header

 15 Content Security Policy

 15.1 Composing a content security policy

 Fetch directives

 Navigation and document directives

 15.2 Deploying a policy with django-csp

 15.3 Using individualized policies

 15.4 Reporting CSP violations

 15.5 Content Security Policy Level 3

 16 Cross-site request forgery

 16.1 What is request forgery?

 16.2 Session ID management

 16.3 State-management conventions

 HTTP method validation

 16.4 Referer header validation

 Referrer-Policy response header

 16.5 CSRF tokens

 POST requests

 Other unsafe request methods

 17 Cross-Origin Resource Sharing

 17.1 Same-origin policy

 17.2 Simple CORS requests

 Cross-origin asynchronous requests

 17.3 CORS with django-cors-headers

 Configuring Access-Control-Allow-Origin

 17.4 Preflight CORS requests

 Sending the preflight request

 Sending the preflight response

 17.5 Sending cookies across origins

 17.6 CORS and CSRF resistance

 18 Clickjacking

 18.1 The X-Frame-Options header

 Individualized responses

 18.2 The Content-Security-Policy header

 X-Frame-Options versus CSP

 18.3 Keeping up with Mallory

 index

 front matter

preface

 Years ago, I searched Amazon for a Python-based application security book. I assumed there would be multiple books to choose from. There were already so many other Python books for topics such as performance, machine learning, and web development.

 To my surprise, the book I was searching for didn’t exist. I could not find a book about the everyday problems my colleagues and I were solving. How do we ensure that all network traffic is encrypted? Which frameworks should we use to secure a web application? What algorithms should we hash or sign data with?

 In the years to follow, my colleagues and I found the answers to these questions while settling upon a standard set of open source tools and best practices. During this time, we designed and implemented several systems, protecting the data and privacy of millions of new end users. Meanwhile, three competitors were hacked.

 Like everyone else in the world, my life changed in early 2020. Every headline was about COVID-19, and suddenly remote work became the new normal. I think it’s fair to say each person had their own unique response to the pandemic; for myself, it was severe boredom.

 Writing this book allowed me to kill two birds with one stone. First, this was an excellent way to stave off boredom during a year of pandemic lockdowns. As a resident of Silicon Valley, this silver lining was amplified in the fall of 2020. At this time, a spate of nearby wildfires destroyed the air quality for most of the state, leaving many residents confined to their homes.

 Second, and more importantly, it has been very satisfying to write the book I could not buy. Like so many Silicon Valley startups, a lot of books begin for the sole purpose of obtaining a title such as author or founder. But a startup or book must solve real-world problems if it will ever produce value for others.

 I hope this book enables you to solve many of your real-world security problems.

acknowledgments

 Writing entails a great deal of solitary effort. It is therefore easy to lose sight of who has helped you. I’d like to acknowledge the following people for helping me (in the order in which I met them).

 To Kathryn Berkowitz, thank you for being the best high-school English teacher in the world. My apologies for being such a troublemaker. To Amit Rathore, my fellow ThoughtQuitter, thank you for introducing me to Manning. I’d like to thank Jay Fields, Brian Goetz, and Dean Wampler for their advice and input while I was searching for a publisher. To Cary Kempston, thank you for endorsing the auth team. Without real-world experience, I would have had no business writing a book like this. To Mike Stephens, thank you for looking at my original “manuscript” and seeing potential. I’d like to thank Toni Arritola, my development editor, for showing me the ropes. Your feedback is greatly appreciated, and with it I’ve learned so much about technical writing. To Michael Jensen, my technical editor, thank you for your thoughtful feedback and quick turnaround times. Your comments and suggestions have helped make this book a success.

 Finally, I’d like to thank all the Manning reviewers who gave me their time and feedback during the development phase of this effort: Aaron Barton, Adriaan Beiertz, Bobby Lin, Daivid Morgan, Daniel Vasquez, Domingo Salazar, Grzegorz Mika, Håvard Wall, Igor van Oostveen, Jens Christian Bredahl Madsen, Kamesh Ganesan, Manu Sareena, Marc-Anthony Taylor, Marco Simone Zuppone, Mary Anne Thygesen, Nicolas Acton, Ninoslav Cerkez, Patrick Regan, Richard Vaughan, Tim van Deurzen, Veena Garapaty, and William Jamir Silva, your suggestions helped make this a better book.

about this book

 I use Python to teach security, not the other way around. In other words, as you read this book, you will learn much more about security than Python. There are two reasons for this. First, security is complicated, and Python is not. Second, writing volumes of custom security code isn’t the best way to secure a system; the heavy lifting should almost always be delegated to Python, a library, or a tool.

 This book covers beginner- and intermediate-level security concepts. These concepts are implemented with beginner-level Python code. None of the material for either security or Python is advanced.

Who should read this book

 All of the examples in this book simulate the challenges of developing and securing systems in the real world. Programmers who push code to production environments are therefore going to learn the most. Beginner Python skills, or intermediate experience with any other major language, is required. You certainly do not have to be a web developer to learn from this book, but a basic understanding of the web makes it easier to absorb the second half.

