

 [image: cover]

Node.js in Practice

 Alex Young and Marc Harter

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 	Special Sales Department
	Manning Publications Co.
	20 Baldwin Road
	PO Box 761
	Shelter Island, NY 11964
	Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Technical development editor: Jose Maria Alvarez Rodriguez
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617290930

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Node fundamentals

 Chapter 1. Getting started

 Chapter 2. Globals: Node’s environment

 Chapter 3. Buffers: Working with bits, bytes, and encodings

 Chapter 4. Events: Mastering EventEmitter and beyond

 Chapter 5. Streams: Node’s most powerful and misunderstood feature

 Chapter 6. File system: Synchronous and asynchronous approaches to files

 Chapter 7. Networking: Node’s true “Hello, World”

 Chapter 8. Child processes: Integrating external applications with Node

 2. Real-world recipes

 Chapter 9. The Web: Build leaner and meaner web applications

 Chapter 10. Tests: The key to confident code

 Chapter 11. Debugging: Designing for introspection and resolving issues

 Chapter 12. Node in production: Deploying applications safely

 3. Writing modules

 Chapter 13. Writing modules: Mastering what Node is all about

 Community

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Node fundamentals

 Chapter 1. Getting started

 1.1. Getting to know Node

 1.1.1. Why Node?

 1.1.2. Node’s main features

 1.2. Building a Node application

 1.2.1. Creating a new Node project

 1.2.2. Making a stream class

 1.2.3. Using a stream

 1.2.4. Writing a test

 1.3. Summary

 Chapter 2. Globals: Node’s environment

 2.1. Modules

 Technique 1 Installing and loading modules

 Technique 2 Creating and managing modules

 Technique 3 Loading a group of related modules

 Technique 4 Working with paths

 2.2. Standard I/O and the console object

 Technique 5 Reading and writing to standard I/O

 Technique 6 Logging messages

 Technique 7 Benchmarking a program

 2.3. Operating system and command-line integration

 Technique 8 Getting platform information

 Technique 9 Passing command-line arguments

 Technique 10 Exiting a program

 Technique 11 Responding to signals

 2.4. Delaying execution with timers

 Technique 12 Executing functions after a delay with setTimeout

 Technique 13 Running callbacks periodically with timers

 Technique 14 Safely managing asynchronous APIs

 2.5. Summary

 Chapter 3. Buffers: Working with bits, bytes, and encodings

 3.1. Changing data encodings

 Technique 15 Converting buffers into other formats

 Technique 16 Changing string encodings using buffers

 3.2. Converting binary files to JSON

 Technique 17 Using buffers to convert raw data

 3.3. Creating your own binary protocol

 Technique 18 Creating your own network protocol

 3.4. Summary

 Chapter 4. Events: Mastering EventEmitter and beyond

 4.1. Basic usage

 Technique 19 Inheriting from EventEmitter

 Technique 20 Mixing in EventEmitter

 4.2. Error handling

 Technique 21 Managing errors

 Technique 22 Managing errors with domains

 4.3. Advanced patterns

 Technique 23 Reflection

 Technique 24 Detecting and exploiting EventEmitter

 Technique 25 Categorizing event names

 4.4. Third-party modules and extensions

 Technique 26 Alternatives to EventEmitter

 4.5. Summary

 Chapter 5. Streams: Node’s most powerful and misunderstood feature

 5.1. Introduction to streams

 5.1.1. Types of streams

 5.1.2. When to use streams

 5.1.3. History

 5.1.4. Streams in third-party modules

 5.1.5. Streams inherit from EventEmitter

 5.2. Built-in streams

 Technique 27 Using built-in streams to make a static web server

 Technique 28 Stream error handling

 5.3. Third-party modules and streams

 Technique 29 Using streams from third-party modules

 5.4. Using the stream base classes

 Technique 30 Correctly inheriting from the stream base classes

 Technique 31 Implementing a readable stream

 Technique 32 Implementing a writable stream

 Technique 33 Transmitting and receiving data with duplex streams

 Technique 34 Parsing data with transform streams

 5.5. Advanced patterns and optimization

 Technique 35 Optimizing streams

 Technique 36 Using the old streams API

 Technique 37 Adapting streams based on their destination

 Technique 38 Testing streams

 5.6. Summary

 Chapter 6. File system: Synchronous and asynchronous approaches to files

 6.1. An overview of the fs module

 6.1.1. POSIX file I/O wrappers

 6.1.2. Streaming

 6.1.3. Bulk file I/O

 6.1.4. File watching

 6.1.5. Synchronous alternatives

 Technique 39 Loading configuration files

 Technique 40 Using file descriptors

 Technique 41 Working with file locking

 Technique 42 Recursive file operations

 Technique 43 Writing a file database

 Technique 44 Watching files and directories

 6.2. Summary

 Chapter 7. Networking: Node’s true “Hello, World”