 Perhaps you don’t build or maintain systems; instead, you test them. If so, you will gain a much deeper understanding of what to test, but I do not even try to teach how to test. As you know, these are two different skill sets.

 Unlike some security books, none of the examples here assume the attacker’s point of view. This group will therefore learn the least. If it is any consolation to them, in some chapters I let the villains win.

How this book is organized: A roadmap

 The first chapter of this book sets expectations with a brief tour of security standards, best practices, and fundamentals. The remaining 17 chapters are divided into three parts.

 Part 1, “Cryptographic foundations,” lays the groundwork with a handful of cryptographic concepts. This material resurfaces repeatedly throughout parts 2 and 3.

 	

 Chapter 2 dives straight into cryptography with hashing and data integrity. Along the way, I introduce a small group of characters who appear throughout the book.

 	

 Chapter 3 was extracted from chapter 2. This chapter tackles data authentication with key generation and keyed hashing.

 	

 Chapter 4 covers two compulsory topics for any security book: symmetric encryption and confidentiality.

 	

 Like chapter 3, chapter 5 was extracted from its predecessor. This chapter covers asymmetric encryption, digital signatures, and nonrepudiation.

 	

 Chapter 6 combines many of the main ideas from previous chapters into a ubiquitous networking protocol, Transport Layer Security.

 Part 2, “Authentication and authorization,” contains the most commercially useful material in the book. This part is characterized by lots of hands-on instructions for common user workflows related to security.

 	

 Chapter 7 covers HTTP session management and cookies, setting the stage for many of the attacks discussed in later chapters.

 	

 Chapter 8 is all about identity, introducing workflows for user registration and user authentication.

 	

 Chapter 9 covers password management, and was the most fun chapter to write. This material builds heavily upon previous chapters.

 	

 Chapter 10 transitions from authentication to authorization with another workflow about permissions and groups.

 	

 Chapter 11 closes part 2 with OAuth, an industry standard authorization protocol designed for sharing protected resources.

 Readers find part 3, “Attack resistance,” to be the most adversarial portion of the book. This material is easier to digest and more exciting.

 	

 Chapter 12 dives into the operating system with topics such as filesystems, external executables, and shells.

 	

 Chapter 13 teaches you how to resist numerous injection attacks with various input validation strategies.

 	

 Chapter 14 focuses entirely on the most infamous injection attack of all, cross-site scripting. You probably saw this coming.

 	

 Chapter 15 introduces Content Security Policy. In some ways, this can be considered an additional chapter on cross-site scripting.

 	

 Chapter 16 covers cross-site request forgery. This chapter combines several topics from previous chapters with REST best practices.

 	

 Chapter 17 explains the same-origin policy, and why we use Cross-Origin Resource Sharing to relax it from time to time.

 	

 Chapter 18 ends the book with content about clickjacking and a few resources to keep your skills up-to-date.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Full Stack Python Security includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/practical-python-security/welcome/v-4/. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Dennis Byrne is a member of the 23andMe architecture team, protecting the genetic data and privacy of more than 10 million customers. Prior to 23andMe, Dennis was a software engineer for LinkedIn. Dennis is a bodybuilder and a Global Underwater Explorers (GUE) cave diver. He currently lives in Silicon Valley, far away from Alaska, where he grew up and went to school.

about the cover illustration

 The figure on the cover of Full Stack Python Security is captioned “Homme Touralinze,” or Tyumen man of a region in Siberia. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 Defense in depth

 This chapter covers

 	
Defining your attack surface

 	
Introducing defense in depth

 	
Adhering to standards, best practices, and fundamentals

 	
Identifying Python security tools

 You trust organizations with your personal information more now than ever before. Unfortunately, some of these organizations have already surrendered your information to attackers. If you find this hard to believe, visit https://haveibeenpwned.com. This site allows you to easily search a database containing the email addresses for billions of compromised accounts. With time, this database will only grow larger. As software users, we have developed an appreciation for security through this common experience.

 Because you’ve opened this book, I’m betting you appreciate security for an additional reason. Like me, you don’t just want to use secure systems; you want to create them as well. Most programmers value security, but they don’t always have the background to make it happen. I wrote this book to provide you with a tool set for building this background.

 Security is the ability to resist attack. This chapter decomposes security from the outside in, starting with attacks. The subsequent chapters cover the tools you need to implement layers of defense, from the inside out, in Python.

 Every attack begins with an entry point. The sum of all entry points for a particular system is known as the attack surface. Beneath the attack surface of a secure system are layers of security, an architectural design known as defense in depth. Defense layers adhere to standards and best practices to ensure security fundamentals.

1.1 Attack surface

 Information security has evolved from a handful of dos and don’ts into a complex discipline. What drives this complexity? Security is complex because attacks are complex; it is complex out of necessity. Attacks today come in so many shapes and sizes. We must develop an appreciation for attacks before we can develop secure systems.