 7.1. Networking in Node

 7.1.1. Networking terminology

 7.1.2. Node’s networking modules

 7.1.3. Non-blocking networking and thread pools

 7.2. TCP clients and servers

 Technique 45 Creating a TCP server and tracking clients

 Technique 46 Testing TCP servers with clients

 Technique 47 Improve low-latency applications

 7.3. UDP clients and servers

 Technique 48 Transferring a file with UDP

 Technique 49 UDP client server applications

 7.4. HTTP clients and servers

 Technique 50 HTTP servers

 Technique 51 Following redirects

 Technique 52 HTTP proxies

 7.5. Making DNS requests

 Technique 53 Making a DNS request

 7.6. Encryption

 Technique 54 A TCP server that uses encryption

 Technique 55 Encrypted web servers and clients

 7.7. Summary

 Chapter 8. Child processes: Integrating external applications with Node

 8.1. Executing external applications

 Technique 56 Executing external applications

 8.1.1. Paths and the PATH environment variable

 8.1.2. Errors when executing external applications

 Technique 57 Streaming and external applications

 8.1.3. Stringing external applications together

 Technique 58 Executing commands in a shell

 8.1.4. Security and shell command execution

 Technique 59 Detaching a child process

 8.1.5. Handing I/O between the child and parent processes

 8.1.6. Reference counting and child processes

 8.2. Executing Node programs

 Technique 60 Executing Node programs

 Technique 61 Forking Node modules

 Technique 62 Running jobs

 8.2.1. Job pooling

 8.2.2. Using the pooler module

 8.3. Working synchronously

 Technique 63 Synchronous child processes

 8.4. Summary

 2. Real-world recipes

 Chapter 9. The Web: Build leaner and meaner web applications

 9.1. Front-end techniques

 Technique 64 Quick servers for static sites

 Technique 65 Using the DOM in Node

 Technique 66 Using Node modules in the browser

 9.2. Server-side techniques

 Technique 67 Express route separation

 Technique 68 Automatically restarting the server

 Technique 69 Configuring web applications

 Technique 70 Elegant error handling

 Technique 71 RESTful web applications

 Technique 72 Using custom middleware

 Technique 73 Using events to decouple functionality

 Technique 74 Using sessions with WebSockets

 Technique 75 Migrating Express 3 applications to Express 4

 9.3. Testing web applications

 Technique 76 Testing authenticated routes

 Technique 77 Creating seams for middleware injection

 Technique 78 Testing applications that depend on remote services

 9.4. Full stack frameworks

 9.5. Real-time services

 9.6. Summary

 Chapter 10. Tests: The key to confident code

 10.1. Introduction to testing with Node

 10.2. Writing simple tests with assertions

 Technique 79 Writing tests with built-in modules

 Technique 80 Testing for errors

 Technique 81 Creating custom assertions

 10.3. Test harnesses

 Technique 82 Organizing tests with a test harness

 10.4. Test frameworks

 Technique 83 Writing tests with Mocha

 Technique 84 Testing web applications with Mocha

 Technique 85 The Test Anything Protocol

 10.5. Tools for tests

 Technique 86 Continuous integration

 Technique 87 Database fixtures

 10.6. Further reading

 10.7. Summary

 Chapter 11. Debugging: Designing for introspection and resolving issues

 11.1. Designing for introspection

 11.1.1. Explicit exceptions

 11.1.2. Implicit exceptions

 11.1.3. The error event

 11.1.4. The error argument

 Technique 88 Handling uncaught exceptions

 Technique 89 Linting Node applications

 11.2. Debugging issues

 Technique 90 Using Node’s built-in debugger

 Technique 91 Using Node Inspector

 Technique 92 Profiling Node applications

 Technique 93 Debugging memory leaks

 Technique 94 Inspecting a running program with a REPL

 Technique 95 Tracing system calls

 11.3. Summary

 Chapter 12. Node in production: Deploying applications safely

 12.1. Deployment

 Technique 96 Deploying Node applications to the cloud

 Technique 97 Using Node with Apache and nginx

 Technique 98 Safely running Node on port 80

 Technique 99 Keeping Node processes running

 Technique 100 Using WebSockets in production

 12.2. Caching and scaling

 Technique 101 HTTP caching

 Technique 102 Using a Node proxy for routing and scaling

 Technique 103 Scaling and resiliency with cluster

 12.3. Maintenance

 Technique 104 Package optimization

 Technique 105 Logging and logging services

 12.4. Further notes on scaling and resiliency

 12.5. Summary

 3. Writing modules

 Chapter 13. Writing modules: Mastering what Node is all about

 13.1. Brainstorming

 13.1.1. A faster Fibonacci module

 Technique 106 Planning for our module

 Technique 107 Proving our module idea

 13.2. Building out the package.json file

 Technique 108 Setting up a package.json file

 Technique 109 Working with dependencies

 Technique 110 Semantic versioning

 13.3. The end user experience

 Technique 111 Adding executable scripts

 Technique 112 Trying out a module

 Technique 113 Testing across multiple Node versions

 13.4. Publishing

 Technique 114 Publishing modules

 Technique 115 Keeping modules private

 13.5. Summary

 Community

 A.1. Asking questions

 A.2. Hanging out

 A.3. Reading

 A.4. Training by the community, for the community

 A.5. Marketing your open source projects

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 You have in your hands a book that will take you on an in-depth tour of Node.js. In the pages to come, Alex Young and Marc
 Harter will help you grasp Node’s core in a deep way: from modules to real, networked applications.

 Networked applications are, of course, an area where Node.js shines. You, dear reader, are likely well aware of that; I daresay
 it is your main reason for purchasing this tome! For the few of you who actually read the foreword, let me tell you the story
 of how it all began.

 In the beginning, there was the C10K problem. And the C10K problem raised this question: if you want to handle 10,000 concurrent
 network connections on contemporary hardware, how do you go about that?

 You see, for the longest time operating systems were terrible at dealing with large numbers of network connections. The hardware
 was terrible in many ways, the software was terrible in other ways, and when it came to the interaction between hardware and
 software ... linguists had a field day coming up with proper neologisms; plain terrible doesn’t do it justice. Fortunately, technology is a story of progress; hardware gets better, software saner. Operating systems
 improved at managing large numbers of network connections, as did user software.

 We conquered the C10K problem a long time ago, moved the goal posts, and now we’ve set our sights on the C100K, C500K, and
 C1M problems. Once we’ve comfortably crossed those frontiers, I fully expect that the C10M problem will be next.

 Node.js is part of this story of ever-increasing concurrency, and its future is bright: we live in an increasingly connected
 world and that world needs a power tool to connect everything. I believe Node.js is that power tool, and I hope that, after
 reading this book, you will feel the same way.

 BEN NOORDHUIS COFOUNDER, STRONGLOOP, INC.

Preface

 When Node.js arrived in 2009, we knew something was different. JavaScript on the server wasn’t anything new. In fact, server-side
 JavaScript has existed almost as long as client-side JavaScript. With Node, the speed of the JavaScript runtimes, coupled
 with the event-based parallelism that many JavaScript programmers were already familiar with, were indeed compelling. And
 not just for client-side JavaScript developers, which was our background—Node attracted developers from the systems level
 to various server-side backgrounds, PHP to Ruby to Java. We all found ourselves inside this movement.

 At that time, Node was changing a lot, but we stuck with it and learned a whole lot in the process. From the start, Node focused
 on making a small, low-level core library that would provide enough functionality for a large, diverse user space to grow.
 Thankfully, this large and diverse user space exists today because of these design decisions early on. Node is a lot more
 stable now and used in production for numerous startups as well as established enterprises.

 When Manning approached us about writing an intermediate-level book on Node, we looked at the lessons we had learned as well
 as common pitfalls and struggles we saw in the Node community. Although we loved the huge number of truly excellent third-party
 modules available to developers, we noticed many developers were getting less and less education on the core foundations of
 Node. So we set out to write Node in Practice to journey into the roots and foundations of Node in a deep and thorough manner, as well as tackle many issues we personally
 have faced and have seen others wrestle with.

Acknowledgments

 We have many people to thank, without whose help and support this book would not have been possible.

 Thanks to the Manning Early Access Program (MEAP) readers who posted comments and corrections in the Author Online forum.

 Thanks to the technical reviewers who provided invaluable feedback on the manuscript at various stages of its development:
 Alex Garrett, Brian Falk, Chris Joakim, Christoph Walcher, Daniel Bretoi, Dominic Pettifer, Dylan Scott, Fernando Monteiro
 Kobayashi, Gavin Whyte, Gregor Zurowski, Haytham Samad, JT Marshall, Kevin Baister, Luis Gutierrez, Michael Piscatello, Philippe
 Charrière, Rock Lee, Shiju Varghese, and Todd Williams.

 Thanks to the entire Manning team for helping us every step of the way, especially our development editor Cynthia Kane, our
 copyeditor Benjamin Berg, our proofreader Katie Tennant, and everyone else who worked behind the scenes.

 Special thanks to Ben Noordhuis for writing the foreword to our book, and to Valentin Crettaz and Michael Levin for their
 careful technical proofread of the book shortly before it went into production.

Alex Young

 I couldn’t have written this book without the encouragement and support of the DailyJS community. Thanks to everyone who has
 shared modules and libraries with me over the last few years: keeping up to date with the Node.js community would have been
 impossible without you. Thank you also to my colleagues at Papers who have allowed me to use my Node.js skills in production.
 Finally, thanks to Yuka for making me believe I can do crazy things like start companies and write books.

Marc Harter

 I would like thank Ben Noordhuis, Isaac Schlueter, and Timothy Fontaine for all the IRC talks over Node; you know the underlying
 systems that support Node in such a deep way that learning from you makes Node even richer. Also, I want to thank my coauthor
 Alex; it seems rare to have such a similar approach to writing a book as I did with Alex, plus it was fun for a Midwestern
 US guy to talk shop with an English chap. Ultimately my heart goes out to my wife, who really made this whole thing possible,
 if I’m honest. Hannah, you are loved; thank you.

About this Book

 Node.js in Practice exists to provide readers a deeper understanding of Node’s core modules and packaging system. We believe this is foundational
 to being a productive and confident Node developer. Unfortunately, this small core is easily missed for the huge and vibrant
 third-party ecosystem with modules prebuilt for almost any task. In this book we go beyond regurgitating the official Node
 documentation in order to get practical and thorough. We want the reader to be able to dissect the inner workings of the third-party
 modules they include as well as the projects they write.

 This book is not an entry-level Node book. For that, we recommend reading Manning’s Node.js In Action. This book is targeted at readers who already have experience working with Node and are looking to take it up a notch. Intermediate
 knowledge of JavaScript is recommended. Familiarity with the Windows, OS X, or Linux command line is also recommended.

 In addition, we’re aware that many Node developers have come from a client-side JavaScript background. For that reason, we
 spend some time explaining less-familiar concepts such as working with binary data, how underlying networking and file systems
 work, and interacting with the host operating system—all using Node as a teaching guide.

Chapter roadmap

 This book is organized into three parts.