 As I noted in the preceding section, every attack begins with a vulnerable entry point, and the sum of all potential entry points is your attack surface. Every system has a unique attack surface.

 Attacks, and attack surfaces, are in a steady state of flux. Attackers become more sophisticated over time, and new vulnerabilities are discovered on a regular basis. Protecting your attack surface is therefore a never-ending process, and an organization’s commitment to this process should be continuous.

 The entry point of an attack can be a user of the system, the system itself, or the network between the two. For example, an attacker may target the user via email or chat as an entry point for some forms of attack. These attacks aim to trick the user into interacting with malicious content designed to take advantage of a vulnerability. These attacks include the following:

 	

 Reflective cross-site scripting (XSS)

 	

 Social engineering (e.g., phishing, smishing)

 	

 Cross-site request forgery

 	

 Open redirect attack

 Alternatively, an attacker may target the system itself as an entry point. This form of attack is often designed to take advantage of a system with insufficient input validation. Classic examples of these attacks are as follows:

 	

 Structured Query Language (SQL) injection

 	

 Remote code execution

 	

 Host header attack

 	

 Denial of service

 An attacker may target a user and the system together as entry points for attacks such as persistent cross-site scripting or clickjacking. Finally, an attacker may use a network or network device between the user and the system as an entry point:

 	

 Man-in-the-middle attack

 	

 Replay attack

 This book teaches you how to identify and resist these attacks, some of which have a whole chapter dedicated to them (XSS arguably has two chapters). Figure 1.1 depicts an attack surface of a typical software system. Four attackers simultaneously apply pressure to this attack surface, illustrated by dashed lines. Try not to let the details overwhelm you. This is meant to provide you with only a high-level overview of what to expect. By the end of this book, you will understand how each of these attacks works.

 [image: CH01_F01_Byrne]

 Figure 1.1 Four attackers simultaneously apply pressure to an attack surface via the user, system, and network.

 Beneath the attack surface of every secure system are layers of defense; we don’t just secure the perimeter. As noted at the start of this chapter, this layered approach to security is commonly referred to as defense in depth.

1.2 Defense in depth

 Defense in depth, a philosophy born from within the National Security Agency, maintains that a system should address threats with layers of security. Each layer of security is dual-purpose: it resists an attack, and it acts as a backup when other layers fail. We never put our eggs in one basket; even good programmers make mistakes, and new vulnerabilities are discovered on a regular basis.

 Let’s first explore defense in depth metaphorically. Imagine a castle with one layer of defense, an army. This army regularly defends the castle against attackers. Suppose this army has a 10% chance of failure. Despite the army’s strength, the king isn’t comfortable with the current risk level. Would you or I be comfortable with a system unfit to resist 10% of all attacks? Would our users be comfortable with this?

 The king has two options to reduce risk. One option is to strengthen the army. This is possible but not cost-efficient. Eliminating the last 10% of risk is going to be a lot more expensive than eliminating the first 10% of risk. Instead of strengthening the army, the king decides to add another layer of defense by building a moat around the castle.

 How much risk is reduced by the moat? Both the army and the moat must fail before the castle can be captured, so the king calculates risk with simple multiplication. If the moat, like the army, has a 10% chance of failure, each attack has a 10% × 10%, or 1%, chance of success. Imagine how much more expensive it would have been to build an army with a 1% chance of failure than it was to just dig a hole in the ground and fill it with water.

 Finally, the king builds a wall around the castle. Like the army and moat, this wall has a 10% chance of failure. Each attack now has a 10% × 10% × 10%, or 0.1%, chance of success.

 The cost-benefit analysis of defense in depth boils down to arithmetic and probability. Adding another layer is always more cost-effective than trying to perfect a single layer. Defense in depth recognizes the futility of perfection; this is a strength, not a weakness.

 Over time, an implementation of a defense layer becomes more successful and popular than others; there are only so many ways to dig a moat. A common solution to a common problem emerges. The security community begins to recognize a pattern, and a new technology graduates from experimental to standardized. A standards body evaluates the pattern, argues about the details, defines a specification, and a security standard is born.

1.2.1 Security standards

 Many successful security standards have been established by organizations such as the National Institute of Standards and Technology (NIST), the Internet Engineering Task Force (IETF), and the World Wide Web Consortium (W3C). With this book, you’ll learn how to defend a system with the following standards:

 	

 Advanced Encryption Standard (AES)—A symmetric encryption algorithm

 	

 Secure Hash Algorithm 2 (SHA-2)—A family of cryptographic hash functions

 	

 Transport Layer Security (TLS)—A secure networking protocol

 	

 OAuth 2.0—An authorization protocol for sharing protected resources

 	

 Cross-Origin Resource Sharing (CORS)—A resource-sharing protocol for browsers

 	

 Content Security Policy (CSP)—A browser-based attack mitigation standard

 Why standardize? Security standards provide programmers with a common language for building secure systems. A common language allows different people from different organizations to build interoperable secure software with different tools. For example, a web server delivers the same TLS certificate to every kind of browser; a browser can understand a TLS certificate from every kind of web server.