 Part 1 covers Node’s core fundamentals, where we focus our attention on what’s possible using only Node’s core modules (no third-party
 modules). Chapter 1 recaps Node.js’s purpose and function. Then chapters 2 through 8 each cover in depth a different core aspect of Node from buffers to streams, networking to child processes.

 Part 2 focuses on real-world development recipes. Chapters 9 through 12 will help you master four highly applicable skills—testing, web development, debugging, and running Node in production. In
 addition to Node core modules, these sections include the use of various third-party modules.

 Part 3 guides you through creating your own Node modules in a straightforward manner that ties in all kinds of ways to use npm commands
 for packaging, running, testing, benchmarking, and sharing modules. It also includes helpful tips on versioning projects effectively.

 There are 115 techniques in the book, each module covering a specific Node.js topic or task, and each divided into practical
 Problem/Solution/Discussion sections.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code.

 This book’s coding style is based on the Google JavaScript Style Guide.[1] That means we’ve put var statements on their own lines, used camelCase to format function and variable names, and we always use semicolons. Our style
 is a composite of the various JavaScript styles used in the Node community.

 1 https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

 Most of the code shown in the book can be found in various forms in the sample source code that accompanies it. The sample
 code can be downloaded free of charge from the Manning website at www.manning.com/Node.jsinPractice, as well as from GitHub at the following link: https://github.com/alexyoung/nodeinpractice.

Author Online forum

 Purchase of Node.js in Practice includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/Node.jsinPractice. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

 You can also contact the authors at the following Google Group URL: https://groups.google.com/forum/#!forum/nodejsinpractice.

About the Cover Illustration

 The caption for the illustration on the cover of Node.js in Practice is “Young Man from Ayvalik,” a town in Turkey on the Aegean Coast. The illustration is taken from a collection of costumes
 of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing
 from the collection and we have been unable to track it down to date. The book’s table of contents identifies the figures
 in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt
 be surprised to find their art gracing the front cover of a computer programming book ... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation
 was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed
 with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with
 the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds
 the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that
 might have happened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Node fundamentals

 Node has an extremely small standard library intended to provide the lowest-level API for module developers to build on. Even
 though it’s relatively easy to find third-party modules, many tasks can be accomplished without them. In the chapters to follow,
 we’ll take a deep dive into a number of core modules and explore how to put them to practical use.

 By strengthening your understanding of these modules, you’ll in turn become a more well-rounded Node programmer. You’ll also
 be able to dissect third-party modules with more confidence and understanding.

Chapter 1. Getting started

 This chapter covers

 	Why Node?

 	Node’s main features

 	Building a Node application

 Node has quickly become established as a viable and indeed efficient web development platform. Before Node, not only was JavaScript
 on the server a novelty, but non-blocking I/O was something that required special libraries for other scripting languages.
 With Node, this has all changed.

 The combination of non-blocking I/O and JavaScript is immensely powerful: we can handle reading and writing files, network
 sockets, and more, all asynchronously in the same process, with the natural and expressive features of JavaScript callbacks.

 This book is geared toward intermediate Node developers, so this chapter is a quick refresher. If you want a thorough treatment
 of Node’s basics, then see our companion book, Node.js in Action (by Mike Cantelon, Marc Harter, TJ Holowaychuk, and Nathan Rajlich; Manning Publications, 2013).

 In this chapter we’ll introduce Node, what it is, how it works, and why it’s something you can’t live without. In chapter 2 you’ll get to try out some techniques by looking at Node’s globals—the objects and methods available to every Node process.

 	

 Preflight check

 Node In Practice is a recipe-style book, aimed at intermediate and advanced Node developers. Although this chapter covers some introductory
 material, later chapters advance quickly. For a beginner’s introduction to Node, see our companion book, Node.js in Action.

 	

1.1. Getting to know Node

 Node is a platform for developing network applications. It’s built on V8, Google’s JavaScript runtime engine. Node isn’t just V8, though. An
 important part of the Node platform is its core library. This encompasses everything from TCP servers to asynchronous and
 synchronous file management. This book will teach you how to use these modules properly.

 But first: why use Node, and when should you use it? Let’s look into that question by seeing what kinds of scenarios Node
 excels at.

 1.1.1. Why Node?

 Let’s say you’re building an advertising server and distributing millions of adverts per minute. Node’s non-blocking I/O would
 be an extremely cost-effective solution for this, because the server could make the best use of available I/O without you
 needing to write special low-level code. Also, if you already have a web team that can write JavaScript, then they should
 be able to contribute to the Node project. A typical, heavier web platform wouldn’t have these advantages, which is why companies
 like Microsoft are contributing to Node despite having excellent technology stacks like .NET. Visual Studio users can install
 Node-specific tools[1] that add support for Intelli-Sense, profiling, and even npm. Microsoft also developed WebMatrix (http://www.microsoft.com/web/webmatrix/), which directly supports Node and can also be used to deploy Node projects.

 1 See https://nodejstools.codeplex.com/.

 Node embraces non-blocking I/O as a way to improve performance in certain types of applications. JavaScript’s traditional
 event-based implementation means it has a relatively convenient and well-understood syntax that suits asynchronous programming.
 In a typical programming language, an I/O operation blocks execution until it completes. Node’s asynchronous file and network
 APIs mean processing can still occur while these relatively slow I/O operations finish. Figure 1.1 illustrates how different tasks can be performed using asynchronous network and file system APIs.