 Furthermore, standardization promotes code reuse. For example, oauthlib is a generic implementation of the OAuth standard. This library is wrapped by both Django OAuth Toolkit and flask-oauthlib, allowing both Django and Flask applications to make use of it.

 I’ll be honest with you: standardization doesn’t magically solve every problem. Sometimes a vulnerability is discovered decades after everyone has embraced the standard. In 2017, a group of researchers announced they had broken SHA-1 (https://shat tered.io/), a cryptographic hash function that had previously enjoyed more than 20 years of industry adoption. Sometimes vendors don’t implement a standard within the same time frame. It took years for each major browser to support certain CSP features. Standardization does work most of the time, though, and we can’t afford to ignore it.

 Several best practices have evolved to complement security standards. Defense in depth is itself a best practice. Like standards, best practices are observed by secure systems; unlike standards, there is no specification for best practices.

1.2.2 Best practices

 Best practices are not the product of standards bodies; instead they are defined by memes, word of mouth, and books like this one. These are things you just have to do, and you’re on your own sometimes. By reading this book, you will learn how to recognize and pursue these best practices:

 	

 Encryption in transit and at rest

 	

 “Don’t roll your own crypto”

 	

 Principle of least privilege

 Data is either in transit, in process, or at rest. When security professionals say, “Encryption in transit and at rest,” they are advising others to encrypt data whenever it is moved between computers and whenever it is written to storage.

 When security professionals say, “Don’t roll your own crypto,” they are advising you to reuse the work of an experienced expert instead of trying to implement something yourself. Relying on tools didn’t become popular just to meet tight deadlines and write less code. It became popular for the sake of safety. Unfortunately, many programmers have learned this the hard way. You’re going to learn it by reading this book.

 The principle of least privilege (PLP) guarantees that a user or system is given only the minimal permissions needed to perform their responsibilities. Throughout this book, PLP is applied to many topics such as user authorization, OAuth, and CORS.

 Figure 1.2 illustrates an arrangement of security standards and best practices for a typical software system.

 [image: CH01_F02_Byrne]

 Figure 1.2 Defense in depth applied to a typical system with security standards and best practices

 No layer of defense is a panacea. No security standard or best practice will ever address every security issue by itself. The content of this book, like most Python applications, consequently includes many standards and best practices. Think of each chapter as a blueprint for an additional layer of defense.

 Security standards and best practices may look and sound different, but beneath the hood, each one is really just a different way to apply the same fundamentals. These fundamentals represent the most atomic units of system security.

1.2.3 Security fundamentals

 Security fundamentals appear in secure system design and in this book over and over again. The relationship between arithmetic, and algebra or trigonometry is analogous to the relationship between security fundamentals, and security standards or best practices. By reading this book, you will learn how to secure a system by combining these fundamentals:

 	

 Data integrity—Has the data changed?

 	

 Authentication—Who are you?

 	

 Data authentication—Who created this data?

 	

 Nonrepudiation—Who did what?

 	

 Authorization—What can you do?

 	

 Confidentiality—Who can access this?

 Data integrity, sometimes referred to as message integrity, ensures that data is free of accidental corruption (bit rot). It answers the question, “Has the data changed?” Data integrity guarantees that data is read the way it was written. A data reader can verify the integrity of the data regardless of who authored it.

 Authentication answers the question, “Who are you?” We engage in this activity on a daily basis; it is the act of verifying the identity of someone or something. Identity is verified when a person can successfully respond to a username and password challenge. Authentication isn’t just for people, though; machines can be authenticated as well. For example, a continuous integration server authenticates before it pulls changes from a code repository.

 Data authentication, often called message authentication, ensures that a data reader can verify the identity of the data writer. It answers the question, “Who authored this data?” As with data integrity, data authentication applies when the data reader and writer are different parties, as well as when the data reader and writer are the same.

 Nonrepudiation answers the question, “Who did what?” It is the assurance that an individual or an organization has no way of denying their actions. Nonrepudiation can be applied to any activity, but it is crucial for online transactions and legal agreements.

 Authorization, sometimes referred to as access control, is often confused with authentication. These two terms sound similar but represent different concepts. As noted previously, authentication answers the question, “Who are you?” Authorization, in contrast, answers the question, “What can you do?” Reading a spreadsheet, sending an email, and canceling an order are all actions that a user may or may not be authorized to do.

 Confidentiality answers the question, “Who can access this?” This fundamental ensures that two or more parties can exchange data privately. Information transmitted confidentially cannot be read or interpreted by unauthorized parties in any meaningful way.

 This book teaches you to construct solutions with these building blocks. Table 1.1 lists each building block and the solutions it maps to.