 Figure 1.1. An advertising server built with Node

 [image:]

 In figure 1.1, a new HTTP request has been received and parsed by Node’s http module [image:]. The ad server’s application code then makes a database query, using an asynchronous API—a callback passed to a database
 read function [image:]. While Node waits for this to finish, the ad server is able to read a template file from the disk [image:]. This template will be used to display a suitable web page. Once the database request has finished, the template and database
 results are used to render the response [image:].

 While this is happening, other requests could also be hitting the ad server, and they’ll be handled based on the available
 resources [image:]. Without having to think about threads when developing the ad server, you’re able to push Node to use the server’s I/O resources
 very efficiently, just by using standard JavaScript programming techniques.

 Other scenarios where Node excels are web APIs and web scraping. If you’re downloading and extracting content from web pages,
 then Node is perfect because it can be coaxed into simulating the DOM and running client-side JavaScript. Again, Node has
 a performance benefit here, because scrapers and web spiders are costly in terms of network and file I/O.

 If you’re producing or consuming JSON APIs, Node is an excellent choice because it makes working with JavaScript objects easy.
 Node’s web frameworks (like Express, http://expressjs.com) make creating JSON APIs fast and friendly. We have full details on this in chapter 9.

 Node isn’t limited to web development. You can create any kind of TCP/IP server that you like. For example, a network game
 server that broadcasts the game’s state to various players over TCP/IP sockets can perform background tasks, perhaps maintaining the game world, while it sends data
 to the players. Chapter 7 explores Node’s networking APIs.

 	

 When to use Node

 To get you thinking like a true Nodeist, the table below has examples of applications where Node is a good fit.

 	
 Node’s strengths

 	
 Scenario

 	
 Node’s strengths

 	Advertising distribution
 	

 	Efficiently distributes small pieces of information

 	Handles potentially slow network connections

 	Easily scales up to multiple processors or servers

 	Game server
 	

 	Uses the accessible language of JavaScript to model business logic

 	Programs a server catering to specific networking requirements without using C

 	Content management system, blog
 	

 	Good for a team with client-side JavaScript experience

 	Easy to make RESTful JSON APIs

 	Lightweight server, complex browser JavaScript

 	

 1.1.2. Node’s main features

 Node’s main features are its standard library, module system, and npm. Of course, there’s more to it than that, but in this
 book we’ll focus on teaching you how to use these parts of Node. We’ll use third-party libraries where it’s considered best
 practice, but you’ll see a lot of Node’s built-in features.

 In fact, Node’s strongest and most powerful feature is its standard library. This is really two parts: a set of binary libraries
 and the core modules. The binary libraries include libuv, which provides a fast run loop and non-blocking I/O for networking and the file system. It also has an HTTP library, so
 you can be sure your HTTP clients and servers are fast.

 Figure 1.2 is a high-level overview of Node’s internals that shows how everything fits into place.

 Figure 1.2. Node’s key parts in context

 [image:]

 Node’s core modules are mostly written in JavaScript. That means if there’s anything you either don’t understand or want to
 understand in more detail, then you can read Node’s source code. This includes features like networking, high-level file system
 operations, the module system, and streams. It also includes Node-specific features like running multiple Node processes at
 once with the cluster module, and wrapping sections of code in event-based error handlers, known as domains.

 The next few sections focus on each core module in more detail, starting with the events API.

EventEmitter: An API for events

 Sooner or later every Node developer runs into EventEmitter. At first it seems like something only library authors would need to use, but it’s actually the basis for most of Node’s
 core modules. The streams, networking, and file system APIs derive from it.

 You can inherit from EventEmitter to make your own event-based APIs. Let’s say you’re working on a PayPal payment-processing module. You could make it event-based,
 so instances of Payment objects emit events like paid and refund. By designing the class this way, you decouple it from your application logic, so you can reuse it in more than one project.

 We have a whole chapter dedicated to events: see chapter 4 for more. Another interesting part of EventEmitter is that it’s used as the basis for the stream module.

stream: The basis for scalable I/O

 Streams inherit from EventEmitter and can be used to model data with unpredictable throughput—like a network connection where data speeds can vary depending
 on what other users on the network are doing. Using Node’s stream API allows you to create an object that receives events about the connection: data for when new data comes in, end when there’s no more data, and error when errors occur.

 Rather than passing lots of callbacks to a readable stream constructor function, which would be messy, you subscribe to the
 events you’re interested in. Streams can be piped together, so you could have one stream class that reads data from the network
 and then pipe it to a stream that transforms the data into something else. This could be data from an XML API that’s transformed
 into JSON, making it easier to work with in JavaScript.

 We love streams, so we’ve dedicated a whole chapter to them. Skip to chapter 5 to dive right in. You might think that events and streams sound abstract, and though that’s true, it’s also interesting to
 note that they’re used as a basis for I/O modules, like fs and net.

fs: Working with files

 Node’s file system module is capable of reading and writing files using non-blocking I/O, but it also has synchronous methods.
 You can get information about files with fs.stat, and the synchronous equivalent is fs.statSync.

 If you want to use streams to process the contents of a file in a super-efficient manner, then use fs.createReadStream to return a ReadableStream object. There’s more about this in chapter 6.

net: Create network clients and servers

 The networking module is the basis for the http module and can be used to create generalized network clients and servers. Although Node development is typically thought
 of as web-based, chapter 7 shows you how to create TCP and UDP servers, which means you’re not limited to HTTP.

Global objects and other modules

 If you have some experience making web applications with Node, perhaps with the Express framework, then you’ve already been
 using the http, net, and fs core modules without necessarily realizing it. Other built-in features aren’t headline-grabbing, but are critical to creating
 programs with Node.

 One example is the idea of global objects and methods. The process object, for example, allows you to pipe data into and out of a Node program by accessing the standard I/O streams. Much like
 Unix and Windows scripting, you can cat data to a Node program. The ubiquitous console object, beloved by JavaScript developers everywhere, is also considered a global object.

 Node’s module system is also part of this global functionality. Chapter 2 is packed with techniques that show you how to use these features.

 Now that you’ve seen some of the core modules, it’s time to see them in action. The example will use the stream module to generate statistics on streams of text, and you’ll be able to use it with files and HTTP connections. If you want
 to learn more about the basics behind streams or HTTP in Node, refer to Node.js in Action.

1.2. Building a Node application

 Instead of wading through more theory, we’ll show you how to build a Node application. It’s not just any application, though:
 it uses some of Node’s key features, like modules and streams. This will be a fast and intense tour of Node, so start up your
 favorite text editor and terminal and get ready.

 Here’s what you’ll learn over the next 10 minutes:

 	How to create a new Node project

 	How to write your own stream class

 	How to write a simple test and run it

 Streams are great for processing data, whether you’re reading, writing, or transforming it. Imagine you want to convert data
 from a database into another format, like CSV. You could create a stream class that accepts input from a database and outputs
 it as a stream of CSV. The output of this new CSV stream could be connected to an HTTP request, so you could stream CSV directly to
 a browser. The same class could even be connected to a writable file stream—you could even fork the stream to create a file
 and send it to a web browser.

 In this example, the stream class will accept text input, count word matches based on a regular expression, and then emit
 the results in an event when the stream has finished being sent. You could use this to count word matches in a text file,
 or pipe data from a web page and count the number of paragraph tags—it’s up to you. First we need to create a new project.

 1.2.1. Creating a new Node project

 You might be wondering how a professional Node developer creates a new project. This is a straightforward process, thanks
 to npm. Though you could create a JavaScript file and run node file.js, we’ll use npm init to make a new project with a package.json file. Create a new directory [image:], cd [image:] into it, and then run npm init [image:]:

 [image:]

 Get used to typing these commands: you’ll be doing it often! You can press Return to accept the defaults when prompted by
 npm. Before you’ve written a line of JavaScript, you’ve already seen how cool one of Node’s major features—npm—is. It’s not
 just for installing modules, but also for managing projects.

 	

 When to use a package.json file

 You may have an idea for a small script, and may be wondering if a package.json file is really necessary. It isn’t always
 necessary, but in general you should create them as often as possible.

 Node developers prefer small modules, and expressing dependencies in package .json means your project, no matter how small,
 is super-easy to install in the future, or on another person’s machine.

 	

 Now it’s time to write some JavaScript. In the next section you’ll create a new JavaScript file that implements a stream.

 1.2.2. Making a stream class

 Create a new file called countstream.js and use util.inherits to derive from stream.Writable and implement the required _write method. Too fast? Let’s slow down. The full source is in the following listing.

 Listing 1.1. A writable stream that counts

 [image:]

 This example illustrates how subsequent examples in this book work. We present a snippet of code, annotated with hints on
 the underlying code. For example, the first part of the class uses the util.inherits method to inherit from the Writable base class [image:]. This example won’t be fully fleshed-out here—for more on writing your own streams, see technique 30 in chapter 5. For now, just focus on how regular expressions are passed to the constructor [image:] and used to count text as it flows into instances of the class [image:]. Node’s Writable class calls _write for us, so we don’t need to worry about that yet.

 	

 Streams and events

 In listing 1.1 there was an event, total. This is one we made up—you can make up your own as well. Streams inherit from EventEmitter, so they have the same emit and on methods.

 	

 Node’s Writable base class will also call end when there’s no more data [image:]. This stream can be instantiated and piped as required. In the next section you’ll see how to connect it using pipe.

 1.2.3. Using a stream

 Now that you’ve seen how to make a stream class, you’re probably dying to try it out. Make another file, index.js, and add
 the code shown in the next listing.

 Listing 1.2. Using the CountStream class

 [image:]

 You can run this example by typing node index.js. It should display something like Total matches: 24. You can experiment with it by changing the URL that it fetches.

 This example loads the module from listing 1.1 [image:] and then instantiates it with the text 'book' [image:]. It also downloads the text from a website using Node’s standard http module [image:] and then pipes the result through our CountStream class [image:].

 The significant thing here is res.pipe(countStream). When you pipe data, it doesn’t matter how big it is or if the network is slow: the CountStream class will dutifully count matches until the data has been processed. This Node program does not download the entire file first! It takes the file—piece by piece—and processes it. That’s the big thing here, and a critical
 aspect to Node development.

 To recap, figure 1.3 summarizes what you’ve done so far to create a new Node project. First you created a new directory, and ran npm init [image:], then you created some JavaScript files [image:], and finally you ran the code [image:].

 Figure 1.3. The three steps to creating a new Node project

 [image:]

 Another important part of Node development is testing. The next section wraps up this example by testing CountStream.