 Table 1.1 Security fundamentals

 	

 Building block

 	

 Solutions

 	

 Data integrity

 	

 Secure networking protocols

 Version control

 Package management

 	

 Authentication

 	

 User authentication

 System authentication

 	

 Data authentication

 	

 User registration

 User-login workflows

 Password-reset workflows

 User-session management

 	

 Nonrepudiation

 	

 Online transactions

 Digital signatures

 Trusted third parties

 	

 Authorization

 	

 User authorization

 System-to-system authorization

 Filesystem-access authorization

 	

 Confidentiality

 	

 Encryption algorithms

 Secure networking protocols

 Security fundamentals complement each other. Each one is not very useful by itself, but they are powerful when combined. Let’s consider some examples. Suppose an email system provides data authentication but not data integrity. As an email recipient, you are able to verify the identity of the email sender (data authentication), but you can’t be certain as to whether the email has been modified in transit. Not very useful, right? What is the point of verifying the identity of a data writer if you have no way of verifying the actual data?

 Imagine a fancy new network protocol that guarantees confidentiality without authentication. An eavesdropper has no way to access the information you send with this protocol (confidentiality), but you can’t be certain of who you’re sending data to. In fact, you could be sending data to the eavesdropper. When was the last time you wanted to have a private conversation with someone without knowing who you’re talking to? Usually, if you want to exchange sensitive information, you also want to do this with someone or something you trust.

 Finally, consider an online banking system that supports authorization but not authentication. This bank would always make sure your money is managed by you; it just wouldn’t challenge you to establish your identity first. How can a system authorize a user without knowing who the user is first? Obviously, neither of us would put our money in this bank.

 Security fundamentals are the most basic building blocks of secure system design. We get nowhere by applying the same one over and over again. Instead, we have to mix and match them to build layers of defense. For each defense layer, we want to delegate the heavy lifting to a tool. Some of these tools are native to Python, and others are available via Python packages.

1.3 Tools

 All of the examples in this book were written in Python (version 3.8 to be precise). Why Python? Well, you don’t want to read a book that doesn’t age well, and I didn’t want to write one. Python is popular and is only getting more popular.

 The PopularitY of Programming Language (PYPL) Index is a measure of programming language popularity based on Google Trends data. As of mid-2021, Python is ranked number 1 on the PYPL Index (http://pypl.github.io/PYPL.html), with a market share of 30%. Python’s popularity grew more than any other programming language in the previous five years.

 Why is Python so popular? There are lots of answers to this question. Most people seem to agree on two factors. First, Python is a beginner-friendly programming language. It is easy to learn, read, and write. Second, the Python ecosystem has exploded. In 2017, the Python Package Index (PyPI) reached 100,000 packages. It took only two and half years for that number to double.

 I didn’t want to write a book that covered only Python web security. Consequently, some chapters present topics such as cryptography, key generation, and the operating system. I explore these topics with a handful of security-related Python modules:

 	

 hashlib module (https://docs.python.org/3/library/hashlib.html)—Python’s answer to cryptographic hashing

 	

 secrets module (https://docs.python.org/3/library/secrets.html)—Secure random number generation

 	

 hmac module (https://docs.python.org/3/library/hmac.html)—Hash-based message authentication

 	

 os and subprocess modules (https://docs.python.org/3/library/os.html and https://docs.python.org/3/library/subprocess.html)—Your gateways to the operating system

 Some tools have their own dedicated chapter. Other tools are covered throughout the book. Still others make only a brief appearance. You will learn anywhere from a little to a lot about the following:

 	

 argon2-cffi (https://pypi.org/project/argon2-cffi/)—A function used to protect passwords

 	

 cryptography (https://pypi.org/project/cryptography/)—A Python package for common cryptographic functions

 	

 defusedxml (https://pypi.org/project/defusedxml/)—A safer way to parse XML

 	

 Gunicorn (https://gunicorn.org)—A web server gateway interface written in Python

 	

 Pipenv (https://pypi.org/project/pipenv/)—A Python package manager with many security features

 	

 requests (https://pypi.org/project/requests/)—An easy-to-use HTTP library

 	

 requests-oauthlib (https://pypi.org/project/requests-oauthlib/)—A client-side OAuth 2.0 implementation

 Web servers represent a large portion of a typical attack surface. This book consequently has many chapters dedicated to securing web applications. For these chapters, I had to ask myself a question many Python programmers are familiar with: Flask or Django? Both frameworks are respectable; the big difference between them is minimalism versus out-of-the-box functionality. Relative to each other, Flask defaults to the bare essentials, and Django defaults to full-featured.