 1.2.4. Writing a test

 We can write a short test for CountStream without using any third-party modules. Node comes with a built-in assert module, so we can use that for a quick test. Open test.js and add the code shown next.

 Listing 1.3. Using the CountStream class

 [image:]

 This test can be run with node test.js, and you should see Assertions passed: 1 printed in the console. The test actually reads the current file and passes the data through CountStream. It might invoke Ouroboros, but it’s a useful example because it gives us content that we know something about—we can always
 be sure there is one match for the word example.

 	

 Assertions

 Node comes with an assertion library called assert. A basic test can be made by calling the module directly – assert(expression).

 	

 The first thing the test does is listen for the total event, which is emitted by instances of CountStream [image:]. This is a good place to assert that the number of matches should be the same as what is expected [image:]. A readable stream that represents the current file is opened and piped through our class [image:]. Just before the end of the program, we print out how many assertions were hit [image:].

 This is important because if the total event never fires, then assert.equal won’t run at all. We have no way of knowing whether tests in callbacks are run, so a simple counter has been used to illustrate
 how Node programming can require patterns from the other programming languages and platforms that you might be familiar with.

 If you’re getting tired, you can rest here, but there’s a bit of sugar to finish off our project. Node developers like to
 run tests and other scripts using npm on the command line. Open package.json and change the "test" property to look like this:

 "scripts": {
 "test": "node test.js"
},

 Now you can run tests just by typing npm test. This comes in handy when you have lots of tests and running them is more complicated. Running tests, test runners, and asynchronous
 testing issues are all covered in chapter 10.

 	

 npm scripts

 The npm test and npm start commands can be configured by editing package.json. You can also run arbitrary commands, which are invoked with npm run command. All you need to do is set a property under scripts, just like listing 1.4.

 This is useful for specific types of tests or housekeeping routines—for example npm run integration-tests, or maybe even npm run seed-data.

 	

 Depending on your previous experience with Node, this example might have been intense, but it captures how Node developers
 think and take advantage of the powerful resources that come with Node.

 Now that you’ve seen how a Node project is put together, we’re done with the refresher course on Node. The next chapter introduces
 our first set of techniques, which is the bulk of this book’s format. It covers ways of working with the global features that
 are available to all Node programs.

1.3. Summary

 In this chapter you’ve learned about Node.js in Practice—what it covers and how it focuses on Node’s impressive built-in core modules like the networking module and file system modules.

 You’ve also learned about what makes Node tick, and how to use it. Some of the main points we covered were

 	When to use Node, and how Node builds on non-blocking I/O, allowing you to write standard JavaScript but get great performance
 benefits.

 	Node’s standard library is referred to as its core modules.

 	What the core modules do—I/O tasks like network protocols, and work with files and more generic features like streams.

 	How to quickly start a new Node project, complete with a package.json file so dependencies and scripts can be added.

 	How to use Node’s powerful stream API to process data.

 	Streams inherit from EventEmitter, so you can emit and respond to any events that you want to use in your application.

 	How to write small tests just by using npm and the assert module—you can test out ideas without installing any third-party libraries.

 Finally, we hope you learned something from our introductory application. Using event-based APIs, non-blocking I/O, and streams
 is really what Node is all about, but it’s also important to take advantage of Node’s unique tools like the package.json file
 and npm.

 Now it’s time for techniques. The next chapter introduces the features that you don’t even have to load to use: the global
 objects.

Chapter 2. Globals: Node’s environment

 This chapter covers

 	Using modules

 	What you can do without requiring a single module

 	The process and console objects

 	Timers

 Global objects are available in all modules. They’re universal. Whether you’re writing network programs, command-line scripts,
 or web applications, your program will have access to these objects. That means you can always depend on features like console.log and __dirname—both are explained in detail in this chapter.

 The goal of this chapter is to introduce Node’s global objects and methods to help you learn what functionality is available
 to all Node processes. This will help you better understand Node and its relationship to the operating system, and how it
 compares with other JavaScript environments like browsers.

 Node provides some important functionality out of the box, even without loading any modules. In addition to the features provided
 by the ECMAScript language, Node has several host objects—objects supplied by Node to help programs to execute.

 A key global object is process, which is used to communicate with the operating system. Unix programmers will be familiar with standard I/O streams, and
 these are accessible through the process object using Node’s streaming API.

 Another important global is the Buffer class. This is included because JavaScript has traditionally lacked support for binary data. As the ECMAScript standards
 evolve, this is being addressed, but for now most Node developers rely on the Buffer class. For more about buffers, see chapter 3.

 Some globals are a separate instance for each module. For example, module is available in every Node program, but is local to the current module. Since Node programs may consist of several modules,
 that means a given program has several different module objects—they behave like globals, but are in module scope.

 In the next section you’ll learn how to load modules. The objects and methods relating to modules are globals, and as such
 are always available and ready to be used.

2.1. Modules

 Modules can be used to organize larger programs and distribute Node projects, so it’s important to be familiar with the basic
 techniques required to install and create them.

Technique 1 Installing and loading modules

 Whether you’re using a core module provided by Node or a third-party module from npm, support for modules is baked right into
 Node and is always available.

Problem

 You want to load a third-party module from npm.

Solution

 Install the module with the command-line tool, npm, and then load the module using require. The following listing shows an example of installing the express module.