 As a minimalist, I like Flask. Unfortunately, it applies minimalism to many security features. With Flask, most of your defense layers are delegated to third-party libraries. Django, on the other hand, relies less on third-party support, featuring many built-in protections that are enabled by default. In this book, I use Django to demonstrate web application security. Django, of course, is no panacea; I use the following third-party libraries as well:

 	

 django-cors-headers (https://pypi.org/project/django-cors-headers/)—A server-side implementation of CORS

 	

 django-csp (https://pypi.org/project/django-csp/)—A server-side implementation of CSP

 	

 Django OAuth Toolkit (https://pypi.org/project/django-oauth-toolkit/)—A server- side OAuth 2.0 implementation

 	

 django-registration (https://pypi.org/project/django-registration/)—A user registration library

 Figure 1.3 illustrates a stack composed of this tool set. In this stack, Gunicorn relays traffic to and from the user over TLS. User input is validated by Django form validation, model validation, and object-relational mapping (ORM); system output is sanitized by HTML escaping. django-cors-headers and django-csp ensure that each outbound response is locked down with the appropriate CORS and CSP headers, respectively. The hashlib and hmac modules perform hashing; the cryptography package performs encryption. requests-oauthlib interfaces with an OAuth resource server. Finally, Pipenv guards against vulnerabilities in the package repository.

 [image: CH01_F03_Byrne]

 Figure 1.3 A full stack of common Python components, resisting some form of attack at every level

 This book isn’t opinionated about frameworks and libraries; it doesn’t play favorites. Try not to take it personally if your favorite open source framework was passed up for an alternative. Each tool covered in this book was chosen over others by asking two questions:

 	

 Is the tool mature? The last thing either of us should do is bet our careers on an open source framework that was born yesterday. I intentionally do not cover bleeding-edge tools; it’s called the bleeding edge for a reason. By definition, a tool in this stage of development cannot be considered secure. For this reason, all of the tools in this book are mature; everything here is battle tested.

 	

 Is the tool popular? This question has more to do with the future than the present, and nothing to do with the past. Specifically, how likely are readers going to use the tool in the future? Regardless of which tool I use to demonstrate a concept, remember that the most important takeaway is the concept itself.

1.3.1 Staying practical

 This is a field manual, not a textbook; I prioritize professionals over students. This is not to say the academic side of security is unimportant. It is incredibly important. But security and Python are vast subjects. The depth of this material has been limited to what is most useful to the target audience.

 In this book, I cover a handful of functions for hashing and encryption. I do not cover the heavy math behind these functions. You will learn how these functions behave; you won’t learn how these functions are implemented. I’ll show you how and when to use them, as well as when not to use them.

 Reading this book is going to make you a better programmer, but this alone cannot make you a security expert. No single book can do this. Don’t trust a book that makes this promise. Read this book and write a secure Python application! Make an existing system more secure. Push your code to production with confidence. But don’t set your LinkedIn profile title to cryptographer.

Summary

 	

 Every attack begins with an entry point, and the sum of these entry points for a single system is known as the attack surface.

 	

 Attack complexity has driven the need for defense in depth, an architectural approach characterized by layers.

 	

 Many defense layers adhere to security standards and best practices for the sake of interoperability, code reuse, and safety.

 	

 Beneath the hood, security standards and best practices are different ways of applying the same fundamental concepts.

 	

 You should strive to delegate the heavy lifting to a tool such as a framework or library; many programmers have learned this the hard way.

 	

 You will become a better programmer by reading this book, but it will not make you a cryptography expert.

Part 1 Cryptographic foundations

 We depend on hashing, encryption, and digital signatures every day. Of these three, encryption typically steals the show. It gets more attention at conferences, in lecture halls, and from mainstream media. Programmers are generally more interested in learning about it as well.

 This first part of the book repeatedly demonstrates why hashing and digital signatures are as vital as encryption. Moreover, the subsequent parts of the book demonstrate the importance of all three. Therefore, chapters 2 through 6 are useful by themselves, but they also help you understand many of the later chapters.

2 Hashing

 This chapter covers

 	
Defining hash functions

 	
Introducing security archetypes

 	
Verifying data integrity with hashing

 	
Choosing a cryptographic hash function

 	
Using the hashlib module for cryptographic hashing

 In this chapter, you’ll learn to use hash functions to ensure data integrity, a fundamental building block of secure system design. You’ll also learn how to distinguish safe and unsafe hash functions. Along the way, I’ll introduce you to Alice, Bob, and a few other archetypal characters. I use these characters to illustrate security concepts throughout the book. Finally, you’ll learn how to hash data with the hashlib module.

2.1 What is a hash function?

 Every hash function has input and output. The input to a hash function is called a message. A message can be any form of data. The Gettysburg Address, an image of a cat, and a Python package are examples of potential messages. The output of a hash function is a very large number. This number goes by many names: hash value, hash, hash code, digest, and message digest.

 In this book, I use the term hash value. Hash values are typically represented as alphanumeric strings. A hash function maps a set of messages to a set of hash values. Figure 2.1 illustrates the relationships among a message, a hash function, and a hash value.

 [image: CH02_F01_Byrne]

 Figure 2.1 A hash function maps an input known as a message to an output known as a hash value.

 In this book, I depict each hash function as a funnel. A hash function and a funnel both accept variable-sized inputs and produce fixed-size outputs. I depict each hash value as a fingerprint. A hash value and a fingerprint uniquely identify a message or a person, respectively.