 Listing 2.1. Using npm

 [image:]

Discussion

 The npm command-line tool is distributed with Node, and can be used to search, install, and manage packages. The website https://npmjs.org provides another interface for searching modules, and each module has its own page that displays the associated readme file
 and dependencies.

 Once you know the name of a module, installation is easy: type npm install module-name [image:] and it will be installed into ./node_modules. Modules can also be “globally” installed—running npm install -g module_name will install it into a global folder. This is usually /usr/local/lib/node_modules on Unix systems. In Windows it should be
 wherever the node.exe binary is located.

 After a module has been installed, it can be loaded with require('module-name') [image:]. The require method usually returns an object or a method, depending on how the module has been set up.

 	

 Searching npm

 By default, npm searches across several fields in each module’s package.json file. This includes the module’s name, description,
 maintainers, URL, and keywords. That means a simple search like npm search express yields hundreds of results.

 You can reduce the number of matches by searching with a regular expression. Wrap a search term in slashes to trigger npm’s
 regular expression matching: npm search /^express$/

 However, this is still limited. Fortunately, there are open source modules that improve on the built-in search command. For
 example, npmsearch by Gorgi Kosev will order results using its own relevance rankings.

 	

 The question of whether to install a module globally is critical to developing maintainable projects. If other people need
 to work on your project, then you should consider adding modules as dependencies to your project’s package.json file. Keeping
 project dependencies tightly managed will make it easier to maintain them in the future when new versions of dependencies
 are released.

Technique 2 Creating and managing modules

 In addition to installing and distributing open source modules, “local” modules can be used to organize projects.

Problem

 You want to break a project up into separate files.

Solution

 Use the exports object.

Discussion

 Node’s module system provides a solution to splitting code across multiple files. It’s very different from include

OEBPS/3.jpg

OEBPS/4.jpg

OEBPS/1.jpg

OEBPS/2.jpg
€

OEBPS/iifig02.jpg

OEBPS/01fig01_alt.jpg
o HTTP HTTP HTTP.
request request request

TP sar s
Yo oo o

- v
- P e

Asynchronous response i
from the database

HTTP o

Web page rendered based request
on database values

Y [R ——
rowser ompiae ond s valoo

@ 5N parsos o roquest your code @ Vs, overroqsst cante
cxoeses o camase cooy. ey

© 11 o querycabvack wais o, some
Sl Ao iy it S

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/iifig01.jpg

OEBPS/009fig01.jpg
Change & mkdir first-project
into it. cd first-project

npm init

Create the project’s
‘manifest file.

OEBPS/5.jpg

OEBPS/01fig02_alt.jpg
appjs

Core modules

C#+ bindings

v8

The operating system

OEBPS/cover.jpg
Alex Young
Marc Harter

Forowom o
Ben Noordhs

ode.js

INCLUDES 115 TECHNIQUES

[| FTTIH

OEBPS/011fig01_alt.jpg
instantate a
Countstream
cass that counts
text matching
“bool.”

Download

whew.manning.com.

Ve COREACToN. € SRIURIN | '/ HONRERCTING) §.
var countStream = new CountStrean('book'); Load the
var nttp = require('http'); countstreams il

hetp.get (*hetp://www.anning.con’, function(res)
res.pipe (countStream)
'8

countsStream.on('total’, function(count) {

he countStream, thereby
counting the text

OEBPS/010fig01_alt.jpg
YT PEESEN = TRIILEN | TR (R SC N
var util = require('util');

module. exports = CountStream;

Inherit from the

util.inherits (CountStream, Writable); Writable stream.

function Countstrean(machText, options) (
Writable.call (this, options); .
this.count = Create a RegExp object that
this.matcher = new RegExp(matchext, 'ig'); matches gaball and ignores case.

b

CountStream.prototype. write - function (chunk, encoding, cb) (
var matches = chunk.toString() .match(this.matcher) ;

£ (macenes) (gkt
chunk of input into

thicoumt +- sacches lengts itk

! o count matches.

b0

CountStream.prototype.end = function() {
this.emit('cocal, this.count) Wi the stréiin lias

t ended, “publish” the total
o sl N i

OEBPS/012fig01_alt.jpg
The total event
will e emitted
when the stream
s finished.

Createa
readable stream
of the current
file, and pipe
the datathrough
CountStream.

AL BENGEL = YPQULEe | ARBANLT Y
var CountStream = require('./countstrean');
var countStream = new CountStream('example’)
var fs = roquire('fs');

var passed = 0;

countStrean.on('total’, function(count) { 03 Assert the count is the
assert.equal (count, 1); ‘expected amount.
passedrs;

i
£5. createreadStrean(_Eilenane) . pipe (countStrean) ;

process.on(*exit!, function() { Just before the program
console. log ('Assertions passed:’, passed) ;

b

OEBPS/01fig03_alt.jpg
Create a new directory,
and run npm init.

$ mkdir new-project
$ cd new-project
$ npm init

index.js | @) Create a JavaScrpt fle

© Runthe code

$ node index.js
$ npm start

OEBPS/016fig01_alt.jpg
ol B b

T express Sinatra inspired web development Eramework
module based s npm install express
on keywords. expressax.x.x ./node_modules/express

L mechodaex.x.x
L (several more dependencies appear here)

$ node Load the module using
> var express = require('express'); the require method.
> typeot express

i e