 Hash functions are different from one another. These differences typically boil down to the properties defined in this section. To illustrate the first few properties, we’ll use a built-in Python function, conveniently named hash. Python uses this function to manage dictionaries and sets, and you and I are going to use it for instructional purposes.

 The built-in hash function is a good way to introduce the basics because it is much simpler than the hash functions discussed later in this chapter. The built-in hash function takes one argument, the message, and returns a hash value:

 $ python

>>> message = 'message' ❶

>>> hash(message)

2010551929503284934 ❷

 ❶ Message input

 ❷ Hash value output

 Hash functions are characterized by three basic properties:

 	

 Deterministic behavior

 	

 Fixed-length hash values

 	

 The avalanche effect

 Deterministic behavior

 Every hash function is deterministic: for a given input, a hash function always produces the same output. In other words, hash function behavior is repeatable, not random. Within a Python process, the built-in hash function always returns the same hash value for a given message value. Run the following two lines of code in an interactive Python shell. Your hash values will match, but will be different from mine:

 >>> hash('same message')

1116605938627321843 ❶

>>> hash('same message')

1116605938627321843 ❶

 ❶ Same hash value

 The hash functions I discuss later in this chapter are universally deterministic. These functions behave the same regardless of how or where they are invoked.

 Fixed-length hash values

 Messages have arbitrary lengths; hash values, for a particular hash function, have a fixed length. If a function does not possess this property, it does not qualify as a hash function. The length of the message does not affect the length of the hash value. Passing different messages to the built-in hash function will give you different hash values, but each hash value will always be an integer.

 Avalanche effect

 When small differences between messages result in large differences between hash values, the hash function is said to exhibit the avalanche effect. Ideally, every output bit depends on every input bit: if two messages differ by one bit, then on average only half the output bits should match. A hash function is judged by how close it comes to this ideal.

 Take a look at the following code. The hash values for both string and integer objects have a fixed length, but only the hash values for string objects exhibit the avalanche effect:

 >>> bin(hash('a'))

'0b100100110110010110110010001110011110011111011101010000111100010'

>>> bin(hash('b'))

'0b101111011111110110110010100110000001010000011110100010111001110'

>>>

>>> bin(hash(0))

'0b0'

>>> bin(hash(1))

'0b1'

 The built-in hash function is a nice instructional tool but it cannot be considered a cryptographic hash function. The next section outlines three reasons this is true.

2.1.1 Cryptographic hash function properties

 A cryptographic hash function must meet three additional criteria:

 	

 One-way function property

 	

 Weak collision resistance

 	

 Strong collision resistance

 The academic terms for these properties are preimage resistance, second preimage resistance, and collision resistance. For purposes of discussion, I avoid the academic terms, with no intentional disrespect to scholars.

 One-way functions

 Hash functions used for cryptographic purposes, with no exceptions, must be one-way functions. A function is one-way if it is easy to invoke and difficult to reverse engineer. In other words, if you have the output, it must be difficult to identify the input. If an attacker obtains a hash value, we want it to be difficult for them to figure out what the message was.

 How difficult? We typically use the word infeasible. This means very difficult—so difficult that an attacker has only one option if they wish to reverse engineer the message: brute force.

 What does brute force mean? Every attacker, even an unsophisticated one, is capable of writing a simple program to generate a very large number of messages, hash each message, and compare each computed hash value to the given hash value. This is an example of a brute-force attack. The attacker has to have a lot of time and resources, not intelligence.

 How much time and resources? Well, it’s subjective. The answer isn’t written in stone. For example, a theoretical brute-force attack against some of the hash functions discussed later in this chapter would be measured in millions of years and billions of dollars. A reasonable security professional would call this infeasible. This does not mean it’s impossible. We recognize there is no such thing as a perfect hash function, because brute force will always be an option for attackers.

 Infeasibility is a moving target. A brute-force attack considered infeasible a few decades ago may be practical today or tomorrow. As the costs of computer hardware continue to fall, so do the costs of brute-force attacks. Unfortunately, cryptographic strength weakens with time. Try not to interpret this as though every system is eventually vulnerable. Instead, understand that every system must eventually use stronger hash functions. This chapter will help you make an informed decision about which hash functions to use.

 Collision resistance

 Hash functions used for cryptographic purposes, with no exceptions, must possess collision resistance. What is a collision? Although hash values for different messages have the same length, they almost never have the same value . . . almost. When two messages hash to the same hash value, it is called a collision. Collisions are bad. Hash functions are designed to minimize collisions. We judge a hash function on how well it avoids collisions; some are better than others.

 A hash function has weak collision resistance if, given a message, it is infeasible to identify a second message that hashes to the same hash value. In other words, if an attacker has one input, it must be infeasible to identify another input capable of producing the same output.

 A hash function has strong collision resistance if it is infeasible to find any collision whatsoever. The difference between weak collision resistance and strong collision resistance is subtle. Weak collision resistance is bound to a particular given message; strong collision resistance applies to any pair of messages. Figure 2.2 illustrates this difference.

 [image: CH02_F02_Byrne]

 Figure 2.2 Weak collision resistance compared to strong collision resistance

 Strong collision resistance implies weak collision resistance, not the other way around. Any hash function with strong collision resistance also has weak collision resistance; a hash function with weak collision resistance may not necessarily have strong collision resistance. Strong collision resistance is therefore a bigger challenge; this is usually the first property lost when an attacker or researcher breaks a cryptographic hash function. Later in this chapter, I show you an example of this in the real world.

 Again, the key word is infeasible. Despite how nice it would be to identify a collisionless hash function, we will never find one because it does not exist. Think about it. Messages can have any length; hash values can have only one length. The set of all possible messages will therefore always be larger than the set of all possible hash values. This is known as the pigeonhole principle.

 In this section, you learned what a hash function is. Now it’s time to learn how hashing ensures data integrity. But first, I’ll introduce you to a handful of archetypal characters. I use these characters throughout the book to illustrate security concepts, starting with data integrity in this chapter.

2.2 Archetypal characters

 I use five archetypal characters to illustrate security concepts in this book (see Figure 2.3). Trust me, these characters make it much easier to read (and write) this book. The solutions in this book revolve around the problems faced by Alice and Bob. If you’ve read other security books, you’ve probably already met these two characters. Alice and Bob are just like you—they want to create and share information securely. Occasionally, their friend Charlie makes an appearance. The data for each example in this book tends to flow among Alice, Bob, and Charlie; remember A, B, and C. Alice, Bob, and Charlie are good characters. Feel free to identify with these characters as you read this book.

 [image: CH02_F03_Byrne]

 Figure 2.3 Archetypal characters with halos are good; attackers are designated with horns.

 Eve and Mallory are bad characters. Remember Eve as evil. Remember Mallory as malicious. These characters attack Alice and Bob by trying to steal or modify their data and identities. Eve is a passive attacker; she is an eavesdropper. She tends to gravitate toward the network portion of the attack surface. Mallory is an active attacker; she is more sophisticated. She tends to use the system or the users as entry points.

 Remember these characters; you’ll see them again. Alice, Bob, and Charlie have halos; Eve and Mallory have horns. In the next section, Alice will use hashing to ensure data integrity.

2.3 Data integrity

 Data integrity, sometimes called message integrity, is the assurance that data is free of unintended modification. It answers the question, “Has the data changed?” Suppose Alice works on a document management system. Currently, the system stores two copies of each document to ensure data integrity. To verify the integrity of a document, the system compares both copies, byte for byte. If the copies do not match, the document is considered corrupt. Alice is unsatisfied with how much storage space the system consumes. The costs are getting out of control, and the problem is getting worse as the system accommodates more documents.

OEBPS/Images/CH02_F03_Byrne.png
Charlie

Eve Mallory

Y~ VA

“Evil"” “Malicious”

OEBPS/Images/CH01_F02_Byrne.png
o

o

Certificgte Root certificates Cross-Origin

authority Resource Sharing
User authentication
Content Security Policy

A Input validation
Authorization HTTP session management

HTTPS

o o

o o

Auth 2.
o OAu 0 Frontend server o
Resource Third-party
server frontend

System authentication
Authorization

HTTPS

Authentication

Encryption at rest

Transport Layer Security

Cloud services

Backend server

Database

OEBPS/Images/CH01_F01_Byrne.png
' a
' Man-in-the-middle attack
E Host header attack :
! o |
D¢ :' I-of- i ttack o 3
erjarotservice atiac = e Frontend server :
i |
s ¢ s
1] M
o
——— Replay attack o
o

Cloud services Backend server Database

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH02_F02_Byrne.png
Weak collision resistance

Ll -

Given a rﬁessage, how hard is it to find a different
message that yields a collision?

Strong collision resistance

How hard is it to find any two messages that yield a collision?

OEBPS/Images/CH02_F01_Byrne.png
Message Hash function Hash value

“Fourscore
d ™
oottt el Sl

OEBPS/Images/cover.jpeg

OEBPS/Images/Manning_copyright.png

OEBPS/Images/IFC_F01_Byrne.png
Digital signatures

Remote code
execution

Open redirects

Memory bombs

SQL injection

Cryptographic

Key generation User registration @

Permissions

Authentication
and authorization

foundations

Full stack
Python security

Shell injection
Timing attacks

Attack
resistance

Man-in-the-middle Password cracking Privilege escalation

OEBPS/Images/CH01_F03_Byrne.png
TLS certificate

————————— -
| :
Gunicom ! P
° b
o » requests-oauthlib Django form validation django-cors-headers
° P
OAuth server ,go nr
hashlib, hmac Django model validation django-csp

HE
cryp(ography{—?rl i Django ORM 11 HTML escaping

Pipenv

0111

o
101

File storage Package repo Database

I

